
Published in Transactions on Machine Learning Research (02/2024)

MC Layer Normalization for calibrated uncertainty in Deep
Learning

Thomas Frick fri@zuirch.ibm.com
IBM Research, ETH Zurich

Diego Antognini diego.antognini@ibm.com
IBM Research

Ioana Giurgiu igi@zurich.ibm.com
IBM Research

Benjamin Grewe bgrewe@ethz.ch
ETH Zurich

Cristiano Malossi acm@zurich.ibm.com
IBM Research

Rong J.B. Zhu rongzhu@fudan.edu.cn
Fudan University

Mattia Rigotti mrg@zurich.ibm.com
IBM Research

Reviewed on OpenReview: https: // openreview. net/ forum? id= bG3ICt3E0C

Abstract

Efficiently estimating the uncertainty of neural network predictions has become an increas-
ingly important challenge as machine learning models are adopted for high-stakes industrial
applications where shifts in data distribution may occur. Thus, calibrated prediction uncer-
tainty is crucial to determine when to trust a model’s output and when to discard them as
implausible. We propose a novel deep learning module – MC Layer Normalization – that
acts as a drop-in replacement for Layer Normalization blocks and endows a neural network
with uncertainty estimation capabilities. Our method is motivated from an approximate
Bayesian perspective, but it is simple to deploy with no significant computational over-
head thanks to an efficient one-shot approximation of Monte Carlo integration at prediction
time. To evaluate the effectiveness of our module, we conduct experiments in two distinct
settings. First, we investigate its potential to replace existing methods such as MC-Dropout
and Prediction-Time Batch Normalization. Second, we explore its suitability for use cases
where such conventional modules are either unsuitable or sub-optimal for certain tasks (as
is the case with modules based on Batch Normalization, which is incompatible for instance
with transformers). We empirically demonstrate the competitiveness of our module in terms
of prediction accuracy and uncertainty calibration on established out-of-distribution image
classification benchmarks, as well as its flexibility by applying it on tasks and architectures
where previous methods are unsuitable. Code implementing our MC-LayerNorm module
can be found here https://github.com/IBM/mc-layernorm.

1

https://openreview.net/forum?id=bG3ICt3E0C
https://github.com/IBM/mc-layernorm

Published in Transactions on Machine Learning Research (02/2024)

1 Introduction

Endowing neural networks with a mechanism for efficient estimation of prediction uncertainty is a challenging
problem that is acquiring increasing attention as these models are deployed in critical decision making
settings. In high-stakes real-world applications such as autonomous driving (Bojarski et al., 2016), robotics
(Sünderhauf et al., 2018), or medical diagnosis (Djuric et al., 2017; Esteva et al., 2017) models are often
operating in an out-of-distribution situation compared to the training data. In such scenarios, calibrated
prediction uncertainty is crucial to meaningfully compare competing predictions and decide when to trust
them or when to reject them as implausible.

Bayesian methods such as Bayesian Deep Neural Networks (DNNs) offer a principled formalism to compute
prediction uncertainty (MacKay, 1992). Their disadvantage is that obtaining uncertainty measures over
complex models such as large neural networks quickly becomes intractable because of the computational
challenge of estimating and updating posteriors over their parameters. To overcome these issues, researchers
have recently proposed approximate Bayesian methods that make use of variational approximations by
conveniently leveraging sampling mechanisms that are inherently present in modern DNNs such as Dropout
and Batch Normalization. MC-Dropout (Gal & Ghahramani, 2016), for instance cleverly exploits the fact
that Dropout noise can be interpreted as a sampling mechanism over a variational distribution approximating
the posterior of the DNNs parameters given the training data. Following this work, the stochastic nature of
the mini-batch sampling process exposed by Batch Normalization (BatchNorm) layers has also been used to
perform approximate Bayesian inference for uncertainty estimation (Teye et al., 2018; Mukhoti et al., 2020),
and domain-adaptive prediction-time calibration of uncertainty (Nado et al., 2021).

In this paper, we propose a new deep learning module that fits neatly into the line of research on sampling-
based deep learning layers for estimating prediction uncertainty in neural networks. In particular, our module
can be used as a drop-in replacement for Layer Normalization to seamlessly add uncertainty calibration
capabilities to a neural network. Our module, named MC Layer Normalization (MC-LayerNorm), consists
of a stochastic variant of Layer Normalization (LayerNorm) that subsamples features when computing the
normalization statistics used to normalize the input features. While it offers complementary functionality
to related modules such as MC-Dropout and Prediction-Time Batch Norm, it can also be used in training
settings and with architectures where the latter two modules are not technically applicable or result in sub-
optimal performance. In addition, MC-LayerNorm inherits the advantages of LayerNorm over BatchNorm,
including the fact that its training behavior does not depend on the mini-batch size and that it is invariant
to single input data re-scaling. This last property is especially appealing as it allows MC-LayerNorm to
perform zero-shot domain adaptation at prediction time.

We illustrate how MC-LayerNorm can be theoretically motivated from an approximate Bayesian perspective
while being easy to deploy in practice without imposing significant computational overhead. We then demon-
strate the effectiveness of our module through empirical evaluation in two distinct settings: First, we show its
competitive performance in terms of prediction accuracy and uncertainty calibration compared to state-of-
the-art alternatives. To that end, we conduct experiments on established benchmarks for out-of-distribution
(OOD) image classification with convolutional networks. Secondly, we highlight the applicability of MC-
LayerNorm in scenarios where competing methods cannot be used due to incompatibility or suboptimality
with the architectures at hand. To this end, we present experiments using the Vision Transformers on the
same OOD image classification benchmarks as in the first setting. As the Vision Transformer architecture
prohibits the use of Batch Norm, we show the superiority of our method compared to existing uncertainty cal-
ibration methods that can be applied. In addition, we investigate the use case of click-through rate prediction
on the Criteo dataset, where the current state-of-the-art model does not include Dropout or BatchNorm lay-
ers but does include LayerNorm blocks. As a result, the use of MC-Dropout or Prediction-Time BatchNorm
is impossible, while MC-LayerNorm is a natural drop-in replacement.

2

Published in Transactions on Machine Learning Research (02/2024)

2 Related Work

Our proposed normalization layer is very much inspired by Monte Carlo Batch Normalization and the related
work in approximate Bayesian inference in deep learning such as MC-Dropout, as well as the prediction-time
adaptive normalization method Prediction-Time Batch Normalization.

Monte Carlo Dropout (MC-Dropout, Gal & Ghahramani (2016); Gal et al. (2017)) approximates Bayesian
inference in neural networks for uncertainty estimates using dropout. Usually, Dropout sets a portion of
the input features to zero at training time while not dropping any input features at test time. MC-Dropout
introduces stochasticity at inference time by using the training behavior at test time. Similarly, Monte
Carlo Batch Normalization (MCBN, Teye et al. (2018), Mukhoti et al. (2020)) introduces an alternative
based on the properties of the batch normalization statistics leveraging training-time batch statistics at
test time. Instead of utilizing the running batch statistics at inference time, they propose to approximate
Bayesian inference by running multiple forward passes with distinct sets of training-time normalization
statistics. Prediction-Time Batch Normalization is proposed by Nado et al. (2021) as countermeasure to
the covariate shift that comes with out-of-distribution data samples. The method works by discarding the
running batch statistics of batch normalization layers and instead uses the batch statistics of each separate
batch at test time. Consequently, this effectively counteracts the covariate shift and significantly improves
model calibration.

Masksembles (Durasov et al., 2021) relies on a fixed number of binary masks instead of randomly dropping
parts of the network as in MC-Dropout. The masks are parameterized in a way that allows to change corre-
lations between individual sub-models by controlling the overlap between the masks. This leads to a simple
and easy to implement method with performance on par with Ensembles at a fraction of the cost. Tempera-
ture Scaling (Guo et al., 2017; Platt et al., 1999) is a post-hoc method which improves calibration after the
initial training of the model by tuning a softmax temperature parameter on the validation/calibration set.

