

EFFICIENT REASONING VIA THOUGHT COMPRESSION FOR LANGUAGE-GUIDED SEGMENTATION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Chain-of-thought (CoT) reasoning has significantly improved the performance of large multimodal models in language-guided segmentation, yet its prohibitive computational cost, stemming from generating verbose rationales, limits real-world applicability. We introduce WISE (Wisdom from Internal Self-Exploration), a novel paradigm for efficient reasoning guided by the principle of *thinking twice—once for learning, once for speed*. WISE trains a model to generate a structured sequence: a concise rationale, the final answer, and then a detailed explanation. By placing the concise rationale first, our method leverages autoregressive conditioning to enforce that the concise rationale acts as a sufficient summary for generating the detailed explanation. This structure is reinforced by a self-distillation objective that jointly rewards semantic fidelity and conciseness, compelling the model to internalize its detailed reasoning into a compact form. At inference, the detailed explanation is omitted. To address the resulting conditional distribution shift, our inference strategy, WISE-S, employs a simple prompting technique that injects a brevity-focused instruction into the user’s query. This final adjustment facilitates the robust activation of the learned concise policy, unlocking the full benefits of our framework. Extensive experiments show that WISE-S achieves state-of-the-art zero-shot performance on the ReasonSeg benchmark with 58.3 cIoU, while reducing the average reasoning length by over $5\times$ —from 112 to just 23 tokens.

1 INTRODUCTION

Language-guided segmentation, the task of localizing an object within an image based on a natural language description, is a cornerstone of modern vision-language research. While early successes focused on simple referring expressions like “the car” (Yu et al., 2016; Kazemzadeh et al., 2014), the field’s frontier has rapidly advanced towards *reasoning segmentation* (Lai et al., 2024). This more challenging task requires models to interpret complex, multi-step commands that are often compositional, relational, or rely on commonsense knowledge—for instance, “segment the car that is partially obscured by the bus.” Successfully tackling such prompts necessitates a shift from basic recognition to a multi-step cognitive process, where a model must deconstruct the query into a coherent chain of visual search and logical validation steps.

Recent Large Multimodal Models (LMMs) (Shang et al., 2024; Bai et al., 2025), augmented with Chain-of-Thought (CoT) prompting strategies (Wei et al., 2022; Ma et al., 2025), have emerged as a powerful solution for this task. By generating an explicit, step-by-step textual rationale, these models can effectively reason through complex instructions to identify the correct target. However, this enhanced reasoning capability is intrinsically tied to the generation of long, verbose text sequences (Wang et al., 2025; Feng et al., 2025). This creates a critical performance-efficiency

Figure 1: WISE balances cost and performance by separating reasoning for training and inference.

054 paradox: the very mechanism that drives accuracy introduces prohibitive computational costs and
 055 high inference latency, severely limiting the applicability of these models in real-world scenarios
 056 like robotics or interactive assistants where efficiency is paramount. **The fundamental challenge,**
 057 **therefore, is to decouple a model’s reasoning capability from this costly, verbose output.**

058 In this work, we address this challenge by proposing **WISE (Wisdom from Internal Self-**
 059 **Exploration)**, a novel training and inference paradigm designed for efficient reasoning via thought
 060 compression. Our framework is guided by the principle of *thinking twice—once for learning, once*
 061 *for speed*. Instead of a simple ‘think → answer’ sequence, we train the model to generate a struc-
 062 tured, three-part response: a **concise rationale** (R_c), the **final answer** (A), and then a **detailed**
 063 **explanation** (R_d). By compelling the model to commit to the concise rationale upfront, we lever-
 064 age the fundamental autoregressive nature of decoders. This structure ensures that the generation of
 065 the final answer and, critically, the detailed explanation are both conditioned on the initial concise
 066 thought, $P(A, R_d | I, T, R_c)$. This conditioning forces the concise rationale to become a potent and
 067 sufficient summary of the entire reasoning process, as a poor summary would make it impossible
 068 for the model to generate a coherent, logically consistent detailed explanation.

069 This unique training structure is reinforced by a self-distillation objective that explicitly rewards
 070 the semantic fidelity between the concise rationale and the detailed explanation, while penalizing
 071 the verbosity of the former. This process encourages the model to internalize its elaborate reason-
 072 ing capabilities into a compact, efficient policy. To ensure this learned policy is robustly activated
 073 at inference—where the detailed explanation is entirely omitted to maximize speed—our WISE
 074 framework culminates in WISE-S, a simple, zero-overhead prompting strategy. This final adjust-
 075 ment injects a brevity-focused instruction into the user’s query (as shown in the Fig. 1), mitigating
 076 the conditional distribution shift between training and inference and ensuring the model consistently
 077 defaults to its more efficient reasoning mode.

078 Our contributions are as follows:

- 079 • We introduce WISE, a novel end-to-end framework for efficient reasoning segmentation.
 080 Its unique training paradigm decouples the verbose reasoning required for robust learning
 081 from the concise rationale needed for fast inference.
- 083 • We propose a self-distillation mechanism, built upon a unique *concise → answer → de-*
 084 *tailed* generation sequence that leverages autoregressive conditioning to effectively train
 085 the model to compress its own reasoning capabilities.
- 086 • We demonstrate through extensive experiments that our full framework, WISE-S, achieves
 087 state-of-the-art zero-shot performance on the ReasonSeg benchmark with 58.3 cloU, while
 088 simultaneously reducing the average reasoning length by over **5×**.

