
Under review as a conference paper at ICLR 2023

SEKRON: A DECOMPOSITION METHOD SUPPORTING
MANY FACTORIZATION STRUCTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

While convolutional neural networks (CNNs) have become the de facto standard for
most image processing and computer vision applications, their deployment on edge
devices remains challenging. Tensor decomposition methods provide a means of
compressing CNNs to meet the wide range of device constraints by imposing certain
factorization structures on their convolution tensors. However, being limited to the
small set of factorization structures presented by state-of-the-art decomposition
approaches can lead to sub-optimal performance. We propose SeKron, a novel
tensor decomposition method that offers a wide variety of factorization structures,
using sequences of Kronecker products. The flexibility of SeKron leads to many
compression rates and also allows it to cover commonly used factorizations such
as Tensor-Train (TT), Tensor-Ring (TR), Canonical Polyadic (CP) and Tucker.
Crucially, we derive an efficient convolution projection algorithm shared by all
SeKron structures, leading to seamless compression of CNN models. We validate
our approach for model compression on both high-level and low-level computer
vision tasks and find that it outperforms state-of-the-art decomposition methods.

1 INTRODUCTION

Deep learning models have introduced new state-of-the-art solutions to both high-level computer
vision problems (He et al. 2016; Ren et al. 2015), and low-level image processing tasks (Wang et al.
2018b; Schuler et al. 2015; Kokkinos & Lefkimmiatis 2018) through convolutional neural networks
(CNNs). Such models are obtained at the expense of millions of training parameters that come
along deep CNNs making them computationally intensive. As a result, many of these models are of
limited use as they are challenging to deploy on resource-constrained edge devices. Compared with
neural networks for high-level computer vision tasks (e.g., ResNet-50 (He et al. 2016)), models for
low-level imaging problems such as single image super-resolution have much a higher computational
complexity due to the larger feature map sizes. Moreover, they are typically infeasible to run on cloud
computing servers. Thus, their deployment on edge devices is even more critical.

In recent years an increasing trend has begun in reducing the size of state-of-the-art CNN backbones
through efficient architecture designs such as Xception (Chollet 2017), MobileNet (Howard et al.
2019), ShuffleNet (Zhang et al. 2018c), and EfficientNet (Tan & Le 2019), to name a few. On
the other hand, there have been studies demonstrating significant redundancy in the parameters of
large CNN models, implying that in theory the number of model parameters can be reduced while
maintaining performance (Denil et al. 2013). These studies provide the basis for the development of
many model compression techniques such as pruning (He et al. 2020), quantization (Hubara et al.
2017), knowledge distillation (Hinton et al. 2015), and tensor decomposition (Phan et al. 2020).

Tensor decomposition methods such as Tucker (Kim et al. 2016), Canonical Polyadic (CP) (Lebedev
et al. 2015), Tensor-Train (TT) (Novikov et al. 2015) and Tensor-Ring (TR) (Wang et al. 2018a)
rely on finding low-rank approximations of tensors under some imposed factorization structure as
illustrated in Figure 1a. In practice, some structures are more suitable than others when decomposing
tensors. Choosing from a limited set of factorization structures can lead to sub-optimal compressions
as well as lengthy runtimes depending on the hardware. This limitation can be alleviated by reshaping
tensors prior to their compression to improve performance as shown in (Garipov et al. 2016). However,
this approach requires time-consuming development of customized convolution algorithms.

1

Under review as a conference paper at ICLR 2023

(a)

G

A(1)

f

A(1) c

A(3)

h

A(4)w

Tucker

A(1)

f

A(1) c

A(3)

h

A(4)w

CP

A(1)

f

A(2)

c

A(3)

h

A(4)

w

TR

A(1)

f

A(2)

c

A(3)

h

A(4)

w

TT

A(1)

A(S)

A(3) A(4)

A(5)

··
·

c1f1 h1 w1

c2
f2

h2
w2

c3
f3

h3

w3

c4
f4

h4
w4

cS
fS

hS

wS

SeKron

(b)

SeKron with two sequence lengths

Figure 1: (a): Tensor network diagrams of various decomposition methods for a 4D convolution
tensor W ∈ IRF×C×Kh×Kw . Unlike all other decomposition methods where f, c, h, w index
over fixed dimensions (i.e., dimensions of W), SeKron is flexible in its factor dimensions, with
fk, ck, hk, wk,∀k ∈ {1, ..., S} indexing over variable dimension choices, as well as its sequence
length S. Thus, it allows for a wide range of factorization structures to be achieved. (b): Example of a
16× 16 tensor W that can be more efficiently represented using a sequence of four Kronecker factors
(requiring 16 parameters) in contrast to using a sequence length of two (requiring 32 parameters).

We propose SeKron, a novel tensor decomposition method offering a wide range of factorization
structures that share the same efficient convolution algorithm. Our method is inspired by approaches
based on the Kronecker Product Decomposition (Thakker et al. 2019; Hameed et al. 2022). Unlike
other decomposition methods, Kronecker Product Decomposition generalizes the product of smaller
factors from vectors and matrices to a range of tensor shapes, thereby exploiting local redundancy
between arbitrary slices of multi-dimensional weight tensors. SeKron represents tensors using
sequences of Kronecker products to compress convolution tensors in CNNs. Using sequences of
Kronecker products leads to a wide range of factorization structures including commonly used ones
such as Tensor-Train (TT), Tensor-Ring (TR), Canonical Polyadic (CP) and Tucker.

Sequences of Kronecker products also have the potential to exploit local redundancies using far fewer
parameters as illustrated in the example in Figure 1b. By performing the convolution operation using
each of the Kronecker factors independently, the number of parameters, computational intensity, and
runtime are reduced, simultaneously. Leveraging the flexibility SeKron, we find efficient factorization
structures that outperform existing decomposition methods on various image classification and
low-level image processing super-resolution tasks. In summary, our contributions are:

• Introducing SeKron, a novel tensor decomposition method based on sequences of Kronecker
products that allows for a wide range of factorization structures.

• Providing a solution to the problem of finding the summation of sequences of Kronecker
products between factor tensors that well approximates the original tensor.

• Deriving a single convolution algorithm shared by all factorization structures achievable by
SeKron, utilized as compressed convolutional layers in CNNs.

• Improving the state-of-the-art of low-rank model compression on image classification (high-
level vision) benchmarks such as ImageNet and CIFAR-10, as well as super-resolution
(low-level vision) benchmarks such as Set4, Set14, B100 and Urban100.

2 RELATED WORK ON DNN MODEL COMPRESSION

Sparsification. Different components of DNNs, such as weights (Han et al. 2015b;a), convolutional
filters (He et al. 2018; Luo et al. 2017) and feature maps (He et al. 2017; Zhuang et al. 2018) can
be sparse. The sparsity can be enforced using sparsity-aware regularization (Liu et al. 2015; Zhou
et al. 2016) or pruning techniques (Luo et al. 2017; Han et al. 2015b). Many pruning methods (Luo

2

Under review as a conference paper at ICLR 2023

et al. 2017; Zhang et al. 2018b) aim for a high compression ratio and accuracy regardless of the
structure of the sparsity. Thus, they often suffer from imbalanced workload caused by irregular
memory access. Hence, several works aim at zeroing out structured groups of DNN components
through more hardware friendly approaches (Wen et al. 2016).

