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Abstract

Aligning large language models to handle in-001
structions with extremely long contexts has yet002
to be fully investigated. Previous studies have003
attempted to scale up the available data vol-004
ume by synthesizing long instruction-following005
samples, as constructing such a dataset tends006
to be challenging for annotators. However, a007
lack of a well-defined strategy for ensuring data008
quality may introduce low-quality samples and009
restrict the model’s performance. Thus, we pro-010
pose GATEAU, a novel framework to address011
the unique challenge of long context alignment012
by identifying the influential samples enriched013
with long-range dependency relations. Specif-014
ically, GATEAU measures the long-range de-015
pendencies from two essential aspects: the dif-016
ficulty of generating target responses due to the017
long-range dependencies, and the difficulty of018
understanding long inputs due to such depen-019
dencies. Comprehensive experiments indicate020
that GATEAU effectively identifies influential021
samples and the model trained on these selected022
samples exhibits better instruction-following023
and long-context understanding capabilities.024

1 Introduction025

Large language models (LLMs) with large context026

windows (Du et al., 2022; Li et al., 2023; Chen027

et al., 2024b) have shown impressive capabilities028

in real-world tasks that involve extremely long con-029

texts (Bai et al., 2023). Recent works to build030

long-context LLMs mainly focus on broadening031

context windows via position encoding extension032

and continual pre-training on a long corpus (Chen033

et al., 2023b; Peng et al., 2024; Xiong et al., 2024).034

Despite these advancements, few studies con-035

sider the long context alignment of LLMs to lever-036

age their capabilities in understanding lengthy in-037

puts and following complex instructions. A pri-038

mary obstacle lies in the difficulty of constructing039

a high-quality, long instruction-following dataset040

for supervised fine-tuning (SFT). Annotating long041

instruction-following data tends to be much more 042

challenging than short ones, as it is non-trivial for 043

annotators to understand an excessively long con- 044

text and provide high-quality responses, e.g., an- 045

notators might be tasked with writing a summary 046

for a document containing 64k words. Further- 047

more, modeling long-range dependencies is cru- 048

cial for long-context tasks (Chen et al., 2024a; Wu 049

et al., 2024), as such strong semantic dependen- 050

cies benefit LLMs to understand lengthy inputs 051

and generate high-quality responses. Thus, recent 052

works (Li et al., 2023; Xiong et al., 2024) attempt 053

to construct the long instruction-following dataset 054

by concatenating short instruction-following sam- 055

ples. While these methods successfully increase 056

sequence lengths, simply concatenating unrelated 057

samples fails to effectively simulate the inherent 058

long-range dependencies in authentic long sam- 059

ples. To address this issue, Yang (2023); Chen et al. 060

(2024b); Bai et al. (2024) focus on synthesizing 061

long instruction-following data. For instance, Bai 062

et al. (2024) synthesizes 10k samples by employing 063

Claude 2.1 (Anthropic., 2023), which supports a 064

context window of 200k tokens, to get responses 065

for the collected long documents. 066

However, when training on such synthetic sam- 067

ples with sufficiently lengthy contexts, LLMs still 068

struggle to learn and model the long-range depen- 069

dencies (Chen et al., 2024a). This is because indis- 070

criminately increasing the quantity of data without 071

a well-defined strategy for ensuring data quality can 072

introduce low-quality samples lacking long-range 073

dependency relations. Such samples may rely only 074

on a few tokens before the instruction or may not 075

require long inputs to get the target response. Thus, 076

a critical question arises: How can we effectively 077

select influential samples from a vast amount of 078

synthetic long instruction-following data for long 079

context alignment? 080

Previous studies for selecting influential instruc- 081

tion data primarily focus on short samples (Li 082
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Figure 1: An overview of GATEAU. GATEAU first selects samples enriched with long-range dependency relations
by using two proposed methods. Then it uses selected influential samples for training long-context LLMs.