090 2 RELATED WORK

092 2.1 LANGUAGE-GUIDED SEGMENTATION

094 Language-guided segmentation aims to localize specific objects in an image based on natural lan-
 095 guage descriptions. Early work in this domain primarily focused on referring expression segmen-
 096 tation (Kazemzadeh et al., 2014; Yu et al., 2016), where queries are typically simple and direct,
 097 such as “the person in the red shirt”. These foundational works established the core challenge of
 098 grounding linguistic phrases to pixel-level visual evidence.

099 The field has recently evolved towards the more challenging task of reasoning segmentation (Lai
 100 et al., 2024). This advanced task requires models to interpret complex, multi-step instructions that
 101 involve relational, spatial, or commonsense reasoning. Several recent works have explored using
 102 LMMs to tackle this challenge, bridging the gap between high-level reasoning and low-level seg-
 103 mentation (Lai et al., 2024; Chen et al., 2024; Ren et al., 2024). A key work that pushed the bound-
 104 aries of this task is Seg-Zero (Liu et al., 2025b), which introduced a framework for learning reason-
 105 ing capabilities “from zero”. By employing pure reinforcement learning (RL) instead of supervised
 106 fine-tuning (SFT), Seg-Zero demonstrated that a model could learn to generate an explicit reason-
 107 ing process and achieve strong zero-shot performance on complex benchmarks like ReasonSeg (Lai
 et al., 2024). Our work builds directly upon this paradigm, adopting the core idea of using a reason-

108 ing model to guide a segmentation model. However, we identify and address a critical limitation in
 109 these prior works: the high computational cost associated with their verbose reasoning chains.
 110

111 2.2 CHAIN-OF-THOUGHT IN LARGE MULTIMODAL MODELS 112

113 Chain-of-Thought (CoT) prompting has emerged as a powerful technique for unlocking the complex
 114 reasoning abilities of Large Language Models (LLMs) (Wei et al., 2022; Zhang et al., 2022; Yu
 115 et al., 2023). By prompting a model to generate a sequence of intermediate reasoning steps before
 116 providing a final answer, CoT has significantly improved performance on a wide range of tasks,
 117 from arithmetic to symbolic reasoning. This principle has been successfully extended to LMMs,
 118 enabling them to deconstruct complex visual-linguistic queries into manageable steps (Chen et al.,
 119 2024; Shen et al., 2025; Tan et al., 2025).
 120

121 In the context of reasoning segmentation, models like LISA (Lai et al., 2024) and Seg-Zero (Liu
 122 et al., 2025b) implicitly leverage a CoT-like process by generating a textual rationale to guide their
 123 final segmentation decision. The success of these methods demonstrates the power of explicit rea-
 124 soning for complex visual grounding. While highly effective, this approach creates a performance-
 125 efficiency paradox: the model’s accuracy is directly coupled with the generation of long, verbose
 126 textual outputs, leading to high latency and computational overhead. This trade-off presents a ma-
 127 jor obstacle for real-world applications. Our work directly confronts this challenge by seeking to
 128 decouple reasoning capability from the generation of costly, verbose text, a problem not explicitly
 129 addressed by prior CoT-based segmentation methods.
 130

131 2.3 KNOWLEDGE DISTILLATION AND THOUGHT COMPRESSION 132

133 Knowledge distillation is a common technique for model compression, where a smaller “student”
 134 model is trained to mimic the output of a larger, more powerful “teacher” model. This concept has
 135 been adapted to distill complex reasoning processes from large models, often by training a smaller
 136 model on the rationales generated by a teacher (Lightman et al., 2023; Uesato et al., 2022). Our work
 137 introduces a novel form of *self-distillation* specifically designed for compressing the CoT process
 138 within a single model.
 139

140 Unlike traditional distillation, which relies on a separate teacher model, WISE trains the model to
 141 be its own teacher. During training, the model generates both a concise rationale (R_c) and a detailed
 142 explanation (R_d). The core innovation lies in our training objective, which simultaneously rewards
 143 the semantic fidelity between the detailed “teacher” explanation and the concise “student” rationale,
 144 while penalizing the verbosity of the latter. The structured generation sequence ($R_c \rightarrow A \rightarrow R_d$)
 145 and autoregressive conditioning are critical mechanisms that enable this effective self-distillation.
 146 This approach fundamentally differs from prior methods like Seg-Zero, which learn to generate a
 147 single, often verbose, rationale through reinforcement learning (Guo et al., 2025) but lack an explicit
 148 mechanism for compression. To our knowledge, WISE is the first framework that trains a model to
 149 explicitly internalize and compress its own reasoning process for efficient yet powerful reasoning
 150 segmentation.
 151

152 3 METHODOLOGY 153

154 Our objective is to enhance the efficiency of reasoning segmentation models by compressing their
 155 Chain-of-Thought (CoT) process, without sacrificing performance. As shown in 2, we introduce
 156 **WISE**, a new training and inference paradigm that redefines the learning objective for a policy-
 157 based reasoning model, $\mathcal{F}_{\text{reason}}$. This model is trained using the GRPO reinforcement learning algo-
 158 rithm (Shao et al., 2024) and is decoupled from the downstream segmentation model, \mathcal{F}_{seg} , which
 159 remains frozen throughout the process.
 160

161 3.1 PROBLEM FORMULATION

162 Given an input image I and a textual instruction T , our goal is to train a policy π_θ , embodied by the
 163 reasoning model $\mathcal{F}_{\text{reason}}$, to generate an optimal set of geometric prompts A (e.g., bounding boxes
 164 and points) that localize the target object. The baseline approach trains the policy to generate a
 165 sequence containing a detailed reasoning chain τ_d and the prompts A . The optimization objective

