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ABSTRACT

Time series forecasting requires models that balance expressive power with com-
putational efficiency. While convolutional neural networks offer efficient tempo-
ral modeling, their inherent translation invariance often misaligns with the re-
cency bias and non-stationary dynamics present in real-world time series. We
propose ApolloConv, a convolutional architecture that enhances temporal induc-
tive bias through integrated time–frequency modeling. ApolloConv incorporates
(i) a multi-scale embedding stem that captures local-to-global patterns while em-
phasizing recent context, (ii) a lightweight spectral gating mechanism that modu-
lates periodic components in the frequency domain while preserving phase co-
herence, and (iii) an adaptive dilated convolution block that prioritizes recent
time steps through logarithmically scaled receptive fields. Together, these com-
ponents enable effective handling of multi-scale seasonality, trend structures, and
cross-variable dependencies with near-linear complexity. Extensive experiments
on benchmark datasets demonstrate that ApolloConv consistently outperforms
state-of-the-art CNN-based models such as TimesNet, TVNet, and ModernTCN
across both short- and long-term forecasting settings, while matching or exceed-
ing Transformer-based counterparts with significantly lower computational cost.
ApolloConv provides a robust and efficient convolutional alternative for practical
time series forecasting.

1 INTRODUCTION

Time series forecasting is crucial in many domains (Bi et al., 2023; Wu et al., 2018; Zhang et al.,
2014), where capturing temporal dependencies, multi-scale patterns, and frequency-domain charac-
teristics is essential. While Multi-Layer Perceptron (MLPs). Recurrent Neural Networks (RNNS),
Transformers and State Space Models (SSMs) have recently achieved strong performance in mod-
eling long-range dependencies and global interactions (Wang et al., 2025b; Liu et al., 2024; Zhang
& Yan, 2023; Nie et al., 2022; Zhou et al., 2022; Wu et al., 2021; Zhou et al., 2021; Li et al., 2019;
Vaswani et al., 2017; Si et al., 2025; Wang et al., 2024; Li et al., 2023; Challu et al., 2023; Xu et al.,
2023; Wang et al., 2025c; Gu & Dao, 2023; Lin et al., 2023), each approach has limitations: Trans-
formers incur high computational cost for long sequences; MLPs lack explicit temporal inductive
biases; RNNs face sequential computation bottlenecks and gradient instability; and SSMs, while ef-
ficient, may oversimplify non-stationary dynamics and fail to preserve frequency-domain properties
such as phase coherence.

CNNs provide a compelling alternative due to their controllable receptive field, parameter sharing,
and nearly linear computational complexity (Li et al., 2025; Luo & Wang, 2024; Wang et al.,
2023; Wu et al., 2022; Liu et al., 2022a). They efficiently capture local temporal dependencies
and support large-scale sequence processing. Advances such as large convolutional kernels,
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(a) CNNs leverage efficiency for time series forecast-
ing but suffer from translation invariance, mapping
similar past patterns to identical features despite vary-
ing future correlations.

(b) Trend decomposition and frequency transforma-
tion retain temporal structure, differentiating recent
from distant patterns to enhance future prediction ac-
curacy.

Figure 1: Illustration of CNN limitations and proposed solutions in time series forecasting.

dynamic weights, and patch-based embeddings further reinforce CNNs as powerful general-
purpose backbones(Li et al., 2025; Luo & Wang, 2024; Wang et al., 2023; Wu et al., 2022)(Liu
et al., 2022a; Lou & Yu, 2025; Wang et al., 2025a; Woo et al., 2023; Ding et al., 2022; Liu et al.,
2022b; Dosovitskiy et al., 2020; Liu et al., 2021). However, the inductive bias(Battaglia et al., 2018)
inherent in CNNs may not align well with time series forecasting. As illustrated in Fig. 1a, CNNs
produce similar representations for two past segments with identical patterns, overlooking the fact
that more recent segments usually exert a stronger influence on future outcomes. This misalignment
can introduce noise and degrade forecasting accuracy, since CNNs fail to emphasize the recency of
patterns that are most predictive of future trends.

To address this issue, we draw inspiration from classical time series analysis, where enhancing
predictability often relies on extracting long-term trends(?) or applying frequency-domain transfor-
mations(Cai et al., 2024; Ye et al., 2024; Yi et al., 2023a;b; Xu et al., 2023; Zhou et al., 2022). In
modern deep learning frameworks, trend extraction can be naturally realized by large-scale convolu-
tions, while frequency-domain neural networks are widely used for capturing oscillatory dynamics.
As illustrated in Fig. 1b, combining trend decomposition with frequency-domain transformations
not only differentiates recent (green) and distant (beige) segments with similar past patterns but
also preserves the global temporal structure and suppresses noise, ultimately improving forecasting
accuracy.

Building on these observations, we propose ApolloConv, a CNN architecture for time series forecast-
ing that refines vision-oriented convolutional biases with explicit time–frequency awareness while
preserving computational efficiency. The design of ApolloConv mirrors the sequential logic of clas-
sical preprocessing yet is realized in an end-to-end deep learning framework. First, a multi-scale
convolutional stem extracts patterns from local shocks to seasonal trends while emphasizing re-
cency, analogous to trend extraction in traditional analysis. Second, a frequency gating module
operates in the frequency domain, modulating magnitudes while preserving phase to capture period-
icity without undermining sequential causality. Third, an adaptive dilated backbone with group-wise
mixing models long-range dependencies and cross-variable interactions in a lightweight manner,
prioritizing recent dynamics through logarithmically scaled dilations. Finally, a downsampling head
with a second frequency gate refines temporal–spectral representations for stable long-horizon pre-
diction. Together, these components allow ApolloConv to overcome the recency and nonstationar-
ity limitations of conventional CNNs, achieving state-of-the-art accuracy with lower computational
overhead than ModernTCN and TVNet.

Our contributions are threefold:

• Trend–frequency aware CNN architecture: We propose ApolloConv, which integrates
multi-scale convolutions for trend extraction with frequency-domain gating for periodicity

2
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modeling, alleviating the mismatch between CNNs’ invariance bias and the requirements of
time-series forecasting.

