IMPROVING REASONING ABILITY OF LARGE LAN GUAGE MODELS VIA ITERATIVE UNCERTAINTY BASED PREFERENCE OPTIMIZATION

Anonymous authors

Paper under double-blind review

Abstract

Direct Preference Optimization (DPO) has recently emerged as an efficient and effective method for aligning large language models with human preferences. However, constructing high-quality preference datasets remains challenging, often necessitating expensive manual or powerful LM annotations. Additionally, standard DPO exhibits suboptimal performance in complex reasoning tasks, such as mathematical and code reasoning. In this paper, we introduce an approach to collect preference pairs through iterative sampling and execution feedback, tailored to the current learning state (e.g. well-learned, mis-learned, and unlearned) of the policy model. To alleviate the failures of DPO and improve its applicability in reasoning tasks, we propose IUPO, an iterative uncertainty-based preference optimization method that achieves fine-grained preference control by assessing model confidence. We validate our approach across three reasoning tasks, incorporating five established reasoning datasets and one self-curated dataset. Our experimental results demonstrate an overall improvement of 3.6% over the standard DPO method. Furthermore, our approach exhibits promising generalizability involving weak-to-strong (8B to 70B) and cross-model (Llama to Mistral) generalizations.

027 028 029

030

006

008 009 010

011

013

014

015

016

017

018

019

021

023

025

026

1 INTRODUCTION

031 Preference optimization has emerged as a crucial ingredient in the post-training process to ad-032 vance the development of large language models (LLMs) (Christiano et al., 2017; Tunstall et al., 033 2023; Dubey et al., 2024). The early approaches utilize reinforcement learning (RL) to align the 034 LLM policy with human feedback or AI-generated feedback against a reward model, denoted as RLHF (Nakano et al., 2021; Ouyang et al., 2022; OpenAI, 2023) or RLAIF (Bai et al., 2022b; Lee 035 et al., 2024; Wang et al., 2024). To streamline this process, (Rafailov et al., 2023) proposes an 036 offline direct preference optimization method, termed DPO, which aligns the policy directly with 037 feedback without reward modeling. Benefiting from its simplicity and efficiency, DPO has shown impressive results in various applications, including summarization Stiennon et al. (2020), dialogue assistance Bai et al. (2022a); Anil et al. (2023), and chat benchmarks Tunstall et al. (2023). 040

However, in complex reasoning tasks such as code reasoning and long-chain mathematical reason-041 ing tasks, DPO often achieves only moderate gains or even impairs performance. We conjecture 042 that this performance gap can be primarily attributed to (1) the scarcity of high-quality preference 043 data and (2) the limitations inherent in the alignment method for improving the complex reasoning 044 capabilities of large language models. Specifically, while long-chain complex reasoning tasks re-045 quire numerous reasoning steps to solve, most alignment data are at the instance level and cannot 046 pinpoint specific errors in incorrect answers, thus hindering the improvement of reasoning abilities. 047 Although some researchers explore more fine-grained preference data, such as step-level (Lai et al., 048 2024) preferences and preference trees (Yuan et al., 2024a), they are often costly to collect and present scalability challenges. Besides, Feng et al. (2024) points out another drawback of DPO: it can reduce the probabilities and rewards of both preferred and undesirable outputs, thereby increas-051 ing the likelihood of errors in long-chain reasoning Yuan et al. (2024a). Pal et al. (2024) further investigate the failure mode of DPO when the preferred and dispreferred outputs are minimally 052 contrastive, finding that DPO increases the probability of the token(s) that differ, yet decreases the probability of subsequent tokens. Meanwhile, another significant area of research focuses on it-

056

060

061

062 063

068

069

Figure 1: Comparison between DPO and our IUPO.

erative or online preference optimization, which aims to alleviate the distribution shift problem in offline DPO (Yuan et al., 2024b; Guo et al., 2024; Pang et al., 2024). However, the performance of these methods remains suboptimal, due to the challenges in ensuring the quality of preference data.

In this paper, we propose Iterative Uncertainty-based Preference Optimization (IUPO), a method 071 that iteratively optimizes policy through response sampling and execution feedback. The overall framework of IUPO is depicted in Figure 1. Initially, our approach employs both policy and naive 073 language models to generate multiple responses to a given query. Subsequently, we establish a vir-074 tual executable environment for the code reasoning task, and deploy answer extractors for the math-075 ematical reasoning task, allowing us to verify the correctness of responses without reward models 076 or verifiers. Following this, we utilize the validated data to construct preference pairs, taking into 077 account the learning state of the policy model to improve the quality of the alignment data. The crucial advantages of the above process are outlined as follows: (1) The generation of preference data relies exclusively on pre-existing models without additional manual or more powerful model 079 annotations. (2) The preference data is continuously updated during the iteration process, ensuring that the data remains in-distribution for policy model, which has been shown to be more effective 081 than out-of-distribution data (Lai et al., 2024). (3) Our approach generates preference pairs with 082 minimal contrastive (*i.e.* preferred and undesirable responses have a low edit distance), providing a better learning signal for policy optimization (D'Oosterlinck et al., 2024). 084

Additionally, we find the uncertainty measure (Jiang & Gupta, 2019; Wang & Zhou, 2024) strongly correlates with the performance of language models. Models tend to exhibit higher error rates when they display low confidence in certain tokens. Building on this observation, we leverage token-level uncertainty measures to achieve fine-grained control during preference optimization. Specifically, we mine the tokens that exhibit lower uncertainty measures and adjust the probability of the subsequent derailed tokens, which mitigates the decrease in the preferred probability issue. Our experimental results substantiate that the average confidence of the model is improved after optimization.

We comprehensively evaluate our method across a diverse spectrum of tasks, encompassing text-to-SQL reasoning (SQL and BIRD (Li et al., 2023)), code reasoning (Human Eval (Chen et al., 2021) and MBPP (Austin et al., 2021)), and mathematical reasoning (GSM8k (Cobbe et al., 2021a) and MATH (Hendrycks et al., 2021b)). Our experimental results demonstrate that IUPO yields a 3.6% improvement after three iterations compared to standard DPO, and consistently outperforms other baselines including SFT and DPO-Positive. In addition, our weak-to-strong and cross-model generalization experiments indicate that both our method and the generated preference data exhibit notable generalization capabilities. We also present a detailed analysis of how the uncertainty measure and iterative optimization influence the data distribution, training trajectory, and model performance.

100 To summarize, our key contributions are encapsulated as follows: (1) We extend the direct prefer-101 ence optimization methods with uncertainty measure and iterative learning, resulting in IUPO. This 102 method endows the standard preference optimization method with fine-grained control and allevi-103 ates its distribution shift issue. (2) We introduce an automatic strategy for preference data generation 104 through response sampling and execution feedback, which considers the learning state of the policy 105 model without requiring additional manual or more powerful model annotations. (3) We substantiate our contributions through experimental evaluations conducted using Llama3 and Mistral models 106 across three reasoning tasks, which conclusively demonstrate the effectiveness and generalization 107 capability of our approach in enhancing the reasoning ability of LLMs.

Figure 2: An illustration of the data creation pipeline.

2 PREFERENCE DATASET

2.1 DATA GENERATION

119

121

122 123

124 125

127

133

134

135

Dataset	Prompt Length	Response Length	# Pairs	Normalized Levenshtein (†)	10,000			Iter-2 Iter-3
SQL	49.5	280.9	16,627	87%				Iter-1
BIRD	189.2	213.0	29,939	78%				
Math	265.5	1587.4	13,918	38%	5.000			
Code	1448.8	872.3	28,430	50%	-,			
Table 1.	Auoroa	a abaraat	nr laval	Louanshtain				

Table 1: Average character-level Levenshtein edit-distance between chosen and rejected answers for four preference datasets.

Figure 3: The number of data samples.