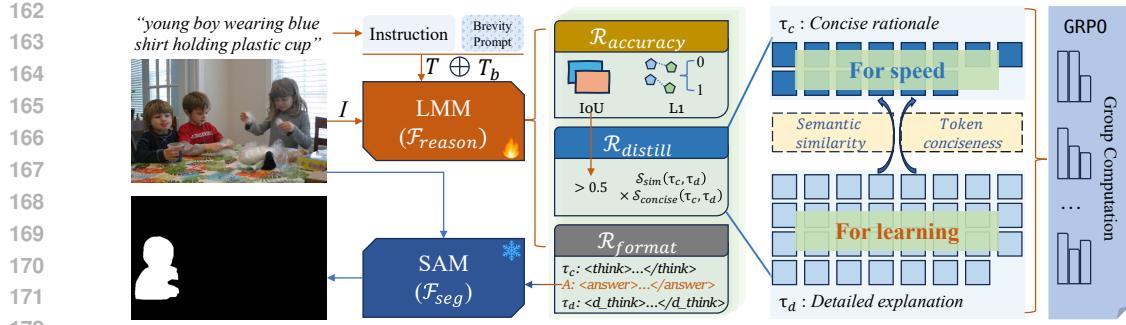


Figure 2: **Overview of the WISE training and inference framework.** During training (orange path), the reasoning model $\mathcal{F}_{\text{reason}}$ (LMM) takes an image I and an instruction T to produce a concise rationale (τ_c), an answer with geometric prompts (A), and a detailed explanation (τ_d). The process is optimized by the GRPO algorithm using a hierarchical reward signal composed of $\mathcal{R}_{\text{accuracy}}$ (IoU and L1 of prompts), $\mathcal{R}_{\text{format}}$, and a conditional self-distillation reward $\mathcal{R}_{\text{distill}}$. $\mathcal{R}_{\text{distill}}$ encourages τ_c to be semantically similar to τ_d but much shorter. The segmentation model \mathcal{F}_{seg} (SAM) remains frozen and is not part of the training loop. During inference (blue path), the detailed explanation τ_d is omitted, and an optional brevity prompt (T_b) is used to ensure the generation of a highly compressed rationale for maximum efficiency.

is to find parameters θ^* that maximize the expected reward, which is calculated directly on the generated prompts:

$$\theta^* = \arg \max_{\theta} \mathbb{E}_{\pi_{\theta}} [\mathcal{R}_{\text{task}}(A, A_{gt})] \quad (1)$$

where A_{gt} represents the ground-truth geometric prompts. For final evaluation, the generated prompts A are fed into a fixed, pre-trained segmentation model $M = \mathcal{F}_{\text{seg}}(A)$, but \mathcal{F}_{seg} and the final mask M are not involved in the training loop of π_{θ} . The primary motivation for our work is the high computational cost of generating the verbose τ_d at inference time.

3.2 THE WISE TRAINING PARADIGM

The core of WISE is to train the policy π_{θ} to learn a compressed reasoning representation. This is achieved by restructuring the generation sequence as a structured action space and introducing a hierarchical, conditional reward objective.

3.2.1 STRUCTURED ACTION SPACE AND AUTOREGRESSIVE CONDITIONING

Instead of the standard action space $\mathcal{A}_{\text{baseline}} = (\tau_d, A)$, we define a new action space for training: $\mathcal{A}_{\text{train}} = (\tau_c, A, \tau_d)$, where τ_c is a concise rationale (<think>), A is the answer (<answer>), and τ_d is a detailed explanation (<d_think>). The autoregressive policy π_{θ} models the joint probability of this sequence as:

$$\pi_{\theta}(\tau_c, A, \tau_d | I, T) = \pi_{\theta}(\tau_c | I, T) \cdot \pi_{\theta}(A | I, T, \tau_c) \cdot \pi_{\theta}(\tau_d | I, T, \tau_c, A) \quad (2)$$

This generation order imposes a powerful structural prior, compelling τ_c to act as a sufficient statistic for the generation of τ_d , thereby creating ideal conditions for self-distillation.

3.2.2 HIERARCHICAL REWARD OBJECTIVE

The learning process is guided by a hierarchical reward function. The base task reward, $\mathcal{R}_{\text{task}}$, ensures syntactic and geometric fidelity. It is a composite function composed of a format reward, $\mathcal{R}_{\text{format}}$, and an accuracy reward, $\mathcal{R}_{\text{accuracy}}$:

$$\mathcal{R}_{\text{task}}(\tau_c, A) = \mathcal{R}_{\text{format}}(\tau_c, A) + \mathcal{R}_{\text{accuracy}}(A, A_{gt}) \quad (3)$$

Following prior work (Liu et al., 2025b), $\mathcal{R}_{\text{format}}$ is a binary reward verifying the presence of required tags and a valid JSON structure. $\mathcal{R}_{\text{accuracy}}$ is the sum of binary rewards for the Intersection over Union (IoU) and L1 distance of the geometric prompts in A .