• Lightweight temporal modeling: Through adaptive dilated convolutions and group-wise
mixing, ApolloConv exhibits low computational complexity, ensuring scalability to long se-
quences.

• Forecasting Accuracy: ApolloConv delivers transformer-level forecasting accuracy at a
fraction of the computational cost, consistently outperforming other CNN-based approaches.

2 RELATED WORK

2.1 CONVOLUTIONAL ARCHITECTURES FOR TIME SERIES FORECASTING

Temporal Convolutional Networks (TCNs)(Franceschi et al., 2019; Sen et al., 2019; Bai et al., 2018)
have positioned convolutional architectures as a core methodology in time series forecasting. Sub-
sequent research has largely progressed along two main avenues: expanding the receptive field to
capture long-range dependencies, and reorganizing representations to better capture temporal struc-
tures. To enlarge the receptive field, (Wang et al., 2023) introduced a multi-scale convolutional
framework with cross-layer fusion, combining local and global information across different reso-
lutions. (Liu et al., 2022a) designed a recursive downsampling-and-upsampling architecture with
interactive convolutions to progressively expand the effective context. In contrast, ModernTCN em-
ploys large-kernel convolutions to directly capture extended historical patterns. Another line of work
reorganizes the input representation to induce useful inductive biases. (Wu et al., 2022) reshapes 1D
time series into 2D temporal patches via Fourier transforms and applies 2D convolutions to model
periodicities and local variations. (Li et al., 2025) segments sequences into patches and applies
dynamic 2D convolution to capture intra-patch, inter-patch, and cross-variable interactions simulta-
neously. Despite these advances, many convolutional designs overlook two inherent characteristics
of time series: (1) the recency bias—where recent observations tend to have stronger predictive
influence—and (2) the need for explicit handling of nonstationarity and multi-periodicity through
frequency-aware operators.

2.2 MODELING CHANNEL DEPENDENCIES IN MULTIVARIATE FORECASTING

Multivariate forecasting methods(Ekambaram et al., 2023; Liu et al., 2023; Han et al., 2024) often
trade off between fully-coupled mixing, which captures short-term cross-variable correlations but
is prone to overfitting and spurious correlations due to nonstationarity and lead-lag misalignment,
and channel-independent modeling(Nie et al., 2022; Xu et al., 2023), which improves robustness
but may miss slow-moving long-range dependencies. Recent hybrid approaches adopt staged strate-
gies, emphasizing intra-variable dynamics over short horizons while modeling cross-variable inter-
actions over longer windows(Liu et al., 2024; Wang et al., 2025b). However, many such models rely
on Transformer-based global attention, incurring quadratic complexity in sequence length. To ad-
dress these issues, ApolloConv incorporates group-wise convolutions with a lightweight frequency-
magnitude gating mechanism. This allows tunable cross-channel interaction, reduces spectral alias-
ing and energy drift, and maintains linear time and memory complexity.

3 METHODOLOGY

We propose ApolloConv, a CNN for time series forecasting that refines vision-oriented convolutional
inductive biases, such as translation invariance, to better suit the directional, nonstationary nature of
temporal data. As shown in Figure 4, ApolloConv embeds the input sequence with a multi-scale
representation and spectral gate to capture recency and periodicity, applies an adaptive dilated block
for long-range dependencies, and uses a downsampling module with a second spectral gate and
linear head for efficient forecasting.
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Figure 2: Model Architecture of the proposed network.

3.1 MULTI-SCALE TEMPORAL EMBEDDING

Standard CNNs assume translation-invariant locality, treating all temporal positions equally, which
dilutes the recency bias critical for time series. To address this, we design an embedding module that
captures diverse temporal resolutions while prioritizing recent dynamics, overcoming limitations of
single-scale embeddings in CNNs like ModernTCN (Luo & Wang, 2024).

Given an input sequence Xin ∈ RB×T×C (batch size B, history length T , variables C), we fold
variables into the batch to form Xf ∈ R(BC)×T×1. We apply K = 3 convolutional branches with
kernel sizes {kj = s · 22−j}Kj=1 (k1 = 4s, k2 = 2s, k3 = s) and shared stride s, capturing short-to-
long patterns (local shocks to seasonal trends) with emphasis on recent timesteps via small kernels.
After padding Xf to ensure output length N = ⌈T/s⌉, the multi-scale embedding is:

Z(j) = LayerNorm
(

Conv1dkj ,s

(
pad(Xf )

))
,

H = Conv1d1,1
(

concatKj=1Z
(j)

)
,

(1)

where Z(j) ∈ R(BC)×Uj×N , concatenation yields R(BC)×(
∑

Uj)×N , and a point-wise convolution
produces H ∈ R(BC)×D×N . We reshape to H0 ∈ RB×C×D×N . This multi-scale design counters
uniform locality by weighting recent patterns more heavily, unlike ModernTCN’s fixed downsam-
pling.

To address nonstationarity and periodicities missed by time-domain CNNs like TVNet, we apply a
phase-preserving spectral gate:

X = Ft(H0),

Hemb = H0 + γ0 ⊙F−1
t

(
g
(
log(1 + |X|)

)
⊙ ei∠X

)
,

(2)

where Ft(·) and F−1
t (·) are real FFT/iFFT, g(·) is a group-wise 1x1 convolutional MLP (groups

= C), γ0 ∈ R1×C×1×1 is a learnable gate, and ⊙ is element-wise multiplication. By modulating the
magnitude spectrum while preserving phase, this gate captures global periodicities without diluting
sequential causality, unlike TVNet’s translation-invariant pooling.

3.2 ADAPTIVE DILATED CONVOLUTIONAL BLOCK

Vision-oriented CNNs apply uniform kernels, ignoring the recency bias where recent patterns
outweigh distant ones. To model long-range dependencies efficiently while emphasizing recent
timesteps, we design a block with adaptive dilated convolutions and group-wise mixing, tailored
to sequence length and cross-variable interactions.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We reshape Hemb ∈ RB×C×D×N to RB×(CD)×N and compute a dilation set {ru}Su=1, starting
with r1 = 1 and growing as ru+1 = 2ru until the receptive field reaches T · rf ratio. Unlike
ModernTCN’s fixed large kernels, which treat all timesteps uniformly, this logarithmic scaling (S
≈ log T ) prioritizes recent localities via small dilations. The block aggregates:

Sagg = LayerNorm
(
ϕ
(
Dk

(
Hemb +

S∑
u=1

D(ru)
k (Hemb)

)))
, (3)

where D(r)
k (·) is a depthwise 1D convolution with kernel size k and dilation r, and ϕ(·) is GELU.