Recently, Rudner et al. (2023) proposed a different approach to incorporate a Bayesian viewpoint into neural
network training by deriving a training objective which includes a regularization term that corresponds to
performing function-space Empirical Bayes estimation. Contrary to the previous methods this approach
requires to change the training objective, and therefore departs from our goal of designing a lightweight
method that can be implemented as a simple drop-in replacement that otherwise leaves the training and
prediction-time procedure unchanged.

A different line of related works, which also aim at efficiently estimating uncertainty of neural network pre-
dictions, but completely depart from a Bayesian viewpoint, are frequentist methods which include conformal
prediction methods (Vovk et al., 2005), which have recently been successfully applied to deep learning set-
tings (Bates et al., 2021; Zhu & Rigotti, 2021; Angelopoulos et al., 2022). They have also been developed
in the direction of accommodating covariate shift, making them interesting for OOD prediction (Tibshirani
et al., 2019).

3 MC Layer Normalization

The main contribution of this paper is to propose a new normalization module that, similar to Monte
Carlo Batch Normalization (MCBN, Teye et al. (2018), Mukhoti et al. (2020)), also allows for uncertainty
estimation, in particular through Monte Carlo sampling over a source of randomness. Crucially, instead of
sampling randomness originating from the stochasticity of mini-batches such as in MCBN, we propose to
use a variant of Layer Normalization where we inject stochasticity by subsampling features when computing
the normalization statistics used to normalize the feature vector. Here we detail this procedure by first
summarizing the original Layer Normalization module using a similar notation as the original paper (Ba
et al., 2016).

We consider the l-th hidden layer in a feed-forward neural network, and let al be the vector representation of
the summed inputs to the neurons (preactivations) in that layer. These preactivations are computed through

3

Published in Transactions on Machine Learning Research (02/2024)

matrix-vector multiplication of the weight matrix W l = (wl
ij) and the inputs to the layer hl as:

al
i =

∑
j

wl
ijhl

j , hl+1
i = f(al

i + bl
i), (1)

where f(·) is an element-wise activation function such as ReLU and bl
i is a bias parameter.

Layer Normalization (Ba et al., 2016) was propose as a method to mitigate the covariate shift of correlated
inputs as an alternative to Batch Normalization (Ioffe & Szegedy, 2015), and it consists in normalizing
the hidden units in a given layer as āl

i =
(
al

i − µl
) /

σl using the mean µl and the variance σl of their
preactivations computed as follows:

µl = 1
Nl

Nl∑
i=1

al
i, (σl)2 = 1

Nl

Nl∑
i=1

(
al

i − µl
)2

, (2)

where Nl is the number of units in layer l. One of the practical advantages of Layer Normalization over
Batch Normalization is that it does not rely on any assumption about the size of the mini-batch and can
therefore be used with batch size of 1.

Our MC Layer Normalization (MC-LayerNorm) layer consists in modifying eq. (2) by running the averages
only over a random subset of units. In particular, we define a set Sl ⊂ [Nl] = {1, . . . , Nl} obtained by
sampling a fixed fraction f of preactivations (or, equivalently, by dropping them with a drop rate 1 − f),
and compute the normalization statistics over the sampled units as follows:

µ̃l = 1
|Sl|

∑
i∈Sl

al
i, (σ̃l)2 = 1

|Sl|
∑
i∈Sl

(
al

i − µ̃l
)2

, (3)

where |Sl| denotes the size of the set Sl.

As a result, the normalized preactivations computed by MC-LayerNorm and outputs of layer l are:

ãl
i =

(
al

i − µ̃l
) /

σ̃l, h̃l+1
i = f(ãl

i + bl
i). (4)

Notice that µ̃l and σ̃l are random variables whose realization is determined by the subset of randomly sampled
indices Sl, and so are ãl

i and the outputs h̃l+1
i . This observation motivates the following probabilistic view

of architectures endowed with MC-LayerNorm:

Probabilistic view of MC-LayerNorm.

Assuming without loss of generality a supervised learning setting on a training dataset D = {(xi, yi)}N
i=1, we

can formulate the goal of supervised learning as training parameters θ (which include the weights W l and
biases bl of each layer l) to maximizing the likelihood of the dataset D under the predictive probability

pθ(y|x) = softmax(fθ(x)), (5)

where fθ(·) is parametrized as a neural network (see e.g. Gal & Ghahramani (2015)).

A network fθ(x) endowed with MC-LayerNorm layers, can itself be modeled as a distribution of networks
fθ(x|{µ̃l, σ̃l}l), where {µ̃l, σ̃l}l is the set of realizations of the random statistics in eq. (3) in all layers l. As
we show below, an equivalent way of seeing this is to think of a sampled network fθ(x|{µ̃l, σ̃l}l) for a given
set {µ̃l, σ̃l}l as a corresponding network fθ̂(x), where now θ̂ is sampled from a distribution θ̂ ∼ qθ(θ̂) defined
appropriately. In the next section we show that the distribution qθ(θ̂) converges in a specific sense towards
a Gaussian distribution around the parameters θ.

Approximate normality of MC-LayerNorm networks.

Our main theoretical result follows directly from:

4

Published in Transactions on Machine Learning Research (02/2024)

Theorem 3.1. Given a network fθ(x) with MC-LayerNorm layers, we denote by f̄θ(x) a corresponding
network with all MC-LayerNorm (eq. (3)) replaced by regular LayerNorm (eq. (2)). Replacing LayerNorm
in f̄θ(x) with MC-LayerNorm induces a distribution of models fθ̂(x) with θ̂ ∼ qθ(θ̂). In addition, qθ(θ̂) is
asymptotically normal around the parameters θ of f̄θ(x).

Proof. The proof of theorem 3.1 is sketched in appendix A.3.

Next, we show how to use this result to approximate Bayesian inference with deep neural networks.

Approximate Bayesian inference with MC-LayerNorm.

The theorem 3.1 allows us to leverage the methods developed by Gal & Ghahramani (2016), who use stochas-
tic regularization techniques to perform practical approximate inference in the space of neural networks fθ(·)
by virtue of the fact that they introduce a random variable that allows for sampling over networks. Specifi-
cally, the idea starts from the goal of computing the predictive distribution p(y|x, D) over outputs y given a
new input x and the training dataset D using Bayesian Model Averaging (Hoeting et al., 1999; Wilson & Iz-
mailov, 2020), but by replacing the intractable posterior p(θ|D) over parameters with a tractable variational
approximation q∗(θ), then marginalizing over θ using Monte Carlo integration:

p(y|x, D) =
∫

pθ(y|x)p(θ|D)dθ ≈
∫

pθ(y|x)q∗(θ)dθ ≈ 1
N

N∑
n=1

pθ̂n
(y|x) with θ̂n ∼ q∗(θ̂). (6)

In practice, in a mini-batch Stochastic Grading Descent (SGD) training setting, for each training point and
each MC-LayerNorm layer we sample a subset Sl to while computing the SGD step. This will implement
the process of optimizing qθ(θ̂) towards q∗(θ̂).

At prediction time, what eq. (6) says is to implement Monte Carlo integration by running the network
forward pass N times given an input data x, each time with different realizations of the subsets Sl. The
obtained outputs are then averaged to obtain the final prediction for input x.

