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Abstract

We explore the potential for creative neural network models to learn from each other.
To enable this, we train two policy models using the exactly same architectures,
configurations, and data, but with different random seeds. Then, we obtain a judge
model that automatically rates the performance. We take samples from each policy
model, rate them, and optimize each model by maximizing the probability of the
better sample and minimizing the probability of the worse sample, using a popular
model alignment technique, Direct Preference Optimization (DPO), in an online
manner. The results show that our approach effectively improves the performance
of models in three distinct, open-ended creative tasks: symbolic music generation,
lyric generation, and lyric translation. However, it shows minimal benefit for a
closed-ended task, Georgian-to-English machine translation. We will release the
Python implementation upon the paper’s acceptance.

1 Introduction

Learning from each other has been established to be a crucial component in human creativity
development, according to psychological and pedagogical literature [[25, [2]. Humans share ideas to
enhance the aesthetic quality of their creative work. This process differs fundamentally from solving
mathematical problems or translating languages [8], which typically have determinate solutions
where learning from the answer key might be quicker than learning from others [3]].

Building on insights from these literatures, we explore the potential for creative neural network
models to learn from one another. To enable this, we train two policy models using the exactly
same configurations, architecture, and data, but with different random seeds. We take samples from
each policy model, where the samples are rated by a neural or non-neural judge model in an online
manner. Each model is optimized to maximize the probability of the better sample and minimize
the probability of the worse sample, using a popular model alignment technique, Direct Preference
Optimization (DPO) [22].

Our co-training framework may superficially resemble two-player game models, representatively
Adversarial Artificial Curiosity (AC) [26]], Predictability Minimization (PM) [27] and Generative
Adversarial Networks (GANS) [7] where two different networks are simultaneously trained to achieve
better performance than its counterpart. However, a key limitation of these frameworks is the difficulty
in balancing two models, often leading to training instability and mode collapse. In contrast, our
co-training mechanism is designed to be inherently self-balancing as co-trained models have been
pre-trained using the same architecture, methods, and data.

We evaluate our method across diverse set of tasks with varying degress of creative demand. The
results show that the proposed framework effectively improves the performance of models in three
distinct, open-ended creative tasks: symbolic music generation, lyric generation, and lyric translation.
Moving further, we demonstrate that the method’s benefits compared to existing methods are confined
to creative tasks, showing minimal benefit on a closed-ended task, conventional machine translation.
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2 Methods and Experiments

2.1 MultiOnlineDPO

We enable neural networks to learn from each other, with a simple method we call MultiOnlineDPO.
In MultiOnlineDPO, we train two policy models with the same architectures, configurations, and
data, but with different random seeds. Therefore, the two policy models are expected to have different
weights due to random initialization, but their overall performance is expected to be comparable.
Then, we obtain a judge model which automatically rates the performance of policy models. A judge
model can be a neural model, a non-neural model, or a combination of both. During the DPO stage,
we take samples from each policy models and the samples are rated by the pre-defined judge model.
Using the DPO loss [22], both models are optimized to maximize the probability of the winner sample
and minimize the probability of the loser sample.

2.2 Tasks and Implementation Details

To assess the effectiveness of MultiOnlineDPO, we apply this method to four different tasks:.

In Symbolic Music Generation, the objective of the policy model is to generate the next symbolic
music sequence given a preceding sequence. Each policy model adopts a LLaMA architecture [28]]
with a pre-trained tokenizer (Natooz/Maestro-REMI-bpe20k) [6]. During the DPO phase, each
model generates 128 tokens conditioned on the preceding 128 tokens which are optimized to best
follow the prompt tokens. In Lyric Generation, the policy model aims to produce subsequent lyric
lines in English, adhering to specified syllable constraints, given an initial line of lyrics. We employ
an encoder—decoder architecture [23]] for training the policy model, incorporating syllable count
tokens [9]], where <SYLn> specifies that the corresponding lyric line should contain 7 syllables. For
example, the input “<SYL3> One more time <SYL5> <SYL6> ” instructs the model to generate two
lyric lines following “One more time”, which consists of three syllables, with respective syllable
counts of 5 and 6. In Lyric Translation, the policy model aims to translate Korean lyrics into English
lyrics while maintaining syllable count constraints. Note that the task is inherently open-ended
because lyric translation often avoids literal translation in order to meet syllable count constraints
and preserve singability [19,[15]]. Following the approach of [14], we train two policy models based
on the MarianMT architecture [[12]. Similar to the lyric generation task, the syllable counts of
translated lyrics are controlled using syllable count tokens <SYLn> [9]]. Following the previous
approach [14], training is conducted in three stages. In the first stage, the model is trained on
conventional Korean-to-English machine translation data. In the second stage, it is trained on non-
singable lyric translation data, in which the target texts consist of English commercial lyrics and the
source texts are their Korean machine translation. In the final stage, it is trained on singable lyric
translation data where Korean and English singable lyrics for the same songs are paired section-by-
section. In Conventional Machine Translation, a policy model translates Georgian to English with
a pre-trained Georgian encoder (Davit6174/georgian-distilbert-mlm) and pre-trained English
decoder (bert-base-uncased) [3].