et al., 2024b; Xia et al., 2024). Thus, these stud-083

ies may not be effective for long context align-084

ment as they ignore the unique challenge in long085

context alignment, i.e., how to select the samples086

enriched with meaningful long-range dependency087

relations. To address this challenge, we measure088

long-range dependencies from two essential as-089

pects: the difficulty of generating target responses090

due to long-range dependencies, and the difficulty091

of understanding long inputs due to such depen-092

dencies. We introduce GATEAU, which consists093

of Homologous Models’ GuidAnce (HMG) and094

ConTExtual Awareness MeasUrement (CAM),095

to identify the influential long samples enriched096

with long-range dependency relations to achieve097

better long context alignment.098

Specifically, HMG measures the difficulty of099

generating target responses due to long-range de-100

pendencies, by comparing perplexity scores of the101

given response between two homologous models102

(Yu et al., 2024) with different context windows103

(e.g., the perplexity scores from LLaMA-3-base-8k104

(Grattafiori et al., 2024) and LLaMA-3-base-64k105

(Lian, 2024)). The idea behind HMG is that the106

primary difference between homologous models107

with varying context windows lies in their differ-108

ent capabilities for modeling long-range dependen-109

cies. Thus, the disparity in the perplexity scores110

can be interpreted as reflecting the difficulty of111

generating the response caused by long-range de-112

pendencies. We further introduce CAM to measure113

the difficulty of understanding long input contexts114

due to long-range dependencies. We first calculate115

the importance score of different input segments 116

concerning the given response and subsequently 117

measure whether LLMs can pay more attention to 118

more important segments. If LLM’s attention fo- 119

cuses more on less important segments, it implies 120

that it is challenging for the LLM to comprehend 121

the long inputs correctly. Ultimately, we take the 122

weighted sum of both scores from the two methods 123

as the final criterion for ranking the data, selecting 124

the most challenging samples as influential ones. 125

When trained on these selected samples with rich 126

long-range dependency relations, LLMs could ef- 127

fectively model the long-range dependencies and 128

achieve better instruction-following performance. 129

We conduct extensive experiments to evaluate 130

GATEAU, including long-context understanding 131

benchmark (LongBench (Bai et al., 2023)) and 132

instruction-following benchmarks (LongBench- 133

Chat (Bai et al., 2024), MT-Bench (Zheng et al., 134

2023)). With GATEAU, significant performance 135

boosts are observed, e.g., the model trained on just 136

10% selected samples of the dataset achieves better 137

performance than the vanilla fine-tuning method. 138

2 Methodology 139

As shown in Figure 1, we propose GATEAU to 140

select influential samples from a vast ocean of syn- 141

thetic data instead of indiscriminately increasing 142

the quantity of synthetic long instruction-following 143

data (Chen et al., 2024b; Bai et al., 2024). Different 144

from previous studies that only consider the short 145

context scenarios (Li et al., 2024b; Xia et al., 2024), 146

we attempt to address the unique challenge in long 147
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context alignment, i.e., modeling long-range de-148

pendencies. GATEAU consists of Homologous149

Models’ Guidance and Contextual Awareness Mea-150

surement, which separately measure the difficulty151

of generating corresponding responses and under-152

standing long input contexts due to the long-range153

dependencies. In this way, GATEAU can compre-154

hensively and effectively measure the richness of155

long-range dependency relations in long samples.156

2.1 Homologous Models’ Guidance157

Modeling long-range dependencies is essential for158

long context alignment (Chen et al., 2024a). How-159

ever, there is still no effective metric to directly160

quantify the richness of long-range dependency161

relations in data, which hinders the selection of in-162

fluential data. Therefore, in this section, we attempt163

to approximately assess the richness of long-range164

dependency relations by measuring the difficulty165

in generating corresponding responses due to the166

long-range dependencies. If LLMs find it harder to167

generate target responses due to long-range depen-168

dencies, it means the sample has more complex and169

meaningful long-range dependency relations. An170

intuitive approach is to use the perplexity score to171

measure the difficulty of generating corresponding172

responses (Cao et al., 2024; Li et al., 2024b), as173

the score evaluates the extent to which the LLM’s174

output aligns with the corresponding correct an-175

swer. For a given long instruction-following sam-176

ple pc, x; yq, the perplexity score of the given re-177

sponse y from LLMs θ is calculated as:178

PPLθpy|c, xq “ Expp´
1

|y|

|y|
ÿ

i“1

logP pyi|c, x, yăi; θqq, (1)179

where c means long input contexts and x means the180

given instruction. A higher PPLθpy|c, xq indicates181

the harder the response of this long instruction-182

following data for LLM to generate.183

However, we argue that a higher PPLθpy|xq184

does not mean the increased difficulty in generating185

target responses is due to long-range dependencies.186

A higher PPLθpy|c, xq might be attributed to cer-187

tain limited capabilities of LLMs, such as the lim-188

ited instruction-following capability for the model189

without alignment, instead of handling the long-190

range dependency relations in this sample is more191

challenging for the LLM. Therefore, to minimize192

the influence of other factors, we propose Homol-193

ogous Models’ Guidance (HMG). Specifically,194

we compare the perplexity scores of the response195

between two homologous models with different 196

context windows to measure the difficulty due to 197

the long-range dependencies. As homologous mod- 198

els (Yu et al., 2024) share the same pre-training 199

stage and model architecture (e.g., LLaMA-3-base- 200

8k and LLaMA-3-base-64k), the only difference 201

lies in their capabilities to model long-range depen- 202

dency due to the context windows extending stage. 203

Based on this motivation, we introduce the homol- 204

ogous models’ perplexity score HMPpc, x; yq: 205

HMPpc, x; yq “ NormpPPLθApy|c, xqq 206

´NormpPPLθB py|c, xqq. (2) 207

Model θA employs short context windows and 208

θB is the model with long ones, e.g., LLaMA-3- 209

base-8k θA and LLaMA-3-base-64k θB . We com- 210

pute the difference in normalized perplexity scores 211

between two homologous models with different 212

context windows as the metric. We apply soft- 213

max normalization to each score to determine its 214

respective ranking among the datasets, since per- 215

plexity scores of one sample from different models 216

often can’t be directly compared. By introducing 217

a model θA with weaker long-range dependencies 218

modeling capability but other similar capabilities 219

learned during the pre-training stage, we mitigate 220

the influence brought by lacking other capabilities 221

compared to simply using the perplexity score as 222

Eq. (1). Thus, the difference in perplexity scores is 223

primarily attributed to the different abilities in mod- 224

eling long-range dependencies between model θA 225

and model θB . In other words, Eq. (2) reflects the 226

difficulty of generating the corresponding response 227

caused by long-range dependencies. We use the 228

drop from PPLθA to PPLθB in Eq. (2) as model 229

θA tends to produce a high perplexity score due 230

to its weak ability to model long-range dependen- 231

cies. Thus, a higher HMPpc, x; yq indicates more 232

difficulties for LLM in response generation due to 233

the long-range dependencies, i.e., more long-range 234

dependency relations in this sample. 235

2.2 Contextual Awareness Measurement 236

Another challenge in long context alignment lies in 237

enabling LLMs to understand and utilize extremely 238

long inputs. Due to the long-range dependencies, 239

it is hard for LLMs to utilize crucial information 240

hidden in extremely long contexts, e.g., LLM’s at- 241

tention may focus on irrelevant content. Thus, we 242

introduce Contextual Awareness Measurement 243

(CAM) to evaluate whether LLMs’ attention is ap- 244

propriately focused on important segments within 245
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the lengthy inputs. We attempt to evaluate the246