Code

Math

BIRD

0 SQL

Traditional methods for generating high-quality preference datasets rely heavily on human labor (Ouyang et al., 2022) or strong LLMs (Bai et al., 2022b), which is time-consuming and expensive. Additionally, the precision and clarity of the resulting preference signals may be compromised, as the preference pairs are often minimally contrastive. In this section, we introduce a simple yet effective method for building preference datasets. As shown in Figure 2, our approach includes response sampling and execution feedback and can be subdivided into the following four key steps:

142 **Step 1: Initialization.** We begin by initializing with an instruction-following dataset \mathcal{D} , which 143 consists of sets of (x, y) pairs, a naive model π_{naive} , and a policy model π_{θ} initialized from π_{naive} and 144 then supervised fine-tuned on the dataset \mathcal{D} .

145 146 147 **Step 2: Response Sampling.** For each query x_i in \mathcal{D} , we sample N responses from both π_{θ} and π_{naive} , forming the two new set $\mathcal{D}_{\theta} = \{(x_i, y_j)\}_{j=1}^N$ and $\mathcal{D}_{\text{naive}} = \{(x_i, y_j')\}_{j=1}^N$.

Step3: Execution Feedback. In scenarios involving code reasoning and mathematical reasoning, we simulate a virtual environment to execute synthetic responses. We then compare these execution results with the ground-truth answers to eliminate unfortunate instances. Each pair from \mathcal{D}_{θ} and \mathcal{D}_{naive} is assigned a reward $r \in \{0, 1\}$, where r = 1 indicates that the response is correct.

Step4: Preference Pairs Construction. We construct the final preference pairs focusing on three learning states of π_{θ} : (1) Unlearned ($y \in D, y_j \in D_{\theta} | r_j = 0$). We let the ground-truth answer as chosen and the error response generated by the policy π_{θ} as rejected, highlighting the fallibility of the model. (2) Mis-learned ($y'_j \in D_{naive}, y_j \in D_{\theta} | r'_j = 1, r_j = 0$). We select the correct response from the naive model as chosen to steer the deviations in the policy model. (3) Welllearned ($y_i \in D_{\theta}, y_j \in D_{\theta} | r_i = 1, r_j = 0$). In this part, we directly use the responses generated by the policy model to compose preference pairs, similar to self-rewarding (Yuan et al., 2024b).

Given that the policy π_{θ} undergoes continuous optimization during preference learning, we can naturally iterate the aforementioned steps to update preference data progressively. It is important to note that this method is not only efficient - eliminating the need for additional LMs or human labor, but also effective - it generates in-distribution preference data for the policy model. Furthermore,

Figure 4: Overview of our IUPO framework. We first use the instruction-following data to fine-tune an LM policy. Then we collect preference data based on the learning state of the policy. Finally, we optimize the policy model with the preference data via uncertainty measure. This whole procedure is then iterated N times. The circle N and circle 1 come from Figure 2.

this approach facilitates an iterative online preference optimization process. The complete algorithmprocess is detailed in Algorithm 1.

180 2.2 DATA STATISTICS

Regarding the instruction-following dataset, we select APPS+ (Dou et al., 2024) for code reasoning,
GSM8K (Cobbe et al., 2021b) and Math (Hendrycks et al., 2021b) for mathematical reasoning,
and BIRD (Li et al., 2023) for text-to-SQL reasoning. We also curated a new text-to-SQL dataset
that mirrors real-world distributions. Then we apply our preference dataset generation strategy to
these datasets. The statistical data and comparisons across reasoning tasks are presented in Table 1
and Figure 3. We observe that the preference pairs exhibit minimal contrast since they have low
Levenshtein distance (*i.e.* edit distance), which provides more clear learning signals. For more
details, please refer to Appendix A.

3 Method

3.1 REVISITED DIRECT PREFERENCE OPTIMIZATION (DPO)

Direct Preference Optimization (DPO) (Rafailov et al., 2023) is a computationally lightweight alignment method that directly optimizes the language model to human preferences without explicit reward modeling. Specifically, given an input prompt x and a preference pair (y_w, y_l) , DPO aims to maximize the probability of the preferred output y_w and minimize that of the undesirable output y_l :

$$\mathcal{L}_{\text{DPO}}(\theta) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}}[\log \sigma(\beta \log \frac{\pi_{\theta}(y_w | x)}{\pi_{\text{ref}}(y_w | x)} - \beta \log \frac{\pi_{\theta}(y_l | x)}{\pi_{\text{ref}}(y_l | x)})]$$
(1)

where \mathcal{D} is the preference data, $\pi_{\theta}(\cdot)$ is the policy model to be optimized, π_{ref} is the reference model kept frozen during training, and β is a parameter that controls deviation from reference policy π_{ref} .

3.2 FAILURE MODE OF DPO

Although DPO has achieved many impressive results in various tasks and has become one of the most popular alignment methods, it only makes moderate gains or even decreases the performance on standard reasoning tasks such as code and mathematical reasoning, especially when y_w and y_l have low edit distance. The reasons may be attributed to the following points:

- 1. **Coarse-grained preference signal.** Code and mathematical reasoning are recognized as critical domains, requiring complex, long-chain reasoning abilities. However, the optimization of DPO operates at the instance level, where most preference data signals are coarse-grained, making the model struggle to identify detailed errors in incorrect answers.
- 215 2. **Decrease in preferred probability.** When preferred and undesirable responses share many similar tokens, DPO may decrease the probabilities of both the undesirable and pre-

ferred (Pal et al., 2024). Feng et al. (2024) also theoretically demonstrates DPO loss significantly impacts $\pi_{\theta}(y_l|x)$ due to the larger gradient, as opposed to its effect on $\pi_{\theta}(y_w|x)$.

3. **Frozen reward and offline learning.** Standard DPO is an offline method that relies on a pre-collected preference dataset. While the policy is continuously updated, the reward distribution remains static, leading to distribution shift and reward hacking problems.

3.3 IUPO

216

217

218

219

220

221 222

231 232

248 249

254

255 256

257

258

259

To alleviate the above failures of DPO in Section 3.2, we propose the Iterative Uncertainty-based
 Preference Optimization (IUPO) method, which utilize "uncertainty" to measure model confidence
 to achieve fine-grained control, and iterative collect preference data to optimize policy.

Uncertainty. Uncertainty is employed to measure model confidence (Wang & Zhou, 2024) by calculating probability disparity between the top and secondary tokens, which is similar to the minimum-margin approach (Jiang & Gupta, 2019). The uncertainty measures of a response y is $\Delta(y) = \{\Delta(y^t) | t = 1, ..., |y|\}$, and $\Delta(y^t)$ refers to the uncertainty of token t, defined as follows:

$$\Delta(y^{t}) = p(y_{1}^{t}|y^{< t}, x) - p(y_{2}^{t}|y^{< t}, x) + \epsilon, \quad \Delta_{t} \in [\epsilon, 1]$$
⁽²⁾

Here ϵ is a small number to prevent the result from being zero, y_1^t and y_2^t represent the top two 233 tokens at the t-th generation step, chosen for their maximum post-softmax probabilities from the 234 vocabulary. Wang & Zhou (2024) utilizes the uncertainty measure $\Delta(y)$ as a reliable indicator in 235 CoT-decoding, yielding a significant boost on the model's reasoning performance. Furthermore, 236 our experimental observations outline the key characteristics of the uncertainty measure as follows: 237 (1) The uncertainty measure strongly correlates with the model's performance. (2) A low uncer-238 tainty measure Δ_t , indicates a lack of confidence in the model. This condition often coincides with 239 the model's propensity to make errors, or the different tokens between preferred and undesirable. 240 (3) The confidence of the model at the current time step has minimal impact on the generation of 241 subsequent tokens, indicating that the model may continue along an erroneous trajectory with high 242 confidence. Based on this, we propose integrating the uncertainty measure into the preference op-243 timization process. On the one hand, the token-level uncertainty measure can enable fine-grained optimization control. On the other hand, we can leverage this measure to identify tokens where the 244 245 model is prone to errors and adjust the probability of subsequent derailed tokens to mitigate the decrease in the preferred probability issue. Specifically, we select tokens with uncertainty measure 246 below a fixed threshold τ and adjust the confidence of tokens within their subsequent window K: 247