Except for the final stage of lyric translation, where the model is trained for one epoch without a
validation stage, all policy models are trained on the training set with validation performed every
epoch. Training stops when the validation loss fails to improve for three consecutive epochs. Detailed
training configurations for each policy model are provided in Appendix [A]

During the DPO stage, the learning rate is fixed at 1 x 10~ for all tasks. Each training sample goes
through a single DPO cycle, consisting of sampling, rating with the judge model, and optimization,
using the DPO loss with a batch size of 32.

2.3 Design of Judge Model

When designing the judge models, we adhere to one key requirement: the Best of 2 approach, where
two policy models generate outputs independently and the judge model selects the better output
for each item in the evaluation set, must achieve higher scores across all objective metrics than
any of each policy model. This criterion ensures that the judge model can distinguish and select
higher-quality outputs, at least to some extent. In Appendix [B] we compare the detailed objecctive
evaluation results of the Best-of-2 approach with those of the two policy models to demonstrate that
our judge models meet this criterion.



In Symbolic Music Generation, the judge model is a neural network that estimates the probability
that two sequences are consecutive, where each sequence consists of 128 tokens. For its training, we
employ a BERT-based architecture [3]] on pairs of sequences drawn from the training and validation
sets, labeling them as 1 if they are truly consecutive and 0 if randomly sampled from different tracks.
In Lyric Generation and Lyric Translation, we consider both syllable-count fidelity and semantic
similarity. The judge model evaluates performance using the formula SCD x (Simg — 1), where
SC'D denotes the Syllable Count Distance [15], and Sim represents sentence similarity. Specifically,
Sims is defined as the cosine similarity between embeddings of the ground truth and the generated
lyrics, computed using the same pre-trained SentenceBERT model (all-MinilLM-L6-v2) [24].
In Conventional Machine Translation, the judge model assesses the performance via sentence
similarity, using the same pre-trained SentenceBERT model as in the previous tasks.

2.4 Dataset

For Symbolic Music Generation, the policy models are trained and validated on the MAESTRO [[11]]
and GiantMIDI-Piano [16]] datasets using a 9:1 split. Evaluation is performed on Aria-MIDI [1].
For each song, the first 128 tokens are used as prompt tokens, and the subsequent 128 tokens serve
as ground-truth tokens. For Lyric Generation, we divide LyCon [13]], a dataset of artificially
generated lyrics for 7,863 song, into training, validation, and evaluation sets with an 8:1:1 ratio. For
Lyric Translation, following previous work [14], we use three stages of data: Korean-to-English
machine translation data (500k sentence pairs [21]), non-singable lyric translation data (English
commercial songs and their Korean machine translation), and singable lyric translation data [14].
Machine translation and non-singable lyric translation datasets are split into 9:1 ratios for training and
validation. The singable lyric translation dataset is split into a 9:1 ratio for training and evaluation. For
Conventional Machine Translation, we obtain the OpenSubtitles dataset [17]] and split Georgian-
English pairs into 8:1:1 for training, validation, and evaluation.

2.5 Evaluation Metrics

In Symbolic Music Generation, we compare the distributions of ground-truth and generated music
(both consisting of 128 tokens) with respect to pitch and beat. Specifically, we compute the distribu-
tions of pitch and beat (quantized to 1/16 beat) and evaluate their differences using KL divergence. We
refer to these as Pitch Divergence and Beat Divergence, respectively. In Lyric Generation and Lyric
Translation, we compare the ground truth and generated lyrics in terms of syllable count and seman-
tic similarity. For syllable count evaluation, we use the Syllable Count Distance (SCD) metric [15] to
measures differences in syllable counts. Semantic similarity is measured using BERTScoreE] [29]. In
Conventional Machine Translation, we evaluate translational quality using n-gram—based metrics,
specifically BLEU (n = 1, 2) [20]], along with one neural metric, BERTScore [29], by comparing the
translations to the ground truth.