Building upon this baseline, the total training reward, $\mathcal{R}_{\text{train}}$, conditionally incorporates our novel self-distillation reward, $\mathcal{R}_{\text{distill}}$:

$$\mathcal{R}_{\text{train}} = \mathcal{R}_{\text{task}} + \mathcal{R}_{\text{distill}}(\tau_c, \tau_d) \cdot \mathbb{I}(\text{IoU}(A) > 0.5) \quad (4)$$

where $\mathbb{I}(\cdot)$ is the indicator function. The distillation reward $\mathcal{R}_{\text{distill}}$ is defined as the product of a similarity score and a conciseness score:

$$\mathcal{R}_{\text{distill}} = \mathcal{S}_{\text{sim}}(\tau_c, \tau_d) \cdot \mathcal{S}_{\text{concise}}(\tau_c, \tau_d) \quad (5)$$

The semantic similarity score, \mathcal{S}_{sim} , is computed as the cosine similarity between the sentence embeddings of the two rationales, obtained from a pretrained SentenceTransformer model \mathcal{F}_{ST} :

$$\mathcal{S}_{\text{sim}}(\tau_c, \tau_d) = \frac{\mathcal{F}_{\text{ST}}(\tau_c) \cdot \mathcal{F}_{\text{ST}}(\tau_d)}{\|\mathcal{F}_{\text{ST}}(\tau_c)\| \|\mathcal{F}_{\text{ST}}(\tau_d)\|} \quad (6)$$

The conciseness score, $\mathcal{S}_{\text{concise}}$, measures the fractional length reduction of the concise rationale relative to the detailed one, given by:

$$\mathcal{S}_{\text{concise}}(\tau_c, \tau_d) = \max \left(0, 1 - \frac{\text{len}(\tau_c)}{\text{len}(\tau_d)} \right) \quad (7)$$

where $\text{len}(\cdot)$ denotes the number of tokens. This conditional objective ensures the model only learns to distill reasoning pathways that are proven to be effective.

3.3 THE WISE-S INFERENCE STRATEGY

At inference time, the action space is reduced to $\mathcal{A}_{\text{infer}} = (\tau_c, A)$ by omitting the generation of τ_d . This creates a conditional distribution shift, as the policy is now queried for $P(\tau_c|I, T; \text{goal} = A)$ instead of the training-time distribution that anticipated generating τ_d . To mitigate this, the WISE-S strategy modifies the input instruction T with a brevity-focused prompt $T_b = \text{'the shorter the better'}$, creating a new inference prompt $T_S = T \oplus T_b$, where \oplus denotes injection. The objective is to align the inference-time policy with the characteristics learned during training, specifically to promote the generation of a concise rationale (τ_c) that is as brief as its training-time counterpart. This is reflected in the following approximation:

$$\pi_{\theta}(\tau_c, A|I, T_S) \approx \pi_{\theta}(\tau_c, A|I, T; \text{trained with } \mathcal{R}_{\text{distill}}) \quad (8)$$

This final step ensures the model robustly produces the highly compressed rationales learned during the WISE training phase.

4 EXPERIMENTS

Datasets and Metrics. To empirically validate our framework, we largely adhere to the evaluation protocols established by prior work (Liu et al., 2025b). We train our models on a 2,000-sample subset of the RefCOCOg dataset (Yu et al., 2016). Crucially, no human-annotated rationales are used during training, meaning the reasoning capabilities are learned from scratch. For evaluation, we assess out-of-domain reasoning capability on the challenging ReasonSeg benchmark (Lai et al., 2024) and test in-domain performance on the standard suites of RefCOCO, RefCOCO+, and RefCOCOg (Yu et al., 2016). Segmentation accuracy is measured primarily by cumulative IoU (cIoU), while reasoning efficiency is quantified by the average number of generated reasoning tokens.

Baselines. Our primary baseline is Seg-Zero, which represents a strong, reasoning-augmented segmentation model. To demonstrate that WISE’s effectiveness stems from its unique training structure rather than just a preference for shorter outputs, we implement two additional strong baselines (Aggarwal & Welleck, 2025) that directly optimize for brevity via reward shaping:

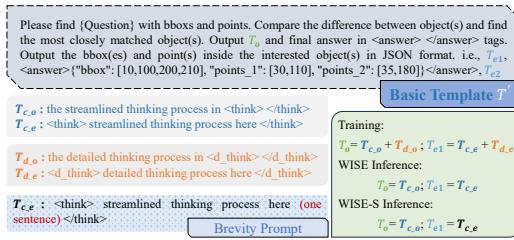


Figure 3: **Prompting Strategy for WISE.** The figure shows the basic instruction template and the specific components for generating concise (T_c) and detailed (T_d) rationales. Different combinations of these components are used for the training phase, standard WISE inference, and the brevity-focused WISE-S inference.

270

- 271 • **L1-Exact:** This baseline adds a reward term that is inversely proportional to the L1 distance
- 272 between the generated rationale’s length and a fixed, short target length.
- 273 • **L1-Max:** This baseline introduces a penalty for any rationale exceeding a predefined maximum length, encouraging the model to stay within a token budget.

274

275 **Implementation Details.** Our model architecture comprises a Qwen2.5-VL-7B (Bai et al., 2025)

276 reasoning model ($\mathcal{F}_{\text{reason}}$) and a frozen SAM2-Large (Ravi et al., 2024) segmentation model (\mathcal{F}_{seg}).

277 We optimize the reasoning model using the GRPO reinforcement learning algorithm (Shao et al.,

278 2024) with the DeepSpeed library (Rasley et al., 2020). Training is conducted with a total batch size

279 of 16, a learning rate of 1×10^{-6} , and the AdamW optimizer with a weight decay of 0.01. The user

280 instruction for training and inference is shown in Figure 3.