$$\Delta(y^{t+k}) = (1 - \frac{k}{K}) \cdot \Delta(y^t), \quad k \in [1, K]$$
(3)

where k is the relative distance (number of token intervals) with the token t, and K is a hyperparameter refers to window size (number of tokens). Tokens that are closer to token t within the window are more significantly influenced. Then we employ the measure to adjust the probabilities of the subsequent tokens, as illustrated in Figure 4, and the modified DPO loss can be seen as follows:

$$\mathcal{L}_{\text{UPO}}(\theta) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(\beta \log \frac{\pi_{\theta, \Delta}(y_w | x)}{\pi_{\text{ref}}(y_w | x)} - \beta \log \frac{\pi_{\theta, \Delta}(y_l | x)}{\pi_{\text{ref}}(y_l | x)}) \right]$$
(4)

where $\pi_{\theta,\Delta}(y|x) = \prod_{t}^{|y|} \pi_{\theta}(y^{t}|y^{< t}, x) \cdot \Delta(y^{t})$, Since $\Delta(y^{t})$ is less than 1, the probability of the token after the difference with preferred in $\pi_{\theta}(y_{l}|x)$ will decrease, and the corresponding gradient will be lower, thus alleviating the decrease in the preferred probability issue.

Iterative. To improve the performance and alleviate the reward distribution shift problem, we optimize the policy model π_{θ} iteratively, in which the policy model and the preference data are both fresh during each iteration. Specifically, we initialize the policy model π_{θ} and the reference model π_{ref} with the supervised fine-tuned model π_{sft} . The initial preference data is also generated based on π_{sft} and π_{θ} , and is subsequently utilized to optimize the policy model π_{θ} using Equation 4. Then the preference data is regenerated based on the updated policy model π_{θ} , as described in Section 2.

$$\mathcal{L}_{\text{IUPO}}(\theta) = -\sum_{i}^{I} \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}^i} \left[\log \sigma(\beta \log \frac{\pi_{\theta, \Delta}^i(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_{\theta, \Delta}^i(y_l|x)}{\pi_{\text{ref}}(y_l|x)}) \right]$$
(5)

267 268 269

266

where $i \in [1, I]$ is the current iteration and I is the total iterations, which is set to 3 in our paper. Note that the reference model π_{ref} kept frozen during the preference optimization process. 270 **Formal Analysis.** Drawing on the Equation 1, we can derive the gradient with respect to θ : 271

$$\begin{aligned} \nabla_{\theta} \mathcal{L}_{\text{DPO}}(\theta) \propto - \nabla_{\theta} [\log \pi_{\theta}(y_w | x) - \log \pi_{\theta}(y_l | x)] \\ \propto - \nabla_{\theta} [\log \prod^T \pi_{\theta}(y_w^t | y_w^{< t}, x) - \log \prod^T \pi_{\theta}(y_l^t | y_l^{< t}, x)] \end{aligned}$$

$$\propto -
abla_ heta[\log\prod_{t=1}\pi_ heta(y_w^t|y_t)]$$

 \propto

275 276 277

278

$$\begin{aligned} & \stackrel{t=1}{\sum_{t=1}^{T}} \sum_{t=1}^{t=1} \\ & -\nabla_{\theta} [\sum_{t=1}^{T} \log \pi_{\theta}(y_{w}^{t} | y_{w}^{< t}, x) - \sum_{t=1}^{T} \log \pi_{\theta}(y_{l}^{t} | y_{l}^{< t}, x)] \\ & -\sum_{t=1}^{T} \nabla_{\theta} [\log \pi_{\theta}(y_{w}^{t} | y_{w}^{< t}, x) - \log \pi_{\theta}(y_{l}^{t} | y_{l}^{< t}, x)] \end{aligned}$$
(6)

282

283

284

285

290

291 292

293

295 296

297 298 299

300

301 302

303 304

305

$$\propto -\sum_{t=1}^{T} \nabla_{\theta} [\log \pi_{\theta}(y_w^t | y_w^{< t}, x) - \log \pi_{\theta}(y_l^t | y_l^{< t}, x)]$$

where T is the total number of tokens. Following Pal et al. (2024), we consider an extreme scenario that the two responses with an edit distance of 1 which differ at the token m (i.e. $y_w = (y_1, ..., y_T)$ and $y_l = (y_1, ..., y'_m, y_{m+1}, ..., y_T)$). Since the parameters θ of models are numerous, we focus on the logits θ_i , which is input to softmax. We let s_i^x represent the probability of the *i*-th token in the vocabulary conditioned on the input x, then we can simplify the Equation 6 to:

$$\nabla_{\theta_j} [\log \pi_{\theta}(y_w^t | y_w^{< t}, x) - \log \pi_{\theta_j}(y_l^t | y_l^{< t}, x)] = 1\{1 = j\} - s_j^{\{y_w^{< t}, x\}} - 1\{1 = j\} - s_j^{\{y_l^{< t}, x\}} = s_j^{\{y_l^{< t}, x\}} - s_j^{\{y_w^{< t}, x\}} - s_j^{\{y_w^{< t}, x\}}$$
(7)

Since the policy model is likely to be reasonably well optimized after SFT, we should have $s_j^{\{y_k^{\leq t},x\}} \leq s_j^{\{y_l^{\geq t},x\}}$ for $j \neq m$. Therefore, we see the gradient vector is increasing in the wrong logit dimensions, which shows the standard DPO may increase the probability of the incorrect token after the difference point m. Subsequently, the gradient of our IUPO can be derived as:

$$\nabla_{\theta} \mathcal{L}_{\text{UPO}}(\theta) \propto -\sum_{t=1}^{T} \nabla_{\theta} [\log \pi_{\theta}(y_w^t | y_w^{< t}, x) \cdot \Delta(y_w^t) - \log \pi_{\theta}(y_l^t | y_l^{< t}, x) \cdot \Delta(y_l^t)]$$
(8)

And the gradient of the *t*-th token with respect to the *j*-th logit becomes:

$$\nabla_{\theta_j} [\log \pi_\theta(y_w^t | y_w^{< t}, x) \cdot \Delta(y_w^t) - \log \pi_{\theta_j}(y_l^t | y_l^{< t}, x) \cdot \Delta(y_l^t)] = s_j^{\{y_l^{< t}, x\}} \cdot \Delta(y_l^t) - s_j^{\{y_w^{< t}, x\}} \cdot \Delta(y_w^t)$$
(9)

Since $\Delta(y_l^t) \leq \Delta(y_w^t)$ in most cases, especially when t is the difference token (see Section 4.3), the gradient can be negative, thus alleviating the DPO issue described above.

4 **EXPERIMENTS**

4.1 EXPERIMENTAL SETTINGS

306 Datasets & Baselines. We conduct experiments using LLaMA3 series (LLaMA3-8B and LLaMA3-307 70B) (Dubey et al., 2024) and Mistral-7B (Jiang et al., 2023). In the supervised fine-tuning stage, we 308 utilize the training set of BIRD (Li et al., 2023), APPS+ (Dou et al., 2024), Dart-Math (Tong et al., 2024) and self-curated text-to-SQL dataset SQL as the fine-tuning data. The preference data is iter-310 atively generated based on the above dataset as described in Section 2. We evaluate our method on 311 text-to-SQL reasoning tasks (SQL and BIRD), code reasoning tasks (Human Eval (Chen et al., 2021) 312 and MBPP (Austin et al., 2021)), and mathematical reasoning tasks (GSM8K and MATH), compared 313 with GPT series models and preference methods (DPO (Rafailov et al., 2023) and DPOP (Pal et al., 314 2024)). For more details, refer to the Appendix A.

315 Setup. In each preference data generation iteration, we generate N = 10 responses per question 316 using sampling with temperature 0.7. In our IUPO method, we set the uncertainty threshold τ as 0.3 317 and the uncertainty windows K as 5. All preference methods in our experiments use the same β , 318 epoch, batch size, and learning rate, as detailed in Appendix B.

