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Abstract—Wearable photoplethysmography (PPG) is em-
bedded in billions of devices, yet its optical waveform is
easily corrupted by motion, perfusion loss, and ambient
light—jeopardizing downstream cardiometric analytics. Existing
signal-quality assessment (SQA) methods rely either on brittle
heuristics or on data-hungry supervised models. We introduce
the first fully unsupervised SQA pipeline for wrist PPG. Stage
1 trains a contrastive 1-D ResNet-18 on 276 h of raw, un-
labeled data from heterogeneous sources (varying in device
and sampling frequency), yielding optical-emitter– and motion-
invariant embeddings (i.e., the learned representation is stable
across differences in LED wavelength, drive intensity, and device
optics, as well as wrist motion). Stage 2 converts each 512-D
encoder embedding into a 4-D topological signature via persistent
homology (PH) and clusters these signatures with HDBSCAN. To
produce a binary signal-quality index (SQI), the acceptable PPG
signals are represented by the densest cluster while the remaining
clusters are assumed to mainly contain poor-quality PPG signals.
Without re-tuning, the SQI attains Silhouette, Davies–Bouldin,
and Calinski–Harabasz scores of 0.72, 0.34, and 6,173, respec-
tively, on a stratified sample of 10,000 windows. In this study,
we propose a hybrid self-supervised-learning–topological-data-
analysis (SSL–TDA) framework that offers a drop-in, scalable,
cross-device quality gate for PPG signals.

Index Terms—photoplethysmography, signal quality, self-
supervised learning, persistent homology, wearable sensing

I. INTRODUCTION

Wearable photoplethysmography (PPG) underpins today’s
cardiometric ecosystem—delivering heart rate, SpO2, respira-
tion, and nascent cuff-less blood-pressure estimates in smart-
watches, rings, and earbuds. Global shipments already exceed
millions of units per year, generating petabyte-scale PPG
streams. Yet the optical waveform is notoriously fragile: mo-
tion artifacts, ambient-light leakage, skin–sensor decoupling,
and perfusion changes routinely degrade signal quality [1]–
[3]. Without timely filtering, downstream algorithms can yield
grossly erroneous vitals, undermining user trust and clinical
adoption.

Commercial firmware embeds hand-tuned signal-quality
assessment (SQA) heuristics—thresholds on amplitude, tem-
plate correlation, or derivative energy—engineered per LED
wavelength and mechanical stack; a firmware update or strap
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relocation can break these rules. Supervised CNNs detect
artifacts reliably [4], but each hardware generation demands
thousands of freshly labeled windows, rendering cross-device
scaling impractical.

Wearables already store hundreds of hours of unlabeled
wrist-PPG per user. Contrastive self-supervised learning (SSL)
can harness this free data, but SSL alone does not output
a human-interpretable signal-quality index (SQI). Conversely,
topology-based descriptors capture waveform morphology in
a few numbers, yet they have never been paired with modern
deep encoders. Persistent homology (PH) has characterized
cardiac periodicity and gait regularity [5]; to our knowledge,
we are the first to use PH as a morphology prior for wrist-PPG
quality.

We fuse SSL and topological data analysis (TDA) into the
first fully unsupervised, device-agnostic SQA pipeline, shown
in Fig. 1:

1) Contrastive representation learning: trains a con-
trastive encoder so that each 8 s PPG window is mapped
to a 512-dimensional embedding that is stable across
device settings and motion artifacts.

2) Topology-driven quality discovery: grounded in the
invariance learned in Stage 1, we operate on these
encoder-derived representations rather than on the raw
waveforms. Specifically, we freeze the encoder, treat
each 512-D embedding as a one-dimensional signal,
compute a four-scalar PH signature of the embedding
landscape and cluster these 4-D signatures with HDB-
SCAN; the largest dense cluster is labeled clean, while
all other points are labeled poor.

The key novelties are (i) the first SSL–TDA fusion for
SQA, (ii) cross-device and -sampling rate portability without
re-tuning, and (iii) an interpretable four-number signature
enabling MCU-level inference.

II. BACKGROUND

A. Self-supervised learning for physiological signals
Contrastive objectives such as SimCLR [6] and BYOL [7]

maximize agreement between two independently augmented
views of the same instance; this technique outperforms au-
toencoders on ECG and PPG [8], [9] and on other biosignals



Fig. 1. Proposed two-stage pipeline

by capturing invariance to amplitude scaling and temporal
distortion with zero annotation effort.

