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ABSTRACT

In this paper, we propose Label-Aware Noise Elimination (LANE), a new ap-
proach that improves the robustness of deep learning models when trained under
increased label noise in fine-grained text classification. LANE leverages the seman-
tic relations between classes and monitors the training dynamics of the model on
each training example to dynamically lower the importance of training examples
that are perceived to have noisy labels. We test the effectiveness of LANE in
fine-grained text classification and benchmark our approach on a wide variety of
datasets with various number of classes and various amounts of label noise. LANE
considerably outperforms strong baselines on all datasets, obtaining significant
improvements ranging from an average improvement of 2.4% in F1 on manually
annotated datasets to a considerable average improvement of 4.5% F1 on datasets
with higher levels of label noise. We carry out comprehensive analyses of LANE
and identify the key components that lead to its success.

1 INTRODUCTION

Deep learning models are increasingly powerful in many NLP applications, but their success is
often hindered by data quality. Many existing datasets are annotated by humans on crowdsourcing
platforms Demszky et al. (2020) or by automatic approaches such as distant (or weak) supervision
Mintz et al. (2009); Wang et al. (2012); Abdul-Mageed & Ungar (2017), and, while weak supervision
inherently introduces unwanted mislabeled examples, humans—no matter how careful, are also prone
to making labeling errors especially on fine-grained tasks that involve distinguishing between a large
number of closely confusable or overlapping classes, e.g., emotion detection Mohammad (2012);
Islam et al. (2019); Bao et al. (2009); Strapparava et al. (2012); Liu et al. (2019) or fine-grained
topic classification tasks Lewis et al. (2004). The mislabeled training examples are particularly
harmful when learning large overparameterized neural networks, since these networks can achieve
zero training error on any dataset, with very poor generalization capabilities Zhang et al. (2016).

Several works Li et al. (2023); Karim et al. (2022); Liu & Guo (2020) designed various changes
to the training process to learn under label noise. For example, Peer Loss Function Liu & Guo
(2020) alters the training loss function to account for label noise, DISC Li et al. (2023) utilizes an
instance-specific dynamic thresholding mechanism that blocks access to specific training examples
based on the momentum of each instance’s memorization strength. Unicon Karim et al. (2022)
leverages a semi-supervised learning (SSL) framework that considers potentially noisy labeled data
as unlabeled examples in an SSL algorithm. Area Under the Margin (AUM) Pleiss et al. (2020)
utilizes an instance-specific average margin that identifies potentially mislabeled examples from
the training set according to the model’s behavior on these examples and blocks access to these
examples through a fixed threshold. AUM measures the average difference between the logit values
corresponding to a sample’s assigned label and its largest non-assigned label calculated across the
training epochs. The AUM for a mislabeled sample is expected to be low, likely negative since the
model—through generalization from other correctly labeled training samples, tends to predict the
sample in its (hidden) true class which is different from the (wrongly) assigned class, and hence,
the largest logit (among all logits) no longer corresponds to the assigned (wrong) label Pleiss et al.
(2020). After this data characterization by AUM, Pleiss et al. (2020) subsequently remove samples
with low AUM from the training set using a fixed rigid AUM threshold (i.e., the 95 percentile).
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However, we posit that, through this fixed threshold used to remove mislabeled samples, difficult but
valuable samples that exist under the threshold are unnecessarily removed from the training set. In
addition, the computation of AUM that contrasts two labels (the assigned—potentially wrong—label
and the largest non-assigned label) treats labels independently, and thus, ignores semantic similarities
that inherently exist between fine-grained classes (e.g., in fine-grained emotion detection tasks, “anger”
is semantically more similar to “fear” than it is to “joy”). To this end, we introduce Label-Aware
Noise Elimination (LANE), a novel approach that identifies mislabeled or noisy samples from the
training data and seamlessly mitigates their harmful effects. Unlike Pleiss et al. (2020) who remove
mislabeled or ambiguous samples from the training set using a fixed threshold, we improve the
robstness of our model under label noise by retaining all training samples but re-weighting them
differently based on the model’s behavior on these samples measured against their assigned labels. In
re-weighting the samples, we estimate the degree of “noisiness” of the assigned labels by introducing
label-aware margins averaged across training iterations that capture inter-class semantic similarities.
For example, a sample with true label “anger” but with assigned label “joy” is noisier (has a higher
degree of noisiness) than a sample with true label “anger” but with assigned label “fear” since “fear”
is semantically closer to “anger” than “joy”. Our label-aware margins extend the concept of margins
Pleiss et al. (2020) by adaptively weighting samples when the (hidden) true label and the (wrongly)
assigned label do not match. Precisely, we capture inter-class semantic similarities and dynamically
lower samples’ weights if the model perceives them as noisy (the noisier the assigned label the lower
the weight). We learn the inter-class semantic similarities using a label-aware supervised contrastive
loss to improve the capabilities of the model to distinguish between easily confusable samples by
bringing the latent representations of input samples closer together if they belong to semantically
similar classes and further apart if they belong to semantically dissimilar classes.

We evaluate the effectiveness of LANE on multiple well-established fine-grained datasets: Empathetic
Dialogues Rashkin et al. (2019), GoEmotions Demszky et al. (2020), ISEAR Scherer & Wallbott
(1994), CancerEMO Sosea & Caragea (2020), RCV1 Lewis et al. (2004), SciHTC Sadat & Caragea
(2022), SST-5 Socher et al. (2013a), Amazon Review McAuley & Leskovec (2013), Yelp Review
Asghar (2016), and Yahoo Answer Chang et al. (2008). Using these datasets, we show that LANE
works well on various tasks and domains (emotion and general text classification; social networks,
dialogues, and personal experiences). In all our experiments, automatically scaling down the impor-
tance of identified noisy samples from the training set shows great potential, improving the overall
performance on our original datasets by 2.4% F1 on average over the strong AUM approach Pleiss
et al. (2020) and by 4.5% F1 on average on our datasets with higher levels of label noise.

We summarize our contributions as follows: 1) We introduce LANE, a new approach that leverages
inter-class semantic similarities and monitors the training dynamics of each training example to
automatically identify and minimize the harmful effects of ambiguous or mislabeled examples; 2)
We evaluate the effectiveness of our approach on ten text classification benchmark datasets from
different tasks and domains; 3) We carry out a comprehensive analysis and ablation study of LANE
and analyze how it performs on datasets that have different levels of noise.