There is however an additional approximation of the inference process for a network with MC-LayerNorm
that allows us to compute predictions even more efficiently by exploiting the second part of theorem 3.1.
Because, according to the theorem the distribution θ̂ ∼ qθ(θ̂) is approximately normal around the parameters
θ of a corresponding network with Layer Normalization, we can approximate the Monte Carlo integration in
eq. (6) with:

1
N

N∑
n=1

pθ̂n
(y|x) with θ̂n ∼ qθ(θ̂) = 1

N

N∑
n=1

softmax(fθ̂n
(x)) ≈ softmax(f̄θ(x)), (7)

where we used eq. (5) and Laplace’s approximation based on the asymptotic normality of qθ(θ̂) around
θ for the model f̄θ(x) with regular LayerNorm instead of MC-LayerNorm. What this suggests is that at
prediction time we can simply run the model by replacing MC-LayerNorm with regular LayerNorm as a
cheap further one-shot approximation of the MC integration in eq. (6). We will refer to this modality of use
of MC-LayerNorm at prediction time as One-shot approximation.

We summarize the previous results in pseudocode snippets detailing the use of MC-LayerNorm in practice for
training neural networks with SGD with backpropagation (algorithm 1), and at prediction time (algorithm 2).
Notice that as for regular LayerNorm, in the case of convolutional inputs MC-LayerNorm normalizes its
inputs over both channel and spatial dimensions.

5

Published in Transactions on Machine Learning Research (02/2024)

Algorithm 1 MC-LayerNorm module
(training mode)

Input: input vector
a = (a1, . . . , ai, . . . , aN)

Input: (parameter) fraction of
sampled units f

Sample: Select S ⊂ [1, N] with
⌊f · N⌋ indices at random

Compute:
µ̃ = 1

|S|

∑
i∈S ai

Compute:
σ̃2 = 1

|S|

∑
i∈S (ai − µ̃)2

Output: ã = (ã1, . . . , ãi, . . . , ãN)
with ãi = ai−µ̃

σ̃

Algorithm 2 MC-LayerNorm module (eval mode)
Input: input vector a = (a1, . . . , ai, . . . , aN)
Input: (optional) number of MC samples Nc

if mc_integration then
// MC integration:
for n = 1 to Nc do

ãn = MC_LayerNorm(a) {// Run Algorithm 1}
end for
Output: ā = 1

Nc

∑Nc

n=1 ãn

else
// One-shot approximation:
Compute: µ = 1

N

∑N

i=1 ai

Compute: σ2 = 1
N

∑N

i=1 (ai − µ)2

Output: ā = (ā1, . . . , āi, . . . , āN) with āi = ai−µ
σ

end if

4 Results

We empirically evaluate MC-LayerNorm on a suite of established classification benchmarks. In addition to
assessing the accuracy of the predictions, we verify the improved uncertainty calibration characteristics of
MC-LayerNorm. We focus in particular on the out-of-distribution (OOD) setting where training and test
distributions differ due to covariate shift (Shimodaira, 2000), i.e. when the marginal distributions of features
are different, ptrain(x) ̸= ptest(x), but conditional label distributions are preserved ptrain(y|x) = ptest(y|x).
The expectation is then that properly calibrated uncertainty will be reflected in predictions that tend to be
less confident on the OOD inputs that are not well represented in the training distribution.

We conduct experiments for the two distinct application settings mentioned above: Firstly, we investigate
MC-LayerNorm’s potential as a viable alternative to existing methods and its application to real-world
scenarios with the sparse occurrence of out-of-distribution samples. Secondly, we explore MC-LayerNorm as
an option for accurate uncertainty estimates in applications where competing methods cannot be used as
they are incompatible with the architectures (e.g., if no BatchNorm layers are present in the model, we can’t
apply MC-BatchNorm).

Following previous work (Ovadia et al., 2019; Nado et al., 2021), we quantify the calibration of the uncertainty
of predictions using two measures: expected calibration error (ECE) and Brier score.

ECE (lower is better) quantifies the difference between the confidence of a model and its accuracy computed
on bins of samples sorted by confidence (Naeini et al., 2015). Concretely, we group our N predictions
into bins Bi according to confidence, compute the average prediction acc(Bi) within bins, then compute
ECE =

∑
i

Bi

N |acc(Bi) − conf(Bi)|. As an artifact due to confidence binning, ECE can over-emphasize the
tails of the probabilities (Quinonero-Candela et al., 2006), which is why the literature typically also monitors
another calibration metric like the Brier score.

Brier score (lower is better) is the squared distance between the vector of predicted probabilities and
the one-hot encoded true labels (Brier, 1950). It is guaranteed to be a proper scoring rule, i.e. it decreases
monotonically to zero as the predicted probabilities approach the true targets distribution (Gneiting &
Raftery, 2007). Brier score plots will be presented in the Appendix.

Image Classification

We follow the benchmarking methodology in Nado et al. (2021): model calibration metrics (accuracy, ECE,
and Brier score) are evaluated on CIFAR-10-C, TinyImageNet-C, and ImageNet-C introduced in Hendrycks
& Dietterich (2019) (CCA4.0 license). Both datasets are corrupted versions of their original test sets (CIFAR-

6

Published in Transactions on Machine Learning Research (02/2024)

10 (Krizhevsky, 2009), TinyImageNet (Le & Yang, 2017), and ImageNet (Deng et al., 2009)) generated by
applying one of 15 corruptions (e.g., frost, motion blur, rain).

We assess model calibration for three different scenarios:

1. In-distribution (Test): The original test set of the corresponding dataset is used as a baseline for all
metrics.

2. Out-of-distribution (OOD): The metrics are evaluated on the corrupted C-variant test sets (severity
5). This favors Prediction-Time BatchNorm as the batches exclusively consist of out-of-distribution
samples. We use a batch size of 128 (following the insight from Nado et al. (2021) that shows that
Prediction-Time BatchNorm performance degrades only for batch sizes below 128).

3. Zero-shot prediction-time domain adaptation (Mix): This scenario simulates the situation where
a deployed model suddenly encounters OOD samples and still hasn’t gathered enough observations to
re-adapt (as Prediction-Time BatchNorm needs to do on multiple OOD samples). We call this “Mix” to
emphasize that the models are trained on in-distribution data but tested on OOD samples. Concretely,
we create batches of size N consisting of N − 1 in-distribution samples and a single out-of-distribution
sample (we use the same batch size as in the OOD setting N = 128). The calibration metrics are then
measured only on the out-of-distribution samples.

All experiments consist of fine-tuning a pretrained model with the respective uncertainty calibration method
applied. We train 3 models for each hyper-parameter configuration (see Appendix A.4). Then for each
normalization method we select the configuration with the best average accuracy on the validation set. No
data augmentations are applied during training other than a horizontal flip of the images.

Test OOD Mix

0.2

0.4

0.6

0.8

ac
cu

ra
cy

BatchNorm
LayerNorm
Masksemble
Prediction-BN
MC-BN
MC-Dropout
MC-LN MC Approx. (Ours)
MC-LN One-Shot (Ours)

Test OOD Mix
0.0

0.2

0.4

0.6

ec
e

(a) CIFAR-10-C

Test OOD Mix
0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

BatchNorm
LayerNorm
Masksemble
Prediction-BN
MC-BN
MC-Dropout
MC-LN MC Approx. (Ours)
MC-LN One-Shot (Ours)

Test OOD Mix

0.2

0.4

0.6

0.8

ec
e

(b) TinyImageNet-C

Figure 1: CIFAR-10-C and TinyImageNet-C with ConvNext: Calibration for in-distribution
(Test), out-of-distribution (OOD), and zero-shot prediction-time domain adaptation (Mix)
setting: We compare LayerNorm, BatchNorm, Prediction-Time BatchNorm, MC-Dropout (f=0.9, 10 MC
iterations), MC-BatchNorm (10 MC iterations), Masksembles, as well as our novel method, MC-LayerNorm
(MC and One-Shot approximation, f=0.7) on the expected calibration error (ECE) and accuracy. While
Prediction-Time BatchNorm is superior in the full out-of-distribution (OOD) setting, MC-LayerNorm out-
performs all other methods in the zero-shot prediction-time domain adaptation (Mix) use case. Error bars
are constructed from evaluation runs for the 15 corruptions applied to the original test set and over three
training runs.