281 **Inference Strategies.** We evaluate two variants of our trained model at inference time:

282

283

- 284 • **WISE (default):** This is our standard inference setting used across all experiments unless
- 285 otherwise specified. It simply involves removing the instruction to generate the detailed
- 286 explanation (< d.think >) from the training-time prompt, relying on the model’s naturally
- 287 learned concise policy.
- 288 • **WISE-S (shortened):** To fully and robustly activate the learned brevity, this variant incor-
- 289 porates an additional brevity-focused prompt, such as “one sentence”, into the user instruc-
- 290 tion.

291 Table 1: Comparison with state-of-the-art meth- 292 ods on the **Zero-shot ReasonSeg** benchmark.

293 WISE-7B and WISE-7B-S significantly outper-

294 form prior methods. *Re-evaluate with official

295 checkpoints. †Reported in the original paper.

296 Table 2: Comparison with state-of-the-art meth- 297 ods on the **Referring Expression Segmen-**

298 **tation** benchmark. Our models achieve competi-

299 tive or superior performance against specialized

300 methods while being more general.

297	298	Method	ReasonSeg				Method	RCO		
			val		test			testA	RCO	RCO+RCOg
299	gIoU	cIoU	gIoU	cIoU	testA	test	test	test	test	test
300	OVSeg (Liang et al., 2023)	28.5	18.6	26.1	20.8	LAVT (Yang et al., 2022)	75.8	68.4	62.1	
301	ReLA (Liu et al., 2023)	22.4	19.9	21.3	22.0	ReLA (Liu et al., 2023)	76.5	71.0	66.0	
302	LISA-7B (Lai et al., 2024)	53.6	52.3	48.7	48.8	LISA-7B (Lai et al., 2024)	76.5	67.4	68.5	
303	SAM4MLLM (Chen et al., 2024)	46.7	48.1	-	-	PixelLM-7B (Ren et al., 2024)	76.5	71.7	70.5	
304	Qwen2.5VL-3B + SAM2	53.8	44.1	47.6	37.4	MagNet (Chng et al., 2024)	78.3	73.6	69.3	
305	Seg-Zero-7B [†] (Liu et al., 2025a)	62.6	62.0	57.5	52.0	PerceptionGPT (Pi et al., 2024)	78.6	73.9	71.7	
306	Seg-Zero-7B* (Liu et al., 2025a)	60.9	57.4	57.7	54.4	Seg-Zero-7B [†] (Liu et al., 2025a)	79.3	73.7	71.5	
307	WISE-7B (ours)	63.5	59.2	60.3	58.5	Seg-Zero-7B* (Liu et al., 2025a)	78.8	<u>74.8</u>	71.3	
308	WISE-7B-S (ours)	63.5	58.8	60.3	58.3	WISE-7B (ours)	79.1	74.0	<u>71.8</u>	
309						WISE-7B-S (ours)	79.1	75.0	72.1	

310 4.1 MAIN RESULTS

311 We conduct a series of experiments to validate the effectiveness and efficiency of our proposed

312 WISE framework. We first present the main results, comparing WISE with state-of-the-art methods

313 on both reasoning and referring segmentation benchmarks. We then conduct extensive ablation

314 studies to deconstruct the key components of our method and analyze their individual contributions.

315

316 **State-of-the-Art on Reasoning Segmentation.** As shown in Table 1, on the challenging zero-shot

317 ReasonSeg benchmark, our WISE models significantly outperform existing state-of-the-art methods.

318 Specifically, our default WISE-7B model achieves 60.3 gIoU and 58.5 cIoU on the test set, surpass-

319 ing the strong LISA-13B baseline by a large margin (+6.5 gIoU, +7.7 cIoU). This demonstrates

320 the strong reasoning capability cultivated by our training paradigm. The shortened variant,

321 WISE-7B-S, maintains this high level of performance, confirming that the concise rationales preserve

322 the essential logical steps required for complex reasoning.

323 **Competitive Performance on Referring Segmentation.** Table 2 shows the performance on referring

324 expression segmentation benchmarks. Despite being trained on a small subset of RefCOCOg,

324
 325 Table 3: Performance and Efficiency Comparison on Referring and Reasoning Segmentation Bench-
 326 marks. Our WISE models drastically reduce token overhead (#Tok) while improving or maintain-
 327 ing accuracy (cIoU) across all benchmarks compared to the Seg-Zero and brevity-focused reward
 328 shaping methods (L1-Exact, L1-Max (Aggarwal & Welleck, 2025)). The sub-rows show the token
 329 reduction factor ($\times \downarrow$) and the absolute performance change (Δ) against the Seg-Zero.

330 331 Method	332 RefCOCO _{testA}				333 RefCOCO+ _{testA}		334 RefCOCOg _{test}		335 ReasonSeg (cIoU)			
	#Tok \downarrow	cIoU \uparrow	#Tok \downarrow	cIoU \uparrow	#Tok \downarrow	cIoU \uparrow	#Tok \downarrow	val \uparrow	#Tok \downarrow	test \uparrow		
336 Seg-Zero	165.1	78.8	159.9	74.8	159.8	71.3	117.5	57.4	111.9	54.4		
337 Seg-Zero+L1-Exact	31.2	78.3	31.1	74.9	30.7	71.7	36.6	57.2	35.6	55.0		
338 Seg-Zero+L1-Max	11.7	78.9	11.7	74.6	10.6	70.7	10.5	43.8	12.0	49.7		
339 WISE (ours)	35.0	79.1	33.8	74.0	34.0	71.8	38.8	59.2	38.8	58.5		
340 <i>vs. Seg-Zero</i>	$(4.7 \times \downarrow)$ $(+0.3)$		$(4.7 \times \downarrow)$	(-0.8)	$(4.7 \times \downarrow)$	$(+0.5)$	$(3.0 \times \downarrow)$	$(+1.8)$	$(2.9 \times \downarrow)$	$(+4.1)$		
341 WISE-S (ours)	<u>24.0</u>	79.1	<u>23.4</u>	75.0	<u>22.9</u>	72.1	<u>24.6</u>	58.8	<u>22.7</u>	58.3		
342 <i>vs. Seg-Zero</i>	$(6.9 \times \downarrow)$ $(+0.3)$		$(6.8 \times \downarrow)$	$(+0.2)$	$(7.0 \times \downarrow)$	$(+0.8)$	$(4.8 \times \downarrow)$	$(+1.4)$	$(4.9 \times \downarrow)$	$(+3.9)$		