Quantization. The computation and memory complexity of DNNs can be reduced by quantizing
model parameters into lower bit-widths; wherein the majority of research works use fixed-bit quanti-
zation. For instance, the methods proposed in (Gysel et al. 2018; Louizos et al. 2018) use fixed 4 or
8-bit quantization. Model parameters have been quantized even further into ternary (Li et al. 2016;
Zhu et al. 2016) and binary (Courbariaux et al. 2015; Rastegari et al. 2016; Courbariaux et al. 2016),
representations. These methods often achieve low performance even with unquantized activations (Li
et al. 2016). Mixed-precision approaches, however, achieve more competitive performance as shown
in (Uhlich et al. 2019) where the bit-width for each layer is determined in an adaptive manner. Also,
choosing a uniform (Jacob et al. 2018) or nonuniform (Han et al. 2015a; Tang et al. 2017; Zhang et al.
2018a) quantization interval has important effects on the compression rate and the acceleration.

Tensor Decomposition. Tensor decomposition approaches are based on factorizing weight tensors
into smaller tensors to reduce model sizes (Yin et al. 2021). Singular value decomposition (SVD)
applied on matrices as a 2-dimensional instance of tensor decomposition is used as one of the
pioneering approaches to perform model compression (Jaderberg et al. 2014). Other classical high-
dimensional tensor decomposition methods, such as Tucker (Tucker 1963) and CP decomposition
(Harshman et al. 1970), are also adopted to perform model compression. However, using these
methods often leads to significant accuracy drops (Kim et al. 2015; Lebedev et al. 2015; Phan et al.
2020). The idea of reshaping weights of fully-connected layers into high-dimensional tensors and
representing them in TT format (Oseledets 2011) was extended to CNNs in (Garipov et al. 2016). For
multidimensional tensors, TR decomposition (Wang et al. 2018a) has become a more popular option
than TT (Wang et al. 2017). Subsequent filter basis decomposition works polished these approaches
using a shared filter basis. They have been proposed for low-level computer vision tasks such as single
image super-resolution in (Li et al. 2019). Kronecker factorization is another approach to replace
the weight tensors within fully-connected and convolution layers (Zhou et al. 2015). The rank-1
Kronecker product representation limitation of this approach is alleviated in (Hameed et al. 2022).
The compression rate in (Hameed et al. 2022) is determined by both the rank and factor dimensions.
For a fixed rank, the maximum compression is achieved by selecting dimensions for each factor that
are closest to the square root of the original tensors’ dimensions. This leads to representations with
more parameters than those achieved using sequences of Kronecker products as shown in Fig. 1b.

There has been extensive research on tensor decomposition through characterizing global correlation
of tensors (Zheng et al. 2021), extending CP to non-Gaussian data (Hong et al. 2020), employing
augmented decomposition loss functions (Afshar et al. 2021), etc. for different applications. Our
main focus in this paper is on the ones used for NN compression.

Other Methods NNs can also be compressed using Knowledge Distillation (KD) where a large pre-
trained network known as teacher is used to train a smaller student network (Mirzadeh et al. 2020; Heo
et al. 2019). Sharing weights in a more structured manner can be another model compression approach
as FSNet (Yang et al. 2020) which shares filter weights across spatial locations or ShaResNet (Boulch
2018) which reuses convolutional mappings within the same scale level. Designing lightweight CNNs
(Sandler et al. 2018; Iandola et al. 2016; Chollet 2017; Howard et al. 2019; Zhang et al. 2018c; Tan &
Le 2019) is another direction orthogonal to the aforementioned approaches.

3 METHOD

In this section, we introduce SeKron and how it can be used to compress tensors in deep learning
models. We start by providing background on the Kronecker Product Decomposition in Section 3.1.
Then, we introduce our decomposition method in 3.2. In Section 3.3, we provide an algorithm for
computing the convolution operation using each of the factors directly (avoiding reconstruction) at
runtime. Finally, we discuss the computational complexity of the proposed method in Section 3.4.

3

Under review as a conference paper at ICLR 2023

3.1 PRELIMINARIES

Convolutional layers prevalent in CNNs transform an input tensor X ∈ IRC×Kh×Kw using a weight
tensor W ∈ IRF×C×Kh×Kw via a multi-linear map given by

Y f,x,y =

Kh∑
i=1

Kw∑
j=1

C∑
c=1

W f,c,i,jX c,i+x,j+y, (1)

where C and F denote the number of input channels and output channels, respectively, and Kh×Kw

denotes the spatial size of the weight (filter).

Tensor decomposition seeks an approximation to replace W , typically through finding lower-rank
tensors using SVD. One such approximation comes from the fact that any tensor W ∈ IRw1×···×wN

can be written as a sum of Kronecker products (i.e., W =
∑R

r=1 Ar ⊗ Br, where = Ar ∈
IRa1×···×aN ,Br ∈ IRb1×···×bN and ajbj = wj for j ∈ {1, · · · , N}). (Hameed et al. 2022). Thus, a
lower-rank approximation can be obatined by solving

min
{Ar},{Br}

∥∥∥∥∥∥W −
R̂∑

r=1

Ar ⊗Br

∥∥∥∥∥∥
2

F

, (2)

for R̂ sums of Kronecker products (R̂ ≤ R) using the SVD of a particular reshaping (unfolding) of
W , where || · ||F denotes the Frobenius norm.

3.2 SEKRON TENSOR DECOMPOSITION

The Kronecker decomposition in equation 2 can be extended to finding an approximating sequence

of Kronecker factors A(k) ∈ IRR1×···×Rk×a
(k)
1 ×···×a

(k)
N as follows:

min
{A(k)}S

k=1

∥∥∥∥∥∥W −
R1∑

r1=1

(
A(1)

r1 ⊗
R2∑

r2=1

(
A(2)

r1r2 ⊗ · · · ⊗
RS−1∑

rS−1=1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1

))∥∥∥∥∥∥
2

F

.

(3)
Although this is a non-convex objective, a quasi-optimal solution based on recursive application
of SVD is given in Theorem 1. Note that alternative expansion directions to 3 are viable (See
Appendix B).
Theorem 1 (Tensor Decomposition using a Sequence of Kronecker Products). Any tensor W ∈
IRw1×···×wN can be represented by a sequence of Kronecker products between S ∈ IN factors:

W =

R1∑
r1=1

A(1)
r1 ⊗

R2∑
r2=1

A(2)
r1r2 ⊗ · · · ⊗

RS−1∑
rS−1=1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1 , (4)

where Ri ∈ IN and A(k) ∈ IRR1×···×Rk×a
(k)
1 ×···×a

(k)
N .

Proof. See Appendix C

Our approach to solving equation 3 involves finding two approximating Kronecker factors that
minimize the reconstruction error with respect to the original tensor, then recursively applying this
procedure on the latter factor found. More precisely, we define intermediate tensors

B(k)
r1···rk ≜

Rk+1∑
rk+1=1

A(k+1)
r1···rk+1 ⊗

Rk+2∑
rk+2=1

A(k+2)
r1···rk+2 ⊗ · · · ⊗

RS−1∑
rS−1=1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1 , (5)

allowing us to re-write the reconstruction error in equation 3, for the kth iteration, as

min
{A(k)

r1···rk , B
(k)
r1···rk}

rj=1,···Rj , j=1,...,k

∥∥∥∥∥W (k)
r1···rk−1 −

Rk∑
rk=1

A(k)
r1···rk ⊗B(k)

r1···rk

∥∥∥∥∥
2

F

. (6)

4

Under review as a conference paper at ICLR 2023

Algorithm 1: SeKron Tensor Decomposition

Input: Input tensorW ∈ IRw1×···×wN Kronecker factor shapes {d(i)}Si=1

Output: Kronecker factors {A}Si=1
for i← 1, 2, . . . , S − 1 do

d(a) ← d(i)

d(b) ←
∏S

k=i+1 d
(k)