2 RELATED WORK

Learning with label noise have started to received substantial attention due to the high risk of deep
learning models to overfit Liu & Tao (2015); Goldberger & Ben-Reuven (2016); Ren et al. (2018);
Englesson & Azizpour (2021); Zhang & Plank (2021); Margatina et al. (2021); Li et al. (2021); Plank
(2022); Karim et al. (2022); Garg et al. (2023); Wei et al. (2023c;b;a). For example, Goldberger &
Ben-Reuven (2016) propose adding a noise layer in the neural network architecture, whose parameters
can be learned for an accurate label estimation. Saxena et al. (2019) introduce a curriculum-learning
approach that uses learnable data parameters to rank the importance of examples in the learning
process. These parameters are then leveraged to decide the data to use at different training stages.
Liu & Guo (2020) on the other hand propose to alter the loss function to make it more robust in
the face of label noise and introduce Peer Loss Functions, which evaluate predictions on both the
samples at hand, as well as carefully automatically constructed peer samples. Other approaches focus
on data quality and design techniques to accurately identify and eliminate potentially mislabeled
instances Brodley & Friedl (1999); Pleiss et al. (2020); Swayamdipta et al. (2020). For example,
Swayamdipta et al. (2020) introduce data cartography, a model-based tool that separates training data
into three (potentially overlapping) regions, easy-to-learn, ambiguous, and hard-to-learn (many of
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which are mislabeled), and re-trains on each data region to understand its benefits to learning and
generalization. Pleiss et al. (2020) identify and subsequently remove mislabeled training samples
by monitoring the behavior of the model on each sample and estimating its Area Under the Margin
(AUM) to determine what to remove from the data. Our work builds on this approach: we reformulate
the Area Under the Margin Pleiss et al. (2020) and leverage the inter-class semantic similarities
present in fine-grained tasks to improve training data quality and diminishing the harmful effects of
noisy samples by reweighting the importance of samples during training.

The idea of weighting each training example has been well studied in the literature. A classical method
in statistics is importance sampling Kahn & Marshall (1953), which assigns weights to samples in
order to align one distribution to another. Boosting algorithms such as AdaBoost Freund et al. (1999),
select harder samples to train subsequent classifiers. Focal loss Lin et al. (2017) incorporates a soft
weighting scheme that puts emphasis on harder samples. Similarly, hard sample mining Shrivastava
et al. (2011) reduces samples in the majority class and selects the most difficult samples to perform
training on. In contrast to these works, our weighting mechanism exploits the similarities between
classes and ensures noisy samples do not play a significant part in model training.

Supervised contrastive learning is an approach that brings the latent representations of input samples
closer together if they belong to the same class (positives) and further apart if they belong to different
classes (negatives). Gunel et al. (2020) use a supervised contrastive loss to improve fine-tuning
performance of pre-trained language models in several few-shot learning scenarios. Khosla et al.
(2020) introduce a variation of the traditional contrastive loss which aims to produce more samples in
the positive set. Instead of only considering samples with the same class as belonging to the positive
set, they propose to use data augmentation to generate more positive samples. Suresh & Ong (2021)
build upon this approach but argue that not all negative samples are equal. To this end, they propose
Label-aware Contrastive Loss (LCL) that learns a weight network to infer the relations between
classes and weigh samples differently. In contrast, our LANE approach exploits label-aware margins
to improve the robustness under label noise.

3 PROPOSED APPROACH

Here, we first provide background on Area Under the Margin introduced by Pleiss et al. (2020) (§3.1)
and then present Label-Aware Noise Elimination (LANE), our new approach that improves model
robustness in the face of label noise (§3.2).

3.1 BACKGROUND

Area Under the Margin (AUM) Pleiss et al. (2020) is a well-established approach that monitors the
training dynamics of examples by analyzing their margins during training epochs to automatically
identify and remove mislabeled examples from the training data. At training epoch t, the margin M
Pleiss et al. (2020); Bartlett et al. (2017); Elsayed et al. (2018); Jiang et al. (2018) of an example x
with assigned label y is defined as follows:

M(t)(x, y) = z(t)y (x)−maxi!=yz
(t)
i (x) (1)

where z
(t)
y (x) is the logit corresponding to assigned label y, and maxi!=yz

(t)
i (x) is the largest other

logit corresponding to label i (from among all non-assigned labels). The margin measures how
different the assigned label is compared to a model’s belief in a label at some epoch. A negative
margin likely implies an incorrect prediction, whereas a positive margin implies a correct prediction.
The contribution to generalization of an example x is measured by averaging the margins of x across
all training epochs T which represents the Area Under the Margin (AUM) Pleiss et al. (2020), defined
as follows:

AUM(x, y) =
1

T

T∑
t=1

M(t)(x, y) (2)

Figure 1 shows the AUMs of two examples (one correctly labeled and another incorrectly labeled)
from an emotion dataset. In the first example, Makes me sad how brain damage affects boxers
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Figure 1: Comparison between the AUM of a correctly labeled example and a mislabeled example.

so much, its assigned (or gold) label is “sadness” which is correct and we observe how the logit
corresponding to the assigned label grows larger in each epoch, resulting in a positive high AUM.
In contrast, in the second example omg, that’s gonna be a hell of a reunion as well, the assigned
(gold) label is “sadness”, which is unarguably incorrect, and we observe how other logits, such as
the logit corresponding to the “excitement” emotion, are consistently larger than the logit of the
“sadness” emotion since the model learns through generalization (from other training examples) that
this example shares characteristics of the “excitement” class. Consequently, this example has a low
AUM, indicating that its assigned (gold) label is noisy.

Pleiss et al. (2020) first identify mislabeled samples by learning a threshold of separation between
the AUMs of clean and erroneous samples through a new artificial class that mimics the training
dynamics of mislabeled data and then remove all samples that fall under this threshold. We identified
two limilations of the AUM approach. First, we observed (through manual inspection) that through
this fixed threshold elimination, difficult but valuable samples that fall under the threshold are
unnecessarily removed, and hence, the model has access to less diverse and challenging samples.
Second, the current formulation of AUM considers a uniform penalty for each mislabeled sample,
irrespective of the semantic similarity between fine-grained classes. A mislabeled example should
have a larger negative margin when the wrongly assigned label is more distant from the (hidden)
true label and a smaller negative margin when the wrongly assigned label is closer to the (hidden)
true label. For example, a sample expressing “excitement” (hidden true label) should have a larger
negative margin if the sample is wrongly annotated as “sadness” and a smaller negative margin if the
sample is wrongly annotated as “joy”. Thus, we argue that the margin M should take into account
the inter-class semantic similarities and incur a higher penalty for semantically distant classes and a
lower penalty for closely related classes.

3.2 OUR PROPOSAL: LABEL-AWARE NOISE ELIMINATION

We now introduce LANE, our new approach that addresses the above limitations and improves
model robustness on fine-grained text classification under label noise. In our approach we redefine
the concept of margin to label-aware margin to account for the inter-class semantic similarities.
Moreover, instead of unnecessarily removing difficult but valuable samples from the training set if
they fall under the fixed AUM threshold, we use all samples from the training data, however weighted
according to their label-aware margins to reflect inter-class semantic similarities.