importance score of each segment and calculate247

the LLM’s attention weights on each one, getting248

the Contextual Awareness Score (CAS) via com-249

puting their similarity. For a given data pc, x; yq,250

we divide the input contexts c into N segments251

rs1, s2, s3, ..., sN s of equal length L. For segment252

si, we first compute the designed importance score253

ISθpsiq to measure the significance of the segment254

in the response generation for LLM θ:255

ISθpsiq “ NormpExpp´
1

|y|

|y|
ÿ

j“1

logP pyi|si, x, yăj ; θqqq.

(3)

256

We only keep the segment si as the input to257

calculate the perplexity score of generating the re-258

sponse y, indicating the difficulty of generating259

response y based on segment si. We apply softmax260

normalization to each score to determine its respec-261

tive ranking among the segments tsiu
N
i“1 as shown262

in Eq. (3). The higher ISθpsiq suggests a greater263

difficulty for LLM θ to generate the response based264

on segment si, implying that it is less important.265

Once the importance scores of different seg-266

ments are calculated, we then utilize the atten-267

tion weights (i.e., the value of softmaxp
QKT
?
dk

q )268

in the multi-head attention mechanism (Vaswani269

et al., 2017) to measure how the LLM utilizes these270

segments. We use the averaged attention weights271

of tokens rt1, ..., tLs in segments si as the score272

Attnθpsiq, which takes the form:273

Attnθpsiq “ Normp
1

L

L
ÿ

j“1

Attnθptj |y; θqq, (4)274

where Attnθptj |y; θq means the attention weights275

averaged across the tokens in targeted response y276

to the token tj in segment si. Meanwhile, we har-277

ness the attention weights averaged across different278

decoder layers and attention heads to thoroughly279

model how the LLM utilizes the long input con-280

texts during the response generation (Hsieh et al.,281

2024). We apply softmax normalization to each282

score 1
L

řL
j“1Attnθptj |y; θq to determine its re-283

spective ranking among the segments tsiu
N
i“1 to284

yield the score Attnθpsiq. In so doing, we can cal-285

culate the attention weights between the response286

and segments, indicating how segments are utilized287

during the response generation.288

Finally, we can measure the difficulty of under-289

standing the long input contexts due to the long-290

range dependencies. For a given long instruction- 291

following sample, we compute the CAS by resort- 292

ing to the cosine similarity between importance 293

scores rISθps1q, ..., ISθpsN qs and attention weights 294

rAttnθps1q, ...,AttnθpsN qs, as follows: 295

CASpc, x; yq “CosSimprISθps1q, . . . , ISθpsN qs, 296

rAttnθps1q, . . . ,AttnθpsN qsq.
(5)

297

By doing this, we can measure the difficulty of 298

understanding the long input contexts by evaluating 299

whether LLMs’ attention is focused on important 300

segments. The insight is that if the LLM’s atten- 301

tion focuses more on less important segments, it 302

suggests that the LLM struggles to accurately com- 303

prehend the given long input contexts. The higher 304

CASpc, x; yq indicates more difficulties in utiliz- 305

ing the long input contexts to generate correspond- 306

ing responses due to the long-range dependencies, 307

which also implies more long-range dependency 308

relations in this sample. 309

2.3 Selecting and Training 310

We frame the final score by weighting two met- 311

rics of the sample pc, x; yq, then select the most 312

challenging samples as the influential samples, i.e., 313

Scorepc, x; yq “ α ˚ NormpHMPpc, x; yqq 314

`p1 ´ αq ˚ NormpCASpc, x; yqq, (6) 315

where α is a hyperparameter. We tap softmax nor- 316

malization to the HMPpc, x; yq and CASpc, x; yq 317

across the whole dataset. Inspired by active learn- 318

ing (Li et al., 2024a), when trained on these chal- 319

lenging data with complex long-range dependency 320

relations, LLMs could learn such dependencies and 321

achieve better long context alignment. 322

Training LLMs with instruction-following data 323

can teach LLMs to follow user instructions. Thus, 324

we apply SFT on the selected data (e.g., selecting 325

10% samples of full datasets with top 10% scores 326

according to Eq. (6)). Then, we train LLMs using 327

the following objective function: 328

Lθpc, x; yq “ ´

|y|
ÿ

i“1

logP pyi|c, x, yăi; θq. (7) 329

3 Experiment 330

3.1 Experimental Setup 331

Training Datasets. We use LongAlign (Bai et al., 332

2024) as the long instruction-following dataset, 333
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which contains 10,000 long samples. We apply334