W← UNFOLD(W , shape = d(b)) // IRB×L×
∏N

k=1 d
(b)
k

U, s,V← BATCHSVD(W) // U ∈ IRB×L×R where R = min(L,
∏N

k=1 d
(b)
k)

A(i) ← STACK((RESHAPE(Ub,:,r, shape = d(a)) | b = 1, 2, . . . B, r = 1, 2, . . . R))

B(i) ← STACK((RESHAPE(skV
⊤
b,:,r, shape = d(b)) | b = 1, 2, . . . B, r = 1, 2, . . . R))

W ← B(i)

end
A(S) ← BS−1

return {A}Si=1

In the first iteration, the tensor being decomposed is the original tensor (i.e., W (1) ←W). Whereas
in subsequent iterations, intermediate tensors are decomposed. At each iteration, we can convert the
problem in equation 6 to the low-rank matrix approximation problem

min
{a(k)

r1···rk , b
(k)
r1···rk}

rj=1,···Rj , j=1,...,k

∥∥∥∥∥W(k)
r1···rk−1 −

Rk∑
rk=1

a
(k)
r1···rkb

(k)⊤
r1···rk

∥∥∥∥∥
2

F

, (7)

through reshaping, such that the overall sum of squares is preserved between equation 6 and equation 7.
The problem in equation 7 can be readily solved, as it has a well known solution using SVD. The
reshaping operations that facilitate this transformation are

W
(k)
r1···rk−1 = MAT(UNFOLD(W (k)

r1···rk−1 ,d

(
B(k)

r1···rk

)
)), (8)

a
(k)
r1···rk = UNFOLD(A(k)

r1···rk ,d

(
I

A(k)
r1···rk

)
), b

(k)
r1···rk = VEC(B(k)

r1···rk), (9)

where UNFOLD reshapes tensor W (k)
r1···rk−1 by extracting multidimensional patches of shape

dB(k)
r1,...rk

from tensor W (k)
r1···rk−1 in any order, then stacking them along a new first dimension.

Vector dB denotes a vector describing the shape of a tensor B, VEC : IRd1×···×dN → IRd1···dN

flattens a tensor, MAT : IRd1×d2×···×dN → IRd1×d2···dN matricizes a tensor and IA denotes an
identity tensor with the same number of modes as A and each dimension set to one.

Once each B(k)
r1···rk is obtained by solving equation 7 (and using the inverse of the VEC operation in

equation 9), we proceed recursively by setting W (k+1)
r1···rk ← B(k)

r1···rk and solving the k + 1th iteration
of equation equation 7. In other words, at the kth iteration, we find Kronecker factors A(k) and B(k),
where the latter is used in the following iteration. Except in the final iteration (i.e., k = S− 1), where
the intermediate tensor B(k) is the solution to the last Kronecker factor A(S). (See Algorithm 1)

By virtue of the connectivity between all of the Kronecker factors as illustrated in Figure 1a, SeKron
can achieve many other commonly used structures, as stated in the following theorem:

Theorem 2. The factorization structure imposed by CP, Tucker, TT and TR when decomposing a
given tensor W ∈ IRw1×···×wN can be achieved using SeKron.

Proof. See Appendix C.

3.3 CONVOLUTION WITH SEKRON STRUCTURES

In this section, we provide an efficient algorithm for performing a convolution operation using a
tensor represented by a sequence of Kronecker factors. Assuming W is approximated as a sequence

5

Under review as a conference paper at ICLR 2023

Algorithm 2: Convolution operation using a sequence of Kronecker factors

Input: {A(i)}Si=1,A(i) ∈ IRri×fi×ci×Khi×Kwi X ∈ IRN×C×H×W

Output: X ∈ IRN×
∏S

k=1 fk×H×W

for i← S, S − 1, . . . , 1 do
if i == S then

X ← CONV3D(UNSQUEEZE(X , 1), UNSQUEEZE(A(i), 1)

/* IRN×
∏S

k=i+1 fk×rifi×
∏i−1

k=1 ck×H×W → IRN×
∏S

k=i fk×ri−1×
∏i−1

k=1 ck×H×W
*/

X ← RESHAPE1(X)
else

X ← CONV3D(X ,A(i), groups = ri)

/* IRN×
∏S

k=i+1 fk×rifi×
∏i−1

k=1 ck×H×W → IRN×
∏S

k=i fk×ri×
∏i−1

k=1 ck×H×W
*/

X ← RESHAPE2(X)
end

end
return X

of Kronecker products using SeKron, i.e., W ≈ Ŵ and

Ŵ =

R̂1∑
r1=1

A(1)
r1 ⊗

R̂2∑
r2=1

A(2)
r1r2 ⊗ · · ·

R̂S−1∑
rS−1=1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1 , (10)

the convolution operation in equation 1 can be re-written as

Y fxy =

Kh,Kw,C∑
i,j,c=1

(
R̂1∑

r1=1

A(1)
r1 ⊗ · · · ⊗

R̂S−1∑
rS−1=1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1

)
fcij

X c,i+x,j+y. (11)

Due to the factorization structure of tensor Ŵ , the computation in equation 11 can be carried
out without its explicit reconstruction. Instead, the projection can be performed using each of the
Kronecker factors independently. This property is essential to performing efficient convolution
operations using SeKron factorizations, and leads to a reduction in both memory and FLOPs at
runtime. In practice, this amounts to replacing one large convolution operation (i.e., one with a
large convolution tensor) with a sequence of smaller grouped 3D convolutions, as summarized in
Algorithm 2.

The ability to avoid reconstruction at runtime when performing a convolution using any SeKron
factorization is the result of the following Theorem:
Theorem 3 (Linear Mappings with Sequences of Kronecker Products). Any linear mapping
using a given tensor W can be written directly in terms of its Kronecker factors A(k) ∈
IRR1×···RN×a

(k)
1 ×···×a

(k)
N . That is:

W i1···iNX i1+z1,··· ,iN+zN =

R1,...Rk∑
r1,...rN

A(1)

r1j
(1)
1 ···j(1)N

· · ·A(S)

r1···rS−1j
(S)
1 ···j(S)

N

X f(j1)+z1,··· ,f(jN)+zN

where j(k)n ∈ IN is a function of input indices (see Appendix A) and f(jn) =
∑S

k=1 j
(k)
n
∏S

l=k+1 a
(l)
n

Proof. See Appendix C.

Using Theorem 3 we re-write the projection in equation 11 directly in terms of Kronecker factors

Y fxy =
∑

i,j,c,r1

A(1)
r1f1c1i1j1

∑
r2

A(2)
r1,r2,f2,c2,i2,j2

· · ·

∑
rS−1

A(S−1)
r1···rS−1fN−1cN−1iN−1jN−1

A(S)
r1···rS−1fNcN iN jN

X f(c),f(i)+x,f(j)+y, (12)

where i = (i1, i2, . . . , iN), j = (j1, j2, . . . , jN), c = (c1, c2, . . . , cN) denote vectors containing
indices ik, jk, ck that enumerate over positions in tensors A(k). Finally, exchanging the order of

6

Under review as a conference paper at ICLR 2023

summation separates the convolution as follows:
Y fxy =

∑
i1,j1,c1,r1

A(1)
r1f1c1i1j1

· · ·
∑

iN ,jN ,cN

A(S)
r1···rS−1fNcN iN jN

X f(c),f(i)+x,f(j)+y. (13)

Overall, the projection in equation 13 can be carried out efficiently using a sequence of grouped
3D convolutions with intermediate reshaping operations as described in Algorithm 2. Refer to
Appendix C for universal approximation properties of neural networks when using SeKron.