Label-aware Margin (LM) Let θ be a classifier that is trained to predict a task (e.g., sentiment
analysis) and Π be a weighting network that learns the semantic similarities between classes. To
leverage the inherent semantic similarities between classes for dynamic penalty estimation when
the assigned label and the prediction do not match we learn a soft-assignment of input samples into
all available classes C that accounts for inter-class semantic similarities. Concretely, Π optimizes
the following label-aware supervised contrastive loss (learned jointly with our classifier θ):

LLSCL =
∑
x∈B

−1

|Px|
∑
p∈Px

log
wx,yx · exp(hx · hp)∑

k∈B\{x} wx,yk
· exp(hx · hk)

(3)

where B is the current batch, Px is the set of positives p for example x (i.e., in the context of
supervised contrastive learning the positives are all examples that belong to the same class as x and
its augmentation Gunel et al. (2020); Khosla et al. (2020)). hx is the embedding of x produced by our
model θ. wx,yx and wx,yk

represent the soft-assignment of example x to its assigned label yx and all

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

TEXT
LOGITS M LM

SDN JOY FER ANG SRP DSG TRS ANT

x1 The doctors do not have any options for him. 1.1 0.45 1.2 1.8 0.27 1.56 0.11 −0.7 −0.6 −0.67

x2 I have found so much info and support on this site, and yet they accept me for who I am. 1.1 1.56 1.2 0.45 0.27 0.11 1.8 −0.7 −0.6 −1.15

Table 1: Comparison of Margin (M) and Label-aware Margin (LM) for two examples. The assigned label
(fear) is shown in red bold and the model predicted label for each example is shown in blue bold. For both
examples, we observe that M is −0.6 (i.e., 1.2− 1.8). In the first example, LM is rescaled slightly since the
assigned emotion fear is semantically close to the emotion corresponding to the largest other logit (i.e., anger).
In contrast, we observe that in the second example, the assigned emotion fear is semantically distant from the
emotion corresponding to the largest other logit which is trust, and hence, LM becomes much smaller.

the other non-assigned labels yk where k = 1, ..., C; k ̸= yx. To obtain these soft-assignments we uti-
lize the weighting network Π applied on top of our model, where Π can be viewed as a regular linear
layer that projects hx into a vector πx of length C, πx = Π(hx). Concretely, wx,y =

exp(πx,y)∑C
i=1 exp(πx,i)

.

Using these weights, we propose to rescale the margin and introduce the Label-aware Margin (LM):

LM(t)(x, y) =

{
1

wx,j
· M(t)(x, y) if M(t)(x, y) < 0 and j = argmaxi!=yz

(t)
i (x)

M(t)(x, y) otherwise
(4)

where wx,j is the weight obtained using the weighting network Π, which produces higher values
if the (potentially wrong) assigned label y of x is semantically close to the (hidden) true label j
predicted by the model, and lower values otherwise (i.e., if the potentially wrong assigned label is
semantically distant from the model prediction). Note that we scale the margins only if the margins
are negative, since these are the potentially problematic examples that may be overly ambiguous or
mislabeled. To showcase the difference between our proposed label-aware margin LM and the vanilla
margin M, we show in Table 1 two examples from an emotion dataset alongside the logits produced
by the model as well as the margin M and label-aware margin LM. Both of these examples have the
assigned label the fear emotion—while x1 can be viewed as ambiguous, x2 is clearly mislabeled.
However, although the margin of both examples is the same M = −0.6, we notice that the assigned
label fear is semantically close to the label corresponding to the largest other logit (i.e., anger)—the
model prediction in the first example, whereas in the second example, it is semantically distant from
the label corresponding to the largest other logit (i.e., trust)—the model prediction. We emphasize
that our LM captures this semantic difference between labels. Specifically, we observe that the LM
of the first example, where the prediction and the assigned label are semantically close, i.e., anger
and fear, is larger than the LM of the second example where the prediction and the assigned label are
semantically distant, i.e., trust and fear.

Average Label-aware Margin (ALM) At an arbitrary iteration t we measure the contribution of
training examples to learning and generalization by averaging the LMs across the training process,
from the beginning up until the current iteration t and obtain the Average Label-aware Margin (ALM)
as follows: ALM(t)(x, y) = 1

t

∑t
r=1 M(r)(x, y).

Mitigating the harmful effect of mislabed examples To mitigate the harmful effect of mislabeled
or noisy examples, we propose to use a weighted cross entropy loss during training and assign higher
weights for high-ALM examples and lower weights otherwise. Let N t = {xi | ALM(t)(xi, yi) < 0}
be the set of examples that have negative ALMs up until training iteration t and ALM(N t) be the
distribution of their ALMs. At t, we propose to scale down the loss on examples from N t for those
examples whose ALM is below the mean of the ALM distribution ALM(N t). Specifically, we
propose to dynamically fit a truncated Gaussian distribution of mean µt and variance σt at training
iteration t. We assign a weight for each example xi at iteration t as follows:

λt
CE(xi, yi) =

{
exp(− (ALM(t)

(xi,yi)−µt)
2

2σ2
t

) if xi ∈ N t and ALMt(xi, yi) < µt

1 otherwise
(5)

During training, we estimate the mean µt and variance σt using the historical predictions of the
model:
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µt =
1

|N t|
∑

(x,y)∈Nt

ALM(t)(x, y) (6)

σt =
1

|N t|
∑

(x,y)∈Nt

(ALM(t)(x, y)− µt)
2 (7)

Intuitively, a low weight for an example indicates that the example produced an ALM that is
consistently below the mean of the negative ALM distribution. As we have shown, such examples are
potentially mislabeled and may hurt generalization. To mitigate this effect, at each training iteration t
we simply rescale the cross entropy loss, assigning lower weight to potentially mislabeled examples:

LCE =

|B|∑
i=1

λt
CE(xi, yi) ·H(θ(xi), yi) (8)

where θ(x) is the probability ditribution of the model θ on example x, |B| is the batch size, and H is
the cross-entropy.

The final loss in LANE is a combination of the weighted cross entropy loss and the contrastive loss:

L = α · LCE + (1− α) · LLSCL (9)

In our experiments we set α = 0.5.

4 EXPERIMENTS

4.1 LABEL NOISE

We evaluate the effectiveness of LANE on ten datasets under various amounts of label noise. We
employ three setups: 1) Original datasets, where the label noise comes from annotation errors in the
dataset collection process, 2) 20% noise, where we randomly shuffle the labels of 20% of the training
data, and 3) 40% noise, where we perform the same process for 40% of the training examples.