7

Published in Transactions on Machine Learning Research (02/2024)

Test OOD Mix
0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

LayerNorm
MC-LN One-Shot (Ours)
T-Scaling
MC-LN + T-Scaling (Ours)

Test OOD Mix
0.0

0.1

0.2

0.3

0.4

ec
e

(a) CIFAR-10-C

Test OOD Mix
0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

LayerNorm
MC-LN One-Shot (Ours)
T-Scaling
MC-LN + T-Scaling (Ours)

Test OOD Mix
0.0

0.2

0.4

0.6

ec
e

(b) TinyImageNet-C

Figure 2: Temperature Scaling ConvNext for CIFAR-10-C and TinyImageNet-C: Calibration
for in-distribution (Test), out-of-distribution (OOD), and zero-shot prediction-time domain
adaptation (Mix) setting: We compare LayerNorm and our novel method, MC-LayerNorm (MC and
One-Shot approximation, f=0.7) with a combination of each respective method and Temperature Scaling
on the expected calibration error (ECE) and accuracy. The Temperature scaled versions outperform their
respective non-post-hoc calibrated methods. Error bars are constructed from evaluation runs for the 15
corruptions applied to the original test set and over three training runs.

Out-Of-Distribution Image Classification - ConvNext

We evaluate the first setting by empirically comparing our MC Layer Normalization (MC integration and
One-shot approximation mode) with Prediction-Time Batch Normalization introduced in Nado et al. (2021).
Additionally, we report results for MC-Dropout (Gal & Ghahramani, 2016; Gal et al., 2017), MC-BatchNorm
(Teye et al., 2018; Mukhoti et al., 2020), and Masksembles (Durasov et al., 2021). For both MC-Dropout
and Masksembles we use the optimal parameter configuration mentioned in Durasov et al. (2021). Finally,
we also investigate the combination of MC-LayerNorm with post-hoc Temperature Scaling (Guo et al., 2017;
Platt et al., 1999).

We focus our evaluation on the ConvNext architecture (Liu et al., 2022), as it is the only neural network
architecture for which both BatchNorm and LayerNorm normalization has been shown to reach similar image
classification performance. This equality of classification accuracy leads to a fair comparison of uncertainty
calibration methods independent of the used normalization layer. For CIFAR-10-C, we limit ourselves to
the pre-trained architecture size “pico” from the excellent timm library (Wightman et al., 2023) (Apache-2.0
license), while for TinyImageNet-C, we make use of the “tiny” variant.

Figure 1, tables 1 and 2 shows results for CIFAR-10-C and TinyImageNet-C. While MC-LayerNorm per-
forms slightly worse (CIFAR-10) or similarly (TinyImageNet) in terms of calibration (ECE) compared to
Prediction-Time BatchNorm in the OOD setting, it outperforms all other methods in the zero-shot prediction-
time domain adaptation (Mix) setting. Prediction-Time BatchNorm loses much of its real-world (Mix) per-
formance because it relies heavily on batches consisting entirely of out-of-distribution samples. In contrast,
LayerNorm methods do not rely on batch statistics as they calculate normalization statistics across channels
and spatial dimensions. As a result, our method’s calibration abilities are independent of batch size and
work for small but also for mixed in- and out-of-distribution batches.

8

Published in Transactions on Machine Learning Research (02/2024)

Test OOD

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy

Masksemble
LayerNorm
MC-Dropout
MC-LN MC Approx. (Ours)
MC-LN One-Shot (Ours)
T-Scaling
MC-LN + T-Scaling (Ours)

Test OOD
0.0

0.2

0.4

0.6

ec
e

(a) CIFAR-10-C

Test OOD
0.0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

Masksemble
LayerNorm
MC-Dropout
MC-LN MC Approx. (Ours)
MC-LN One-Shot (Ours)
T-Scaling
MC-LN + T-Scaling (Ours)

Test OOD
0.0
0.1
0.2
0.3
0.4
0.5
0.6

ec
e

(b) TinyImageNet-C

Figure 3: CIFAR-10-C and TinyImageNet-C with Vision Transformer: Calibration for in-
distribution (Test) and out-of-distribution (OOD): We compare LayerNorm, MC-Dropout (f=0.9,
10 MC iterations), MC-BatchNorm (10 MC iterations), Masksembles, Temperature Scaling as well as our
novel method - MC-LayerNorm (MC and One-Shot approximation, f=0.6) - on the expected calibration
error (ECE) and accuracy. MC-LayerNorm in combination with Temperature scaling outperforms all other
methods. Error bars are constructed from evaluation runs for the 15 corruptions applied to the original test
set and over three training runs.

Figure 5 and 6 illustrate calibration performance comparisons for varying fractions of sampled features
of the MC-LayerNorm. The results show that MC-LayerNorm is stable with respect to its only hyper-
parameter, the fraction of subsampled features. The model performance and calibration remain stable even
for configurations where the normalization is calculated from only 60% of the input features.

Next, we evaluate the necessity of enhancing approximate Bayesian methods with post-hoc calibration.
Figure 2 shows the calibration performance of LayerNorm and MC-LayerNorm as well as the combination
of these methods with post-hoc Temperature Scaling. We observe that the Temperature scaled versions
surpass their respective post-hoc calibrated counterparts. Temperature scaling alone shows a strong effect as
it equals (CIFAR-10) or outperforms (TinyImageNet) MC-LayerNorm for both the OOD and Mix setting.
However, the combined effect of Temperature Scaling and MC-LayerNorm is noticeably more robust and
results in a better overall calibration, indicating practically interesting synergistic effects between the two
methods. This pattern is also evident in experiments with Vision Transformers, as shown in Figure 3.

We see approximate Bayesian estimation methods (e.g., our MC-LayerNorm) and post-hoc Temperature
Scaling as complementary and synergistic. For one, post-hoc calibration is not always possible, as it requires
a held-out in-distribution calibration dataset, which might not always be available. In such a case, one must
necessarily rely on approaches like approximate Bayesian estimation methods. Second, post-hoc calibration
only works if the base model is already at least partially calibrated to the extent that the miscalibration
pattern is consistent across the range of logits. The better the base model is calibrated, the more effective
post-hoc calibration methods will be. Here, we believe that approximate Bayesian models can certainly be
crucial to enable further calibration through post-hoc methods.

9

Published in Transactions on Machine Learning Research (02/2024)

Test

0.00

0.05

0.10

0.15

0.20

e
ce

1 2 3 4
shift

Test

0.70

0.75

0.80

A
U

C
1 2 3 4

shift

LayerNorm

MC-LayerNorm (Ours)

Figure 4: Criteo dataset experiment. Area under the Curve (AUC) and expected calibration
error (ECE) for four shift intensities: vanilla LayerNorm is compared to MC-LayerNorm (f=0.7) while
applying increasing amounts noise to the test set. MC-LayerNorm shows a clear advantage, retaining more
of the original model performance as the data shifts further out-of-distribution (plots show average over 10
runs; error bars indicate standard errors around the mean).

Out-Of-Distribution Image Classification - Vision Transformer

We evaluate setting 2 by running experiments using the Vision Transformer (Dosovitskiy et al., 2021) archi-
tecture (ViT). As discussed in more detail in Shen et al. (2020), batch norm is not used for ViTs for a variety
of historical and performance reasons. Therefore, endowing them with MC-BatchNorm or Prediction-Time
BatchNorm would require a relatively radical architectural alteration which will typically enforce a change
in the training procedure (specifically, to take into account the effect of mini-batch size on the training
with BatchNorm), and compromise on the performance as state-of-the-art is empirically achieved without a
BatchNorm layer. Thus MC-LayerNorm is the only norm layer based uncertainty calibration method that is
applicable to this architecture. We use the pre-trained architecture implementations from timm (Wightman
et al., 2023) (Apache-2.0 license) and use the size “vit tiny” and “vit small” for CIFAR10 and TinyIm-
ageNet/ImageNet respectively. We compare our method’s performance (in MC integration and One-shot
approximation mode) versus MC-Dropout (Gal & Ghahramani, 2016; Gal et al., 2017), Temperature Scaling
(Guo et al., 2017; Platt et al., 1999) and Masksembles (Durasov et al., 2021). For both MC-Dropout and
Masksembles we use the optimal parameter configuration mentioned in Durasov et al. (2021). Additionally,
we also report results for a combination of Temperature Scaling and our MC-LayerNorm.