To capture time-varying cross-variable dependencies conservatively, unlike TVNet’s heavy 3D mix-
ing, we apply a lightweight group-wise feed-forward network:

Xmix = Hemb + PWDff→D
groups=C

(
ϕ
(
PWD→Dff

groups=C(Sagg)
))

, (4)

where PWA→B
groups=C(·) projects channels from A to B with C groups, preserving per-variable dynam-

ics while modeling lead–lag effects.

3.3 FORECASTING HEAD

To produce predictions efficiently, we downsample the temporal dimension and apply a second spec-
tral gate for long-horizon stability, followed by a linear head. From Xmix ∈ RB×C×D×N , we re-
shape to R(BC)×D×N , apply a stride-2 convolution to reduce temporal redundancy, and reshape to
RB×C×2D×N/2. A second spectral gate mitigates nonstationarity, preserving recency and periodic-
ity:

X↓ = Conv1dk,s=2

(
pad(Xmix)

)
,

Xsg = X↓ + γ1 ⊙F−1
t

(
g
(
log(1 + |Ft(X↓)|)

)
⊙ ei∠Ft(X↓)

)
,

(5)

where symbols follow Eq. equation 2. Finally, we flatten and project:

Ŷ = Linear
(
FlattenD,t(Xsg)

)
, (6)

where Ŷ ∈ RB×Tpred×C . This lightweight head leverages rich, recency-aware features for efficient
forecasting.

3.4 COMPLEXITY ANALYSIS.

Let T be the input sequence length, C the number of variables, and D the embedding width. APOL-
LOCONV runs in near–linear time and linear space with respect to T . Formally, its end-to-end time
complexity is O

(
C DT log T

)
and the memory complexity is O

(
C DT

)
; the log T factor comes

solely from the rFFT/iFFT in the spectral magnitude gate. Throughout the paper we use Õ(·) for
ApolloConv to indicate near-linear time while ignoring the polylog factor from FFT. Compared
with Transformers (typically O(T 2) time/space), ApolloConv has a strictly lower order. Relative
to efficient/sparse attention families (Informer/Autoformer, O(T log T ) time and space), Apollo-
Conv matches the near-linear time order while reducing memory to linear. Compared with convo-
lutional baselines that incur O(T D2) channel mixing, ApolloConv relies on depthwise/group-wise
mappings and horizon-aligned dilations, avoiding quadratic coupling while maintaining accuracy
(Table 1).
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Table 1: Comparison of training-time and memory complexity.

Methods Time Complexity Space Complexity

ApolloConv (Ours) Õ
(
C DT log T

)
O
(
C DT

)
ModernTCN (Luo & Wang, 2024) O

(
C D k T + C D2 T

)
O
(
C DT

)
LTSF-Linear (D/NLinear) (Zeng et al., 2023) O

(
C T 2

)
O
(
T 2

)
TVNet (Li et al., 2025) O

(
T D2

)
O
(
D2 + T D

)
Transformer (Vaswani et al., 2017) O(T 2) O(T 2)

4 EXPERIMENT

Evaluation scope. APOLLOCONV is a purely convolutional architecture specialized for time-series
forecasting; we evaluate it on standard long-term and short-term forecasting benchmarks to demon-
strate robustness across horizons.

Hyperparameters. Model performance is sensitive to hyperparameter choices. For APOLLOCONV,
we adopt the search ranges reported by ModernTCN(Luo & Wang, 2024) and keep all other base-
lines within their officially recommended ranges to ensure a fair comparison.

Baselines. For long-term and short-term forecasting, we compare APOLLOCONV with strong and re-
cent models from three families. Transformers: iTransformer(Liu et al., 2023), PatchTST(Nie et al.,
2022), Crossformer(Zhang & Yan, 2023). MLPs: MTS-Mixer(Li et al., 2023), DLinear(Zeng et al.,
2023), and RLinear(Zeng et al., 2023). CNNs: TimesNet(Wu et al., 2022), MICN(Wang et al., 2023),
ModernTCN(Luo & Wang, 2024), and TVNet(Li et al., 2025). In addition, we include task-specific
state-of-the-art (SOTA) methods as supplementary baselines to complete the comparison, ensur-
ing a comprehensive evaluation and showing that APOLLOCONV remains competitive against the
strongest published models.

4.1 LONG-TERM FORECASTING

Datasets and setup. We evaluate ApolloConv on nine widely used multivariate benchmarks:
four ETT datasets(Zhou et al., 2021), Electricity(electricity, 2024), Exchange(Lai et al., 2018),
Weather(weather, 2024), Traffic(traffic, 2024), and ILI(Illness, 2024). We follow the standard pre-
processing and official train/validation/test splits used in prior work, and report Mean Squared Error
(MSE) and Mean Absolute Error (MAE) (lower is better).

Results. Across nine diverse datasets, ApolloConv consistently achieves state-of-the-art or highly
competitive performance, surpassing a range of MLP-, Transformer-, and CNN-based baselines in
most forecasting horizons and closely matching the best contenders in others (Table 2).

Key observations include:

• Strong Long-Horizon Forecasting. ApolloConv exhibits particularly notable gains at longer
prediction lengths (e.g., 336 and 720 points), where capturing extended temporal dependen-
cies is critical. This suggests that its multi-scale convolutional design helps mitigate error
propagation often observed in Transformer-based or linear models over extended horizons.

• Consistent Cross-Domain Performance. Improvements are observed across domains includ-
ing ett, exchange rates, and weather, indicating robustness to both relatively stable and highly
non-stationary time series.