319 320

321

4.2 MAIN RESULTS

IUPO improves over baselines. The main performance results of all models are shown in Table 2. 322 Across all three reasoning scenarios, it is evident that our IUPO consistently outperforms the su-323 pervised fine-tuned model (SFT) and direct preference optimization method (DPO), exhibiting an 324 Table 2: The main results of our IUPO against other baselines across three reasoning tasks. We 325 report the execution accuracy in text-to-SQL reasoning, pass@1 in Code reasoning, and answer 326 exact match accuracy in mathematical reasoning tasks. IUPO-i $(i \in \{1, 2, 3\})$ refers to different iterations. Bold scores highlight the best performance achieved per dataset. The reported Avg. 327 values are calculated by averaging performance across all datasets. We also report the performance 328 gains and drops of our IUPO relative to the standard DPO approach. 329

Model	Dhoco	Text-t	o-SQL	Code		Ma	ıth	Ava +
WIOUEI	rnase	SQL	BIRD	Human Eval	MBPP	GSM8K	MATH	Avg.
GPT-3.5-Turbo	-	24.1	47.2	64.9	77.0	92.0	42.5	54.1
GPT-4-Turbo-0409	-	46.4	53.4	87.6	80.2	94.5	73.4	71.1
GPT-40-0513	-	42.4	56.1	90.2	81.4	95.8	76.6	72.2
	Base	5.2	27.1	34.2	47.5	45.9	16.5	29.4
Mistral 7D	SFT	50.9	54.1	24.4	46.7	82.3	42.3	50.1
Mistral-7B	DPO	49.1	54.2	23.8	45.9	83.6	42.3	49.8
	DPOP	50.0	54.4	25.0	47.9	83.2	42.5	50.5
	IUPO-1	53.5	54.4	28.7	43.6	83.5	42.2	51.0
	IUPO-2	54.3	54.7	29.9	44.2	83.6	42.5	51.5
	IUPO-3	55.1 ↑6.0	55.1 ↑0.9	30.5 ↑6.7	44.4 ↓1.5	83.8 ↑0.2	42.8 ↑0.5	51.9 \phi2.1
	Base	9.5	32.9	59.2	53.3	51.0	21.2	37.8
Llama 2 8D	SFT	50.0	52.7	40.9	57.6	82.5	43.5	54.5
Lialiaj-oD	DPO	50.8	52.5	38.4	55.3	82.6	43.5	53.9
	DPOP	51.2	52.5	36.6	57.2	83.2	43.9	54.1
	IUPO-1	51.7	54.2	47.6	56.0	83.2	43.9	56.1
	IUPO-2	52.6	54.6	48.8	58.8	83.5	43.8	57.0
	IUPO-3	52.6 11.8	56.1 ↑3.6	49.0 ↑10.6	59.1 ↑3.8	83.8 ↑1.2	43.9 ↑0.4	57.4 ↑3.6

improvement of +2.1% in the Mistral-7B model and +3.6% in the Llama3-8B model. Additionally, we find that DPO underperforms compared to SFT across multiple datasets, particularly in scenarios where the edit distances between preferred and dispreferred examples are minimal. DPOP adds an additional penalty term to the DPO loss function to incentivize maintaining a high log-likelihood of the preferred completions. While this approach yields slightly better performance over the standard DPO, it remains less effective compared to our IUPO.

Iterations of IUPO yield improved reasoning. Our observations indicate that our IUPO yields 355 performance improvements over its training iterations in most scenarios. Specifically, the average 356 performance increases from 56.1% to 57.0% to 57.4% across each iteration. However, the magnitude 357 of improvement diminishes with each iteration, as evidenced by the gains of 1.6%, 0.9%, and 0.4%, 358 respectively. This trend suggests the presence of an upper limit on learning capacity across iterations, 359 which is explored in detail in Section 4.4. 360

Weak-to-Strong and cross-model generalization. In 361

our experiments, we deploy a Llama3-8B to synthe-362 size the preference data in each iteration. Subsequently, 363 we utilize the generated preference data to optimize 364 the larger-scale Llama3-70B model and the Mistral-7B model, which features a different architecture. As shown 366 in Table 2 and Table 3, the performance of both mod-367 els has improved. This demonstrates that our method 368 for preference dataset generation exhibits both weak-to-369 strong and cross-model generalization capabilities.

Model (70B)	SQL	BIRD
Base	38.6	43.6
SFT	62.9	61.7
IUPO	63.8	62.0

Table 3: The performance of Llama3-70B using the data generated by Llama3-8B.

370 371

372

349

350

351

352

353

354

4.3 ANALYSIS OF THE UNCERTAINTY

373 Evolution of Model Uncertainty. To understand the impact of uncertainty measures on model 374 performance, we compare the uncertainty value between supervised fine-tuning and our IUPO ap-375 proach. Additionally, we analyze the uncertainty values for both correct and incorrect model predictions across three distinct reasoning tasks. As shown in Figure 5, the average uncertainty measures of 376 LLM across all four reasoning tasks are at a high level, which indicates that LLMs generally exhibit 377 confidence in the content they generate. This observation aligns with the discussion in Section 3.3,

Figure 5: The uncertainty measures of SFT and IUPO between correct and incorrect answers in the four reasoning datasets. The y-axis refers to the uncertainty measure Δ_t , where larger means more confidence in the model.

Figure 6: The reward for Llama3-8B on each reasoning task, trained using DPO, DPOP, or our IUPO alignment methods. Different methods use different colors.

Figure 7: Left: Model performance for various training iterations. Right: Visualization of the response distribution of SFT, IUPO, and MetaMath data. We select the MetaMath data related to GSM8K and MATH for comparison.

where the uncertainty measure for the correctly predicted sample is consistently higher than that for
 the incorrectly predicted one. This pattern underscores the effectiveness of the uncertainty measure
 in identifying areas where the model is prone to making errors. Moreover, compared to supervised
 fine-tuning, our IUPO approach significantly boosts the confidence of the model, particularly in
 scenarios where the predictions are correct.

Training Trajectory. In Figure 6, we study the training trajectories of chosen/rejected rewards on the four reasoning tasks for DPO, DPOP, and our IUPO alignment methods. Firstly, the reward margin between the chosen and rejected of all three methods increases during the training process, indicating that these alignment methods help distinguish preferred and dispreferred responses. Sec-ondly, the training trajectories of the three methods exhibit distinct characteristics. Specifically, DPO can reduce the reward of the chosen when the preferred and dispreferred have minimal differences. DPOP mitigates this issue but leads to an increase in the rejected rewards. In contrast, our IUPO produces a more reasonable phenomenon that the rewards of chosen grow up to positive and the rewards of rejected steadily decline. Lastly, our IUPO achieves a larger margin between preferred and dispreferred responses compared to other alignment methods within the same training steps.

4.4 ANALYSIS OF THE ITERATIONS

432

433 434 435

436

437

438

439

440

441 442

443

444

445

446

447 448

Phase	BIRD	Human Eval	MBPP
IUPO-1	54.2	47.6	56.0
w/ twice data	54.2	47.3	58.0
w/ triple data	55.1	47.8	58.8
IUPO-2	54.6	48.8	58.8
IUPO-3	56.1	47.0	59.1

Figure 8: Comparison of SFT, SFT on chosen and IUPO.

Table 4: The comparative results between one iteration with more data and more iterations with updating data on Llama3-8B.

Model performance for various iterations To further understand the role and impact of the iterations, we visualize the relations between performance and iterations as well as the distribution of preference data for each iteration. As shown in Figure 7 Left, the performance of models on the BIRD dataset increases and then flattens out with the iterations, indicating that there is a performance ceiling when relying solely on iterative answer augmentation. To further improve performance, it may be beneficial to introduce synchronization in the diversity of questions.