GATEAU to the LongAlign dataset. Meanwhile,335

similar to Bai et al. (2024), to maintain the model’s336

general capabilities and its proficiency in following337

short instructions, we utilize the ShareGPT dataset338

(Chiang et al., 2023) as the source of short instruc-339

tion data in training data. To study the impact340

of mixing long and short instruction samples, we341

evaluate GATEAU in both Real-world Settings342

and Limited Short Instruction Data Settings.343

Real-world Settings indicate real-world users prior-344

itize short instruction-following interactions (Chi-345

ang et al., 2023). Thus, we use the full ShareGPT346

dataset as short instruction-following data. We also347

explore scenarios where short instruction data is348

limited, utilizing only the first 10% of ShareGPT,349

namely Limited Short Instruction Data Settings.350

More details are shown in the Appendix A.351

Training Details. For the fair comparisons with352

Bai et al. (2024), we use LLaMA-2-7B-base-4k353

(Touvron et al., 2023) and LLaMA-2-7B-base-64k354

(Bai et al., 2024) as homologous models to apply355

HMG. For CAM, we use LLaMA-2-7B-base-64k356

to calculate the CAS. We train the LLaMA-2-7B-357

base-64k based on selected samples as our final358

model GATEAU-LLaMA. We also find GATEAU359

can fit in other LLMs in the Appendix I.2, including360

ChatGLM-3 (Zeng et al., 2023; Bai et al., 2024)361

and LLaMA-3 series (Grattafiori et al., 2024; Lian,362

2024). More details are shown in the Appendix A.363

Baselines. We compare our method with multiple364

SFT data selection baselines. Cherry Selection (Li365

et al., 2024b) and CaR (Ge et al., 2024) are state-366

of-the-art methods to select the influential short367

instruction-following data. We also use the per-368

plexity score from long-context LLM as guidance369

to select long instruction-following samples accord-370

ing to Eq. (1), namely Perplexity Guidance. More371

details can be found in the Appendix B.372

Evaluation. To gauge the effectiveness of our373

method, we conduct extensive evaluations on dif-374

ferent benchmarks. We use LongBench-Chat (Bai375

et al., 2024) to evaluate the models’ ability to fol-376

low long instructions, which comprises open-ended377

questions of 10k-100k in length. We also employ378

a bilingual and multi-task benchmark LongBench379

(Bai et al., 2023) to evaluate the model’s long-380

context understanding abilities. We conduct evalu-381

ations on three tasks following Bai et al. (2024), in-382

cluding Single-Doc QA, Multi-Doc QA, and Sum-383

marization. Meanwhile, as aligned models gener-384

ally produce longer responses, rather than relying385

Model Real-world Limited

LongBench-Chat
w/o SFT 10.4 10.4
w/o Long SFT 37.4 36.2
Full - 100% 48.8 50.8
Perplexity Guidance - 10% 52.2 49.0
CaR - 10% 50.8 49.0
Cherry Selection - 10% 53.2 50.8
GATEAU-LLaMA - 10% 55.4 58.0
Perplexity Guidance - 30% 50.6 51.8
CaR - 30% 48.6 51.4
Cherry Selection - 30% 50.4 52.4
GATEAU-LLaMA - 30% 57.8 55.2
Perplexity Guidance - 50% 49.8 51.0
CaR - 50% 49.6 51.6
Cherry Selection - 50% 50.6 53.2
GATEAU-LLaMA - 50% 56.8 59.0

MT-Bench
w/o SFT 34.6 34.6
w/o Long SFT 53.7 50.5
Full - 100% 54.3 47.7
Perplexity Guidance - 10% 56.1 50.9
CaR - 10% 54.9 49.9
Cherry Selection - 10% 56.8 47.6
GATEAU-LLaMA - 10% 58.6 53.4
Perplexity Guidance - 30% 55.0 50.2
CaR - 30% 54.3 48.6
Cherry Selection - 30% 54.3 45.8
GATEAU-LLaMA - 30% 58.8 52.9
Perplexity Guidance - 50% 55.9 49.2
CaR - 50% 54.7 51.2
Cherry Selection - 50% 56.3 49.6
GATEAU-LLaMA - 50% 57.3 54.2

Table 1: Results (%) on LongBench-Chat and MT-
Bench in two different settings.

solely on the automatic metrics (e.g., ROUGE) to 386

evaluate the results, we follow Bai et al. (2024) to 387

employ GPT-4 to evaluate the model outputs based 388

on their alignment with the ground-truth answers 389

on LongBench. We use MT-Bench (Zheng et al., 390

2023) to measure the models’ ability to follow short 391

instructions via GPT-4 rating. To ensure the most 392

stable evaluation results, we use GPT-4 to score 393

twice and average these scores to obtain the final 394

results. More details about evaluation (e.g., the 395

rating prompts) can be found in the Appendix C. 396

3.2 Main Results 397

GATEAU Improves Instruction-Following Ca- 398

pabilities for Both Short and Long Inputs. The 399

results are shown in Table 1 for the LongBench- 400

Chat and MT-Bench benchmarks in two settings. It 401

shows that GATEAU can improve LLMs’ capabil- 402

ities in following both long and short instructions 403

and generating high-quality responses. Compared 404

to indiscriminately using the whole dataset, using 405

the selected subset of the long instruction-following 406

dataset (GATEAU-LLaMA) can significantly im- 407

prove the instruction-following capabilities, e.g., 408

increasing 9% in LongBench-Chat and 6.5% in MT- 409

Bench. Meanwhile, the low performance of w/o 410
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Model Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 Avg 2-1 2-2 2-3 2-4 Avg 3-1 3-2 3-3 3-4 Avg