• Competitiveness on Short Horizons. Even at shorter horizons (e.g., 96 and 192 steps)—where
lightweight models such as DLinear and RLinear are often strong—ApolloConv remains
highly competitive, frequently securing top-two rankings without compromising local pat-
tern accuracy.
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• Effectiveness of Convolutional Design. The results reinforce the viability of a purely con-
volutional approach for time series forecasting. By leveraging multi-scale receptive fields
without relying on global attention, ApolloConv balances local precision with long-range
context modeling, yielding reliable predictions under varied conditions.

In summary, these findings demonstrate that ApolloConv not only pushes the performance bound-
aries of convolutional forecasting models but also offers a simple, scalable, and effective alternative
to more complex attention-based architectures.

Table 2: Long-term forecasting results averaged across four prediction horizons: {24, 36, 48, 60} for
ILI and {96, 192, 336, 720} for the other datasets. Lower MSE/MAE indicates better performance.

Models ApolloConv
(Ours)

TVnet
(2025)

PatchTST
(2022)

iTransformer
(2023)

Crossformer
(2023)

RLinear
(2023)

MTS-Mixer
(2023)

DLinear
(2023)

TimesNet
(2022)

MICN
(2024)

ModernTCN
(2024)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.280 0.338 0.288 0.343 0.290 0.342 0.334 0.368 0.316 0.373 0.301 0.342 0.314 0.358 0.299 0.343 0.338 0.375 0.314 0.360 0.292 0.346
192 0.317 0.360 0.326 0.367 0.332 0.369 0.377 0.391 0.377 0.411 0.355 0.363 0.354 0.386 0.335 0.365 0.371 0.387 0.359 0.387 0.332 0.368
336 0.348 0.383 0.365 0.391 0.366 0.392 0.426 0.420 0.431 0.442 0.370 0.383 0.384 0.405 0.369 0.386 0.410 0.411 0.398 0.413 0.365 0.391
720 0.408 0.412 0.412 0.413 0.416 0.420 0.491 0.459 0.600 0.547 0.425 0.414 0.427 0.432 0.425 0.421 0.478 0.450 0.459 0.464 0.416 0.417

Avg 0.339 0.373 0.348 0.379 0.351 0.381 0.407 0.410 0.431 0.443 0.358 0.376 0.370 0.395 0.357 0.379 0.400 0.450 0.383 0.406 0.351 0.381

E
T

T
m

2 96 0.160 0.250 0.161 0.254 0.165 0.255 0.180 0.264 0.421 0.461 0.164 0.253 0.177 0.259 0.167 0.260 0.187 0.267 0.178 0.273 0.166 0.256
192 0.213 0.290 0.220 0.293 0.220 0.292 0.250 0.309 0.503 0.519 0.219 0.290 0.241 0.303 0.224 0.303 0.249 0.309 0.245 0.316 0.222 0.293
336 0.268 0.325 0.272 0.316 0.274 0.329 0.311 0.348 0.611 0.580 0.273 0.326 0.297 0.338 0.281 0.342 0.312 0.351 0.295 0.350 0.272 0.324
720 0.345 0.378 0.349 0.379 0.362 0.385 0.412 0.407 0.996 0.750 0.366 0.385 0.396 0.398 0.397 0.421 0.497 0.403 0.389 0.406 0.351 0.381

Avg 0.247 0.311 0.251 0.311 0.255 0.315 0.288 0.332 0.632 0.578 0.256 0.314 0.277 0.325 0.267 0.332 0.291 0.333 0.277 0.336 0.253 0.314

E
T

T
h1

96 0.356 0.390 0.371 0.408 0.370 0.399 0.386 0.405 0.386 0.429 0.366 0.391 0.372 0.395 0.375 0.393 0.384 0.402 0.396 0.427 0.368 0.394
192 0.393 0.410 0.398 0.409 0.413 0.421 0.441 0.436 0.419 0.444 0.404 0.431 0.416 0.426 0.425 0.416 0.438 0.404 0.430 0.453 0.405 0.413
336 0.377 0.410 0.401 0.409 0.422 0.436 0.487 0.448 0.440 0.461 0.420 0.423 0.455 0.449 0.439 0.443 0.491 0.469 0.474 0.508 0.391 0.412
720 0.430 0.449 0.458 0.459 0.447 0.460 0.503 0.491 0.519 0.524 0.442 0.456 0.475 0.472 0.442 0.490 0.521 0.500 0.450 0.461 0.450 0.461

Avg 0.389 0.415 0.407 0.421 0.413 0.431 0.454 0.447 0.441 0.465 0.408 0.421 0.430 0.436 0.423 0.437 0.458 0.450 0.433 0.462 0.404 0.420

E
T

T
h2

96 0.246 0.322 0.263 0.329 0.274 0.336 0.297 0.349 0.628 0.563 0.262 0.331 0.307 0.354 0.289 0.353 0.340 0.374 0.289 0.357 0.263 0.332
192 0.297 0.360 0.319 0.372 0.339 0.379 0.380 0.400 0.703 0.624 0.320 0.374 0.374 0.399 0.383 0.418 0.402 0.414 0.409 0.438 0.320 0.374
336 0.303 0.368 0.311 0.373 0.329 0.380 0.428 0.432 0.827 0.675 0.325 0.386 0.398 0.432 0.448 0.465 0.452 0.452 0.417 0.452 0.313 0.376
720 0.375 0.422 0.401 0.434 0.379 0.422 0.427 0.445 1.181 0.840 0.372 0.421 0.463 0.465 0.605 0.551 0.462 0.468 0.426 0.473 0.392 0.433

Avg 0.305 0.368 0.324 0.377 0.330 0.379 0.383 0.407 0.835 0.676 0.320 0.378 0.386 0.413 0.431 0.447 0.414 0.427 0.385 0.430 0.322 0.379

E
le

ct
ri

ci
ty 96 0.131 0.228 0.142 0.223 0.129 0.222 0.148 0.240 0.187 0.283 0.140 0.235 0.141 0.243 0.153 0.237 0.168 0.272 0.159 0.267 0.129 0.226