B. Persistent homology in time-series
TDA quantifies the shape of data. Sublevel-set PH has

characterized cardiac periodicity and gait regularity [5], [10].
Clean, quasi-periodic PPG produces long-lived H1 loops,
whereas noisy windows do not, making PH an attractive un-
supervised morphology cue. In addition, PH reduces encoder
embeddings to morphology-aware scalars, adding an explicit
morphological prior—capturing beat regularity versus artifact,
and providing a compact and interpretable input to clustering,

C. Density-based clustering for quality discovery
HDBSCAN extends DBSCAN with variable-density cluster

extraction and explicit noise labeling [11]. It automatically
chooses the number of clusters and handles non-Gaussian
shapes—ideal for heterogeneous wrist data where artifacts are
rare and scattered.

III. METHODOLOGY

A. Corpora and signal conditioning
TABLE I lists the two datasets used in this study.
Why these datasets: WildPPG offers long, mostly clean

wrist recordings, whereas We-Be provides lower-rate, motion-
rich wrist data. Joint training therefore encourages the encoder
to generalize across hardware and noise regimes.

TABLE I
UNLABELLED PPG CORPORA USED FOR PIPELINE DEVELOPMENT.

Corpus Site Native fs Hours LED

WildPPG [12] wrist 128 Hz 216 green
We-Be [13], [14] wrist 25 Hz 60 green

Signal conditioning: A 0.5–8 Hz third-order, zero-phase
Butterworth filter removes baseline wander and LED noise.
Traces are resampled to a common 25 Hz, z-scored, and
segmented into 8 s windows (200 samples, 50 % overlap)

B. Self-supervised representation learning (Contrastive
Learning)

a) Loss function: The NT-Xent loss encourages invari-
ance to amplitude and phase jitter—precisely the nuisance
factors in wrist PPG—while requiring no annotations.

b) Encoder: A 1-D ResNet-18 processes 1× 200 inputs,
followed by a projection MLP (512→512→512). The output
is ℓ2-normalized with ε = 10−6.

c) Augmentation strategy: Each view applies a determin-
istic band-pass filter, then draws two to four of the following
transforms:

• Random crop (keep 50–70%): packet loss, strap adjust-
ment, transient motion gaps.

• Time-warp (±3%): natural heart-rate variability, slow
sensor drift.

• Jitter / Gaussian noise (1% SD): sensor electronic noise,
ambient light flicker.

• Magnitude scaling (±5%): LED drive-current fluctua-
tions, skin perfusion changes.

• Frequency dropout (narrowband removal): ambient
light interference, missing harmonics.

• Circular shift (±1 s) and polarity inversion: strap
orientation errors, polarity mismatches.

• Segment blackout (10–40 samples): short motion spikes
(e.g., hand taps).

Empirical studies confirm that augmentations including jitter
(Gaussian noise), scaling, time-warp, and polarity inversion
reliably mimic motion, noise, and perfusion artifacts in con-
trastive learning for ECG/PPG signals [9], [15].



d) Training details: By exploring hyperparameter tuning,
we use the following: NT-Xent with τ = 0.1; batch size 512;
AdamW (learning rate 2 × 10−4, weight decay 10−4); 200
epochs; mixed precision.

C. Topological signature

We convert each 8 s window into a 512-D embedding
using the trained encoder (frozen). Interpreting this embedding
as a one-dimensional scalar signal, we compute persistent
homology on a 1-D cubical complex (GUDHI) and retain four
interpretable features:[

nH1 , ΣH1, maxH0, meanH0

]
∈ R4.

These four values summarize the structure in the embedding
and are the inputs to HDBSCAN in Stage 2.

D. Unsupervised quality discovery

The 4-D persistence vectors are clustered with HDBSCAN.
It adapts the number of clusters automatically, flags sparse
points as noise, and handles non-Gaussian shapes—desirable
for heterogeneous wrist PPG.

A binary SQI is assigned such that the largest non-noise
cluster is deemed clean, and the remaining points (noise plus
smaller clusters) are poor.

E. Overall Performance

Because the pipeline is label-free and device-agnostic by
design, we evaluate structure quality using standard clus-
tering validity scores (silhouette, Davies–Bouldin, Calin-
ski–Harabasz) rather than supervised accuracy. These metrics
capture separability and compactness of the discovered quality
strata, which is appropriate when the objective is scalable,
cross-device gating without annotation.

IV. EVALUATION

A. Encoder convergence

The NT-Xent loss decreases smoothly from 3.44 → 0.95
across 200 epochs, while the mean cosine similarity

(
cos

)
between the two augmented views rises from 0.67 → 0.77.
The coupled evolution of loss and cosine confirms that the
encoder learns discriminative directions rather than collapsing
to a trivial representation.

B. Quality of topological features

The 150 000 × 4 persistence matrix exhibits a clear mor-
phology gradient: clean windows populate the high-nH1 , high-∑

H1 corner, whereas noisy windows cluster near the origin.
Fig. 2 shows a representative visualization of the clustering

outcome: the densest HDBSCAN cluster comprises 76 % of
all windows and corresponds to textbook pulsatile traces,
explaining the great performance achieved by the SSL–TDA
configuration.
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Fig. 2. Visualization of the clustering result.