2.6 Models for Comparison

We evaluate our method, MultiOnlineDPO, by comparing it against alternative models to assess its
effectiveness:

Baseline refers to a policy model that has not undergone the DPO stage. Specifically, upon training
two policy models with different random seeds, we define the primary baseline as the model that
attains a higher win rate when tested on the evaluation set—according to the judge model—while
the secondary baseline refers to the other model. Their performances are expected to be comparable,
given the symmetry in training methods, datasets, and architectures; the win rates of the primary
baseline models are 50.97%, 52.48%, 54.01%, and 52.15% in symbolic music generation, lyric
generation, lyric translation, and conventional machine translation, respectively.

SelfOnlineDPO is similar to our method, but both samples are generated by a primary baseline
model. It is worth noting that this approach is essentially equivalent to the previously proposed
method, known as Online DPO [4}[10]. Each cycle, comprising sampling, rating, and optimization, is
performed with a batch size of 32, consistent with our method.

'We use FacebookAI/roberta-large [I8] embeddings to compute BERTScore, and report the F1 variant
throughout this paper.



Table 1: Objective Evaluation Results

Pitch Divergence Beat Divergence SCD BERTScore
W) W) OO
Baseline (Primary) 13.04 9.65 Baseline (Primary) 1097 85.70
Baseline (Secondary)  13.05 9.69 Baseline (Secondary) 11.37  85.70
SelfOnlineDPO 12.78 9.27 SelfOnlineDPO 10.84 85.74
MultiOnlineDPO 12.71 9.09 MultiOnlineDPO 9.53 85.84
(a) Symbolic Music Generation (b) Lyric Generation
SCD  BERTScore BLEU-1 BLEU-2 BERTScore
O m M O]
Baseline (Primary) 36.77 81.61 Baseline (Primary) 23.66 15.37 85.29
Baseline (Secondary) 40.83  81.89 Baseline (Secondary) 23.54 15.10 85.06
SelfOnlineDPO 51.26  81.71 SelfOnlineDPO 25.65 16.77 85.41
MultiOnlineDPO 32.80 81.74 MultiOnlineDPO 25.30 16.45 85.49
(c) Lyric Translation (d) Conventional Machine Translation

In the following section, we report the performance of the models with the lowest validation loss.
For the SelfOnlineDPO and MultiOnlineDPO models, validation is performed every 100 cycles. For
MultiOnlineDPO, we report the performance of the primary model after the DPO stage.

3 Results and Analysis

We provide evaluation results in Table |1} Overall, SelfOnlineDPO proves effective in improving
performance. In particular, it yields consistent gains across two creative tasks (symbolic music
generation and lyric generation) and one closed-ended task (machine translation). However, in
lyric translation, convergence was unstable: minimal improvements in BERTScore came at the
cost of significantly higher syllable count distance compared to the baseline models. In contrast,
MultiOnlineDPO achieves improvements over SelfOnlineDPO across all creative tasks, including
symbolic music generation, lyric generation, and lyric translation. Notably, unlike SelfOnlineDPO,
MultiOnlineDPO simultaneously reduces syllable count distance while achieving higher semantic
similarity than SelfOnlineDPO. However, in conventional machine translation, MultiOnlineDPO
does not provide a clear advantage. Although it improves BERTScore relative to SelfOnlineDPO,
BLEU scores actually decline. We hypothesize that this is due to the limited number of valid outputs
in machine translation. SelfOnlineDPO alone appears sufficient to produce a diverse enough dataset.
In MultiOnlineDPO, many instances involved the primary and secondary baseline models producing
identical outputs, leaving the system with little to learn. As a result, the benefit of incorporating
multiple models is minimal in this setting.

In contrast, three applications in open-ended tasks show clear advantages for MultiOnlineDPO where
the primary and secondary baseline models almost always generate distinct outputs even under
identical inference conditions. This diversity enables each model to access higher-quality and varied
samples than the SelfOnlineDPO approach, which must generate data from a single model. The
limited success of SelfOnlineDPO in lyric translation further supports this view: MultiOnlineDPO
models appear better able to access the higher-quality data needed for stable convergence, while
SelfOnlineDPO appears to produce lower-quality samples when relying solely on its own generations.