Real-world Settings
w/o SFT 33.8 38.0 41.1 34.8 36.9 41.3 37.2 33.3 42.0 38.5 39.2 20.2 37.1 30.9 31.9
w/o Long SFT 58.7 66.7 83.1 79.2 71.9 70.2 53.4 48.7 61.3 58.4 57.3 36.2 55.2 38.4 46.8
Full - 100% 62.8 69.0 83.1 81.3 74.1 71.5 54.8 51.3 66.2 61.0 58.7 39.8 57.6 41.2 49.3

Perplexity Guidance - 10% 62.0 68.8 86.4 85.6 75.7 73.5 59.7 52.1 68.2 63.4 67.6 41.3 67.0 44.9 55.2
CaR - 10% 60.3 69.0 86.0 84.8 75.0 69.1 58.3 52.3 68.5 62.1 64.1 41.4 60.3 42.1 52.0
Cherry Selection - 10% 60.8 67.2 86.7 84.3 74.8 71.3 57.8 51.0 69.0 62.3 61.3 40.0 64.8 41.5 51.9
GATEAU-LLaMA - 10% 63.6 69.2 86.9 87.1 76.7 74.8 60.8 53.1 69.5 64.6 67.6 42.6 66.2 47.8 56.1
∆ compared to Full - 100% +0.8 +0.2 +3.8 +5.8 +2.7 +3.3 +6.0 +1.8 +3.3 +3.6 +8.9 +2.8 +8.6 +6.6 +6.7

Perplexity Guidance - 30% 62.8 67.3 86.2 82.6 74.7 72.3 59.3 50.8 67.8 62.6 62.3 41.7 64.8 42.7 52.9
CaR - 30% 61.3 67.3 86.4 85.3 75.1 68.3 58.3 53.2 66.8 61.7 64.6 39.7 60.7 41.2 51.6
Cherry Selection - 30% 62.0 66.8 87.1 84.3 75.1 74.3 59.3 52.7 68.7 63.8 62.3 40.5 64.6 44.4 53.0
GATEAU-LLaMA - 30% 63.0 70.8 87.6 85.8 76.8 75.7 61.0 55.7 69.5 65.5 67.5 44.7 65.9 47.4 56.4
∆ compared to Full - 100% +0.2 +1.8 +4.5 +4.5 +2.8 +4.2 +6.2 +4.4 +3.3 +4.5 +8.8 +4.9 +8.3 +6.2 +7.1

Perplexity Guidance - 50% 63.1 68.1 87.8 82.1 75.3 74.2 59.2 52.5 69.2 63.8 64.7 41.1 65.7 42.1 53.4
CaR - 50% 60.0 66.3 85.6 84.2 74.0 70.7 55.8 54.3 68.2 62.3 64.4 41.1 60.8 40.3 51.7
Cherry Selection - 50% 62.8 65.5 86.2 82.8 74.3 72.2 56.8 52.7 67.8 62.4 64.6 39.4 64.1 42.1 52.6
GATEAU-LLaMA - 50% 63.5 70.3 89.7 86.5 77.5 75.3 60.8 53.5 68.5 64.5 65.1 41.6 65.9 46.1 54.7
∆ compared to Full - 100% +0.7 +1.3 +6.6 +5.2 +3.5 +3.8 +6.0 +2.2 +2.3 +3.6 +6.4 +1.8 +8.3 +4.9 +5.4

Limited Short Instruction Data Settings
w/o SFT 33.8 38.0 41.1 34.8 36.9 41.3 37.2 33.3 42.0 38.5 39.2 20.2 37.1 30.9 31.9
w/o Long SFT 62.3 70.8 88.5 82.7 76.1 72.8 60.6 51.8 67.3 63.1 64.7 41.1 61.4 41.6 52.2
Full - 100% 58.7 69.7 85.8 83.0 74.3 70.5 58.7 50.8 67.8 62.0 59.6 38.4 59.6 43.3 50.2

Perplexity Guidance - 10% 62.8 69.2 89.3 85.7 76.8 73.8 59.1 54.1 71.1 64.5 69.8 45.8 65.7 50.1 57.9
CaR - 10% 62.8 68.3 88.0 82.7 75.5 71.8 58.0 52.7 68.8 62.8 65.5 42.0 61.8 43.1 53.1
Cherry Selection - 10% 62.8 69.8 86.7 85.7 76.3 72.0 58.7 52.5 69.3 63.1 63.2 43.3 60.1 46.4 53.3
GATEAU-LLaMA - 10% 64.8 74.7 89.8 86.5 79.0 75.2 61.2 54.6 70.0 65.3 71.1 47.3 67.0 54.2 59.9
∆ compared to Full - 100% +6.1 +5.0 +4.0 +3.5 +4.7 +4.7 +2.5 +3.8 +2.2 +3.3 +11.5 +8.9 +7.4 +10.9 +9.7

Perplexity Guidance - 30% 62.5 71.8 88.2 83.8 76.6 74.6 58.5 53.5 69.3 64.0 67.5 44.0 64.7 50.4 56.7
CaR - 30% 60.8 70.7 88.4 81.8 75.4 73.0 59.0 53.5 68.5 63.5 64.1 40.9 62.3 45.8 53.3
Cherry Selection - 30% 62.8 71.7 88.9 87.5 77.7 70.3 58.7 50.3 68.2 61.9 62.9 43.5 65.2 44.6 54.1
GATEAU-LLaMA - 30% 64.8 73.0 89.3 86.2 78.3 74.7 61.0 54.2 69.8 64.9 70.8 46.0 66.4 51.4 58.7
∆ compared to Full - 100% +6.1 +3.3 +3.5 +3.2 +4.0 +4.2 +2.3 +3.4 +2.0 +3.0 +11.2 +7.6 +6.8 +8.1 +8.4