Figure 3, tables 3 and table 4 shows the superiority of our method when evaluated in terms of uncertainty
calibration and accuracy for the Test and the OOD setting. As non of the evaluated methods are batch de-
pendent, unlike the BatchNorm methods from the previous experiment, we forgo evaluation on the zero-shot
prediction-time domain adaptation use case in this section. MC-LayerNorm outperforms classical Layer-
Norm, MC-Dropout and Masksembles in terms of ECE and accuracy on both setting. While Temperature
Scaling outperforms MC-LayerNorm, we can show that a combination of MC-LayerNorm and post-hoc Tem-
perature scaling reaches maximum calibration performance. These results are consistent with the additional
experiments in Appendix A.2.1.

Training ViTs with the Masksemble approach was unfortunately difficult as non of the models we trained
converged to a reasonable classification performance. We hypothesize that ViT token width is too narrow
for this method to converge as it splits the token into N subsets with S overlap.

Figure 7a and 7b shows calibration performance comparisons for varying fractions of sampled features of the
MC-LayerNorm.

Criteo Display Advertising Challenge

Here, we showcase the value of our method in another situation where the competing methods cannot
be used as they are incompatible with the architectures. For the experiments, we train models on the
Criteo Display Advertising Challenge (CriteoLabs, 2014). We leverage the current state-of-the-art model,
MaskNet (Wang et al., 2021), relying on the implementation from (Zhu (2023), Apache-2.0 license). This

10

Published in Transactions on Machine Learning Research (02/2024)

architecture does not include any BatchNorm layers, meaning that it cannot be naturally extended with a
MC-BatchNorm/Predition-Time BatchNorm without modifying the training procedure (specifically, to take
into account the effect of mini-batch size on the training with BatchNorm), and without incurring a loss
in performance (as SOTA is empirically achieved without a BatchNorm layer). MaskNet however includes
LayerNorm modules, meaning that we can straightforwardly replace them by dropping in MC-LayerNorm
without changing anything else in the architecture or training. The Criteo challenge is therefore also meant
as a use case to emphasize the advantages of our approach also beyond vision tasks, in particular its flexibility
as a drop-in replacement layer for LayerNorm (a normalization layer which is almost ubiquitous in modern
deep learning) and its ease of use since it does not require any other modifications to the models architecture.
We train two types of models: the original MaskNet model containing vanilla LayerNorm and a patched
model for which we replace all LayerNorm layers with MC-LayerNorm. At prediction time, we run the MC-
LayerNorm models using the One-shot approximation, making them computationally as cheap as the regular
MaskNet models to evaluate. The trained models are evaluated on the original test set and a corrupted
version of the test set. We simulate out-of-distribution data by applying corruption in the form of Gaussian
noise on the numerical features. Shift intensities [6.25%, 12.5%, 25%, 50%] are based on units of the standard
deviation of the original feature values. Finally, we measure the difference in model performance between
the original models with LayerNorm and the adjusted models with MC-LayerNorm.

Figure 4 shows results on the Criteo dataset demonstrating a clear advantage of MC-LayerNorm when it
come the considered metrics. Here we displays the performance of MC-LayerNorm for f=0.7 (the curves are
robust within the interval f=0.6-0.8, with a gradual progressive degradation as f is varied above or below this
range). The Figure shows that as we shift the tests set further out-of-distribution, our method retains more
of the original calibration and model performance compared to the baseline of the traditional LayerNorm.

5 Conclusion and Discussion

We presented a novel normalization layer, MC-LayerNorm, which improves model calibration for in- and
out-of-distribution (OOD) data by injecting stochasticity through subsampling features when computing the
normalization statistics. Our method can be easily deployed without significant computational overhead
by replacing the LayerNorm blocks in an already trained model and then fine-tuning it. We empirically
demonstrated the application of MC-LayerNorm for two distinct settings: First, we have shown its potential
as an alternative to existing methods for OOD classification and its superiority compared to Batch Norm
based alternatives when it comes to mixed in- and out-of-distribution batches. Secondly, we presented
experiments for use cases where application of conventional methods are either unsuitable or technically
infeasible. In this setting, MC-LayerNorm was shown to outperform alternatives on OOD classification
using Vision Transformers and on the CTR Criteo dataset using MaskNet.

In other words, MC-LayerNorm is able to perform zero-shot prediction-time domain adaptation, which gives
it an advantage in real-world OOD use cases where a deployed model is being exposed for the first time to
new OOD samples and has not had time to properly adapt to the covariate shift.

Limitations and Future Work. In addition to the C-variants of the considered datasets we focused on in
this study, future work could validate our method on their respective A-variants, which consist of real-world
adversarial examples. An additional direction for future work is MC-LayerNorm’s potential impact on other
model performance metrics, such as the stability of training convergence. For example, during experimen-
tation, we noticed improved training convergence toward the same performance metrics (reduced variability
across runs with different hyper-parameter settings like different learning rate values) when employing MC-
LayerNorm.

In terms of broader impact, as already discussed, being able to provide deep neural networks with calibrated
prediction uncertainty would make their deployment potentially safer and trusted, particularly in high-stakes
applications where it is crucial to be able to reliably take consequential decisions based on them. Therefore,
we argue that the line of research to which our work contributes is an important step towards trying to
systematically mitigate potential negative societal effects due to the involuntary misuse of deep learning
technologies.

11

Published in Transactions on Machine Learning Research (02/2024)

References
Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I. Jordan. Uncertainty Sets for Image

Classifiers using Conformal Prediction, September 2022.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization, July 2016.

Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael Jordan. Distribution-free,
Risk-controlling Prediction Sets. Journal of the ACM, 68(6):43:1–43:34, September 2021. ISSN 0004-5411.
doi: 10.1145/3478535.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon Goyal,
Lawrence D. Jackel, Mathew Monfort, Urs Muller, and Jiakai Zhang. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316, 2016.

Glenn W. Brier. Verification of forecasts expressed in terms of probability. Monthly weather review, 78(1):
1–3, 1950.

CriteoLabs. Display Advertising Challenge. https://kaggle.com/competitions/criteo-display-ad-challenge,
2014.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255,
2009. doi: 10.1109/CVPR.2009.5206848.

Ugljesa Djuric, Gelareh Zadeh, Kenneth Aldape, and Phedias Diamandis. Precision histology: How deep
learning is poised to revitalize histomorphology for personalized cancer care. NPJ precision oncology, 1
(1):1–5, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021.

Nikita Durasov, Timur Bagautdinov, Pierre Baque, and Pascal Fua. Masksembles for Uncertainty Estima-
tion, June 2021.

Andre Esteva, Brett Kuprel, Roberto A. Novoa, Justin Ko, Susan M. Swetter, Helen M. Blau, and Sebastian
Thrun. Dermatologist-level classification of skin cancer with deep neural networks. nature, 542(7639):
115–118, 2017.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with Bernoulli approximate
variational inference. arXiv preprint arXiv:1506.02158, 2015.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In International Conference on Machine Learning, pp. 1050–1059. PMLR, 2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data. In
International Conference on Machine Learning, pp. 1183–1192. PMLR, 2017.

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal
of the American statistical Association, 102(477):359–378, 2007.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks. In
International Conference on Machine Learning, pp. 1321–1330. PMLR, 2017.

Jaroslav Hájek. Limiting distributions in simple random sampling from a finite population. Publications of
the Mathematical Institute of the Hungarian Academy of Sciences, 5:361–374, 1960.