3.4 COMPUTATIONAL COMPLEXITY

In order to decompose a given tensor using our method, the sequence length and the Kronecker
factor shapes must be specified. Different selections will lead to different FLOPs, parameters, and
latency. Specifically, for the decomposition given by equation 10 for Ŵ ∈ IRf×c×h×w using factors
A(i)

r1···ri ∈ IRfi×ci×hi×wi , the compression ratio (CR) and FLOPs reduction ratio (FR) are given by

CR =

∏S
i=1 ficihiwi∑S

i=1

∏i
k=1 R̂kficihiwi

, FR =

∏S
i=1 ficihiwi∑S

i=1

(∏S
k=i Fk

)(∏i
k=1 R̂k

)(∏i
k=1 ck

)
hiwi

. (14)

Applying SeKron to compress DNN models requires a selection strategy for sequence lengths and
factor shapes for each layer in a network. We adopt a simple approach that involves selecting
configurations that best match a desired CR while also having a lower latency than the original layer
being compressed, as FR may not be a good indicator of runtime speedup in practice.

4 EXPERIMENTAL RESULTS

To demonstrate the effectiveness of SeKron for model compression, we evaluate different CNN
models on both high-level and low-level computer vision tasks. For image classification tasks, we
evaluate WideResNet16 (Zagoruyko & Komodakis 2016) and ResNet50 (He et al. 2016) models
on CIFAR-10 (Krizhevsky 2009) and ImageNet (Krizhevsky et al. 2012), respectively. For super-
resolution task, we evaluate EDSR-8-128 and SRResNet16 trained on DIV2k(Agustsson & Timofte
2017). Lastly, we discuss the latency of our proposed decomposition method. In all experiments we
compress convolution layers of pre-trained networks using various compression approaches and then
re-train the resulting compressed models. We provide implementation details in Appendix D.

4.1 IMAGE CLASSIFICATION EXPERIMENTS

First, we evaluate SeKron by compressing WideResNet16-8 (Zagoruyko & Komodakis 2016) for
image classification on CIFAR-10 and comparing against various approaches. Namely, PCA (Zhang
et al. 2016) which imposes that filter responses lie approximately on a low-rank subspace; SVD-
Energy (Alvarez & Salzmann 2017) which imposes a low-rank regularization into the training
procedure; L-Rank (learned rank selection) (Idelbayev & Carreira-Perpinan 2020) which jointly
optimizes over matrix elements and ranks; ALDS (Liebenwein et al. 2021) which provides a global
compression framework that finds optimal layer-wise compressions leading to an overall desired
global compression rate; TR (Wang et al. 2018a); TT (Novikov et al. 2015) as well as two pruning
approaches FT (Li et al. 2017) and PFP (Liebenwein et al. 2020).

Figure 2, shows the CIFAR-10 classification performance drop (i.e., ∆ Top-1) versus compression
rates using different methods. SeKron outperforms all other decomposition and pruning methods, at a
variety of compression rates. In Table 1 we highlight that at a compression rate of 4× SeKron outper-
forms all other methods with a small accuracy drop of −0.51, whereas the next best decomposition
method (omitting rank selection approaches) suffers a −1.27 drop in accuracy.

Next, we evaluate SeKron to compress ResNet50 for the image classification task on ImageNet.
Table 2 compares our method to other compression approaches. Most notably, SeKron outperforms
all decomposition methods, achieving 74.94% Top-1 accuracy which is ∼1.1% greater than the
second highest accuracy achieved by using TT decomposition. At the same time, SeKron is 3×
faster than TT on a single CPU.

7

Under review as a conference paper at ICLR 2023

Table 1: Performance of compressed WideResNet16-
8 using various methods on CIFAR-10

Model CR ∆ Top-1 (%)

ALDS 4.0 −0.73
L-Rank 4.0 −3.52

FT 4.1 −1.50
PFP 4.0 −0.94

SVD 4.0 −4.40
PCA 4.0 −2.08
SVD Energy 4.0 −1.27
TT 4.0 −2.86
TR 4.0 −0.70
CP 4.0 −3.13
Tucker 4.0 − 1.61
SeKron (Ours) 4.1 −0.51

0 20 40 60

−9
−8
−7
−6
−5
−4
−3
−2
−1
0

Parameters Retained (%)

∆
To

p-
1

(%
)

SeKron (Ours) ALDS

PCA SVD-Energy

TT TR

FT PFP

L-Rank CP

Tucker

Figure 2: Performance drop of WideResNet16-8
at various compression rates achieved by differ-
ent methods on CIFAR-10.

Table 2: Performance of ResNet50 using various compression methods measured on ImageNet. †

indicates models obtained from compressing baselines with different accuracies, for this reason we
report accuracy drops of each model with respect to their own baselines as well. The baselines
compared are FSNet (Yang et al. 2020), ThiNet (Luo et al. 2017) CP (He et al. 2017) MP (Liu et al.
2019) and Binary Kronecker (Hameed et al. 2022)

Method Type Params (E+6) / CR FLOPS (E+9) CPU (ms) Top-1 / ∆ Top-1

FSNet† Other 13.9 / 1.8 - - 73.11 / −2.0
ThiNet†

Pruning
12.4 / 2.1 - - 71.01 / −1.9

CP† - / 2.0 - - 73.30 / −3.0
MP† 10.6 / 2.4 - - 73.40 / −3.2

Tensor Ring

Decomposition

13.9 / 1.8 2.1 105 ± 2 73.30 / −2.7
Tensor Train 13.3 / 1.9 1.9 395 ± 54 73.85 / −2.1
Binary Kronecker 12.0 / 2.1 - - 73.95 / − 2.0
SeKron S = 2 (Ours) 12.3 / 2.0 2.9 125 ± 3 74.66 / −1.3
SeKron S = 3 (Ours) 13.8 / 1.8 2.5 133 ± 4 74.94 / −1.1

Baseline Uncompressed 25.5 / 1.0 4.10 133 ± 33 75.99 / − 0.0

4.2 SUPER-RESOLUTION EXPERIMENTS

In this section we use SeKron to compress SRResNet (Ledig et al. 2017) and EDSR-8-128 (Li et al.
2019). Both networks were trained on DIV2K (Agustsson & Timofte 2017) and valuated on Set5
(Bevilacqua et al. 2012), Set14 (Zeyde et al. 2012), B100(Martin et al. 2001) and Urban100 (Huang
et al. 2015). Table 3 presents the performances in terms of PSNR measured on the test images for the
models once compressed using SeKron along with the original uncompressed models.

Among model compression methods, Filter Basis Decomposition (FBD) (Li et al. 2019) has been
previously shown to achieve state-of-the-art compression on super-resolution CNNs. Therefore, we
compare our model compression results with those obtained using FBD as shown in Table 3. We
highlight that our approach outperforms FBD, on all test datasets when compressing SRResNet16 at
similar compression rates. As this table suggests, when compression rate is increased, FBD results in
much lower PSNRs for both EDSR-8-128 and SRResNet16 compared to our proposed SeKron.