Perplexity Guidance - 50% 61.5 68.3 85.1 82.8 74.4 72.3 59.3 52.0 67.7 62.8 60.2 40.9 58.6 42.3 50.5
CaR - 50% 62.3 68.1 86.9 80.1 74.4 71.0 58.7 52.8 68.0 62.6 64.4 41.2 61.1 45.6 53.1
Cherry Selection - 50% 61.2 69.7 86.2 83.7 75.2 69.7 56.8 49.5 66.2 60.6 64.1 41.8 60.5 43.7 52.5
GATEAU-LLaMA - 50% 63.7 71.8 87.1 84.7 76.8 74.0 60.0 53.8 69.0 64.2 66.1 43.9 62.4 46.4 54.7
∆ compared to Full - 100% +5.0 +2.1 +1.3 +1.7 +2.5 +3.5 +1.3 +3.0 +1.2 +2.3 +6.5 +5.5 +2.8 +3.1 +4.5

Table 2: GPT-4 evaluation results (%) on LongBench in Real-world Settings. We use the ID to represent the dataset
in LongBench, e.g., 1-1 is the ID of the NarrativeQA dataset. More details can be found in the Appendix C.2.
Automatic metrics evaluation results (%) are shown in Table 5.

Long SFT in LongBench-Chat indicates that using411

long SFT data is important for the performance in412

handling the instructions with long input contexts.413

The results also show that our method GATEAU414

achieves consistently better performance in varying415

ratios of used long instruction-following samples416

compared with other baselines, indicating the effec-417

tiveness of our method. Compared with baselines418

focusing on short SFT samples (CaR and Cherry419

Selection), GATEAU can identify samples enriched420

with long-range dependency relations more effec-421

tively and help LLMs to achieve better long con-422

text alignment. We also observe that the selection423

of long instruction-following samples aids in aug-424

menting the instruction-following capabilities for425

short inputs. We conjecture that handling complex426

tasks (i.e., long input contexts) contributes to han-427

dling the easy ones (i.e., short input contexts).428

GATEAU Enhances the Long-Context Under-429

standing Capabilities. The results are shown430

in Table 2 and Table 5 (in the Appendix) for the 431

LongBench benchmark. Our methods achieve con- 432

sistent and remarkable performance gains in differ- 433

ent settings and evaluation methods. We show the 434

improved scores (∆ compared to Full-100%) com- 435

pared to indiscriminately using the whole dataset 436

(Full-100%), indicating that GATEAU helps LLM 437

to better understand the long input contexts. We 438

also find that the baselines focusing on the selec- 439

tion of short instruction-following data (CaR and 440

Cherry Selection) hold inferior results, sometimes 441

even worse than using the whole dataset (Full- 442

100%). This can be attributed to these methods 443

are not designed for long context alignment and 444

understanding, thus failing to select the samples 445

enriched with long-range dependency relations. 446

3.3 Analysis 447

Ablation Study. To evaluate the effectiveness of 448

our proposed GATEAU, we also conduct the ab- 449
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Model LongBench LongBench-Chat MT-Bench

Single-Doc QA Multi-Doc QA Summarization Avg First-turn Second-turn Avg

Real-world Settings
GATEAU-LLaMA - 13B - 50% 40.2 27.1 25.7 61.4 66.8 55.3 61.1
-w/o Contextual Awareness Measurement 38.1 25.8 24.6 60.2 66.2 55.0 60.6
-w/o Homologous Models’ Guidance 38.6 26.0 25.1 60.6 66.0 54.6 60.3
-w/o Data Selection (i.e., Full - 100%) 33.6 16.7 24.4 59.4 66.0 54.1 59.6

GATEAU-LLaMA - 7B - 50% 38.9 25.8 25.5 56.8 64.1 50.4 57.3
-w/o Contextual Awareness Measurement 38.4 24.3 25.1 53.2 61.7 51.5 56.6
-w/o Homologous Models’ Guidance 38.6 24.5 24.9 52.8 63.1 49.3 56.3
-w/o Data Selection (i.e., Full - 100%) 36.1 22.3 23.8 48.8 60.0 48.7 54.3

Limited Short Instruction Data Settings
GATEAU-LLaMA - 13B - 50% 32.1 19.1 25.3 62.6 66.0 51.5 58.8
-w/o Contextual Awareness Measurement 31.4 18.4 24.7 59.6 64.2 50.3 57.3
-w/o Homologous Models’ Guidance 30.8 18.6 25.0 60.4 63.6 50.6 57.1
-w/o Data Selection (i.e., Full - 100%) 30.4 17.8 24.5 54.2 61.0 49.8 55.4

GATEAU-LLaMA - 7B - 50% 31.0 18.1 25.3 59.0 64.2 44.1 54.2
-w/o Contextual Awareness Measurement 28.5 17.5 24.7 53.2 61.3 42.4 51.8
-w/o Homologous Models’ Guidance 28.7 17.3 24.6 54.4 56.1 45.0 50.6
-w/o Data Selection (i.e., Full - 100%) 27.2 16.1 24.5 50.8 54.5 40.9 47.7

Table 3: Results (%) of ablation and scalability study. We show automatic metrics evaluation results on LongBench.