4.2 EXPERIMENTAL SETUP

We carry out all our experiments using an Nvidia A5000 GPU. We use the HuggingFace Transformers
Wolf et al. (2020) library for our BERT implementation. The datasets we consider make their
train/validation/test splits available, hence, we use the provided splits in our experiments. Similar
to Khosla et al. (2020), to expand the positive set of examples in the contrastive loss, we augment
our data using synonym replacement Kolomiyets et al. (2011), SwitchOut Wang et al. (2018), and
backtranslation Tiedemann & Thottingal (2020). In backtranslation we translate from English to
German and back to English. For each batch, we generate 7 augmentations. For all datasets we
follow the evaluation metrics used in the works introducing the datasets. The initial batch size is set
to 32, hence the total batch size (i.e., including augmentations) is 256. In our training setup, we only
scale down the importance of examples during training if their ALM is below a threshold that we
set as the ALM mean of examples with negative ALMs (Eq. 6). We also experimented with different
ALM thresholds such as 0, but observed slightly worse performance than using the mean.

4.3 DATASETS

The datasets used to evaluate LANE are: 1. Empathetic Dialogues Rashkin et al. (2019), a dataset
composed of conversations between a speaker and a listener annotated with 32 emotions. We consider
solely the first turn of the conversation in our experiments, resulting in 22, 000 total examples. 2.
GoEmotions Demszky et al. (2020), a sentence-level dataset created using Reddit comments that
contains more than 58, 000 sentences annotated with 27 emotions. 3. ISEAR (International Survey
on Emotion Antecedents and Reactions) Scherer & Wallbott (1994), a dataset of 7, 700 personal
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experiences annotated with 7 emotions. 4. CancerEMO Sosea & Caragea (2020), a dataset of
8, 500 examples collected from a cancer forum annotated at sentence level with the 8 basic Plutchik-8
Plutchik (1980) emotions. 5. RCV1 Lewis et al. (2004), a large scale dataset composed of news
stories labeled with a total of 105 different topics. 6. SciHTC Sadat & Caragea (2022), a dataset
from 186, 160 scientific papers, annotated with 80 possible topics, 7. SST5 Socher et al. (2013b),
a dataset composed of 11, 855 sentences from movie reviews, annotated with five sentiment labels:
negative, somewhat negative, neutral, somewhat positive, and positive. 8. Amazon Review McAuley
& Leskovec (2013), a sentiment classification dataset composed of 600, 000 training and 130, 000
test Amazon reviews annotated with 5 sentiment classes. 9. Yelp Review Asghar (2016), a sentiment
classification dataset with 130, 000 training and 10, 000 test samples annotated with the same 5
classes, and 10. Yahoo Answer Chang et al. (2008), a topic classification dataset with 10 topic
classes, composed of 140, 000 training and 6, 000 test samples.

4.4 BASELINE MODELS

We use BERT Devlin et al. (2019) base uncased model in all experiments (denoted by BASE). We
compare LANE against methods that use training dynamics to assess the data quality, as well as
approaches focused on exploiting the relationships between classes and approaches aimed at learning
under label noise:

Data Cartography Following Swayamdipta et al. (2020), we identify three types of training
examples: easy-to-learn (E2L), hard-to-learn (H2L), and ambiguous (AMG) and analyze the
importance of each type to the training process by removing the other two types.

Noise Layer Following Goldberger & Ben-Reuven (2016), we introduce a noise layer to the BERT
model which we train for correct label estimation. We denote this model by NSE in our experiments.

Peer Loss Function We also compare our method against Peer Loss Function (PLF) Liu & Guo
(2020), a method that alters the training loss function to account for label noise.

Area Under the Margin We consider the AUM method Pleiss et al. (2020) as one of our baselines.
This method computes Area Under the Margin metric for each training example and eliminates
low-AUM examples that are potentially noisy, using a fixed threshhold for elimination.

Contrastive Learning: We compare LANE to the label-aware supervised contrastive learning (LCL)
method proposed by Suresh & Ong (2021) and the traditional supervised contrastive learning (SCL)
Khosla et al. (2020).

DISC Li et al. (2023) proposes an instance-specific dynamic thresholding mechanism that blocks
access to specific training examples based on the momentum of each instance’s memorization
strength. Additionally, DISC proposes to correct the labels of potentially noisy examples.

UNICON Karim et al. (2022) leverages semi-supervised learning (SSL) to mitigate the harmful
effects of noisy labels by considering the potentially noisy labeled data as unlabeled examples in
an SSL algorithm. UNICON also proposes a new selection mechanism for these unlabeled examples
during training.

5 RESULTS

Results on Original Datasets We show the results on our datasets in Table 2. We make the
following observations. LANE outperforms the baselines in all setups. We observe improvements
of 1.6% weighted F1 on ISEAR, 1.4% weighted F1 on RCV1, 1.5% accuracy on Amazon Review
and 1.3% accuracy on Yahoo over the best performing baseline. Notably, over the base BERT model,
we see a 2.9% weighted F1 improvement on GoEmotions and 3% improvement on Yahoo. We note
that LCL, which leverages inter-class relations through the label-aware contrastive learning loss is the
best performing baseline in 5 out of the 10 datasets. Since LANE utilizes similar inter-class relations
during training, we postulate improvements over LCL arise from correctly identifying mislabeled or
ambiguous examples and eliminating their harmful effect during training.

Results on 20% Noise Datasets The results obtained on the 20% noise (20N) datasets where 20% of
the labels are intentionally flipped are shown in Table 3. We observe that this setup is significantly
more challenging for the model. For instance, on Empathetic Dialogues the weighted F1 of the BASE
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Dataset Empathetic Dialogues (wF1) GoEmotions (wF1) ISEAR (wF1) CancerEmo (wF1) RCV1 (wF1)

BASE 58.5± 1.2 63.6± 1.2 71.5± 0.6 75.8± 0.8 56.8± 0.8
E2L 57.6± 0.8 63.2± 1.2 71.3± 0.7 75.9± 0.9 54.3± 1.1
H2L 58.9± 1.4 64.2± 0.7 72.0± 0.6 76.3± 1.3 55.8± 1.4
AMG 59.0± 0.6 64.8± 0.6 73.4± 0.5 76.1± 0.8 52.3± 1.1
NSE 58.1± 1.9 63.8± 1.1 72.2± 0.8 76.2± 0.7 55.7± 1.3
PLF 58.4± 1.1 63.4± 0.8 71.9± 1.2 75.9± 0.6 56.7± 2.2
AUM 58.4± 0.6 63.1± 1.3 71.8± 0.8 76.0± 0.9 56.3± 0.6
LCL 59.1± 1.0 64.8± 0.7 72.4± 0.5 76.5± 0.9 57.9± 0.6
SCL 58.9± 0.7 62.8± 1.1 71.5± 0.9 76.2± 0.6 56.9± 1.7
DISC 59.4± 0.9 63.2± 1.4 72.3± 1.3 76.4± 1.1 56.5± 1.4
UNICON 58.4± 0.7 63.1± 0.9 72.5± 1.1 76.6± 1.3 56.9± 1.1
LANE 60.8± 0.9 66.5± 0.5 74.3± 0.4 78.2± 0.7 59.3± 0.9