4.3 CONFIGURING SEKRON CONSIDERING LATENCY AND COMPRESSION RATE

Using the configuration selection strategy proposed in 3.4, we find that a small sequence length (S)
is limited to few achievable candidate configurations (and consequently compression rates) that do
not sacrifice latency. This is illustrated in Figure 3 for S = 2 where targeting a CPU latency less
than 5 ms and a compression ratio less than 10× leaves only 3 options for compression. In contrast,

8

Under review as a conference paper at ICLR 2023

Table 3: PSNR (dB) performance of compressed SRResNet16 and EDSR-8-128 (×4 scaling factor)
models using FBD (with basis-64-16) (Li et al. 2019) and our SeKron

Model Method Params (E+6) CR Dataset

Set5 Set14 B100 Urban100

SR
R

es
N

et
16

Baseline 1.54 1.0 32.03 28.5 27.52 25.88

FBD 0.65 2.4 31.84 28.38 27.39 25.54
SeKron 0.65 2.4 31.91 28.42 27.43 25.64

FBD 0.36 4.3 31.49 28.18 27.28 25.20
SeKron 0.37 4.2 31.73 28.32 27.37 25.48

E
D

SR
-8

-1
28

Baseline 3.70 1.0 32.13 28.55 27.55 26.02

FBD 1.62 2.3 31.80 28.34 27.40 25.54
SeKron 1.50 2.5 31.79 28.34 27.39 25.52

FBD 0.48 7.8 31.64 28.23 27.32 25.31
SeKron 0.47 7.8 31.77 28.32 27.38 25.46

Table 4: CPU latency (ms) for uncom-
pressed (baseline) and compressed SR-
ResNet16 and EDSR-8-128 models us-
ing SeKron

Model Method CR CPU (ms)

SRResNet16
Baseline 1.0 72 ± 3
SeKron 2.4 70 ± 5
SeKron 4.2 70 ± 2

EDSR-8-128
Baseline 1.0 151 ± 8
SeKron 2.5 124 ± 4
SeKron 7.8 131 ± 9

Figure 3: CPU latency for candidate configurations obtained
using SeKron on a tensor W ∈ IR512×512×3×3 with S = 2
(red) and S = 3 (blue), aiming for a speedup (e.g., < 5 ms)
and a typical compression rate (e.g., < 10×).

increasing the sequence length to S = 3 leads to a wider range of achievable compression rates
(i.e., 129 configurations). Despite the flexibility they provide, large sequence lengths lead to an
exponentially larger number of candidate configurations and time-consuming generation of all their
runtimes. For this reason, unless otherwise stated, we opted to use S = 3 in all the above-mentioned
experiments as it provided a suitable range of compression rates and a manageable search space.

As an example, in Table 4 we compress EDSR-8-128 using a compression rate of CR = 2.5×, by
selecting configurations for each layer that satisfy the desired CR while simultaneously resulting in a
speedup. This led to an overall model speedup of 124ms (compressed) vs. 151ms (uncompressed).

5 CONCLUSIONS

We introduced SeKron, a tensor decomposition approach using sequences of Kronecker products.
SeKron allows for a wide variety of factorization structures to be achieved, while, crucially, sharing
the same compression and convolution algorithms. Moreover, SeKron has been shown to generalize
popular decomposition methods such as TT, TR, CP and Tucker. Thus, it mitigates the need for
time-consuming development of customized convolution algorithms. Unlike other decomposition
methods, SeKron is not limited to a single factorization structure, which leads to improved com-
pressions and reduced runtimes on different hardware. Leveraging SeKron’s flexibility, we find
efficient factorization structures that outperform previous decomposition methods on various image
classification and super-resolution tasks.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Ardavan Afshar, Kejing Yin, Sherry Yan, Cheng Qian, Joyce Ho, Haesun Park, and Jimeng Sun.
Swift: scalable wasserstein factorization for sparse nonnegative tensors. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 6548–6556, 2021.

Eirikur Agustsson and Radu Timofte. NTIRE 2017 challenge on single image super-resolution:
Dataset and study. In IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 1122–1131, 2017.

Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. In Advances
in Neural Information Processing Systems, 2017.

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie line Alberi Morel. Low-complexity
single-image super-resolution based on nonnegative neighbor embedding. In British Machine Vision
Conference, pp. 135.1–135.10, 2012.

Alexandre Boulch. Reducing parameter number in residual networks by sharing weights. Pattern
Recognition Letters, 103:53–59, 2018.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1251–1258, 2017.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. Advances in Neural Information Processing
Systems, 28, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to +1 or -1.
arXiv preprint arXiv:1602.02830, 2016.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando de Freitas. Predicting
parameters in deep learning. In Advances in Neural Information Processing Systems, 2013.

Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry P. Vetrov. Ultimate tensoriza-
tion: compressing convolutional and FC layers alike. CoRR, abs/1611.03214, 2016.

Philipp Gysel, Jon Pimentel, Mohammad Motamedi, and Soheil Ghiasi. Ristretto: A framework for
empirical study of resource-efficient inference in convolutional neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 29(11):5784–5789, 2018.

Marawan Gamal Abdel Hameed, Marzieh S. Tahaei, Ali Mosleh, and Vahid Partovi Nia. Convolu-
tional neural network compression through generalized Kronecker product decomposition. In AAAI
Conference on Artificial Intelligence, 2022.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in Neural Information Processing Systems, 28, 2015b.

Richard A Harshman et al. Foundations of the parafac procedure: Models and conditions for an"
explanatory" multimodal factor analysis. 1970.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778,
2016.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018.

Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and Yi Yang. Learning filter
pruning criteria for deep convolutional neural networks acceleration. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

10

Under review as a conference paper at ICLR 2023

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In IEEE International Conference on Computer Vision, pp. 1389–1397, 2017.

Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. Knowledge distillation with
adversarial samples supporting decision boundary. In AAAI Conference on Artificial Intelligence, pp.
3771–3778, 2019.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015.

David Hong, Tamara G Kolda, and Jed A Duersch. Generalized canonical polyadic tensor decompo-
sition. SIAM Review, 62(1):133–163, 2020.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for MobileNetV3. In IEEE/CVF
International Conference on Computer Vision, pp. 1314–1324, 2019.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from transformed
self-exemplars. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2015.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. The Journal
of Machine Learning Research, 18(1):6869–6898, 2017.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 MB model size.
arXiv preprint arXiv:1602.07360, 2016.

Yerlan Idelbayev and Miguel A. Carreira-Perpinan. Low-rank compression of neural nets: Learning
the rank of each layer. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
2704–2713, 2018.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530, 2015.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. In
International Conference on Learning Representations, 2016.

Filippos Kokkinos and Stamatios Lefkimmiatis. Deep image demosaicking using a cascade of
convolutional residual denoising networks. In European Conference on Computer Vision (ECCV), pp.
303–319, 2018.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems, pp. 1106–1114,
2012.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V. Oseledets, and Victor S. Lempitsky.
Speeding-up convolutional neural networks using fine-tuned CP-decomposition. In International
Conference on Learning Representations, 2015.

11

Under review as a conference paper at ICLR 2023

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single
image super-resolution using a generative adversarial network. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4681–4690, 2017.

Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711,
2016.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient ConvNets. In International Conference on Learning Representations, 2017.

Yawei Li, Shuhang Gu, Luc Van Gool, and Radu Timofte. Learning filter basis for convolutional
neural network compression. In IEEE International Conference on Computer Vision, 2019.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter pruning
for efficient neural networks. In International Conference on Learning Representations, 2020.

Lucas Liebenwein, Alaa Maalouf, Dan Feldman, and Daniela Rus. Compressing neural networks:
Towards determining the optimal layer-wise decomposition. In Advances in Neural Information
Processing Systems, 2021.

Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Marianna Pensky. Sparse con-
volutional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
806–814, 2015.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian Sun.
Metapruning: Meta learning for automatic neural network channel pruning. In IEEE International
Conference on Computer Vision, pp. 3296–3305, 2019.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling.
Relaxed quantization for discretized neural networks. arXiv preprint arXiv:1810.01875, 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. ThiNet: A filter level pruning method for deep neural
network compression. In IEEE International Conference on Computer Vision, pp. 5058–5066, 2017.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and
its application to evaluating segmentation algorithms and measuring ecological statistics. In IEEE
International Conference on Computer Vision, volume 2, pp. 416–423 vol.2, 2001.

Seyed-Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In AAAI Conference on
Artificial Intelligence, pp. 5191–5198, 2020.

Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing neural
networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, 2015.

Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):
2295–2317, 2011.

Anh-Huy Phan, Konstantin Sobolev, Konstantin Sozykin, Dmitry Ermilov, Julia Gusak, Petr
Tichavskỳ, Valeriy Glukhov, Ivan Oseledets, and Andrzej Cichocki. Stable low-rank tensor de-
composition for compression of convolutional neural network. In European Conference on Computer
Vision, pp. 522–539. Springer, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: ImageNet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525–542. Springer, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. Advances in Neural Information Processing Systems, 28:
91–99, 2015.

12

Under review as a conference paper at ICLR 2023

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4510–4520, 2018.

Christian J Schuler, Michael Hirsch, Stefan Harmeling, and Bernhard Schölkopf. Learning to deblur.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(7):1439–1451, 2015.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning, pp. 6105–6114. PMLR, 2019.

Wei Tang, Gang Hua, and Liang Wang. How to train a compact binary neural network with high
accuracy? In AAAI Conference on Artificial Intelligence, 2017.

Urmish Thakker, Jesse Beu, Dibakar Gope, Chu Zhou, Igor Fedorov, Ganesh Dasika, and Matthew
Mattina. Compressing RNNs for IoT devices by 15-38x using Kronecker products. arXiv preprint
arXiv:1906.02876, 2019.

Ledyard R Tucker. Implications of factor analysis of three-way matrices for measurement of change.
Problems in Measuring Change, 15(122-137):3, 1963.

Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki Yoshiyama, Javier Alonso Garcia, Stephen
Tiedemann, Thomas Kemp, and Akira Nakamura. Mixed precision DNNs: All you need is a good
parametrization. In International Conference on Learning Representations, 2019.

Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron. Efficient low rank tensor ring completion. In
IEEE International Conference on Computer Vision, pp. 5697–5705, 2017.

Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide compression:
Tensor ring nets. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2018a.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy.
ESRGAN: Enhanced super-resolution generative adversarial networks. In European Conference on
European Conference Vision (ECCV), pp. 0–0, 2018b.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in Neural Information Processing Systems, 29, 2016.

Yingzhen Yang, Jiahui Yu, Nebojsa Jojic, Jun Huan, and Thomas S. Huang. Fsnet: Compression
of deep convolutional neural networks by filter summary. In International Conference on Learning
Representations, 2020.

Miao Yin, Yang Sui, Siyu Liao, and Bo Yuan. Towards efficient tensor decomposition-based DNN
model compression with optimization framework. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10674–10683, June 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
representations. In Jean-Daniel Boissonnat, Patrick Chenin, Albert Cohen, Christian Gout, Tom
Lyche, Marie-Laurence Mazure, and Larry Schumaker (eds.), Curves and Surfaces, pp. 711–730,
2012.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. LQ-nets: Learned quantization for
highly accurate and compact deep neural networks. In European Conference on Computer Vision
(ECCV), pp. 365–382, 2018a.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi Wang.
A systematic DNN weight pruning framework using alternating direction method of multipliers. In
European Conference on Computer Vision (ECCV), pp. 184–199, 2018b.

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolutional
networks for classification and detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(10):1943–1955, 2016.

13

Under review as a conference paper at ICLR 2023

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. ShuffleNet: An extremely efficient
convolutional neural network for mobile devices. In IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6848–6856, 2018c.

Yu-Bang Zheng, Ting-Zhu Huang, Xi-Le Zhao, Qibin Zhao, and Tai-Xiang Jiang. Fully-connected
tensor network decomposition and its application to higher-order tensor completion. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 11071–11078, 2021.

Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more: Towards compact CNNs. In European
Conference on Computer Vision, pp. 662–677, 2016.

Shuchang Zhou, Jia-Nan Wu, Yuxin Wu, and Xinyu Zhou. Exploiting local structures with the
kronecker layer in convolutional networks. arXiv preprint arXiv:1512.09194, 2015.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv
preprint arXiv:1612.01064, 2016.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang,
and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. Advances in Neural
Information Processing Systems, 31, 2018.

APPENDIX

A SEQUENCE OF KRONECKER PRODUCTS

The Kronecker product between a sequence of factor tensors is given by(
A(1) ⊗ · · · ⊗A(S)

)
i1···iN

≜ A(1)

j
(1)
1 ···j(1)N

· · ·A(S)

j
(S)
1 ···j(S)

N

, (15)

where

j(k)n =

in −
∑k−2

t=1 j
(t)
n
∏S

l=t+1 a
(l)
n mod a(S)

n k = S,⌊
in−

∑k−1
t=1 j(t)n

∏S
l=t+1 a(l)

n∏S
l=k+1 a

(l)
n

⌋
otherwise,

(16)

and A(k) ∈ IRa
(k)
1 ×···×a

(k)
N .

B ALTERNATIVE EXPANSION DIRECTIONS OF SEKRON

The proposed SeKron structure represents a given tensor W ∈ IRw1×···×wn using a sequence of
Kronecker products as follows:

W =

R1∑
r1=1

A(1)
r1 ⊗

R2∑
r2=1

A(2)
r1r2 ⊗ · · · ⊗

RS−1∑
rS−1=1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1 . (4 revisited)

While this decomposition structure is obtained by recursively finding the Kronecker decomposition of
the right-most tensor, many alternative sequential Kronecker structures can be obtained as illustrated
in Figure 4. However, such alternative structures do not fall within our SeKron framework as they
cannot make use of our convolution algorithm (Algorithm 2)

C THEOREM PROOFS

Theorem 1 (Tensor Decomposition using a Sequence of Kronecker Products). Any tensor W ∈
IRw1×···×wN can be represented by a sequence of Kronecker products between S ∈ IN factors:

W =

R1∑
r1=1

A(1)
r1 ⊗

R2∑
r2=1

A(2)
r1r2 ⊗ · · · ⊗

RS−1∑
rS−1=1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1 , (4)

where Ri ∈ IN and A(k) ∈ IRR1×···×Rk×a
(k)
1 ×···×a

(k)
N .

14

Under review as a conference paper at ICLR 2023

Figure 4: Illustration of alternative expansion directions using sequences of Kronecker products.
SeKron structures are those which are leftmost on each level of the tree. Each node is obtained
through the decomposition of a single tensor present in its parent node.