Data Distribution. To visualize the distribution of the preference dataset, we first utilize the model to generate the pooled representation for the responses in the mathematical dataset. Afterward, we use t-SNE (Van der Maaten & Hinton, 2008) to map the representation into two-dimensional space, as shown in Figure 7 Right. The data visualized includes the supervised fine-tuning data, iterative generated preference data, and the selected data related to GSM8k and MATH from the open source MetaMath Yu et al. (2023). It is clear to find that the data from MetaMath is aggregated at the center while our iterative data broadens the boundaries of SFT data.

Preference optimization vs. SFT on preferred. To determine whether the performance improve-462 ments come from increased training data or the efficacy of the preference optimization algorithm, 463 we aggregate the preferred responses curated by the model in each iteration with the supervised 464 fine-tuning data for supervised fine-tuning. However, as shown in Figure 8, merely augmenting 465 the dataset with preferred examples in a related manner did not help and even led to performance 466 degradation, which is consistent with the findings in (Yuan et al., 2024b). In contrast, optimiz-467 ing the model in the preference alignment manner with both preferred and dispreferred examples 468 significantly improves the performance. 469

Iterative vs. More Preference data. We conduct a comparative experiment between one iteration with more data and more iterations with updating data to verify the effectiveness of iterative optimization. Specifically, we augment the preference data by doubling or tripling the sampling number *N*, and execute our IUPO method one iteration with the increased data. As shown in Table 4, while there is a noticeable performance improvement with the augmented preference dataset, the gains are not as substantial as performing optimization in two or three iterations. This observation underscores that the performance improvements achieved by IUPO are primarily driven by iterative optimization rather than increasing preference data volume alone.

- 477
- 478 479

4.5 ABLATION STUDY

480

To elucidate the individual contributions of each component within our IUPO, we conducted an ablation study, and the results are depicted in Figure 9. In this study, we systematically discard key components: the iteration process (w/o Iteration), the uncertainty measure (w/o Uncertainty, degraded to DPO), and the preference pairs that models unlearned (w/o Unlearned). The results clearly demonstrate that each component of our method produces a positive effect on performance improvement, especially the iterative optimization and the uncertainty measure.

Figure 9: Ablation study across all the reasoning tasks using Llama3-8B. We show the averaged performance for the datasets of Code and Math.

5 RELATED WORK

5.1 PREFERENCE DATASET CURATION AND AUGMENTATION

Preference dataset collection is the first and important step in LLM alignment. A common preference 504 dataset is a set of prompts paired with a preferred and dispreferred response, where the preferred 505 embodies the instructions, intentions, preferences, and values that humans intend for the LLM to 506 internalize and replicate. Human labeling (Christiano et al., 2017; Ouyang et al., 2022) is a crucial 507 tool for high-quality preference dataset construction. However, it is labor intensive and necessitates a 508 certain level of knowledge of the annotator, which increases the cost and hinders the scalability of the 509 data scale. Recently, LLMs have shown a high degree of alignment with human judgment (Gilardi 510 et al., 2023), some researchers focus on Reinforcement Learning from AI Feedback (RLAIF) (Bai 511 et al., 2022b; Lee et al., 2024), which leverages strong LLMs (e.g. GPT-4) to generate preference 512 labels and achieves comparable performance to human labors. In this paper, we propose an effective method to build a preference dataset via iterative sampling based on the policy model and execution 513 feedback to verify the correctness, which is efficient and effective. 514

515 516 517

486

487

488

489

490

491

492

493

494

495 496

497

498 499

500

501

502

5.2 PREFERENCE OPTIMIZATION OF LLMs

Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 518 2022) has emerged as a cornerstone in aligning LLMs with human preferences, providing a mech-519 anism to enhance LLMs' comprehension of human requirements and refining their responses for 520 improved alignment. This approach involves training a reward model with preference data and then 521 optimizing the policy model with the reward model. To simplify this process, Rafailov et al. (2023) 522 proposes DPO, which directly uses the pairwise data for model optimization without reward model-523 ing. While DPO has achieved impressive results in various scenarios, it only makes moderate gains 524 or even decreases performance for mathematical or code reasoning. Feng et al. (2024) analyzes the failure modes of Direct Preference Optimization (DPO) and finds that the optimization process 525 can inadvertently reduce the number of preferred examples. To alleviate this issue, Pal et al. (2024) 526 adds a penalty term to DPO loss to incentivize maintaining a high log-likelihood of the preferred 527 completions. In contrast, we utilize uncertainty to measure model confidence to achieve fine-grained 528 control. Furthermore, we optimize the policy model in an iterative manner to realize online learning. 529

530 531

532

6 CONCLUSION

In this paper, we introduce IUPO, an iterative uncertainty-based preference optimization method via response sampling and execution feedback to improve the reasoning ability of LLMs. Our contribution also includes an automatic preference data generation strategy without additional manual or more powerful model annotations while considering the learning state of the policy model. Through comprehensive experimentation across three reasoning tasks and in-depth analysis of the components of our method, we have demonstrated the substantial benefits of IUPO in augmenting the reasoning ability of LLMs. In the future, an exciting avenue for research involves exploring IUPO in diverse datasets with more various models.

540 REPRODUCIBILITY STATEMENT

541 542

548

566

567

568

569

570

571

572

573

The source of our self-curated SQL dataset and the preference datasets will be released soon. In order to provide support to reproduce our method and experiments, we provide the detailed source

order to provide support to reproduce our method and experiments, we provide the detailed source
 code of data generation and the implementation of DPO, DPOP, and our IUPO methods in the
 supplementary materials with all scripts and hyper-parameters. We provide a README script to
 instruct how to run the codes. We also list the details of the datasets and the hyper-parameters in
 Appendix.

- 549 550 REFERENCES
- Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Pas-551 sos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. 552 Clark, Laurent El Shafey, Yanping Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Mor-553 eira, Mark Omernick, Kevin Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, 554 Yujing Zhang, Gustavo Hernández Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan A. Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin 556 Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan Du, Ethan Dyer, Vladimir Fein-558 berg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, 559 Lucas Gonzalez, and et al. Palm 2 technical report. CoRR, abs/2305.10403, 2023. doi: 560 10.48550/arXiv.2305.10403. URL https://doi.org/10.48550/arXiv.2305.10403. 561
- Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with large language models. *CoRR*, abs/2108.07732, 2021. URL https://arxiv.org/abs/2108.07732.
 - Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion, Tom Conerly, Sheer El Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Chris Olah, Benjamin Mann, and Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from human feedback. *CoRR*, abs/2204.05862, 2022a. doi: 10.48550/arXiv.2204.05862. URL https://doi.org/10.48550/arXiv.2204.05862.
- 574 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, 575 Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Ols-576 son, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-577 Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, 578 Kamile Lukosiute, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemí Mer-579 cado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna 580 Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional AI: 582 harmlessness from AI feedback. CoRR, abs/2212.08073, 2022b. doi: 10.48550/ARXIV.2212. 583 08073. URL https://doi.org/10.48550/arXiv.2212.08073. 584
- 585 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared 586 Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, 587 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, 588 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-590 pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 592 Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech

596

608

617

627

645

Zaremba. Evaluating large language models trained on code. *CoRR*, abs/2107.03374, 2021. URL https://arxiv.org/abs/2107.03374.

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In Isabelle Guyon, Ulrike von Luxburg,
Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 4299–4307, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/d5e2c0adad503c91f91df240d0cd4e49-Abstract.html.

- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021a. URL https://arxiv.org/abs/2110.14168.
- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021b. URL https://arxiv.org/abs/2110.14168.
- Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo, Caiming Xiong, and Tong Zhang. RLHF workflow: From reward modeling to online RLHF. *CoRR*, abs/2405.07863, 2024. doi: 10.48550/ARXIV.2405.07863. URL https://doi.org/10.48550/arXiv.2405.07863.
- Karel D'Oosterlinck, Winnie Xu, Chris Develder, Thomas Demeester, Amanpreet Singh, Christopher Potts, Douwe Kiela, and Shikib Mehri. Anchored preference optimization and contrastive revisions: Addressing underspecification in alignment. *CoRR*, abs/2408.06266, 2024. doi: 10. 48550/ARXIV.2408.06266. URL https://doi.org/10.48550/arXiv.2408.06266.
- Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang Huang, Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou, Tao Ji, Rui Zheng, Qi Zhang, Xuan-jing Huang, and Tao Gui. Stepcoder: Improve code generation with reinforcement learning from compiler feedback. *CoRR*, abs/2402.01391, 2024. doi: 10.48550/ARXIV.2402.01391. URL https://doi.org/10.48550/arXiv.2402.01391.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha 628 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, 630 Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, 631 Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris 632 Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, 633 Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny 634 Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael 635 Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-636 son, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Ko-637 revaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan 638 Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-639 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy 640 Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, 641 Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-642 wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The 643 llama 3 herd of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL 644 https://doi.org/10.48550/arXiv.2407.21783.
- Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. KTO: model alignment as prospect theoretic optimization. *CoRR*, abs/2402.01306, 2024. doi: 10.48550/ARXIV.2402.01306. URL https://doi.org/10.48550/arXiv.2402.01306.

662

663

665

667

683

688

689

690

691

- 648 Duanyu Feng, Bowen Qin, Chen Huang, Zheng Zhang, and Wenqiang Lei. Towards analyzing and 649 understanding the limitations of DPO: A theoretical perspective. CoRR, abs/2404.04626, 2024. 650 doi: 10.48550/ARXIV.2404.04626. URL https://doi.org/10.48550/arXiv.2404. 651 04626.
- 652 Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd-workers for 653 text-annotation tasks. CoRR, abs/2303.15056, 2023. doi: 10.48550/ARXIV.2303.15056. URL 654 https://doi.org/10.48550/arXiv.2303.15056. 655
- 656 Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre 657 Ramé, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel. Direct lan-658 guage model alignment from online AI feedback. CoRR, abs/2402.04792, 2024. doi: 10.48550/ 659 ARXIV.2402.04792. URL https://doi.org/10.48550/arXiv.2402.04792.
- Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge competence with APPS. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021a. URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/ 666 hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html.
- Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, 668 Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with 669 In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings the MATH dataset. 670 of the Neural Information Processing Systems Track on Datasets and Benchmarks 671 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021b. **URL** 672 https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/ 673 hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html. 674
- Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, 675 Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, 676 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas 677 Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023. 678 doi: 10.48550/ARXIV.2310.06825. URL https://doi.org/10.48550/arXiv.2310. 679 06825. 680
- 681 Heinrich Jiang and Maya R. Gupta. Minimum-margin active learning. CoRR, abs/1906.00025, 682 2019. URL http://arxiv.org/abs/1906.00025.
- Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-684 wise preference optimization for long-chain reasoning of llms. CoRR, abs/2406.18629, 2024. 685 doi: 10.48550/ARXIV.2406.18629. URL https://doi.org/10.48550/arXiv.2406. 686 18629. 687
 - Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. RLAIF vs. RLHF: scaling reinforcement learning from human feedback with AI feedback. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-Review.net, 2024. URL https://openreview.net/forum?id=uydQ2W41K0.
- 693 Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen 694 Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin Chen-Chuan Chang, Fei Huang, Reynold Cheng, and Yongbin Li. Can LLM already serve as A 696 database interface? A big bench for large-scale database grounded text-to-sqls. In Alice Oh, 697 Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 699 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/ 700 hash/83fc8fab1710363050bbd1d4b8cc0021-Abstract-Datasets_and_ Benchmarks.html.

- Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022, pp. 3214–3252. Association for Computational Linguistics, 2022. doi: 10.18653/v1/2022.acl-long.229. URL https://doi.org/10.18653/v1/2022.acl-long.229.
- Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, and Sayak Paul.
 Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/
 huggingface/peft, 2022.
- Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou, Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt: Browser-assisted question-answering with human feedback. *CoRR*, abs/2112.09332, 2021. URL https://arxiv.org/abs/2112.09332.
- OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.

 URL https://doi.org/10.48550/arXiv.2303.08774.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with human feedback. In *NeurIPS*, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/ blefde53be364a73914f58805a001731-Abstract-Conference.html.
 - Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin White. Smaug: Fixing failure modes of preference optimisation with dpo-positive. CoRR, abs/2402.13228, 2024. doi: 10.48550/ARXIV.2402.13228. URL https://doi.org/10. 48550/arXiv.2402.13228.
 - Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason Weston. Iterative reasoning preference optimization. *CoRR*, abs/2404.19733, 2024. doi: 10. 48550/ARXIV.2404.19733. URL https://doi.org/10.48550/arXiv.2404.19733.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/ a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.
- Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 Dario Amodei, and Paul F. Christiano. Learning to summarize from human feedback. *CoRR*,
 abs/2009.01325, 2020. URL https://arxiv.org/abs/2009.01325.
- Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware rejection tuning for mathematical problem-solving. *CoRR*, abs/2407.13690, 2024. doi: 10.48550/ARXIV.2407.13690. URL https://doi.org/10.48550/arXiv.2407.13690.
- Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada, Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of LM alignment. *CoRR*, abs/2310.16944, 2023. doi: 10.48550/ARXIV.2310.16944. URL https://doi.org/ 10.48550/arXiv.2310.16944.
- 754

726

727

728

729

730 731

732

733

734

⁷⁵⁵ Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.

756 Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. 758 In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual 759 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 9426–9439. Association for Computational Linguis-760 tics, 2024. doi: 10.18653/V1/2024.ACL-LONG.510. URL https://doi.org/10.18653/ 761 v1/2024.acl-long.510. 762

- Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. CoRR. abs/2402.10200, 2024. doi: 10.48550/ARXIV.2402.10200. URL https://doi.org/10. 48550/arXiv.2402.10200.
- Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language models. arXiv preprint arXiv:2309.12284, 2023.
- 772 Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, 773 Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir R. Radev. Spider: A large-scale 774 human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task. In 775 Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii (eds.), Proceedings of the 2018 776 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 777 31 - November 4, 2018, pp. 3911–3921. Association for Computational Linguistics, 2018. doi: 778 10.18653/V1/D18-1425. URL https://doi.org/10.18653/v1/d18-1425.
- 780 Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen, Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun. Advancing LLM reasoning generalists with preference trees. CoRR, abs/2404.02078, 2024a. doi: 10.48550/ARXIV.2404.02078. URL https://doi.org/10. 48550/arXiv.2404.02078.
 - Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason Weston. Self-rewarding language models. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024b. URL https://openreview.net/forum?id=0NphYCmgua.
 - Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

ADDITIONAL DATASET INFORMATION А

A.1 THE SUPERVISED FINE-TUNING DATASETS

Dataset	# Train	Task	Source
SQL	14,000	Text-to-SQL	Self-Curated
BIRD (Li et al., 2023)	12,751	Text-to-SQL	Open Source
APPS+ (Dou et al., 2024)	7,413	Code Reasoning	Open Source
DartMath (Tong et al., 2024)	591,000	Math Reasoning	Open Source

Table 5: Details about the supervised fine-tuning datasets.

807 808 809

763 764

765

766

767 768

769

770

771

779

781

782

783

784

785 786

787

788

789

790 791

792

793 794

796

797 798

Table 5 shows the statistical details of the datasets used in supervised fine-tuning phases.


```
SQL Prompt
Generate a SQL query to answer this question: `{question}`
DDL statements:
{table_info}
The following SQL query best answers the question `{question}`:
```

SQL Since most of the prevalent Text-to-SQL benchmarks (*i.e.* WikiSQL (Zhong et al., 2017), and Spider (Yu et al., 2018)) focus on database schema with few rows of database values, we create a more challenging dataset for Text-to-SQL parsing to reduce the gap between academic study and real-world applications. In particular, we first select real-world databases with multiple rows and columns. Then we utilize GPT-4 OpenAI (2023) to generate user questions about the databases and the corresponding answers. All questions and answers are manually verified to ensure their quality.