DATASET SciHTC (MF1) SST-5 (Acc) Amazon Review (Acc) Yelp (Acc) Yahoo (Acc)

BASE 32.5± 1.75 56.3± 0.6 67.5± 0.6 65.9± 0.6 75.4± 0.6
E2L 31.6± 1.5 55.7± 1.1 62.9± 0.9 62.8± 2.3 70.4± 1.5
H2L 32.2± 1.1 56.6± 1.4 67.9± 0.8 62.3± 1.7 74.1± 1.8
AMG 30.6± 1.1 55.1± 1.3 67.4± 1.1 65.1± 1.5 72.3± 1.7
NSE 32.8± 1.5 54.1± 1.1 65.8± 1.7 65.1± 1.3 74.6± 1.1
PLF 32.2± 1.4 55.7± 1.1 67.4± 2.1 65.8± 1.8 74.8± 1.6
AUM 31.2± 2.63 56.4± 0.9 66.4± 0.6 68.1± 0.6 72.9± 0.6
LCL 33.1± 1.42 57.6± 0.9 68.2± 0.6 66.8± 0.6 76.8± 0.6
SCL 32.7± 1.1 56.8± 1.5 67.8± 1.3 66.1± 1.7 75.3± 1.1
DISC 32.8± 1.5 56.7± 1.3 67.8± 2.4 66.4± 2.2 75.1± 1.7
UNICON 32.7± 1.1 56.5± 1.6 67.5± 1.4 67.9± 1.3 77.1± 1.5
LANE 34.1± 0.87 58.9± 0.4 69.7± 0.6 69.2± 0.6 78.4± 0.6

Table 2: Results of LANE on the fine-grained text classification datasets. The reported results are
averaged across five runs and standard deviations are provided. Best results are shown in bold blue
and second best are underlined.

Dataset Empathetic Dialogues (wF1) GoEmotions (wF1) ISEAR (wF1) CancerEmo (wF1) RCV1 (wF1)

BASE 11.6± 3.4 21.5± 2.8 37.6± 3.0 46.7± 1.9 44.4± 3.8
E2L 10.3± 0.8 22.6± 1.2 37.1± 0.7 47.5± 0.9 44.3± 1.5
H2L 10.6± 1.4 21.8± 0.7 37.3± 0.6 47.9± 1.3 45.8± 2.4
AMG 11.4± 1.2 22.1± 0.6 36.9± 0.5 48.4± 0.8 45.9± 2.7
NSE 10.2± 1.9 15.6± 1.1 36.4± 0.8 44.2± 0.7 44.9± 1.8
AUM 14.5± 0.6 23.5± 1.3 38.6± 0.8 49.8± 0.9 47.6± 2.7
SCL 10.4± 1.4 21.4± 1.3 37.3± 0.9 46.4± 1.1 45.2± 1.5
LCL 10.8± 3.24 22.1± 5.1 38.3± 1.5 46.6± 1.2 47.2± 2.2
DISC 11.3± 1.0 22.5± 0.7 40.5± 0.5 50.3± 0.9 47.1± 2.2

UNICON 10.4± 1.4 21.9± 1.2 39.5± 0.9 42.3± 0.9 49.2± 2.3
LANE 15.9± 1.3 24.3± 1.2 40.4± 0.8 52.5± 0.9 49.4± 2.1

DATASET SciHTC (MF1) SST-5 (Acc) Amazon Review (Acc) Yelp (Acc) Yahoo (Acc)

BASE 24.5± 4.6 48.9± 3.7 61.5± 1.5 60.7± 1.3 64.8± 1.7
E2L 24.1± 2.4 48.2± 2.7 60.7± 2.4 62.3± 2.9 64.9± 3.1
H2L 26.7± 2.3 48.7± 1.9 60.9± 2.3 62.6± 2.1 65.7± 1.8
AMG 26.9± 1.4 49.4± 1.5 61.3± 2.4 62.9± 2.3 66.5± 1.8
NSE 26.7± 4.3 50.4± 4.1 61.7± 3.5 63.5± 3.3 67.2± 2.5
AUM 27.4± 4.2 50.4± 2.5 62.4± 1.7 63.3± 1.4 65.9± 2.4
LCL 24.2± 3.9 48.5± 5.7 61.7± 2.4 63.1± 3.1 65.9± 3.0
SCL 24.1± 3.4 51.5± 3.2 62.3± 3.5 63.7± 3.9 66.8± 2.5

DISC 27.5± 2.1 51.7± 2.6 62.1± 2.7 63.2± 2.5 67.3± 2.1
UNICON 28.9± 3.4 50.8± 3.1 61.5± 3.7 62.3± 3.9 64.2± 3.7

LANE 30.5± 2.97 53.1± 1.6 63.1± 2.3 65.2± 3.1 68.9± 2.5

Table 3: Performance of LANE on the ten fine-grained classification datasets in 20% noise setting. The reported
results are averaged across five runs and standard deviations are provided. Best results are shown in bold blue
and second best are underlined.

model drops from 58.5% on the original dataset to 11.6% on the 20N dataset, with a similar trend
on all the other datasets. However, even in this more challenging setup, LANE still outperforms all
baselines in all setups. For example, on SST5, LANE outperforms AUM in accuracy by 2.7%, DISC
by 1.4%, UNICON by 2.3%, and SCL by 1.6%. The improvements over the base model are larger,
with an average performance increase of 4.5%.

Results on 40% Noise Datasets We show the results in this high-noise setup in Appendix A.