343 our models exhibit strong generalization. WISE-7B-S achieves competitive or even superior re-
 344 sults compared to specialized methods, particularly on RefCOCO+ and RefCOCOg, highlighting its
 345 robustness and wide applicability without sacrificing performance on simpler, in-domain tasks.

346 **Breaking the Efficiency-Performance Trade-off.** Table 3 provides a comprehensive comparison
 347 of performance versus efficiency. Across all four benchmarks, both WISE and WISE-S drastically
 348 reduce the number of generated tokens compared to the Seg-Zero baseline. WISE-S, in particular,
 349 achieves a remarkable **4.9** \times to **7.0** \times reduction in reasoning length. More importantly, this massive
 350 gain in efficiency is not achieved at the cost of accuracy. In most cases, WISE-S *improves* per-
 351 formance, especially on the difficult ReasonSeg task (+3.9 cIoU). This result empirically validates our
 352 core thesis: by teaching a model to reason efficiently, we can break the conventional trade-off and
 353 achieve both speed and effectiveness simultaneously.

356 4.2 ABLATION STUDIES

357 To understand the source of WISE’s effectiveness, we conduct a series of detailed ablation studies.
 358 All ablations are performed using the 7B model variant.

362 4.2.1 DECONSTRUCTING THE THOUGHT COMPRESSION MECHANISM

363 We first analyze the two core components of our proposed thought compression: the generation
 364 order and the self-distillation reward.

365 **Generation Order is Crucial.** Table 4 investigates the impact of the generation sequence. The
 366 results clearly show that our proposed order, $\tau_c \rightarrow A \rightarrow \tau_d$, is superior. Placing the concise
 367 rationale τ_c first is essential. When the detailed rationale τ_d is generated first (e.g., $\tau_d \rightarrow \tau_c \rightarrow A$),
 368 the model fails to produce concise outputs at inference (106.5 tokens on ReaSeg), as it has not
 369 learned to abstract. This confirms that the predictive nature of the τ_c -first ordering is the key to
 370 enabling thought compression.

371 **All Reward Components are Necessary.** Table 5 dissects our self-distillation reward. Remov-
 372 ing any of the three components—the conditional indicator (\mathbb{I}), the similarity score (S_{sim}), or the
 373 conciseness score ($S_{concise}$)—leads to a noticeable degradation in either performance, efficiency,
 374 or both. For instance, removing the similarity constraint (S_{sim}) results in much longer rationales,
 375 as the model is not explicitly encouraged to make τ_c a faithful summary. Removing the conditional
 376 application (\mathbb{I}) leads to unstable training where the model might distill incorrect reasoning paths (not
 377 shown in table). This validates that our hierarchical reward formulation is critical for success.

378 4.2.2 EFFECT OF THE INFERENCE-TIME PROMPT
379

380 Table 6 explores different inference-time strategies. The baseline Seg-Zero model generates over
381 100 tokens. Our default WISE model, which simply omits the generation of τ_d without any special
382 prompt, already reduces this to a much more reasonable 34-39 tokens while improving accuracy.
383 This demonstrates the strong intrinsic brevity learned during training. Adding a brevity-focused
384 prompt further enhances efficiency. While “*the shorter the better*” yields the absolute fewest tokens,
385 it comes at a slight cost to performance. Our proposed WISE-S prompt, “*one sentence*”, strikes the
386 optimal balance, achieving the best overall trade-off between high cloU and extremely low token
387 count. This shows that a simple, targeted prompt is an effective way to fully unlock and stabilize the
388 concise reasoning capability cultivated by our training paradigm.
389

390 Table 4: Ablation on the **generation order** of
391 rationales and the answer. Placing the
392 concise rationale first ($\tau_c \rightarrow A \rightarrow \tau_d$) is crucial
393 for achieving both high accuracy and low token
394 count at inference.

Order	RCOg		ReaSeg	
	#Tok ↓	cloU ↑	#Tok ↓	cloU ↑
$A \rightarrow \tau_c \rightarrow \tau_d$	74.6	70.1	75.7	54.4
$\tau_d \rightarrow \tau_c \rightarrow A$	107.5	68.2	106.5	55.4
$\tau_c \rightarrow \tau_d \rightarrow A$	134.7	70.1	132.7	55.2
$\tau_c \rightarrow A \rightarrow \tau_d$	34.0	71.8	38.8	58.5

395 Table 5: Ablation of the **self-distillation reward**. All three components—the conditional
396 indicator (\mathbb{I}), semantic similarity (S_{sim}), and
397 conciseness score ($S_{concise}$)—are essential.
398