192 0.147 0.241 0.165 0.241 0.147 0.240 0.162 0.253 0.258 0.330 0.154 0.248 0.163 0.261 0.152 0.249 0.184 0.289 0.168 0.279 0.143 0.239
336 0.161 0.258 0.164 0.269 0.163 0.259 0.178 0.269 0.323 0.369 0.171 0.264 0.176 0.277 0.169 0.267 0.198 0.300 0.196 0.308 0.161 0.259
720 0.197 0.292 0.190 0.284 0.197 0.290 0.225 0.317 0.404 0.423 0.209 0.297 0.212 0.308 0.233 0.344 0.220 0.320 0.203 0.312 0.191 0.286

Avg 0.159 0.255 0.165 0.254 0.159 0.253 0.178 0.270 0.293 0.351 0.169 0.261 0.173 0.272 0.177 0.274 0.192 0.295 0.182 0.292 0.156 0.253

W
ea

th
er

96 0.141 0.192 0.147 0.198 0.149 0.198 0.174 0.214 0.153 0.217 0.175 0.225 0.156 0.206 0.152 0.237 0.172 0.220 0.161 0.226 0.149 0.200
192 0.184 0.236 0.194 0.238 0.194 0.241 0.221 0.254 0.197 0.269 0.218 0.260 0.199 0.248 0.220 0.282 0.219 0.261 0.220 0.283 0.196 0.245
336 0.230 0.276 0.235 0.277 0.245 0.282 0.278 0.296 0.252 0.311 0.265 0.294 0.249 0.291 0.265 0.319 0.280 0.306 0.275 0.328 0.238 0.277
720 0.302 0.326 0.308 0.331 0.314 0.334 0.358 0.347 0.318 0.363 0.329 0.339 0.336 0.343 0.323 0.362 0.365 0.359 0.311 0.356 0.314 0.334

Avg 0.214 0.257 0.221 0.261 0.226 0.264 0.258 0.278 0.230 0.290 0.247 0.279 0.235 0.272 0.240 0.300 0.259 0.287 0.242 0.298 0.224 0.264

Tr
af

fic

96 0.382 0.273 0.367 0.252 0.360 0.249 0.395 0.268 0.512 0.290 0.496 0.375 0.462 0.332 0.410 0.282 0.593 0.321 0.508 0.301 0.368 0.253
192 0.394 0.276 0.381 0.262 0.379 0.256 0.417 0.276 0.523 0.297 0.503 0.377 0.488 0.354 0.423 0.287 0.617 0.336 0.536 0.315 0.379 0.261
336 0.409 0.286 0.395 0.268 0.392 0.264 0.433 0.283 0.530 0.300 0.517 0.382 0.498 0.360 0.436 0.296 0.629 0.336 0.525 0.310 0.397 0.270
720 0.448 0.306 0.442 0.290 0.432 0.286 0.467 0.302 0.573 0.313 0.555 0.398 0.529 0.370 0.466 0.315 0.640 0.350 0.571 0.323 0.440 0.296

Avg 0.408 0.285 0.396 0.268 0.391 0.264 0.428 0.282 0.535 0.300 0.518 0.383 0.494 0.354 0.434 0.295 0.620 0.336 0.535 0.312 0.396 0.270

E
xc

ha
ng

e 96 0.080 0.195 0.080 0.195 0.093 0.214 0.086 0.206 0.186 0.346 0.083 0.301 0.083 0.201 0.081 0.203 0.107 0.234 0.102 0.235 0.080 0.196
192 0.167 0.289 0.163 0.285 0.192 0.312 0.177 0.299 0.467 0.522 0.170 0.293 0.174 0.296 0.157 0.293 0.226 0.344 0.172 0.316 0.166 0.288
336 0.305 0.397 0.291 0.394 0.350 0.432 0.331 0.417 0.783 0.721 0.309 0.401 0.336 0.417 0.305 0.414 0.367 0.448 0.272 0.407 0.307 0.398
720 0.657 0.582 0.658 0.594 0.911 0.716 0.847 0.691 1.367 0.943 0.817 0.680 0.900 0.715 0.643 0.601 0.964 0.746 0.714 0.658 0.656 0.582

Avg 0.302 0.366 0.298 0.367 0.387 0.419 0.360 0.403 0.701 0.633 0.345 0.394 0.373 0.407 0.297 0.378 0.416 0.443 0.315 0.404 0.302 0.366

IL
I

24 1.292 0.712 1.324 0.712 1.319 0.754 2.207 1.032 3.040 1.186 4.337 1.507 1.472 0.798 2.215 1.081 2.317 0.934 2.684 1.112 1.347 0.717
36 1.150 0.682 1.190 0.772 1.430 0.834 1.934 0.951 3.356 1.230 4.205 1.481 1.435 0.745 1.963 0.963 1.972 0.920 2.507 1.013 1.250 0.778
48 1.151 0.704 1.456 0.782 1.553 0.815 2.127 1.004 3.441 1.223 4.257 1.484 1.474 0.822 2.130 1.024 2.238 0.940 2.423 1.012 1.388 0.781
60 1.375 0.796 1.652 0.796 1.470 0.788 2.298 0.998 3.608 1.302 4.278 1.487 1.839 0.912 2.368 1.096 2.027 0.928 2.653 1.085 1.774 0.868

Avg 1.242 0.724 1.406 0.766 1.443 0.798 2.141 0.996 3.361 1.235 4.269 1.490 1.555 0.819 2.169 1.041 2.139 0.931 2.567 1.055 1.440 0.786

1st count 35 31 3 9 6 8 0 0 0 0 1 3 0 0 3 0 0 0 0 0 5 4

4.2 SHORT-TERM FORECASTING

Datasets and setup. We adopt the M4 benchmark for short-term forecasting, following the original
protocol of (Makridakis et al., 2020). Unless otherwise specified, the input context length is set to
twice the forecast horizon as in (Wu et al., 2022). To assess performance, we report the Symmetric
Mean Absolute Percentage Error (SMAPE), Mean Absolute Scaled Error (MASE), and the Overall
Weighted Average (OWA).To strengthen the comparative study, we include strong recent models
such as TimeMixer(Wang et al., 2024) and N-HiTS(Challu et al., 2023).
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Results.

Table 3: Short-term forecasting on the M4 dataset. We report SMAPE, MASE, and OWA (lower is
better).