Dan Hendrycks and Thomas G. Dietterich. Benchmarking Neural Network Robustness to Common Cor-
ruptions and Surface Variations, April 2019. Comment: Superseded by _Benchmarking Neural Network
Robustness to Common Corruptions and Perturbations_ arXiv:1903.12261.

12

Published in Transactions on Machine Learning Research (02/2024)

Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volinsky. Bayesian model averaging:
A tutorial (with comments by M. Clyde, David Draper and EI George, and a rejoinder by the authors.
Statistical science, 14(4):382–417, 1999.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pp. 448–456. PMLR, 2015.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.

Ya Le and Xuan Yang. Tiny ImageNet Visual Recognition Challenge. 2017.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Sain-
ing Xie. A ConvNet for the 2020s, March 2022. Comment: CVPR 2022; Code:
https://github.com/facebookresearch/ConvNeXt.

David JC MacKay. A practical Bayesian framework for backpropagation networks. Neural computation, 4
(3):448–472, 1992.

Jishnu Mukhoti, Puneet K. Dokania, Philip HS Torr, and Yarin Gal. On Batch Normalisation for Approxi-
mate Bayesian Inference. arXiv preprint arXiv:2012.13220, 2020.

Zachary Nado, Shreyas Padhy, D. Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and Jasper Snoek.
Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift, January 2021.

Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. Obtaining Well Calibrated Probabil-
ities Using Bayesian Binning. Proceedings of the ... AAAI Conference on Artificial Intelligence. AAAI
Conference on Artificial Intelligence, 2015:2901–2907, January 2015. ISSN 2159-5399.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon, Balaji
Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. Advances in neural information processing systems, 32, 2019.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood
methods. Advances in large margin classifiers, 10(3):61–74, 1999.

Geoff Pleiss. Gpleiss/temperature_scaling, January 2024.

Joaquin Quinonero-Candela, Carl Edward Rasmussen, Fabian Sinz, Olivier Bousquet, and Bernhard
Scholkopf. Evaluating predictive uncertainty challenge. Lecture Notes in Computer Science, 3944:1–27,
2006.

Tim GJ Rudner, Sanyam Kapoor, Shikai Qiu, and Andrew Gordon Wilson. Function-space regularization
in neural networks: A probabilistic perspective. In International Conference on Machine Learning, pp.
29275–29290. PMLR, 2023.

Sheng Shen, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. Powernorm: Rethinking
batch normalization in transformers, 2020.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Inference, 90(2):227–244, October 2000. ISSN 0378-3758.
doi: 10.1016/S0378-3758(00)00115-4.

Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen Leitner, Ben Upcroft,
Pieter Abbeel, Wolfram Burgard, and Michael Milford. The limits and potentials of deep learning for
robotics. The International journal of robotics research, 37(4-5):405–420, 2018.

Mattias Teye, Hossein Azizpour, and Kevin Smith. Bayesian uncertainty estimation for batch normalized
deep networks. In International Conference on Machine Learning, pp. 4907–4916. PMLR, 2018.

13

Published in Transactions on Machine Learning Research (02/2024)

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal Prediction Un-
der Covariate Shift. In Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019.

A. Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge
University Press, 1998.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic Learning in a Random World.
Springer-Verlag, New York, 2005. ISBN 978-0-387-00152-4. doi: 10.1007/b106715.

Zhiqiang Wang, Qingyun She, and Junlin Zhang. MaskNet: Introducing Feature-Wise Multiplication to
CTR Ranking Models by Instance-Guided Mask, July 2021. Comment: In Proceedings of DLP-KDD
2021. ACM,Singapore. arXiv admin note: text overlap with arXiv:2006.12753.

Ross Wightman, Nathan Raw, Alexander Soare, Aman Arora, Chris Ha, Christoph Reich, Jakub Kacz-
marzyk, mrT23, Mike, SeeFun, contrastive, Mohammed Rizin, Hyeongchan Kim, Csaba Kertész, Dushyant
Mehta, Guillem Cucurull, Kushajveer Singh, han, Yuki Tatsunami, Andrew Lavin, Juntang Zhuang,
Matthijs Hollemans, Mohamed Rashad, Sepehr Sameni, Vyacheslav Shults, Lucain, Xiao Wang, Yonghye
Kwon, Yusuke Uchida, and Zhun Zhong. Rwightman/pytorch-image-models: V0.8.6dev0 Release. Zenodo,
January 2023.

Andrew G. Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of general-
ization. Advances in neural information processing systems, 33:4697–4708, 2020.

Jamie Zhu. FuxiCTR: A configurable, tunable, and reproducible library for CTR prediction.
https://github.com/xue-pai/FuxiCTR, January 2023.

R. Zhu and M. Rigotti. Deep Bandits Show-Off: Simple and Efficient Exploration with Deep Networks.
Advances in Neural Information Processing Systems (NeurIPS), 35, 2021.

14

Published in Transactions on Machine Learning Research (02/2024)

A Appendix

A.1 Additional results

A.1.1 Comparison of MC-LayerNorm drop rates for ConvNext

Test OOD Mix

0.4

0.6

0.8

ac
cu

ra
cy MC-LayerNorm f=0.9

MC-LayerNorm f=0.8
MC-LayerNorm f=0.7
MC-LayerNorm f=0.6

Test OOD Mix

0.5

1.0

br
ie

r

Test OOD Mix
0.0

0.2

0.4

ec
e

Figure 5: CIFAR-10-C with ConvNext: Comparison of calibration between different MC-LayerNorm
(One-Shot approximation) subsampling fractions for in-distribution (Test), out-of-distribution (OOD) and
the zero-shot prediction-time domain adaptation (Mix) setting.

15

Published in Transactions on Machine Learning Research (02/2024)

Test OOD Mix
0.00

0.25

0.50

0.75

ac
cu

ra
cy MC-LayerNorm f=0.9

MC-LayerNorm f=0.8
MC-LayerNorm f=0.7
MC-LayerNorm f=0.6

Test OOD Mix

0.5

1.0

br
ie

r

Test OOD Mix
0.0

0.1

0.2

0.3

ec
e

Figure 6: TinyImageNet-C with ConvNext: Comparison of calibration between different MC-
LayerNorm (One-Shot approximation) subsampling fractions for in-distribution (Test), out-of-distribution
(OOD) and the zero-shot prediction-time domain adaptation (Mix) setting.

16

Published in Transactions on Machine Learning Research (02/2024)

A.2 Comparison of MC-LayerNorm drop rates for Vision Transformers

Test OOD

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

LayerNorm
MC-LayerNorm f=0.9
MC-LayerNorm f=0.8
MC-LayerNorm f=0.7
MC-LayerNorm f=0.6

Test OOD
0.00

0.25

0.50

0.75

1.00

1.25

br
ie

r

Test OOD
0.0

0.1

0.2

0.3

0.4

0.5

0.6

ec
e

(a) CIFAR-10-C with Vision Transformer

Test OOD

0.2

0.4

0.6

0.8

ac
cu

ra
cy

LayerNorm
MC-LayerNorm f=0.9
MC-LayerNorm f=0.8
MC-LayerNorm f=0.7
MC-LayerNorm f=0.6

Test OOD
0.2

0.4

0.6

0.8

1.0

1.2

1.4

br
ie

r

Test OOD

0.1

0.2

0.3

0.4

0.5

0.6

ec
e

(b) TinyImageNet-C

Figure 7: Comparison of calibration between different MC-LayerNorm (One-Shot approximation) subsam-
pling fractions for in-distribution (Test) and out-of-distribution (OOD).