6 ANALYSIS

Ablation Study Here, we analyze the effectiveness of various components of our method. To this
end, we first design a version of LANE that uses averaged margins instead of ALMs so that the
semantic relations are not incorporated into the model. We achieve this by replacing the ALM term
in Eq. 5 with AUM and denote this method by LANE−sim. Second, we investigate the performance
of our approach when completely removing the ALM-based weighting. Specifically, we remove
the λ weight in Eq. 8 (or set it to 1 always) and train our model to optimize the combination of the
contrastive loss and the traditional cross-entropy. We denote this second approach by LANE−alm.
Finally, we compare LANE against the vanilla AUM Pleiss et al. (2020), which completely removes
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DATASET: Empathetic Dialogues (wF1) GoEmotions (mF1) ISEAR (Acc) CancerEmo (mF1) RCV1 (mF1)

LANE−sim 14.7± 1.1 22.9± 0.4 39.6± 0.5 50.1± 0.8 45.2± 0.8
LANE−alm 13.8± 0.9 21.6± 0.5 37.2± 0.8 46.1± 0.8 46.2± 1.4
AUM 14.5± 0.6 23.5± 1.3 38.6± 0.8 49.8± 0.9 47.6± 2.7
LANE 15.9± 1.3 24.3± 1.2 40.4± 0.8 52.5± 0.9 49.4± 2.1

DATASET SciHTC (MF1) SST-5 (Acc) Amazon Review (Acc) Yelp (Acc) Yahoo (Acc)

LANE−sim 28.5± 0.8 50.6± 0.8 61.2± 0.8 62.4± 0.8 67.1± 0.8
LANE−alm 29.3± 1.2 50.2± 1.2 61.3± 1.2 64.2± 1.2 66.3± 1.2
AUM 27.4± 4.2 50.4± 2.5 62.4± 1.7 63.3± 1.4 65.9± 2.4
LANE 30.5± 2.97 53.1± 1.6 63.1± 2.3 65.2± 3.1 68.9± 2.5

Table 4: Ablation study: comparison between LANE, LANE−sim, LANE−alm and vanilla AUM on the
datasets using 20% noise. Best results are shown in bold blue and second best are underlined.

DATASET: Empathetic Dialogues (wF1) GoEmotions (mF1) ISEAR (ACC) CancerEMO (mF1) RCV1 (mF1)

CHATGPT 12.8± 3.1 21.4± 2.5 37.3± 1.1 48.9± 1.9 42.9± 4.6
LLAMA-2 10.9± 3.7 20.4± 2.7 35.4± 1.6 50.2± 1.7 39.7± 1.8

LANE 15.9± 1.3 24.3± 1.2 40.4± 0.8 52.5± 0.9 49.4± 2.1

DATASET: SciHTC (MF1) SST-5 (Acc) Amazon Review (Acc) Yelp (Acc) Yahoo (Acc)

CHATGPT 28.3± 5.0 49.6± 0.6 62.6± 0.9 64.5± 0.9 64.9± 0.9
LLAMA-2 15.1± 5.2 54.2± 0.4 61.3± 2.3 62.3± 1.4 61.1 ±2.3

LANE 30.5± 2.97 53.1± 1.6 63.1± 2.3 65.2± 3.1 68.9± 2.5

Table 5: Performance of LANE on the ten benchmark datasets compared with LLMs. Best results are shown in
bold blue and second best are underlined.

examples in the training set that have low AUMs. We show the results obtained on 20N datasets
in Table 4. We observe that LANE outperforms LANE−sim, LANE−alm and AUM in all setups.
Notably, we see a large improvement on SST-5, where LANE pushes the accuracy score by 2.5%
over LANE−sim, by 2.9% over LANE−alm and by 2.6% over AUM. On RCV1, which has a large
number of classes, LANE improves the micro F1 score significantly, obtaining 49.4%, a boost of
4.2% over LANE−sim, 3.2% over LANE−alm and 1.8% over AUM. These results show that our
proposed Average Label-aware Margin and semantics-aware contrastive loss play an important role in
the success of LANE. To gain further insights into LANE we show in Appendix B an error analysis
of LANE predictions on the 20% noise ISEAR dataset.

Comparison with Large Language Models We test our approach against few-shot large language
models: ChatGPT and Llama-2 13B Touvron et al. (2023) to compare the robustess to label noise of
LANE with that of popular LLMs in 20% noise setup. For all datasets except SciHTC we fit a large
number of examples in the prompt and set the number of few-shot examples to 100. We use only 10
few-shot examples for SciHTC since the examples (i.e., paper abstracts) are much longer and exceed
the context window. Similar to the original 20% noise setup, 20% of the few-shot examples are
purposefully mislabeled. To account for the variance produced by the particular few-shot examples
selected, we run ChatGPT 10 times with different few-shot examples in the prompt and report average
values. Similarly, we run Llama-2 20 times with different few-shot examples and show results in
Table 5. We observe that LANE outperforms the LLMs on all datasets except SST5. Notably, LANE
improves upon Llama-2 by 15.4% on SciHTC and by 9.7% on RCV1 and improves the performance
over ChatGPT by 3.1% accuracy on ISEAR and 6.5% micro F1 on RCV1. Among the LLMs,
ChatGPT obtains the best results, outperforming Llama-2 especially in complex tasks such as RCV1
and SciHTC. Concretely, ChatGPT obtains 28.3% macro F1 on RCV1, a 13.2% improvement over
Llama-2.

7 CONCLUSION

In this work, we introduced LANE, a new approach that boosts the capabilities of deep learning models
when learning under increased label noise. LANE leverages the inter-class semantic similarities and
utilizes training dynamics to boost the performance in fine-grained text classification. We tested
LANE on ten fine-grained text classification datasets where it obtained improvements in performance
over strong baselines and prior works. In the future, we plan to extend our approach to other domains
and data types, e.g., image classification and the legal domain. We make our code available to further
research in this area.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Muhammad Abdul-Mageed and Lyle Ungar. Emonet: Fine-grained emotion detection with gated
recurrent neural networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 718–728, 2017.

Nabiha Asghar. Yelp dataset challenge: Review rating prediction. arXiv preprint arXiv:1605.05362,
2016.

S. Bao, S. Xu, L. Zhang, R. Yan, Z. Su, D. Han, and Y. Yu. Joint emotion-topic modeling for social
affective text mining. In 2009 Ninth IEEE International Conference on Data Mining, pp. 699–704,
2009.

Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds
for neural networks. CoRR, abs/1706.08498, 2017. URL http://arxiv.org/abs/1706.
08498.

Carla E Brodley and Mark A Friedl. Identifying mislabeled training data. Journal of artificial
intelligence research, 11:131–167, 1999.

Ming-Wei Chang, Lev-Arie Ratinov, Dan Roth, and Vivek Srikumar. Importance of semantic
representation: Dataless classification. In Aaai, volume 2, pp. 830–835, 2008.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
Sujith Ravi. GoEmotions: A dataset of fine-grained emotions. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 4040–4054, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.372. URL https://aclanthology.org/
2020.acl-main.372.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//www.aclweb.org/anthology/N19-1423.

Gamaleldin Fathy Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, and Samy Bengio. Large
margin deep networks for classification. 2018. URL https://arxiv.org/pdf/1803.
05598.pdf.