Proof. First, we define intermediate tensors

B(k)
r1···rk ≜

Rk+1∑
rk+1

A(k+1)
r1···rk+1 ⊗

Rk+2∑
rk+2

A(k+2)
r1···rk+2 ⊗· · ·⊗

RS−1∑
rS−1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1 (5 revisited)

Then the reconstruction error can be written as∥∥∥∥∥W (k)
r1···rk−1 −

R̂k∑
rk=1

A(k)
r1···rk ⊗B(k)

r1···rk

∥∥∥∥∥
2

F

(17)

where W (1) is the initial tensor being decomposed. As described in Section 3.2, using reshaping
operations

W
(k)
r1···rk−1 = MAT(UNFOLD(W (k)

r1···rk−1 ,dB(k)
r1···rk

)), (8 revisited)

a
(k)
r1···rk = VEC(UNFOLD(A(k)

r1···rk ,dI
A(k)

r1···rk

)), b
(k)
r1···rk = VEC(B(k)

r1···rk), (9 revisited)

that preserve the sum of squares allows us to equivalently write the reconstruction error as

∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rkb

(k)⊤
r1···rk

∥∥∥∥∥
2

F

. (18)

Now consider the singular value decomposition of matrix W
(k)
r1···rk−1 and let u(k)

r1···rk ,v
(k)
r1···rk denote

its left and right singular vectors, respectively (with the right singular vector scaled according to its
corresponding singlar value). Set a(k)r1···rk = u

(k)
rk and define and define error terms

δ
(k)
r1···rk = v

(k)
r1···rk − b

(k)
r1···rk , ϵ

(k)
r1···rk = ∥δ(k)r1···rk∥. (19)

15

Under review as a conference paper at ICLR 2023

Expanding out equation 18 reveals its recursive form∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rkb

(k)⊤
r1···rk

∥∥∥∥∥
2

F

=

∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rk(v

(k)
rk
− δ

(k)
r1···rk)

⊤

∥∥∥∥∥
2

F

(20)

=

∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rkv

(k)⊤
r1···rk +

R̂k∑
rk=1

a
(k)
r1···rkδ

(k)⊤
r1···rk

∥∥∥∥∥
2

F

(21)

≤

∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rkv

(k)⊤
r1···rk

∥∥∥∥∥
2

F

+

R̂k∑
rk=1

∥∥∥∥∥a(k)r1···rkδ
(k)⊤
r1···rk

∥∥∥∥∥
2

F

(22)

≤

∥∥∥∥∥W(k)
r1···rk−1 −

R̂k∑
rk=1

a
(k)
r1···rkv

(k)⊤
r1···rk

∥∥∥∥∥
2

F

+

R̂k∑
rk=1

d(k)ϵ
(k)
r1···rk (23)

=

(
Rk∑

rk=R̂k+1

σ2
rk
(W

(k)
r1···rk−1)

)
+

(
R̂k∑

rk=1

d(k)ϵ
(k)
r1···rk

)
(24)

=

Rk∑
rk=R̂k+1

σ2
rk
(W

(k)
r1···rk−1) +

R̂k∑
rk=1

d(k)

∥∥∥∥∥v(k)
r1···rk − b

(k)
r1···rk

∥∥∥∥∥
2

F

(25)

where d(k) ∈ N is the number of dimensions of vector a
(k)
r1···rk and Rk is the rank of matrix

W
(k)
r1···rk−1 , σrk(W

(k)
r1···rk−1) denotes the rth

k singular value of tensor W (k)
r1···rk−1 . By reshaping

vectors v(k)
r1···rk ,b

(k)
r1···rk to matrices according to

V
(k)
r1···rk = MAT

(
UNFOLD

(
VEC−1

(
v
(k)
r1···rk ,

S∏
s=k+1

d(s)

)
,

S∏
s=k+2

d(s)

))
, (26)

B
(k)
r1···rk = MAT

(
UNFOLD

(
VEC−1

(
b
(k)
r1···rk ,

S∏
s=k+1

d(s)

)
,

S∏
s=k+2

d(s)

))
, (27)

where d(s) = (a
(s)
1 , . . . , a

(s)
N) describes the dimensions of the sth factor, we can re-write equation 25

as
Rk∑

rk=R̂k+1

σ2
rk
(W

(k)
r1···rk−1) +

R̂k∑
rk=1

d(k)

∥∥∥∥∥v(k)
r1···rk − b

(k)
r1···rk

∥∥∥∥∥
2

F

(28)

=

Rk∑
rk=R̂k+1

σ2
rk
(W

(k)
r1···rk−1) +

R̂k∑
rk=1

d(k)

∥∥∥∥∥V(k)
r1···rk −B

(k)
r1···rk

∥∥∥∥∥
2

F

(29)

=

Rk∑
rk=R̂k+1

σ2
rk
(W

(k)
r1···rk−1) +

R̂k∑
rk=1

d(k)

∥∥∥∥∥V(k)
r1···rk −

R̂k+1∑
rk+1=1

a
(k+1)
r1···rk+1b

(k+1)⊤
r1···rk+1

∥∥∥∥∥
2

F

. (30)

The last line reveals the recursive nature of the formula (compare with equation 20). Unrolling
the recursive formula for k = 1, . . . , S − 1, by setting W

(k+1)
r1···rk ← V

(k)
r1···rk , leads to the following

formula for the reconstruction error:

εSeKron(W, r,D) =

R1∑
r1=R̂1+1

σ2
r1(W

(1)) + d(1)
R̂1∑

r1=1

R2∑
r2=R̂2+1

σ2
r2(W

(2)
r1) + · · ·

+ d(1)d(2) · · · d(S−2)

R̂1,··· ,R̂S−2∑
r1,r2,...,rS−2=1

RS−1∑
rS−1=R̂S−1+1

σ2
rS−1

(W
(S−1)
r1···rS−2) (31)

16

Under review as a conference paper at ICLR 2023

where r = (R̂1, . . . , R̂S−1) contains the rank values, Ds = d(s) contains the Kronecker factor shapes
and is referred to as the Dr-SeKron approximation error (note that the dependency of intermediate
matrices W(k)

r1···rk−1 on Kronecker factor shapes D is implied). Selecting R̂i = Ri ∀i in equation 31
results in zero reconstruction error.

Theorem 2. The factorization structure imposed by CP, Tucker, TT and TR when decomposing a
given tensor W ∈ IRw1×···×wN can be achieved using SeKron.

Proof. The SeKron decomposition of tensor W is given by

W i1···iN =

R1,··· ,RS∑
r1,...,rS=1

A(1)

r1j
(1)
1 ···j(1)N

· · ·A(S)

r1···rS−1j
(S)
1 ···j(S)

N

(32)

where A(k) ∈ IRR1×···×Rk×a
(k)
1 ×···a(k)

N and

j(k)n =

in −
∑k−2

t=1 j
(t)
n
∏S

l=t+1 a
(l)
n mod a(S)

n k = S,⌊
in−

∑k−1
t=1 j(t)n

∏S
l=t+1 a(l)

n∏S
l=k+1 a

(l)
n

⌋
otherwise,

(16 revisited)

The CP decomposition of tensor W in scalar form is

W i1···iN =

R(CP)∑
r=1

A(CP1)
ri1

· · ·A(CPN)
riN

(33)

where A(CPk) ∈ IRR(CP)×wk . Configuring the SeKron decomposition in equation 32 such that
S = N ; R1 = R(CP); R2, . . . , RN = 1 and a

(n)
n = wn for n = 1, . . . , N leads to the equivalent

form

W i1···iN =

R(CP)∑
r1=1

A(1)
r1i11···1 · · ·A

(N)
r,1···1iN . (34)

The Tucker decomposition of tensor W is given by

W i1···iN =

R
(T)
1 ,...R

(T)
N∑

r1=1,...,rN

Gr1···rNA(T1)
i1r1
· · ·A(TN)

iNrN
(35)

where G ∈ IRR
(T)
1 ×···×R

(T)
N and A(Tk) ∈ IRwk×R

(T)
k . The SeKron decomposition of tensor W , with

S = N + 1, Rn = R
(T)
n and a

(n)
n = wn for n = 1, . . . , N yields

W i1···iN =

R
(T)
1 ,··· ,R(T)

N∑
r1,...,rN=1

A(1)
r1i11···1 · · ·A

(N)
r1···rN1···1iNA(N+1)

r1···rN1···1, (36)

which is equivalent to equation 35 in the special case where there are nullity constraints on some
elements in the Kronecker factors, such that for k = 2, . . . , N