Models ApolloConv
(Ours)

TVNet
(2025)

PatchTST
(2022)

TimeMixer
(2024)

Crossformer
(2023)

RLinear
(2023)

MTS-Mixer
(2023)

DLinear
(2023)

TimesNet
(2022)

MICN
(2023)

ModernTCN
(2024)

N-HiTS
(2023)

Ye
ar

ly SMAPE 13.170 13.217 13.258 13.206 13.392 13.944 13.548 16.965 13.387 14.935 13.226 13.728
MASE 2.95 2.899 2.985 2.916 3.001 3.015 3.091 4.283 2.996 3.523 2.957 3.048
OWA 0.774 0.768 0.786 0.776 0.787 0.807 0.803 1.058 0.786 0.900 0.777 0.803

Q
ua

rt
er

ly SMAPE 9.985 9.986 10.197 9.996 16.317 10.702 10.128 12.145 10.100 11.452 9.971 10.792
MASE 1.159 1.159 1.803 1.166 2.197 1.299 1.196 1.520 1.182 1.389 1.167 1.283
OWA 0.876 0.876 1.803 0.825 1.542 0.959 0.896 1.106 0.890 1.026 0.878 0.958

M
on

th
ly SMAPE 12.366 12.493 12.641 12.605 12.924 13.363 12.717 13.514 12.670 13.773 12.556 14.260

MASE 0.906 0.921 0.930 0.919 0.966 1.014 0.931 1.037 0.933 1.076 0.917 1.102
OWA 0.855 0.866 0.876 0.869 0.902 0.940 0.879 0.956 0.878 0.983 0.866 1.012

O
th

er
s SMAPE 4.344 4.764 4.964 4.564 5.493 5.437 4.817 6.709 4.891 6.716 4.715 4.954

MASE 2.98 2.986 2.985 3.115 3.690 3.706 3.255 4.953 3.302 4.717 3.107 3.264
OWA 0.927 0.969 1.044 0.982 1.160 1.157 1.02 1.487 1.035 1.451 0.986 1.036

W
A

SMAPE 11.578 11.671 11.807 11.723 13.474 12.473 11.892 13.639 11.829 13.130 11.698 12.840
MASE 1.541 1.536 1.590 1.559 1.866 1.677 1.608 2.095 1.585 1.896 1.556 1.701
OWA 0.83 0.832 0.851 0.840 0.985 0.898 0.859 1.051 0.851 0.980 0.838 0.918

5 MODEL ANALYSIS

5.1 COMPUTATION COMPLEXITY

Results. As shown in the efficiency comparisons for the ETTm2 dataset in Fig.3 (L=720 for MSE
and L=192 for MAE), AppoloConv achieves superior performance-accuracy trade-offs in terms of
training time and memory footprint. Key observations include:

• Optimal Pareto Efficiency. AppoloConv delivers the lowest MSE and MAE while main-
taining low memory usage and moderate training times, positioning it on the efficient frontier
compared to models like FEDformer and TimesNet .

• Advantage Over High-Resource Models. AppoloConv outperforms resource-intensive
baselines such as PatchTST and MICN in accuracy with significantly lower memory and
comparable or faster training, highlighting the benefits of convolution-based designs for scal-
able forecasting.

• Balanced Efficiency Against Linear and Transformer Models. Compared to efficient lin-
ear models like DLinear, AppoloConv provides better accuracy at a modest increase in time
and memory; against Transformers like iTransformer, it achieves similar or lower errors with
faster training, demonstrating robust computational advantages without sacrificing predictive
power.

These results underscore AppoloConv’s computational efficiency, enabling high-accuracy long-term
forecasting on resource-constrained environments while outperforming diverse baselines in overall
complexity-accuracy balance.

5.2 ABLATION ANALYSIS

We conduct an ablation study to evaluate the contribution of key components in ApolloConv. The
results, shown in Table 4, highlight the impact of the multi-scale temporal embedding, adaptive
dilated convolutional block, and forecasting head.

Ablation of Forecasting Head (Downsampling + Frequency Gate). Removing the multi-scale
temporal embedding results in a performance decrease across all datasets. This highlights the crit-
ical role of multi-scale embeddings in capturing diverse temporal patterns and enabling the model

8
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Crossformer
5.2GB, 56.5s

DLinear
2.2GB, 6.5s

TVNet
2.1GB, 25.2s

PatchTST
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TimeMixer
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(b) ETTm2 (7 Variables), L=720

Figure 3: Model efficiency comparison on ETTm2 under the setting of L(prediction length)
=192/720.

to prioritize recent dynamics over outdated patterns, which is essential for accurate time series fore-
casting.

Ablation of Adaaptive Dilated Convolutional Block. Omitting the adaptive dilated convolutional
block leads to a slight performance decline, demonstrating the importance of adaptive dilations in
capturing long-range dependencies while prioritizing more recent time steps. This design allows
ApolloConv to model long-range interactions without introducing unnecessary complexity, address-
ing the challenges of both recency and non-stationarity in time series data.

Ablation of Forecasting Head (Downsampling + Frequency Gate). Removing the forecasting
head, which includes the downsampling module and the frequency gate, results in a substantial per-
formance drop. This confirms the importance of dual denoising, where the frequency gate preserves
important temporal frequencies while suppressing noise. The downsampling module further refines
the temporal representations, ensuring stable long-term predictions and preventing redundancy in
the temporal features.

Table 4: Ablation in ApolloConv.

Datasets ETTm1 ETTm2 ETTh1 ETTh2 Weather ILI

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ApolloConv 0.339 0.373 0.247 0.311 0.389 0.415 0.305 0.368 0.214 0.257 0.142 0.724
w/o Multi-Scale Temporal Embedding 0.345 0.376 0.252 0.315 0.391 0.417 0.316 0.373 0.220 0.265 1.528 0.815
w/o Adaptive Dilated Convolutional Block 0.354 0.376 0.249 0.312 0.398 0.421 0.308 0.369 0.216 0.257 1.733 0.889
w/o Forecasting Head 0.341 0.374 0.251 0.315 0.394 0.418 0.310 0.370 0.219 0.262 1.389 0.760

6 CONCLUSION AND FUTURE WORK

We proposed ApolloConv, a CNN-based model for time series forecasting that provides a solution to
the limitations of traditional convolutions, such as translation invariance and noise sensitivity. By in-
tegrating multi-scale temporal embeddings and frequency-domain gating, we effectively capture re-
cent patterns and reduce noise, while adaptive dilated convolutions model long-range dependencies
efficiently. ApolloConv achieves superior accuracy with lower computational cost compared to ex-
isting methods. In future work, we plan to further refine this approach for more efficient, lightweight
convolutional forecasting by enhancing its denoising capabilities and handling longer sequences.