Erik Englesson and Hossein Azizpour. Generalized jensen-shannon divergence loss for learning with
noisy labels. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 30284–30297. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/fe2d010308a6b3799a3d9c728ee74244-Paper.pdf.

Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting. Journal-Japanese
Society For Artificial Intelligence, 14(771-780):1612, 1999.

Arpit Garg, Cuong Nguyen, Rafael Felix, Thanh-Toan Do, and Gustavo Carneiro. Instance-dependent
noisy label learning via graphical modelling. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), pp. 2288–2298, January 2023.

Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
layer. 2016.

Beliz Gunel, Jingfei Du, Alexis Conneau, and Ves Stoyanov. Supervised contrastive learning for
pre-trained language model fine-tuning. arXiv preprint arXiv:2011.01403, 2020.

Jumayel Islam, Robert E Mercer, and Lu Xiao. Multi-channel convolutional neural network for twitter
emotion and sentiment recognition. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pp. 1355–1365, 2019.

10

http://arxiv.org/abs/1706.08498
http://arxiv.org/abs/1706.08498
https://aclanthology.org/2020.acl-main.372
https://aclanthology.org/2020.acl-main.372
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://arxiv.org/pdf/1803.05598.pdf
https://arxiv.org/pdf/1803.05598.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fe2d010308a6b3799a3d9c728ee74244-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/fe2d010308a6b3799a3d9c728ee74244-Paper.pdf


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generalization gap
in deep networks with margin distributions, 2018. URL https://arxiv.org/abs/1810.
00113.

Herman Kahn and Andy W Marshall. Methods of reducing sample size in monte carlo computations.
Journal of the Operations Research Society of America, 1(5):263–278, 1953.

Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rahnavard, Ajmal Mian, and Mubarak Shah.
Unicon: Combating label noise through uniform selection and contrastive learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9676–9686,
June 2022.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

Oleksandr Kolomiyets, Steven Bethard, and Marie-Francine Moens. Model-portability experiments
for textual temporal analysis. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies: Short Papers - Volume 2, HLT ’11,
pp. 271–276, USA, 2011. Association for Computational Linguistics. ISBN 9781932432886.

David D Lewis, Yiming Yang, Tony Russell-Rose, and Fan Li. Rcv1: A new benchmark collection
for text categorization research. Journal of machine learning research, 5(Apr):361–397, 2004.

Xuefeng Li, Tongliang Liu, Bo Han, Gang Niu, and Masashi Sugiyama. Provably end-to-end label-
noise learning without anchor points. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 6403–6413. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/li21l.html.

Yifan Li, Hu Han, Shiguang Shan, and Xilin Chen. Disc: Learning from noisy labels via dynamic
instance-specific selection and correction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 24070–24079, 2023.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pp. 2980–2988,
2017.

Chen Liu, Muhammad Osama, and Anderson De Andrade. Dens: A dataset for multi-class emotion
analysis. arXiv preprint arXiv:1910.11769, 2019.

Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting. IEEE
Transactions on pattern analysis and machine intelligence, 38(3):447–461, 2015.

Yang Liu and Hongyi Guo. Peer loss functions: Learning from noisy labels without knowing noise
rates. In International Conference on Machine Learning, pp. 6226–6236. PMLR, 2020.

Katerina Margatina, Giorgos Vernikos, Loïc Barrault, and Nikolaos Aletras. Active learning by
acquiring contrastive examples. arXiv preprint arXiv:2109.03764, 2021.

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating dimen-
sions with review text. In Proceedings of the 7th ACM conference on Recommender systems, pp.
165–172, 2013.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Distant supervision for relation extraction
without labeled data. In Keh-Yih Su, Jian Su, Janyce Wiebe, and Haizhou Li (eds.), Proceedings
of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP, pp. 1003–1011, Suntec, Singapore,
August 2009. Association for Computational Linguistics. URL https://aclanthology.
org/P09-1113.

11

https://arxiv.org/abs/1810.00113
https://arxiv.org/abs/1810.00113
https://proceedings.mlr.press/v139/li21l.html
https://proceedings.mlr.press/v139/li21l.html
https://aclanthology.org/P09-1113
https://aclanthology.org/P09-1113


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Saif Mohammad. #emotional tweets. In *SEM 2012: The First Joint Conference on Lexical and
Computational Semantics – Volume 1: Proceedings of the main conference and the shared task,
and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval
2012), pp. 246–255, Montréal, Canada, 7-8 June 2012. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/S12-1033.

Barbara Plank. The’problem’of human label variation: On ground truth in data, modeling and
evaluation. arXiv preprint arXiv:2211.02570, 2022.

Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying mislabeled
data using the area under the margin ranking. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
17044–17056. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/c6102b3727b2a7d8b1bb6981147081ef-Paper.pdf.

Robert Plutchik. A general psychoevolutionary theory of emotion. In Theories of emotion, pp. 3–33.
Elsevier, 1980.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and Y-Lan Boureau. Towards empathetic
open-domain conversation models: a new benchmark and dataset. In ACL, 2019.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for
robust deep learning. In International conference on machine learning, pp. 4334–4343. PMLR,
2018.

Mobashir Sadat and Cornelia Caragea. Hierarchical multi-label classification of scientific documents.
In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 8923–8937, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.610. URL https://aclanthology.org/2022.emnlp-main.610.

Shreyas Saxena, Oncel Tuzel, and Dennis DeCoste. Data parameters: A new family of parameters for
learning a differentiable curriculum. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/
file/926ffc0ca56636b9e73c565cf994ea5a-Paper.pdf.

Klaus R Scherer and Harald G Wallbott. Evidence for universality and cultural variation of differential
emotion response patterning. Journal of personality and social psychology, 66(2):310, 1994.

Abhinav Shrivastava, Tomasz Malisiewicz, Abhinav Gupta, and Alexei A Efros. Data-driven visual
similarity for cross-domain image matching. ACM Trans. Graph., 30(6):154, 2011.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp.
1631–1642, Seattle, Washington, USA, October 2013a. Association for Computational Linguistics.
URL https://aclanthology.org/D13-1170.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013b.

Tiberiu Sosea and Cornelia Caragea. Canceremo: A dataset for fine-grained emotion detection.
In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 8892–8904, 2020.

Carlo Strapparava, Rada Mihalcea, and Alberto Battocchi. A parallel corpus of music and lyrics
annotated with emotions. In LREC, pp. 2343–2346. Citeseer, 2012.