A(k)
r1···rk1···1ik1···1 = 0 when rj ∈ {x ∈ N | x ≤ R

(T)
j , x ̸= R

(T∗)
j } j = 1, . . . , k − 1 (37)

for any choice of R(T∗)
j ∈ {x ∈ N | x ≤ R

(T)
j }. The Tensor Ring (TR) decomposition of W is given

by

W i1···iN =

R
(TR)
1 ,...R

(TR)
N∑

r1=1,...,rN

A(TR1)
i1r1r2

· · ·A(TRN)
iNrNrN+1

(38)

where A(TRk) ∈ IRwk×R
(TR)
k ×R

(TR)
k+1 , and R

(TR)
1 = R

(TR)
N+1. As the Tensor Train decomposition can be

viewed as a special case of the Tensor Ring decomposition (with R
(TR)
1 = R

(TR)
N+1 = 1), it suffices to

17

Under review as a conference paper at ICLR 2023

show that SeKron generalizes Tensor Ring. The SeKron decomposition of tensor W , with S = N+1;
Rk = R

(TR)
k for k = 1, . . . , N − 1 and a

(n+1)
n = wn for n = 1, . . . , N leads to

W i1···iN =

R
(TR)
1 ,...,R

(TR)
N∑

r1,...,rN=1

A(1)
r11···1A

(2)
r1r2i11···1 · · ·A

(N+1)
r1···rN+11···1iN , (39)

which is equivalent to equation 38 in the special case where some elements in the Kronecker factors
are constrained, such that all elements in tensor A(1) are constrained to one and

A(k)
r1···rk1···1ik1···1 = 0 ∀rj ∈ {x ∈ N | x ≤ R

(TR)
j , x ̸= R

(TR∗)
j } (40)

for

j =

{
1, . . . , k − 2 k = 2, . . . , N

2, . . . , k − 1 k = N + 1
(41)

for any choice of R(TR∗)
j ∈ {x ∈ N | x ≤ R

(TR)
j }.

Theorem 3 (Linear Mappings with Sequences of Kronecker Products). Any linear mapping
using a given tensor W can be written directly in terms of its Kronecker factors A(k) ∈
IRR1×···RN×a

(k)
1 ×···×a

(k)
N . That is:

W i1···iNX i1+z1,··· ,iN+zN =

R1,...Rk∑
r1,...rN

A(1)

r1j
(1)
1 ···j(1)N

· · ·A(S)

r1···rS−1j
(S)
1 ···j(S)

N

X f(j1)+z1,··· ,f(jN)+zN

where j(k)n ∈ IN is a function of input indices (see Appendix A) and f(jn) =
∑S

k=1 j
(k)
n
∏S

l=k+1 a
(l)
n

Proof. First we bring out the summations in the SeKron representaion of W

W =

R1∑
r1

A(1)
r1 ⊗

R2∑
r2

A(2)
r1r2 ⊗ · · · ⊗

RS−1∑
rS−1

A(S−1)
r1···rS−1 ⊗A(S)

r1···rS−1 , (4 revisted)

such that

W =

R1,··· ,RS−1∑
r1,...,rS=1

A(1)
r1 ⊗ · · · ⊗A(S)

r1r2···rS−1 . (42)

Then, using the scalar form definition of sequences of kronecker products in equation 16

j(k)n =

in −
∑k−2

t=1 j
(t)
n
∏S

l=t+1 a
(l)
n mod a(S)

n k = S,⌊
in−

∑k−1
t=1 j(t)n

∏S
l=t+1 a(l)

n∏S
l=k+1 a

(l)
n

⌋
otherwise,

(16 revisited)

allows us to re-write equation 42 in scalar form as

W i1···iN =

R1∑
r1···rS=1

A(1)

r1j
(1)
1 ···j(1)N

· · ·A(S)

r1···rS−1j
(S)
1 ···j(S)

N

(43)

As the j
(k)
n terms decompose in into an integer weighted sum, we can recover in using

in = f(jn) ≜
S∑

k=1

j(k)n

S∏
l=k+1

a(l)n , (44)

where jn = (j
(1)
n , . . . , j

(S)
n). Thus, we can write

X i1+z1,···iN+zN = X f(j1)+z1,···f(jN)+zN . (45)

Finally, combining equations equation 43 and equation 45 leads to

W i1···iNX i1+z1,··· ,iN+zN =

R1,...Rk∑
r1,...rN

A(1)

r1j
(1)
1 ···j(1)N

· · ·A(S)

r1···rS−1j
(S)
1 ···j(S)

N

X f(j1)+z1,··· ,f(jN)+zN

18

Under review as a conference paper at ICLR 2023

Theorem 4. (Universal approximation via shallow SeKron networks) Any shallow SeKron factorized
neural network f̂ (s) with an L-Lipschitz activation function a, is dense in the class of continuous
functions C(X) for any compact subset X of IRd

Proof. Let f̂ denote a shallow neural network, and f ∈ C(X). Then,∥∥∥f − f̂ (s)
∥∥∥2
2
≜
∫
X

(
f(x)− f̂ (s)(x)

)2

dµ (46)

=

∫
X

(
f(x)− f̂(x)

)2

dµ (47)

+

∫
X

(
f̂(x)− f̂ (s)(x)

)2

dµ (48)

+ 2

∫
X

(
f(x)− f̂(x)

)(
f̂(x)− f̂ (s)(x)

)
dµ (49)

According to Hornik (1991), equation 47 is dense in C(X); therefore, it suffices to show that
equation 48 is bounded as well.∫

X

(
f̂(x)− f̂ (s)(x)

)2

dµ =

∫
X

(
w⊤a(Wx)−w⊤a(W(s)x)

)2

dµ (50)

≤ L
∥∥w∥∥2

2

∥∥X∥∥2
2
εSeKron(W, r,D) (51)

where ε denotes the Dr-SeKron approximation error as in equation 31, with matrix D and vector r
describing the shapes of the Kronecker factors the ranks used in the SeKron decomposition of W,
respectively.

D IMPLEMENTATION DETAILS

In all of our experiments we use 4 NVIDIA Tesla V100 SXM2 32 GB GPUs during training and
evaluate run time on a single core of Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz.

D.1 IMAGENET EXPERIMENTS

We train all models using stochastic gradient descent for 100 epochs using a batch size of 256. The
learning rate is initially set to 0.1 and reduced by a factor of 10× at epochs number 30, 60 and 90.
We also use a 0.0001 weight decay.

D.2 CIFAR-10 EXPERIMENTS

We train all models using using stochastic gradient descent for 200 epochs using a batch size of 128.
The learning rate is initially set to 0.1 and is reduced by a factor of 5× at epochs number 60, 120 and
160. We use nestrov momentum set to 0.9 and weight decay set to 0.0005.

D.3 DIV2K

We train all models using using the ADAM optimizer for 300 epochs using a batch size of 16. The
optimizer’s learning rate is set to 0.0001 and β1, β2 are set to 0.9, 0.999 respectively.

19

	Introduction
	Related Work on DNN Model Compression
	Method
	Preliminaries
	SeKron Tensor Decomposition
	Convolution with SeKron Structures
	Computational Complexity

	Experimental Results
	Image Classification Experiments
	Super-Resolution Experiments
	Configuring SeKron Considering Latency and Compression Rate

	Conclusions
	Sequence Of Kronecker Products
	Alternative expansion directions of SeKron
	Theorem Proofs
	Implementation Details
	ImageNet Experiments
	CIFAR-10 Experiments
	DIV2K