Components	RCOg		ReaSeg	
	#Tok ↓	cloU ↑	#Tok ↓	cloU ↑
\mathbb{I}			159.8	71.3
S_{sim}	✓	✓	67.8	70.1
$S_{concise}$	✓	✓	46.2	68.6
	✓	✓	78.9	70.7
	✓	✓	34.0	71.8
			38.8	58.5

401 Table 6: Ablation study on the impact of **inference-time strategies**. Our default setting ($+\tau_c - \tau_d$)
402 already provides a strong balance. The brevity-focused prompts further enhance efficiency, with
403 WISE-S achieving the best trade-off.
404

Prompt	RCOg		ReaSeg	
	#Tok ↓	cloU ↑	#Tok ↓	cloU ↑
Seg-Zero (baseline)	159.8	71.3	111.9	54.4
WISE-F ($+\tau_c + \tau_d$)	188.5	71.3	197.5	58.8
Directly Remove				
$-\tau_c - \tau_d$	51.5	70.3	59.9	54.8
$-\tau_c + \tau_d$	200.0	68.4	221.4	53.2
WISE ($+\tau_c - \tau_d$)	34.0	71.8	38.8	58.5
Brevity-Focused Prompt				
“ <i>the shorter the better</i> ”	15.4	71.6	15.4	58.2
WISE-S (“ <i>one sentence</i> ”)	<u>22.9</u>	72.1	<u>22.7</u>	<u>58.3</u>

418 4.3 ANALYSIS OF REASONING EFFICIENCY
419

420 To provide a more nuanced understanding of the efficiency gains, we visualize the distribution of
421 reasoning token lengths on the ReasonSeg test set in Figure 4. The baseline **Seg-Zero** exhibits a
422 wide and right-skewed distribution, indicating its reasoning process is not only long but also highly
423 variable. In sharp contrast, our **WISE** model’s distribution is tightly concentrated around a much
424 smaller mean, a result of its learned intrinsic preference for brevity. The **WISE-S** variant further
425 sharpens this distribution into a consistent, low-cost output, making its computational cost stable
426 and predictable—a critical feature for real-world deployment.
427

428 This efficiency gain is not merely a reduction in length but a reflection of improved reasoning qual-
429 ity. As illustrated in the qualitative example in Figure 5, given a complex functional instruction,
430 Seg-Zero engages in a convoluted, 132-token rationale and ultimately fails. Conversely, WISE-S
431 identifies the correct object with a focused, 24-token thought. This vividly demonstrates that our
432 thought compression encourages the model to discard irrelevant details and focus on the core logic,
433 leading to reasoning that is not only more efficient but also more robust.
434

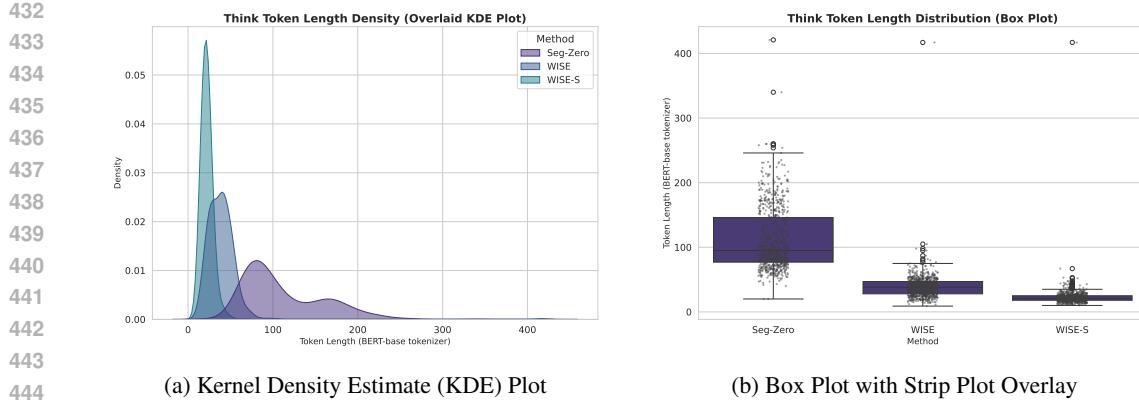


Figure 4: Distribution of the reasoning token length on the ReasonSeg test set. The KDE plot (a) shows the overall density, while the box plot (b) summarizes the statistical distribution. Both plots clearly illustrate the dramatic reduction in length and variance achieved by our WISE and WISE-S methods compared to the Seg-Zero baseline.

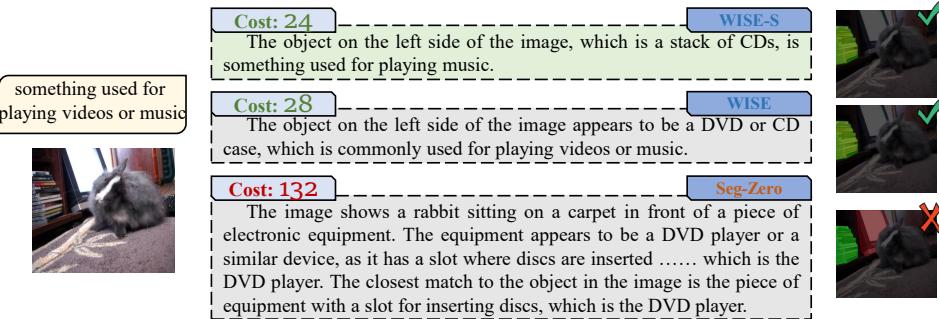


Figure 5: **Qualitative comparison on a challenging reasoning task.** Given the instruction to find something for playing media, Seg-Zero produces a long, distracted rationale and fails. In contrast, both WISE and WISE-S generate concise, correct reasoning chains, successfully identifying the stack of CDs/DVDs with a fraction of the token cost.