9
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ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study focuses on advancing methodologies
for time series forecasting using deep learning techniques, particularly aimed at improving predic-
tive modeling for various time-dependent phenomena, such as weather patterns, financial data, and
industrial sensor readings. It involves no human subjects, personally identifiable information, or sen-
sitive user data. The data used in our experiments are publicly available time series datasets, with no
direct involvement of living beings or biological data.

The proposed model aims to enhance forecasting accuracy and reliability across various domains.
While the dataset and models could inform decision-making in sectors such as finance, healthcare,
and energy, they do not directly enable harmful applications. Any future deployment in safety-
critical domains must consider regulatory, ethical, and societal constraints beyond the scope of this
work. We report all methods and results transparently and disclose no conflicts of interest or external
sponsorship. All experiments were designed and conducted in accordance with standards of research
integrity.

REPRODUCIBILITY STATEMENT

We guarantee the reproducibility of our results for the time series forecasting model, ApolloConv.
All dataset construction details, including data sources, sampling strategies, preprocessing steps,
and time series annotations, are provided. Task definitions, data splits, data distribution types, and
evaluation metrics (MSE, MAE, SMAPE, MASE, OWA) are clearly outlined. The model architec-
tures, hyperparameters, training schedules, and preprocessing/normalization techniques are speci-
fied, with full experimental details available in the appendix. We provide the exact time steps, se-
quence lengths, and data splits used, and all models are evaluated using standardized scripts. The
dataset, model code, and scripts to reproduce all tables and figures will be made publicly available.
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A COMPUTATIONAL COST ANALYSIS

Consider the input time series tensor X ∈ RB×C×T , where B is the batch size, C is the number of
variables, and T is the sequence length. The embedding dimension of ApolloConv is denoted by D.
The computational complexity for different modules can be described as follows:
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CONVOLUTION LAYER

For each 1D convolution layer, with input/output embedding width D, kernel size k, and sequence
length T :

FLOPsConv1D = B × C × T ×D × k (7)

ParamsConv1D = C ×D × k (8)

MULTI-SCALE CONVOLUTION

For the multi-scale convolution (with kernel sizes k1, k2, k3):

FLOPsMultiScale = B ×D × T × (k1 + k2 + k3) (9)

ParamsMultiScale = D × (k1 + k2 + k3) (10)

DILATED CONVOLUTION BLOCK

In the dilated convolution block, with dilation rate r and kernel size k:

FLOPsDilated = B × C × T ×D × k × r (11)

ParamsDilated = C ×D × k × r (12)

GROUP FEED-FORWARD NETWORK (GROUP FFN)

For the Group Feed-Forward Network (group-wise 1x1 convolution), where Dff is the hidden width
and the number of groups is set to C:

FLOPsGroup FFN = B × C × T × D ×Dff +Dff ×D

C
(13)

ParamsGroup FFN =
C × (D ×Dff +Dff ×D)

C
= 2D ×Dff (14)

FREQUENCY DOMAIN GATE (FFT-BASED)

For the frequency domain gate, we apply FFT-based operations:

FLOPsFFT = B × C × T × log T (15)

The parameter count is negligible (FFT/iFFT are non-learnable), so:

ParamsFFT = 0 (16)

TOTAL COMPUTATIONAL COMPLEXITY

The total FLOPs is the sum of all components:

FLOPsTotal = FLOPsConv1D + FLOPsMultiScale + FLOPsDilated + FLOPsGroup FFN + FLOPsFFT (17)

The total parameter count is:

ParamsTotal = ParamsConv1D + ParamsMultiScale + ParamsDilated + ParamsGroup FFN (18)
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B DATASETS

B.1 LONG-TERM FORECAST DATASETS

To evaluate the long-term forecasting capabilities, we used nine widely recognized real-world
datasets, covering domains such as weather, traffic, electricity, exchange rates, influenza-like illness
(ILI), and the four Electricity Transformer Temperature (ETT) datasets (ETTh1, ETTh2, ETTm1,
ETTm2). For the imputation task, benchmark datasets were established using datasets from weather,
electricity, and the four ETT datasets. These datasets, widely used in the field, cover various aspects
of daily life.

The characteristics of each dataset, including the total number of timesteps, the count of variables,
and the sampling frequency, are summarized in Table 5. The datasets are partitioned into training,
validation, and testing subsets in chronological order, with the Electricity Transformer Temperature
(ETT) dataset employing a 6:2:2 ratio and the remaining datasets using a 7:1:2 ratio. Normalization
to a zero mean is applied to the training, validation, and testing subsets based on the mean and
standard deviation of the training subset. Each dataset comprises a single, continuous, long-time
series, with samples extracted using a sliding window technique.

Further details regarding the datasets are as follows:

• Weather1 consists of 21 climatic variables, such as humidity and air temperature, recorded
in Germany throughout 2020.

• Traffic2 includes road occupancy rates collected by 862 sensors across San Francisco Bay
area highways over a two-year period, provided by the California Department of Transporta-
tion.

• Electricity3 comprises hourly electricity usage data for 321 consumers from 2012 to 2014.

• Exchange4 encompasses daily exchange rates for eight currencies, observed from 1990 to
2016.

• ILI5, which stands for Influenza-Like Illness, contains weekly counts of ILI patients in the
United States from 2002 to 2021. It includes seven metrics, such as ILI patient counts across
various age groups and the proportion of ILI patients relative to the total patient population.
The data is provided by the Centers for Disease Control and Prevention of the United States.

• ETT6 (The Electricity Transformer Temperature) dataset comprises data from seven sensors
across two Chinese counties, featuring load and oil temperature metrics. It includes four
subsets: ’ETTh1’ and ’ETTh2’ for hourly data, and ’ETTm1’ and ’ETTm2’ for 15-minute
intervals.