17

Published in Transactions on Machine Learning Research (02/2024)

A.2.1 ImageNet Results for Vision Transformers

Test OOD

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

LayerNorm
MC-Dropout
MC-LN One-Shot (Ours)

Test OOD

0.4

0.6

0.8

1.0

br
ie

r

Test OOD
0.05

0.10

0.15

0.20

0.25

ec
e

(a)

Test OOD

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

LayerNorm
MC-LayerNorm f=0.9
MC-LayerNorm f=0.8
MC-LayerNorm f=0.7
MC-LayerNorm f=0.6

Test OOD

0.4

0.6

0.8

1.0

br
ie

r

Test OOD
0.05

0.10

0.15

0.20

0.25

0.30

ec
e

(b)

Figure 8: ImageNet-C with Vision Transformers:: (a) We compare LayerNorm, MC-Dropout (f=0.9, 10
MC iterations), and our novel method - MC-LayerNorm (f=0.7, One-Shot approximation) - on the expected
calibration error (ECE), brier score, and accuracy. We do not include results for Masksembles in this figure
due to bad performance. Error bars are constructed from evaluation runs for the 15 corruptions applied to the
original test set and over three training runs. (b) Comparison of calibration between different MC-LayerNorm
(One-Shot approximation) subsampling fractions for in-distribution (Test) and out-of-distribution (OOD).

18

Published in Transactions on Machine Learning Research (02/2024)

A.2.2 Result Tabels

Scenario Method ECE ↓ Brier ↓ Accuracy ↑

Test

BatchNorm 0.044 ± 0.001 0.120 ± 0.001 0.925 ± 0.001
LayerNorm 0.033 ± 0.002 0.087 ± 0.004 0.948 ± 0.001
Masksemble 0.041 ± 0.001 0.120 ± 0.001 0.924 ± 0.001
Prediction-BN 0.042 ± 0.002 0.119 ± 0.001 0.925 ± 0.002
MC-BN 0.044 ± 0.001 0.120 ± 0.001 0.925 ± 0.001
MC-Dropout 0.035 ± 0.001 0.089 ± 0.002 0.947 ± 0.001
T-Scaling 0.024 ± 0.003 0.083 ± 0.003 0.948 ± 0.001
MC-LN MC Approx (Ours) 0.031 ± 0.001 0.098 ± 0.002 0.937 ± 0.002
MC-LN One-Shot (Ours) 0.030 ± 0.002 0.093 ± 0.003 0.941 ± 0.003
MC-LN + T-Scaling (Ours) 0.019 ± 0.002 0.090 ± 0.003 0.941 ± 0.003

OOD

BatchNorm 0.276 ± 0.030 0.655 ± 0.043 0.592 ± 0.014
LayerNorm 0.206 ± 0.012 0.479 ± 0.026 0.712 ± 0.015
Masksemble 0.237 ± 0.009 0.587 ± 0.014 0.627 ± 0.007
Prediction-BN 0.122 ± 0.003 0.308 ± 0.008 0.809 ± 0.005
MC-BN 0.276 ± 0.030 0.655 ± 0.043 0.592 ± 0.014
MC-Dropout 0.200 ± 0.004 0.468 ± 0.007 0.716 ± 0.005
T-Scaling 0.174 ± 0.012 0.454 ± 0.025 0.712 ± 0.015
MC-LN MC Approx (Ours) 0.166 ± 0.013 0.454 ± 0.033 0.703 ± 0.023
MC-LN One-Shot (Ours) 0.158 ± 0.014 0.419 ± 0.032 0.731 ± 0.022
MC-LN + T-Scaling (Ours) 0.125 ± 0.012 0.399 ± 0.030 0.731 ± 0.022

Mix

BatchNorm 0.277 ± 0.032 0.651 ± 0.046 0.592 ± 0.017
LayerNorm 0.212 ± 0.013 0.484 ± 0.029 0.709 ± 0.018
Masksemble 0.253 ± 0.024 0.610 ± 0.035 0.614 ± 0.012
Prediction-BN 0.288 ± 0.027 0.681 ± 0.048 0.576 ± 0.024
MC-BN 0.276 ± 0.025 0.649 ± 0.036 0.596 ± 0.012
MC-Dropout 0.202 ± 0.004 0.467 ± 0.007 0.718 ± 0.007
T-Scaling 0.173 ± 0.009 0.446 ± 0.023 0.718 ± 0.013
MC-LN MC Approx (Ours) 0.166 ± 0.009 0.445 ± 0.026 0.708 ± 0.021
MC-LN One-Shot (Ours) 0.159 ± 0.015 0.414 ± 0.035 0.734 ± 0.023
MC-LN + T-Scaling (Ours) 0.133 ± 0.009 0.400 ± 0.030 0.734 ± 0.022

Table 1: CIFAR-10-C with ConvNext: Comparison of calibration and accuracy for in-distribution (Test),
out-of-distribution (OOD) and the zero-shot prediction-time domain adaptation (Mix) setting. In contrast
to the figures, the standard deviation is computed distinctively by first averaging across multiple corruption
levels, followed by calculating the standard deviation across various trained models.

19

Published in Transactions on Machine Learning Research (02/2024)

Scenario Method ECE ↓ Brier ↓ Accuracy ↑

Test

BatchNorm 0.177 ± 0.006 0.461 ± 0.015 0.705 ± 0.007
LayerNorm 0.114 ± 0.003 0.280 ± 0.006 0.828 ± 0.003
Masksemble 0.156 ± 0.004 0.478 ± 0.003 0.675 ± 0.002
Prediction-BN 0.172 ± 0.002 0.450 ± 0.001 0.713 ± 0.002
MC-BN 0.177 ± 0.006 0.461 ± 0.015 0.705 ± 0.007
MC-Dropout 0.102 ± 0.001 0.262 ± 0.001 0.836 ± 0.002
T-Scaling 0.056 ± 0.001 0.252 ± 0.006 0.828 ± 0.003
MC-LN MC Approx (Ours) 0.080 ± 0.001 0.245 ± 0.002 0.837 ± 0.003
MC-LN One-Shot (Ours) 0.086 ± 0.003 0.252 ± 0.003 0.834 ± 0.003
MC-LN + T-Scaling (Ours) 0.027 ± 0.001 0.234 ± 0.001 0.834 ± 0.003

OOD

BatchNorm 0.478 ± 0.013 1.177 ± 0.016 0.219 ± 0.005
LayerNorm 0.443 ± 0.020 1.049 ± 0.032 0.337 ± 0.013
Masksemble 0.426 ± 0.004 1.144 ± 0.004 0.195 ± 0.002
Prediction-BN 0.373 ± 0.001 0.956 ± 0.002 0.362 ± 0.004
MC-BN 0.478 ± 0.013 1.177 ± 0.016 0.219 ± 0.005
MC-Dropout 0.403 ± 0.015 0.982 ± 0.021 0.367 ± 0.006
T-Scaling 0.276 ± 0.021 0.904 ± 0.027 0.337 ± 0.013
MC-LN MC Approx (Ours) 0.369 ± 0.001 0.970 ± 0.002 0.339 ± 0.003
MC-LN One-Shot (Ours) 0.381 ± 0.004 0.980 ± 0.002 0.345 ± 0.003
MC-LN + T-Scaling (Ours) 0.226 ± 0.005 0.861 ± 0.003 0.345 ± 0.003

Mix

BatchNorm 0.480 ± 0.014 1.182 ± 0.016 0.219 ± 0.003
LayerNorm 0.437 ± 0.023 1.039 ± 0.037 0.340 ± 0.016
Masksemble 0.420 ± 0.018 1.133 ± 0.026 0.200 ± 0.008
Prediction-BN 0.472 ± 0.005 1.175 ± 0.009 0.215 ± 0.001
MC-BN 0.478 ± 0.019 1.175 ± 0.025 0.221 ± 0.009
MC-Dropout 0.404 ± 0.016 0.985 ± 0.020 0.367 ± 0.005
T-Scaling 0.278 ± 0.023 0.910 ± 0.032 0.335 ± 0.014
MC-LN MC Approx (Ours) 0.370 ± 0.004 0.970 ± 0.006 0.339 ± 0.007
MC-LN One-Shot (Ours) 0.381 ± 0.008 0.984 ± 0.008 0.343 ± 0.008
MC-LN + T-Scaling (Ours) 0.229 ± 0.005 0.857 ± 0.008 0.345 ± 0.009

Table 2: Tiny-ImageNet with ConvNext: Comparison of calibration and accuracy for in-distribution (Test),
out-of-distribution (OOD) and the zero-shot prediction-time domain adaptation (Mix) setting. In contrast
to the figures, the standard deviation is computed distinctively by first averaging across multiple corruption
levels, followed by calculating the standard deviation across various trained models.