4 Conclusion

In this paper, we introduced MultiOnlineDPO, an approach in which alignment samples are drawn
from two independently trained models with identical architectures, configurations, and data but
different random seeds, rather than from a single model, essentially enabling the models to learn from
one another. We show that this method is particularly effective for open-ended, creative tasks—those
requiring divergent rather than convergent thinking in educational psychology terms [8]—as demon-
strated in applications such as symbolic music generation, lyric generation, and lyric translation.
We hypothesize that the diversity introduced by different random initializations of the two mod-
els contributes to the improved performance in such tasks. In contrast, because SelfOnlineDPO
models can already generate sufficiently diverse data for closed-ended tasks using a single model,
MultiOnlineDPO did not yield significant improvements in those cases.
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A Detailed Baseline Model Configurations

A.1 Symbolic Music Generation
Model Architecture
* Tokenizer: Pre-trained BPE tokenizer (Natooz/Maestro-REMI-bpe20k) [6] with vocabu-
lary size of 20,000
* Hidden Size: 768
¢ Intermediate Size: 3,072 (4 x hidden size for FFN)
¢ Number of Layers: 12
* Attention Heads: 12
¢ Key-Value Heads: 12 (no grouped-query attention)
¢ Activation Function: SiLU (SwiGLU)
* Position Embeddings: Rotary Position Embedding (RoPE) with # = 10, 000
¢ Maximum Position: 2,048
» Normalization: RMSNorm with e = 106

¢ Attention Dropout: 0.1

Training Configuration

* Batch Size: 32

* Learning Rate: 10~*

¢ Weight Decay: 0.01

e Optimizer: AdamW

¢ Warmup Steps: 500

* Maximum Epochs: 100

* Mixed Precision: FP16

* Gradient Checkpointing: Enabled

A.2 Lyric Generation
Training Configuration

* Batch Size: 32

* Learning Rate: 5 x 107
¢ Weight Decay: 0.01

* Optimizer: AdamW

* Scheduler: Linear schedule with 10% warmup

A.3 Lyric Translation
Model Architecture

¢ Encoder Layers: 6

* Decoder Layers: 6

* Hidden Size: 512

¢ FFN Dimension: 2,048

» Attention Heads: 8 per layer
¢ Maximum Position: 1,024



Training Configuration

* Batch Size: 32
 Learning Rate: 1 x 107
* Weight Decay: 0.01

¢ Optimizer: AdamW

¢ Warmup Steps: 500

A.4 Conventional Machine Translation
Model Architecture

* Encoder: Georgian DistilBERT (Davit6174/georgian-distilbert-mlm)

Hidden Size: 768

Layers: 6

Attention Heads: 12

FEN Size: 3,072

Dropout: 0.1

* Decoder: BERT-based decoder (bert-base-uncased) [5]
— Hidden Size: 768

Layers: 6

Attention Heads: 12

FEN Size: 3,072

Dropout: 0.1

* Maximum Sequence Length: 128

Training Configuration

* Batch Size: 16

* Learning Rate: 5 x 107

* Optimizer: AdamW

* Scheduler: Linear schedule with warmup
* Warmup Steps: 1,000

¢ Maximum Epochs: 100



Table 2: Comparing the Best-of-2 approach with the primary and secondary baseline models

(a) Symbolic Music Generation

Pitch Divergence | Beat Divergence
Primary 13.04 9.65
Secondary | 13.05 9.69
Bestof2 | 7.91 5.13

(b) Lyric Generation

SCD | BERTScore
Primary 10.97 | 85.70
Secondary | 11.37 | 85.70
Best of 2 9.22 | 85.88

(c) Lyric Translation

SCD | BERTScore
Primary 36.77 | 81.61
Secondary | 40.83 | 81.89
Best of 2 22.09 | 82.02

(d) Conventional Machine Translation

BLEU-1 | BLEU-2 | BERTScore
Primary 23.66 15.37 85.29
Secondary | 23.54 15.10 85.06
Best of 2 25.75 17.14 85.63

B Best of 2 Evaluation

When designing judge models, a key requirement is that the Best-of-2 approach, where outputs from
the primary and secondary baseline models are generated independently, and the judge selects the
better one for each evaluation item, must outperform both individual models across all objective
metrics. This ensures the judge is effectively distinguishing and selecting higher-quality outputs.
Table [2] reports the evaluation results of the Best-of-2 approach compared with the primary and
secondary models across all tasks.
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