TABLE II
ABLATION ON 10 K WINDOWS

Configuration Sil.(↑) DB(↓) CH(↑)

SSL+PH+HDBSCAN (SSL-TDA) 0.72 0.34 6 173
SSL+HDBSCAN (no PH) 0.05 4.60 29
SSL+PH+k-means (no density) 0.39 0.89 7 177
SSL+k-means (SSL only) 0.01 7.33 141

C. Ablation study

TABLE II shows the ablation study results. Removing
the topological signature (SSL + HDBSCAN) collapses the
Silhouette from 0.72 to 0.05: in 512 D, the contrastive em-
beddings form a diffuse manifold that density-based cluster-
ing labels as almost homogeneous. Conversely, retaining PH
but swapping HDBSCAN for k-means halves the Silhouette,
showing that the density prior is also essential. The full
SSL–TDA fusion therefore yields the most compact and well-
separated clusters.

D. Unlabeled comparison with existing works

We assess convergent validity by comparing our SSL-TDA
pipeline with two baselines on the same unlabeled corpus. For
NeuroKit2 [16], we compute per-beat PPG template-matching
scores and aggregate them to per-window values (median); for
pyPPG [17], we use its 0-1 template-matching SQI. To obtain
binary outputs without labels, we prevalence-match thresholds
so each method accepts the same fraction q = 0.24 of windows
(equal to our acceptance rate). On N = 3600 windows,
it agreed with NeuroKit2 on 82.22% and with pyPPG on
87.44%. These agreements indicate that our label-free method
aligns with existing methods on most windows.

V. DISCUSSION

a) Dominant-cluster heuristic: Our current implementa-
tion assumes that the largest and densest cluster discovered



by HDBSCAN corresponds to physiologically clean PPG,
while smaller or scattered clusters correspond to artifacts. This
assumption holds in our corpora, where most windows contain
usable signal, but it may break down in regimes dominated by
noise. In such cases, the “clean = largest cluster” rule could
invert. To mitigate this, one can (i) compute density ratios be-
tween the top two clusters and reject segments when the ratio
falls below a threshold, (ii) weight clusters by intra-cluster
persistence rather than point count, or (iii) use Bayesian non-
parametric mixtures that relax the largest-cluster assumption.
We note that the clustering framework can accommodate them
without retraining the encoder.

b) Practical utility and downstream effects: A natural
question is whether the proposed SQA improves downstream
analytics such as heart-rate estimation, rhythm classification,
or biometric authentication. While we do not include full
downstream validation here, prior studies have established that
discarding poor-quality PPG segments reduces error rates in
heart-rate monitoring and arrhythmia detection, and improves
biometric authentication accuracy [4], [18], [19]. Our binary
SQI removes roughly 24% of windows in the We-Be dataset;
in practice, this would filter the inputs to cardiometric pipelines
so that algorithms operate on cleaner segments, reducing
spurious beats and missed intervals. We position this work
as a modular “quality gate” that can be inserted before such
pipelines. A systematic evaluation of downstream benefits,
such as pre/post SQI studies on shared labeled corpora—heart
rate, rhythm classification, and biometrics, is an important
direction for future work.

c) Beyond binary quality: In this paper we report a
binary SQI for clarity, assigning the largest dense cluster as
clean and all others as poor. However, the clustering frame-
work naturally produces multiple clusters and outlier scores,
which could be mapped to finer-grained categories (e.g., clean
/ borderline / poor) or even a continuous quality index based on
cluster density or silhouette distance. Such multi-level outputs
may better match downstream applications (e.g., arrhythmia
screening, where “borderline” segments should be flagged but
not discarded).

d) Multi-modality: Fusing accelerometer and PPG em-
beddings during contrastive pre-training may boost robustness
to motion spikes that currently leak into the clean cluster. In
addition, We-Be’s LED channels other than green were not
exploited; multi-channel PH may further improve robustness.
Finally, clinical validation against simultaneous ECG or inva-
sive pressure would solidify the findings.

VI. CONCLUSION

We presented the first fully unsupervised two-stage pipeline
that converts raw wrist-PPG into a binary SQI without device-
specific thresholds or expert labels. Rather than optimizing
supervised SQA accuracy, we prioritize scalability (no labels),
portability (no device-specific re-tuning across 25–128 Hz),
and interpretability (four-scalar signature), positioning the
method as a practical quality gate for diverse PPG de-
vices, achieving Silhouette 0.72, Davies–Bouldin 0.34, and

Calinski–Harabasz 6,173 on 276 h of heterogeneous data.
Since it requires zero labels and no hardware calibration,
the SSL–TDA framework can serve as a drop-in quality gate
for any wrist-based PPG pipeline—paving the way for more
reliable heart-rate, rhythm, and biometric-security analytics
across the billions of wearables already in use.
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