20

Published in Transactions on Machine Learning Research (02/2024)

Scenario Method ECE ↓ Brier ↓ Accuracy ↑

Test

LayerNorm 0.016 ± 0.003 0.051 ± 0.003 0.968 ± 0.003
MC-Dropout 0.019 ± 0.003 0.054 ± 0.001 0.966 ± 0.001
Masksemble 0.034 ± 0.003 0.114 ± 0.006 0.927 ± 0.005
T-Scaling 0.010 ± 0.000 0.050 ± 0.004 0.968 ± 0.003
MC-LN Approx (Ours) 0.015 ± 0.004 0.060 ± 0.005 0.962 ± 0.004
MC-LN One-Shot (Ours) 0.015 ± 0.003 0.069 ± 0.013 0.955 ± 0.010
MC-LN + T-Scaling (Ours) 0.019 ± 0.015 0.067 ± 0.016 0.958 ± 0.010

OOD

LayerNorm 0.194 ± 0.020 0.490 ± 0.025 0.690 ± 0.011
MC-Dropout 0.206 ± 0.020 0.499 ± 0.024 0.688 ± 0.006
Masksemble 0.259 ± 0.020 0.621 ± 0.029 0.614 ± 0.011
T-Scaling 0.154 ± 0.022 0.461 ± 0.022 0.690 ± 0.011
MC-LN Approx (Ours) 0.211 ± 0.023 0.522 ± 0.037 0.673 ± 0.020
MC-LN One-Shot (Ours) 0.180 ± 0.018 0.493 ± 0.015 0.679 ± 0.018
MC-LN + T-Scaling (Ours) 0.146 ± 0.024 0.469 ± 0.011 0.686 ± 0.016

Table 3: CIFAR-10 for Vision Transformers: Comparison of calibration and accuracy for in-distribution
(Test), out-of-distribution (OOD) and the zero-shot prediction-time domain adaptation (Mix) setting. In
contrast to the figures, the standard deviation is computed distinctively by first averaging across multiple
corruption levels, followed by calculating the standard deviation across various trained models.

Scenario Method ECE ↓ Brier ↓ Accuracy ↑

Test

LayerNorm 0.100 ± 0.003 0.274 ± 0.006 0.826 ± 0.004
MC-Dropout 0.083 ± 0.002 0.276 ± 0.003 0.819 ± 0.003
Masksemble 0.209 ± 0.003 0.568 ± 0.004 0.625 ± 0.002
T-Scaling 0.029 ± 0.000 0.253 ± 0.005 0.826 ± 0.004
MC-LN Approx. (Ours) 0.084 ± 0.002 0.268 ± 0.002 0.823 ± 0.003
MC-LN One-Shot (Ours) 0.045 ± 0.003 0.255 ± 0.005 0.824 ± 0.005
MC-LN + T-Scaling (Ours) 0.019 ± 0.000 0.256 ± 0.003 0.820 ± 0.001

OOD

LayerNorm 0.325 ± 0.010 0.905 ± 0.017 0.377 ± 0.012
MC-Dropout 0.272 ± 0.005 0.864 ± 0.004 0.375 ± 0.003
Masksemble 0.483 ± 0.008 1.201 ± 0.010 0.197 ± 0.002
T-Scaling 0.152 ± 0.008 0.796 ± 0.014 0.377 ± 0.011
MC-LN Approx. (Ours) 0.289 ± 0.007 0.875 ± 0.005 0.373 ± 0.006
MC-LN One-Shot (Ours) 0.226 ± 0.011 0.834 ± 0.015 0.372 ± 0.011
MC-LN + T-Scaling (Ours) 0.141 ± 0.005 0.792 ± 0.005 0.372 ± 0.005

Table 4: Tiny-ImageNet for Vision Transformers: Comparison of calibration and accuracy for in-distribution
(Test), out-of-distribution (OOD) and the zero-shot prediction-time domain adaptation (Mix) setting. In
contrast to the figures, the standard deviation is computed distinctively by first averaging across multiple
corruption levels, followed by calculating the standard deviation across various trained models.

21

Published in Transactions on Machine Learning Research (02/2024)

A.3 Proof of theorem 3.1

Lemma A.1. Denote Vµ = 1
Nl−1

∑Nl

i=1(al
i − µl)2 and Vσ2 = 1

Nl−1
∑Nl

i=1
(
(al

i)2 − (µl)2 − σ2
l

)2. Assume
Nl − |Sl| → ∞ as |Sl| → ∞.

(1) Assume that 1
Nl

∑Nl

i=1(al
i)2 is bounded, then we have that, as |Sl| → ∞,

|Sl|1/2(µ̃l − µl) →d N (0, Vµ). (8)

(2) Assume that 1
Nl

∑Nl

i=1(al
i)4 is bounded, then we have that, as |Sl| → ∞,

|Sl|1/2 (
(σ̃l)2 − (σl)2)

→d N (0, Vσ2). (9)

Proof. The proof follows from Hájek (1960) under standard regularity conditions.

Proposition A.2. Under the assumption that f(·) in eq. (1) and eq. (4) is differentiable almost everywhere,
theorem A.1 implies that there exists a variance V such that

|Sl|1/2
(

h̃l+1
i − hl+1

i

)
→d N (0, V). (10)

Proof. The proof follows from the delta method in Vaart (1998).

Proposition A.2 means that the effect of MC Layer Normalization is to approximately add Gaussian noise
to the activations of a corresponding model with Layer Normalization.

A.4 Hyperparameters

All models are trained with the AdamW optimizer provided by the timm library Wightman et al. (2023)
using default parameters for β1, β2 and ϵ. We use grid-search to tune the learning rate from values between
[1e − 3, 1e − 5] and for weight decay form values between [0.1, 1e − 4].

For CIFAR-10 and TinyImageNet, we run fine-tuning for 20 epochs with a batch size of 512 and with a
constant learning rate. Meanwhile, for ImageNet, we run fine-tuning for 5 epochs with a batch size of 256
and constant learning rate. For Masksemble models we extend learning to 20 epochs as the needed changes
to the network are much bigger than for the other methods. Finally, we run training for 100 epochs with a
batch size of 1000 reducing the learning rate by 0.1 on a plateau with patience 2 checked on the validation
set for Criteo.

All vision models are trained with absolutely basic data augmentation: We use padding + random crop
for CIFAR-10 and TinyImageNet while only taking a random crop for ImageNet. Additionally, we use a
horizontal flip (p=0.5) augmentation for all vision datasets. No training augmentations are used for the
Criteo models.

For Temperature scaling (Guo et al., 2017) we use parameters proposed by Pleiss (2024): NLL Loss, LBFGS
as an Optimizer with learning rate of 0.01 and running for a maximum of 50 iterations. For each dataset, a
fixed set of samples from the training set is set aside as a calibration set.

All models were trained on an internal cluster consisting of NVIDIA A100 GPUs.

22

	Introduction
	Related Work
	MC Layer Normalization
	Results
	Conclusion and Discussion
	Appendix
	Additional results
	Comparison of MC-LayerNorm drop rates for ConvNext

	Comparison of MC-LayerNorm drop rates for Vision Transformers
	ImageNet Results for Vision Transformers
	Result Tabels

	Proof of th:1
	Hyperparameters