12

https://www.aclweb.org/anthology/S12-1033
https://proceedings.neurips.cc/paper/2020/file/c6102b3727b2a7d8b1bb6981147081ef-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c6102b3727b2a7d8b1bb6981147081ef-Paper.pdf
https://aclanthology.org/2022.emnlp-main.610
https://proceedings.neurips.cc/paper/2019/file/926ffc0ca56636b9e73c565cf994ea5a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/926ffc0ca56636b9e73c565cf994ea5a-Paper.pdf
https://aclanthology.org/D13-1170


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Varsha Suresh and Desmond Ong. Not all negatives are equal: Label-aware contrastive loss for fine-
grained text classification. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 4381–4394, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.359. URL
https://aclanthology.org/2021.emnlp-main.359.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A.
Smith, and Yejin Choi. Dataset cartography: Mapping and diagnosing datasets with training
dynamics. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 9275–9293, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.746. URL https://aclanthology.org/
2020.emnlp-main.746.

Jörg Tiedemann and Santhosh Thottingal. OPUS-MT — Building open translation services for the
World. In Proceedings of the 22nd Annual Conferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal, 2020.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan, and Amit P Sheth. Harnessing twitter" big
data" for automatic emotion identification. In 2012 International Conference on Privacy, Security,
Risk and Trust and 2012 International Confernece on Social Computing, pp. 587–592. IEEE, 2012.

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham Neubig. SwitchOut: an efficient data augmentation
algorithm for neural machine translation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 856–861, Brussels, Belgium, October-November
2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1100. URL https:
//aclanthology.org/D18-1100.

Hongxin Wei, Huiping Zhuang, Renchunzi Xie, Lei Feng, Gang Niu, Bo An, and Yixuan Li.
Mitigating memorization of noisy labels by clipping the model prediction. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 36868–36886. PMLR, 23–29 Jul 2023a. URL
https://proceedings.mlr.press/v202/wei23e.html.

Jiaheng Wei, Zhaowei Zhu, Tianyi Luo, Ehsan Amid, Abhishek Kumar, and Yang Liu. To aggregate
or not? learning with separate noisy labels. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, KDD ’23, pp. 2523–2535, New York, NY, USA, 2023b.
Association for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305.3599522.
URL https://doi.org/10.1145/3580305.3599522.

Qi Wei, Lei Feng, Haoliang Sun, Ren Wang, Chenhui Guo, and Yilong Yin. Fine-grained classification
with noisy labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11651–11660, June 2023c.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL https://www.
aclweb.org/anthology/2020.emnlp-demos.6.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Mike Zhang and Barbara Plank. Cartography active learning. arXiv preprint arXiv:2109.04282,
2021.

13

https://aclanthology.org/2021.emnlp-main.359
https://aclanthology.org/2020.emnlp-main.746
https://aclanthology.org/2020.emnlp-main.746
https://aclanthology.org/D18-1100
https://aclanthology.org/D18-1100
https://proceedings.mlr.press/v202/wei23e.html
https://doi.org/10.1145/3580305.3599522
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Dataset Empathetic Dialogues (wF1) GoEmotions (wF1) ISEAR (wF1) CancerEmo (wF1) RCV1 (wF1)

BASE − − − − −
E2L − − − − −
H2L − − − − −
AMG − − − − −
NSE − − − − 31.4± 1.7
AUM 10.4± 0.6 17.5± 1.3 27.8± 0.8 41.8± 0.9 32.5± 1.3
LCL − − − − −
SCL − − − − −

DISC 14.1± 1.7 19.6± 0.7 31.4± 0.5 47.6± 0.9 33.7± 1.5
UNICON 13.7± 1.4 17.4± 1.2 33.1± 0.9 46.5± 0.9 34.6± 1.5

LANE 14.6± 1.2 20.5± 0.9 35.1± 0.7 50.1± 0.6 38.2± 1.7

DATASET SciHTC (MF1) SST-5 (Acc) Amazon Review (Acc) Yelp (Acc) Yahoo (Acc)

BASE − − − − −
E2L − − − − −
H2L − − − − −
AMG − − − − −
NSE 14.8± 1.5 41.6± 2.3 - 44.7± 2.6 -
AUM 17.2± 1.4 42.6± 1.5 51.4± 1.1 52.6± 1.8 42.7± 1.9
LCL − − − − −
SCL − − − − −

DISC 18.5± 2.3 43.8± 1.8 52.9± 1.9 53.8± 2.3 44.7± 2.1
UNICON 19.6± 1.5 43.1± 1.6 55.2± 1.3 53.9± 1.7 44.7± 2.1

LANE 20.5± 1.5 45.7± 1.3 56.8± 2.2 56.2± 2.3 46.3± 2.5

Table 6: Performance of LANE on the the ten benchmark datasets under 40% label noise. The reported results
are averaged across five runs and standard deviations are provided. Best results are shown in bold blue and
second best are underlined. Results marked with − indicate that the model did not converge.

A DATASETS WITH 40% LABEL NOISE

We show in Table 6 results on the 40% noise (40N) datasets. Results marked with - indicate that the
model did not convege. We notice that LANE stays effective across the ten datasets, and we observe
that AUM yields poor results on this dataset with very high amounts of noise, indicating that it may
not work in high-noise setups. For example, AUM outperforms DISC by an average of 1.5% on 20N
across the datasets whereas DISC outperforms AUM on 40N by a significant 2.9%. Critically, LANE
outperforms both DISC and AUM on 40N by an average of 2.2% and 6.2%, respectively.

B ERROR ANALYSIS

To provide additional insights into our method, we show in Figure 2 a confusion matrix of our
LANE approach compared with LANE−alm and a base BERT model on the 20N ISEAR dataset.
We make a few observations. First, we note that LANE−alm improves the capabilities of the model
over the plain BERT to distinguish between closely related emotions. For example, we see that
there are significantly fewer prediction errors confusing disgust and anger or sadness and anger.
This result aligns with the purpose of the contrastive loss in LANE−alm, which tries to produce
language representations that are useful for distinguishing between confusable classes such as anger,
disgust, and sadness. Interestingly, we notice that while the performance on closely confusable
classes improves, the performance of the model on opposite or more dissimilar classes degrades. For
instance, we observe that the model predicts significantly more examples with disgust as true label in
the joy class. However, our LANE solves this drawback and we note that the confusability between
opposite classes is considerably improved, outperforming the base BERT model as well substantially.
Thus, the combination of contrastive learning with our label-aware approach for learning under
label noise is extremely effective, denoting that the two components are complementary by nature:
while LANE−alm improves the capabilities of the model of distinguishing between easily confusable
classes, our full LANE model improves on both highly confusable/overlapping classes and distant
classes.
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Figure 2: Confusion matrices on the ISEAR dataset created using 20% noise. We compare LANE with a vanilla
BERT base model and LANE−alm ablation.
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