Coherence
(Long Input Contexts)

Necessity
(Long Input Contexts)

Complexity
(Instruction)

Faithfulness
(Response)

Helpfulness
(Response)

1% Highest
1% Lowest

Figure 2: The comparison between samples with top
1% and least 1% scored by GATEAU.

lation study in Table 3. We can find that HMG450

and CAM can both enhance LLMs’ instruction-451

following and long-context understanding capabili-452

ties. This indicates the effectiveness of GATEAU,453

and using the two proposed methods can further im-454

prove the performance as they separately measure455

the difficulty from two different perspectives.456

Scalability Study. We explore whether GATEAU457

can fit in larger LLMs in Table 3. We apply our458

method on the Llama-2-13B-base series and fine-459

tune Llama-2-13B-base-64k (Bai et al., 2024) using460

the selected samples. Compared to the 7B-scale461

GATEAU-LLaMA-7B, the 13B GATEAU-LLaMA-462

13B shows consistent improvements on three bench-463

marks. This indicates that GATEAU scales effec-464

tively to larger-scale models.465

General Characteristics of Selected Samples.466

We delve into whether the selected samples based467

on GATEAU align with known characteristics of468

high-quality data as shown in Figure 2. We se- 469

lect 100 samples with the 1% highest scores and 470

100 samples with the 1% lowest scores. Utilizing 471

GPT-4, we evaluate each sample on five aspects: 472

the coherence of long input contexts, the neces- 473

sity of long input contexts, helpfulness of response, 474

the faithfulness of response, and the complexity of 475

instruction. A sample with a higher score tends 476

to be more high-quality, especially the long input 477

contexts and the response. The complexity of in- 478

struction, in particular, shows a mere improvement 479

compared to other characteristics. We evaluate the 480

whole dataset on this characteristic and find that all 481

samples show consistently low scores, which may 482

be due to the limitation of the synthetic dataset. 483

More details are shown in the Appendix D. 484

Variation of Abilities under Different Context 485

Lengths. Figure 3 shows the macro-average re- 486

sults (%) on data in length ranges of 0-4k, 4k-8k, 487

and 8k+. We find that GATEAU improves the per- 488

formance in long-context scenarios (i.e., 4k-8k and 489

8k+). Indiscriminately using the full long SFT 490

dataset (Full-100%) even hinders the performance 491

in long-context scenarios compared to solely using 492

the short instruction-following dataset (-w/o Long 493

SFT). This confirms the necessity of selecting influ- 494

ential samples and the effectiveness of GATEAU. 495

Human Evaluation. We conduct a human eval- 496

uation on the LongBench-Chat. We invite three 497

participants (Ph.D. students or Master students) to 498

compare the responses generated by the models. 499

For each comparison, three options are given (Win, 500

Tie, and Loss), and the final result is determined by 501

majority voting. Figure 4 shows the effectiveness 502

of our method, i.e., our trained models show con- 503

sistent preference from participants. Details can be 504
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Real-world Settings Limited Short Instruction Data Settings

Figure 3: Automatic metrics evaluation results (%) under different context lengths on LongBench.
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Figure 4: Human evaluation in two settings.

found in the Appendix E.505

Needle in the Haystack Test. We conduct a “Nee-506

dle in A HayStack” test in the Appendix F to show507

GATEAU can fully utilize the information.508

Parameter Study and Case Study. We also con-509

duct the parameter study and a practical case study510

in the Appendix G and Appendix H.511

Discussion. We further discuss some possible con-512

cerns about GATEAU in the Appendix I. For exam-513

ple, we report the execution time of GATEAU.514

4 Related Work515

Long Context Alignment. Aligning the LLMs to516

follow user instructions has been extensively stud-517

ied in short-context scenarios (Taori et al., 2023;518

Wang et al., 2023a,b). However, excessively long519

contexts present unique challenges for long con-520

text alignment. Li et al. (2023); Tworkowski et al.521

(2023); Xiong et al. (2024) construct the long SFT522

dataset by concatenating short SFT samples. Yet,523

simply concatenating unrelated sentences can not524

effectively simulate the long-range dependency re-525

lations for long-context tasks. Thus, Yang (2023);526

Chen et al. (2024b); Bai et al. (2024) construct long527

SFT data by collecting long-context materials as528

inputs and querying Claude to get the response.529

However, using these synthetic data without a clear 530

strategy for ensuring data quality may introduce 531

low-quality samples (e.g., samples without mean- 532

ingful long-range dependency relations). Training 533

LLMs on such low-quality samples can ultimately 534

constrain their final performance. 535

Data Selection for Alignment. As Zhou et al. 536

(2023) states less is more for alignment, many 537

works attempt to select influential samples to em- 538

power the LLMs’ instruction-following capabilities. 539

Chen et al. (2023a); Liu et al. (2024) attempt to uti- 540

lize the feedback from well-aligned closed-source 541

LLMs to select samples. Cao et al. (2024); Li et al. 542

(2024b); Ge et al. (2024); Xia et al. (2024) try to 543

utilize the well-designed metrics (e.g., complex- 544

ity) based on open-source LLMs to rank and select 545

the samples. Meanwhile, Li et al. (2024c); Zhang 546

et al. (2024) attempt to utilize the guidance from 547

in-context learning. However, these methods only 548

focus on selecting short SFT data, ignoring the 549

unique challenge in long context alignment, i.e., 550

selecting the samples enriched with meaningful 551

long-range dependency relations. 552

5 Conclusion 553

In this study, we introduce GATEAU, a new novel 554

framework designed to select influential samples 555

for long context alignment. Different from pre- 556

vious studies, we attempt to address the unique 557

challenge in long context alignment, i.e., modeling 558

long-range dependencies. To measure the richness 559

of long-range dependency relations in long SFT 560

samples, GATEAU separately measures the diffi- 561

culty of generating corresponding responses and 562

understanding lengthy inputs due to the long-range 563

dependencies. Trained on these selected influen- 564

tial samples, our model achieves better alignment. 565

Extensive experiments consistently show the effec- 566

tiveness of GATEAU compared to other methods. 567
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Limitations568