5 CONCLUSION

In this work, we addressed the critical tension between reasoning depth and computational efficiency in large multimodal models for language-guided segmentation. We introduced **WISE**, a novel training and inference framework built on the concept of **thought compression**. By restructuring the generation process to predict a concise rationale before its detailed explanation, our method fosters a genuine capability for reasoning abstraction. This is achieved through a unique, predictive training objective, guided by a conditional self-distillation reward, without relying on any human-annotated reasoning data. Our experiments demonstrate that WISE, particularly our inference-time variant WISE-S, not only achieves state-of-the-art performance on challenging benchmarks like zero-shot ReasonSeg but also drastically reduces the computational cost of reasoning by over $4\times$. This work empirically proves that deep reasoning and high efficiency are not mutually exclusive, opening the door for the deployment of powerful, yet practical, reasoning models in real-world applications.

ACKNOWLEDGMENTS

We would like to thank the LLM that served as a fantastic writing assistant throughout this project, helping to polish the language and improve the flow of our paper.

In the spirit of open research, all code and data will be released publicly after the paper is accepted.

486 REFERENCES
487

488 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
489 reinforcement learning. *arXiv preprint arXiv:2503.04697*, 2025.

490 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
491 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
492 2025.

493 Yi-Chia Chen, Wei-Hua Li, Cheng Sun, Yu-Chiang Frank Wang, and Chu-Song Chen. Sam4mllm:
494 Enhance multi-modal large language model for referring expression segmentation. In *ECCV*, pp.
495 323–340. Springer, 2024.

496 497 Yong Xien Chng, Henry Zheng, Yizeng Han, Xuchong Qiu, and Gao Huang. Mask grounding for
498 referring image segmentation. In *CVPR*, pp. 26573–26583, 2024.

499 500 Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao Wang. Efficient reasoning models: A survey.
501 *arXiv preprint arXiv:2504.10903*, 2025.

502 503 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
504 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

505 506 Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referitgame: Referring to
507 objects in photographs of natural scenes. In *EMNLP*, pp. 787–798, 2014.

508 509 Xin Lai, Zhuotao Tian, Yukang Chen, Yanwei Li, Yuhui Yuan, Shu Liu, and Jiaya Jia. Lisa: Rea-
510 soning segmentation via large language model. In *CVPR*, pp. 9579–9589, 2024.

511 512 Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang,
513 Peter Vajda, and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted
514 clip. In *CVPR*, pp. 7061–7070, 2023.

515 516 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
517 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth
518 International Conference on Learning Representations*, 2023.

519 520 Chang Liu, Henghui Ding, and Xudong Jiang. Gres: Generalized referring expression segmentation.
521 In *CVPR*, pp. 23592–23601, 2023.

522 523 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
524 zero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint
525 arXiv:2503.06520*, 2025a.

526 527 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-
528 zero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint
529 arXiv:2503.06520*, 2025b.

530 531 Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
532 compressible chain-of-thought tuning. *arXiv preprint arXiv:2502.09601*, 2025.

533 534 Renjie Pi, Lewei Yao, Jiahui Gao, Jipeng Zhang, and Tong Zhang. Perceptionopt: Effectively fusing
535 visual perception into llm. In *CVPR*, pp. 27124–27133, 2024.

536 537 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
538 mizations enable training deep learning models with over 100 billion parameters. In *Proceedings
539 of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
3505–3506, 2020.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
and videos. *arXiv preprint arXiv:2408.00714*, 2024.

Zhongwei Ren, Zhicheng Huang, Yunchao Wei, Yao Zhao, Dongmei Fu, Jiashi Feng, and Xiaojie
Jin. Pixellm: Pixel reasoning with large multimodal model. In *CVPR*, pp. 26374–26383, 2024.

540 Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
 541 reduction for efficient large multimodal models. *arXiv preprint arXiv:2403.15388*, 2024.
 542

543 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 544 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 545 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

546 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
 547 Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large
 548 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.
 549

550 Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
 551 Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. *arXiv preprint
 552 arXiv:2503.20752*, 2025.

553 Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
 554 Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
 555 outcome-based feedback. *arXiv preprint arXiv:2211.14275*, 2022.
 556

557 Song Wang, Gongfan Fang, Lingdong Kong, Xiangtai Li, Jianyun Xu, Sheng Yang, Qiang Li, Jianke
 558 Zhu, and Xinchao Wang. Pixelthink: Towards efficient chain-of-pixel reasoning. *arXiv preprint
 559 arXiv:2505.23727*, 2025.

560 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 561 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *NeurIPS*, 35:
 562 24824–24837, 2022.
 563

564 Zhao Yang, Jiaqi Wang, Yansong Tang, Kai Chen, Hengshuang Zhao, and Philip HS Torr. Lavt:
 565 Language-aware vision transformer for referring image segmentation. In *CVPR*, pp. 18155–
 566 18165, 2022.
 567

568 Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
 569 in referring expressions. In *ECCV*, pp. 69–85. Springer, 2016.
 570

571 Zihan Yu, Liang He, Zhen Wu, Xinyu Dai, and Jiajun Chen. Towards better chain-of-thought
 572 prompting strategies: A survey. *arXiv preprint arXiv:2310.04959*, 2023.
 573

574 Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
 575 large language models. *arXiv preprint arXiv:2210.03493*, 2022.
 576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593