BIRD Prompt

```
### Database scheme:
{table_info}
#### Question:
{question}
#### Match value:{match_value}
###$QL:
```

BIRD BIRD is another Text-to-SQL dataset developed by (Li et al., 2023). It contains 12,751 Text-to-SQL pairs and 95 databases with a total size of 33.4GB, spanning 37 professional domains, which highlights the challenges of dirty and noisy database values, external knowledge grounding, and SQL efficiency, particularly in the context of massive databases.

APPS+ Prompt

```
### Instruction:
write an algorithm in python: {Task description}
### Response:
```

APPS+ APPS+ is a clean version of APPS (Hendrycks et al., 2021a) created by (Dou et al., 2024). They excluded instances lacking input, output, and solutions of APPS, and standardized the formats of all instances. APPS+ contains 7,456 instances, including problem descriptions, canonical solutions, unit tests, and starter codes.

DartMath Prompt

```
Below is an instruction that describes a task. Write a response
that appropriately completes the request.
###Instruction:
{query}
### Response:
```

DartMath DartMath is a synthetic dataset based on GSM8k (Cobbe et al., 2021a) and MATH Hendrycks et al. (2021b) via difficulty-aware rejection sampling Tong et al. (2024).

A.2 DETAILS OF PREFERENCE DATASET GENERATION STRATEGY

We show the details algorithm process in Algorithm 1.

Ā	lgorithm 1: Preference Dataset Generation Strategy
Ī	aput: naive model π_{naive} , policy model π_{θ} , instruction-following dataset \mathcal{D} consists of $N(x, y)$
	pairs, iterations \mathcal{I} , sampling numbers N
	1: Initialize π_{θ} from π_{naive}
	2: Preference pairs dataset $\mathcal{D}_{IUPO} = \emptyset$
	3: for $i = 1$ to \mathcal{I} do
	4: for each pair (x, y) in \mathcal{D} do
	$b: \mathcal{D}_{\text{naive}} \leftarrow \emptyset, \ \mathcal{D}_{\theta} \leftarrow \emptyset$
	b: for $j = 1$ to N do
	$y_j = \pi_{\theta}(x) / generate response from \pi_{\theta}$
	3: $y_j = \pi_{\text{naive}}(x) / / \text{generate response from } \pi_{\text{naive}}$
	$P: r = \mathrm{EX}(x, y, y_j) / /$ obtain the reward via execution feedback
1	$r' = EX(x, y, y'_j)$
1	1: Add pair (x, y_j, r_j) to \mathcal{D}_{θ} , and add pair (x, y'_j, r'_j) to \mathcal{D}_{naive}
1	2: end for
1	3: Add all (x, y, y_j) to $\mathcal{D}_{\text{IUPO}}$ where $y_j \in \mathcal{D}_{\theta}$ and $r_j = 0 / /$ Unleanred pairs
1	Add all (x, y'_j, y_j) to $\mathcal{D}_{\text{IUPO}}$ where $y_j \in \mathcal{D}_{\theta}, y'_j \in \mathcal{D}_{\text{naive}}$ and $r'_j = 1, r_j = 0$
	// Mislearned pairs
1	5: Add all (x, y_i, y_j) to $\mathcal{D}_{\text{IUPO}}$ where $y_i, y_j \in \mathcal{D}_{\theta}$ and $r_i = 1, r_j = 0 / / \text{ Well-learned}$
	pairs
1	b: end for
1	7: $\pi_{\theta} = \text{train_policy_model}(\pi_{\theta}, \mathcal{D}_{\text{IUPO}}) / / \text{training policy model}$
1	s: end for
(utput: $\mathcal{D}_{\text{IUPO}}, \pi_{\theta}$

A.3 DETAILS OF THE EVALUATION DATASETS

Dataset	# Test	Task	Source
SQL	116	Text-to-SQL	Self-Curated
BIRD (Li et al., 2023)	1,533	Text-to-SQL	Open Source
Human Eval (Chen et al., 2021)	164	Code Reasoning	Open Source
MBPP (Austin et al., 2021)	257	Code Reasoning	Open Source
GSM8k (Cobbe et al., 2021b)	1,319	Math Reasoning	Open Source
MATH (Hendrycks et al., 2021b)	5,000	Math Reasoning	Open Source

Table 6: Details about the evaluation datasets.

Table 6 shows the statistical details of the evaluation datasets. We use the same data configuration and assessment as the baseline.

B DETAILS OF EXPERIMENTS

B.1 DETAILED EVALUATION METRICS

For all datasets, we compare the execution results between model predictions and ground truth.
Specifically, we compute the Execution Accuracy (EX) for the Text-to-SQL reasoning task, which is defined as the proportion of examples in the evaluation set for which the executed results of both the predicted and ground-truth SQLs are identical, relative to the overall number of SQLs (Zhong et al., 2017). For code reasoning tasks, we compute the pass@1 metric, where 1 code sample is generated per problem, and a problem is considered solved if the sample passes the unit tests. For the mathematical reasoning task, we extract the final answer from the generated solution and compare whether it is the same as the ground truth.

M. J.J	DL	Text-to-SQL		Code	•	Math		A
Model	Phase	SQL	BIRD	Human Eval	MBPP	GSM8K	MATH	Avg.
	Base	9.5	32.9	59.2	53.3	51.0	21.2	37.8
11	SFT	50.0	52.7	40.9	57.6	82.5	43.5	54.5
Llama3-8B	DPO-1	50.8	52.5	38.4	55.3	82.6	43.5	53.9
	DPO-2	48.3	54.3	37.2	55.3	82.7	43.3	53.5
	DPO-3	49.1	53.0	37.2	55.6	83.1	43.2	53.5
	KTO-1	49.1	53.0	36.6	58.8	82.6	43.1	53.9
	KTO-2	48.2	53.7	37.2	57.6	82.6	42.6	53.7
	KTO-3	52.6	53.7	37.4	58.4	83.5	43.4	54.8
	IUPO-1	51.7	54.2	47.6	56.0	83.2	43.9	56.1
	IUPO-2	52.6	54.6	48.8	58.8	83.5	43.8	57.0
	IUPO-3	52.6 11.8	56.1 † 3.6	49.0 ↑10.6	59.1 † 3.8	83.8 ↑1.2	43.9 ↑0.4	57.4 ↑3.6

Table 7: Comparison results for 3 iterations of DPO, KTO, and our IUPO methods.

Table 8: Comparison results of DPO and our IUPO on ARC-c and TruthfulQA.

Dataset	SFT	DPO-1	DPO-2	DPO-3	IUPO-1	IUPO-2	IUPO-3
ARC-c	60.0	63.5	64.9	66.8	63.4	65.2	66.9
TruthfulQA	52.0	50.0	52.5	53.8	51.0	53.4	54.7

B.2 IMPLEMENTATION DETAILS

All models of SFT and preference optimization phases are trained in the same environment (4 × 40G A100 GPUs.) During the preference dataset generation process, we generate N = 10 responses per question using sampling with temperature=0.7 and topp=1.0. Due to resource limitations, we adapt LoRA training in SFT and preference optimization phases with the PEFT Mangrulkar et al., 2022 framework. We set learning rate as 1e-4, training 4 epochs in SFT and 1 epoch in the alignment process. In DPO-Positive, we set the $\lambda = 50$ same as Pal et al. (2024). In our IUPO, we set the uncertainty threshold $\tau = 0.3$ and the uncertainty windows K = 5.

С

C.1 COMPARISON WITH PREFERENCE OPTIMIZATION METHODS

KTO Ethayarajh et al. (2024) is a powerful alignment method that directly maximizes the utility of generations instead of maximizing the log-likelihood of preferences. Since KTO does not require paired data, we split the preferred and dispreferred instances as the training data for a fair comparison. For all alignment methods, we optimize the policy model 3 iterations, and the results can be seen in Table 7. We find that KTO outperforms the vanilla DPO method and gains performance from iteration. This advantage may come from using prospect theory in KTO and its full utilization of preference samples. However, our IUPO remains the best performance due to its superior applicability to the contrastive preference data.