Table 5: Dataset descriptions of long-term forecasting and imputation.

Dataset Weather Traffic Exchange Electricity ILI ETTh1 ETTh2 ETTm1 ETTm2

Dataset Size 52696 17544 7207 26304 966 17420 17420 69680 69680
Variable Number 21 862 8 321 7 7 7 7 7

Sampling Frequency 10 mins 1 hour 1 day 1 hour 1 week 1 hour 1 hour 15 mins 15 mins

1https://www.bgc-jena.mpg.de/wetter/
2https://pems.dot.ca.gov/
3https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
4https://github.com/laiguokun/multivariate-time-series-data
5https://github.com/laiguokun/multivariate-time-series-data
6https://github.com/zhouhaoyi/ETDataset
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B.2 SHORT-TERM FORECAST DATASETS

The M4 dataset, which includes 100,000 heterogeneous time series from various domains, presents
a unique challenge for short-term forecasting. This dataset, drawn from diverse fields, showcases the
variability in temporal patterns and distinct characteristics across different time series.

Table 6 provides a detailed overview of the M4 dataset, outlining the number of samples in both the
training and test sets, the number of variables per series, and the prediction length for each subset.

Table 6: Dataset descriptions of M4 forecasting

Dataset Sample Numbers (train set, test set) Variable Number Prediction Length
M4 Yearly (23000, 23000) 1 6

M4 Quarterly (24000, 24000) 1 8
M4 Monthly (48000, 48000) 1 18
M4 Weekly (359, 359) 1 18
M4 Daily (4227, 4227) 1 48

M4 Hourly (414, 414) 1 48

C EXPERIMENT DETAILS

C.1 LONG-TERM FORECASTING

Implementation Details. Our method is trained using the L2 loss, with the ADAM (Adam et al.,
2014) optimizer and an initial learning rate of 310−3. We use mean square error (MSE) and mean
absolute error (MAE) as evaluation metrics, and all experiments are repeated 5 times with different
seeds. The final reported results are the means of these experiments. The model is implemented in
PyTorch (Paszke et al., 1912) and conducted on NVIDIA A100 40GB GPUs.

The experimental setup follows the same parameters for prediction lengths T ∈ {24, 36, 48, 60}
for the ILI dataset and T ∈ {96, 192, 336, 720} for other datasets, as specified in (Li et al., 2025).
We collect baseline results from (Li et al., 2025), where all baseline models are re-executed with
varying input lengths L, and the best results are chosen to avoid underestimating the baselines.
For other models, we follow the official implementations and run them with varying input lengths
L ∈ {36, 48, 96} for ILI, and L ∈ {96, 192, 256, 336, 512, 720} for other datasets.

Model Parameters. In ApolloConv, the default settings are as follows:

• The model consists of ApolloConv with hidden state dimension D as a hyperparameter.

• The group-wise feed-forward network ratio is 1 and Groups = C.

• The kernel sizes are set as k = {2, 4, 8}, and the default stride is 2.

For baseline models, we adhere to the original parameters used in the papers. If the original papers
perform long-term forecasting experiments, we follow their recommended configurations. We then
rerun these models with varying input lengths and select the best results for comparison.

Metric. We adopt the mean square error (MSE) and mean absolute error (MAE) to evaluate long-
term forecasting.

MSE =
1

T

T∑
i=0

(x̂i − xi)
2

MAE =
1

T

T∑
i=0

|x̂i − xi|
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C.2 SHORT-TERM FORECASTING

Implementation Details. Our method is trained with the SMAPE loss, using the ADAM (Adam
et al., 2014) optimizer with an initial learning rate of 3 × 10−3. The default training process is
100 epochs with proper early stopping. The symmetric mean absolute percentage error (SMAPE),
mean absolute scaled error (MASE), and overall weighted average (OWA) are used as metrics. All
experiments are repeated 5 times with different seeds and the means of the metrics are reported as
the final results. Following (Wu et al., 2022), we fix the input length to be 2 times of prediction
length for all models. Since the M4 dataset only contains univariate time series, we remove the
cross-variable component in Crossformer.

Model Parameter. The ApolloConv model utilizes various hyperparameters depending on the
dataset. Below are the typical settings used across different datasets:

• The hidden state dimension D = 256.

• The group-wise feed-forward network ratio Groups = C.

• The kernel sizes are set as k = {11}.

• The stride is set to 2.

• The dropout rate is 0.1.

• The initial learning rate is set to 0.0003.

These default settings are designed to work across various datasets, but they can be adjusted for
specific use cases. The specific hyperparameters like the batch size, number of layers, and learning
rate are adjusted depending on the dataset, ensuring that the model scales well across various time
series forecasting tasks.

Metric For the short-term forecasting, following (Oreshkin et al., 2019), we adopt the symmetric
mean absolute percentage error (SMAPE), mean absolute scaled error (MASE) and overall weighted
average (OWA) as the metrics, which can be calculated as follows:

SMAPE =
200

T

T∑
i=1

|Xi − X̂i|
|Xi|+ |X̂i|

MAPE =
100

T

T∑
i=1

|Xi − X̂i|
|Xi|

MASE =
1

T

T∑
i=1

|Xi − X̂i|
1

T−p

∑T
j=p+1 |Xj −Xj−p|

OWA =
1

2

[
SMAPE

SMAPENaive2
+

MASE
MASENaive2

]

where p is the periodicity of the data. X̂ ∈ RT×M are the M variables’ prediction results of length
T and corresponding ground truth. Xi means the i-th time step in the prediction result.

D SHOWCASES
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Figure 4: Visualization of ETTh1 Univariate forecasting results.

E LLM USE DISCLOSURE

We used large language models (LLMs) solely for assistance with grammar and wording edits, minor
LaTeX formatting for tables and figures, and support in plotting. LLMs were not used for generating
scientific claims, designing or running experiments, analyzing results, creating or altering data, or
drafting substantive technical content related to time series forecasting.

All scientific content, methodologies, analyses, and conclusions were authored and independently
verified by the authors. No confidential submission materials were provided to third-party LLM
services. We take full responsibility for the submission and its contents.
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