C.2 EXTENSION TO MORE REASONING SCENARIOS

ADDITIONAL EXPERIMENTS

966 In some reasoning scenarios, we cannot use the execution environment to verify the correctness 967 of the response. At this point, we can use the reward model to score the sampling responses and 968 collect preference pairs by treating high-scoring responses as positive examples and low-scoring 969 ones as dispreferred examples. To demonstrate the effectiveness of our method, following (Dong 970 et al., 2024), we iteratively collect the preference pairs and optimize the policy model. Then we 971 evaluate the model on TruthfulQA Lin et al. (2022) and ARC-c ? datasets. TruthfulQA. Among 969 them, TruthfulQA is a benchmark dataset to measure the truthfulness of language models, which comprises 817 questions that span 38 categories, including health, law, finance, and politics. ARCc is a dataset to measure the commonsense reasoning ability of models, which contains questions for science exams from grade 3 to grade 9. The results can be seen in Table 8, our IUPO obtains superior performance than DPO in each iteration, and the performance improves with iterations increase, proving that our approach is also feasible with the reward model.

D QUALITATIVE EXAMPLES

Question:	What are the foiled cards that are incredibly powerful when paired with non foiled cards? List the IDs.
Ground Truth:	SELECT id FROM cards WHERE cardKingdomId IS NOT NULL AND cardKingdomFoilId IS NOT NULL
SFT:	SELECT cardkingdomfoilid FROM cards WHERE cardkingdomid IS NOT NULL AND cardkingdomfoilid IS NOT NULL X
DPO:	SELECT cardkingdomfoilid FROM cards WHERE cardkingdomid IS NOT NULL AND cardkingdomfoilid
IUPO:	SELECT id FROM cards WHERE cardkingdomfoilid IS NOT NULL AND cardkingdomid IS NOT NULL 🗸

Table 9: A case example of BIRD dataset. ✓ refers to the answer is correct, while × refers to the answer is incorrect.

builds 3 and buys 3 others. Each bird feeder seems to attract 20 birds throughout day until Lillian notices that the birds seem to prefer the feeders she made her which attract 10 more birds each than the store-bought ones. How many birds Lillian expect to see in her garden each day if the same amount keep coming to bird feeders? Lillian has 3 store-bought + 3 self-made bird feeders = $<<3+3=6>>6$ bird f ers in all. Lillian first notices each bird feeder attracts 20 birds, 6 x 2 <<6*20=120>>120 birds. Then Lillian notices that her 3 self-made bird fee attract 10 more birds each, 10 x 3 = $<<10*3=30>>30$ extra birds. Each day Li can expect to see 120 + 30 = $<<120+30=150>>150$ birds in her garden. The swer is: 150.
 which attract 10 more birds each than the store-bought ones. How many birds Lillian expect to see in her garden each day if the same amount keep coming to bird feeders? Lillian has 3 store-bought + 3 self-made bird feeders = <<3+3=6>>6 bird f ers in all. Lillian first notices each bird feeder attracts 20 birds, 6 x 2 <<6*20=120>>120 birds. Then Lillian notices that her 3 self-made bird fee attract 10 more birds each, 10 x 3 = <<10*3=30>>30 extra birds. Each day Li can expect to see 120 + 30 = <<120+30=150>>150 birds in her garden. The swer is: 150.
 Lillian expect to see in her garden each day if the same amount keep coming to bird feeders? Lillian has 3 store-bought + 3 self-made bird feeders = <<3+3=6>>6 bird f ers in all. Lillian first notices each bird feeder attracts 20 birds, 6 x 2 <<6*20=120>>120 birds. Then Lillian notices that her 3 self-made bird fee attract 10 more birds each, 10 x 3 = <<10*3=30>>30 extra birds. Each day Li can expect to see 120 + 30 = <<120+30=150>>150 birds in her garden. The swer is: 150.
Lillian has 3 store-bought + 3 self-made bird feeders = $\langle 3+3=6 \rangle 6$ bird f ers in all. Lillian first notices each bird feeder attracts 20 birds, 6 x 2 $\langle 6*20=120 \rangle 120$ birds. Then Lillian notices that her 3 self-made bird fee attract 10 more birds each, 10 x 3 = $\langle 10*3=30 \rangle 30$ extra birds. Each day Li can expect to see 120 + 30 = $\langle 120+30=150 \rangle 150$ birds in her garden. The swer is: 150.
ers in all. Lillian first notices each bird feeder attracts 20 birds, 6 x 2 $<<6*20=120>>120$ birds. Then Lillian notices that her 3 self-made bird fee attract 10 more birds each, 10 x 3 = $<<10*3=30>>30$ extra birds. Each day Li can expect to see 120 + 30 = $<<120+30=150>>150$ birds in her garden. The swer is: 150.
attract 10 more birds each, 10 x $3 = \langle 10 \times 3 = 30 \rangle > 30$ extra birds. Each day Li can expect to see $120 + 30 = \langle 120 + 30 = 150 \rangle > 150$ birds in her garden. The swer is: 150.
can expect to see $120 + 30 = \langle 120+30=150 \rangle > 150$ birds in her garden. The swer is: 150.
swer is: 150.
Lillian builds 3 bird feeders and buys 3 others, so she has a total of $3 + 3 = 6$
feeders. Each bird feeder she made herself attracts 10 more birds than the store-bo ones so each of her bird feeders attracts $20 + 10 - 20$ birds. The total number
birds, so each of her bird feeders attracts 20 + 10 - 50 birds. The total humber birds that can be seen in her garden each day is the number of bird feeders times
number of birds each feeder attracts, so it's $6 \times 30 = 180$ birds. The answe
Lillian builds 3 bird feeders and buys 3 others, so she has a total of $3 + 3 = 6$ feeders. Each bird feeder she made berself attracts $20 \pm 10 = 30$ birds each
Each bird feeder she bought from the store attracts 20 birds each day. So, the
number of birds she can expect to see in her garden each day is $3 \times 30 + 3 \times$
= 90 + 60 = 150 birds. The answer is: $150 \checkmark$
Lillian builds 3 bird feeders and buys 3 others, so she has a total of $3 + 3 =$
bought ones, so each of her bird feeders attracts $20 + 10 = 30$ birds. The 3
feeders she made herself can therefore attract a total of $3 * 30 = 90$ birds. The
store-bought bird feeders can attract a total of 3 * 20 = 60 birds. Adding t
together, Lillian can expect to see a total of $90 + 60 = 150$ birds in her gas

Table 10: A case example of MATH dataset. \checkmark refers to the answer is correct, while \times refers to the answer is incorrect.

1026 We show some qualitative examples of BIRD and Math tasks in Table 9 and Table 10. We com-1027 pare the reasoning results of SFT, DPO, and our IUPO and highlight the wrong parts with distinct 1028 colors. In the Text-to-SQL task, we find that the results generated by different methods were re-1029 markably similar, with only a few words differing. However, it is precisely these critical differences that lead to the opposite final outcomes. Benefiting from the contrasting preference data and fine-1030 grained preference control, our IUPO makes correct judgments and predictions. Regarding to the 1031 mathematical reasoning task, the trajectory of logical reasoning is notably sensitive to nuanced vari-1032 ations, despite the apparent distinctions in formal derived from various methods. We find that the 1033 SFT model initially demonstrated correct reasoning but deviated towards incorrect conclusions in 1034 later stages. In contrast, both the DPO and UDPO models consistently made progress toward more accurate outcomes.

	00-
1	035
1	036
1	037
1	038
1	039
1	040
1	041
1	042
1	043
1	044
1	045
1	046
1	047
1	048
1	049
1	050
1	051
1	052
1	053
1	054
1	055
1	056
1	057
1	058
1	059
1	060
1	061
1	062
1	063
1	064
1	065
1	066
1	067
1	068
1	069
1	070
1	0/1
1	072
1	073
1	074
1	075
1	075
1	070
1	078