Although empirical experiments have confirmed569

the efficacy of the proposed GATEAU, three major570

limitations remain. Firstly, our proposed HMG re-571

quires two homologous models with different con-572

text windows, thus limiting the range of models we573

can use to conduct more experiments in our paper.574

However, in practical scenarios, training a power-575

ful long-context LLM always involves homologous576

models with different context windows (though577

these models may not be open-sourced). This578

is because existing LLMs are often initially pre-579

trained on a large-scale corpus with smaller context580

windows due to device limitations, they then con-581

duct continual pre-training to extend the window582

size. Therefore, our method still remains effec-583

tive in real-world scenarios. Secondly, GATEAU584

is designed to improve overall performance in585

instruction-following and long-context understand-586

ing tasks. It is not suitable to improve the perfor-587

mance of LLMs in a targeted capability or task,588

e.g., mathematical questions. Lastly, The size of589

the context window is a critical factor, and it is590

often determined by the continual training stage of591

the open-source base models. If the data exceeds592

the context window of the base model, the effec-593

tiveness of GATEAU will be limited. However,594

with the advancement of open-source models, the595

current context window size is rapidly increasing596

(Yang et al., 2025). Thus, based on these open-597

sourced long-context LLMs, GATEAU can be fur-598

ther used to select longer samples.599
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Appendix1013

This appendix is organized as follows.1014

• In Section A, we report the training details,1015

e.g., training datasets and hyperparameters.1016

• In Section B, we go into detail about the base-1017

lines used in our experiments.1018

• In Section C, we show the details of evalua-1019

tions, e.g., the introduction of the used bench-1020

marks and evaluation prompts.1021

• In Section D, we list the details of the general1022

characteristics of selected samples.1023

• In Section E, we show the implementation1024

details of human evaluation.1025

• In Section F, we conduct a “Needle in A1026

HayStack” experiment to test the ability to1027

utilize information from different positions.1028

• In Section G, we conduct experiments to ex-1029

plore the impact of hyperparameters.1030

• In Section H, we come up with a practical case1031

study to show the effectiveness of GATEAU.1032

• In Section I, we discuss some possible ques-1033

tions, including execution time (Sec. I.1), ex-1034

periments in other LLMs (Sec. I.2), experi-1035

ments in other long SFT datasets (Sec. I.3),1036

the diversity of selected samples (Sec. I.4),1037

further exploration of HMG (Sec. I.5), or-1038

thogonality with baselines (Sec. I.6), and mix-1039

quality training strategy (Sec. I.7).1040

• In Section J, we show the difference between1041

samples with high or low scores.1042

A Training1043

Training Datasets. LongAlign dataset (Bai1044

et al., 2024) is developed by using collected1045

long sequences from 9 sources and applying the1046

Self-Instruct (Wang et al., 2023b) approach with1047

long-context LLM Claude 2.1 (Anthropic., 2023).1048

Though initially competitive, its dependence on1049

Claude 2.1 synthesized data may lead to quality1050

concerns. For the ShareGPT dataset (Chiang et al.,1051

2023), we filter the sample with an empty response.1052

Training Details. LLaMA-2-7B-base-4k is an1053

open-sourced LLM with a context window of 4k to-1054

kens. To extend context windows, Bai et al. (2024)1055

proposes LLaMA-2-7B-base-64k by modifying the 1056

RoPE position encoding (Su et al., 2023) and apply- 1057

ing continual training on data with lengths under 1058

64k, for a total of 10 billion tokens. Meanwhile, 1059

for LLaMA-2-7B-base-4k, we expand the base fre- 1060

quency b of the RoPE position encoding by 200 1061

times (from 10,000 to 2,000,000) to extend the 1062

context windows and avoid the model conducting 1063

extreme perplexity score (>1,000) in HMG. For 1064

CAM, we use LLaMA-2-7B-base-64k to calcu- 1065

late the score and use selected samples to train 1066

the LLaMA-2-7B-base-64k as our final model. 1067

Devices and Hyperparameters. All models 1068

are trained with 8xA800 80G GPUs and Deep- 1069

Speed+ZeRO3+CPU offloading. We use BF16 in 1070

both our training and inference. The models can be 1071

trained with a maximum length of 64k tokens with- 1072

out GPU memory overflow. We set the maximum 1073

length of the training data to 64k, with any data ex- 1074

ceeding this length being truncated from the right 1075

side. We keep the same maximum length in the 1076

HMG and CAM, but truncate from the left side to 1077

keep the original responses. We set the batch size 1078

to 8, with a gradient accumulation step of 12 for 1079

all the training methods. We train 2 epochs on the 1080

training data. We set the learning rate as 2e-5 and 1081

use AdamW (Loshchilov and Hutter, 2019) as our 1082

optimizer. The β1 and β2 in the AdamW optimizer 1083

are set to 0.9 and 0.95. Meanwhile, the length of 1084

segment L is set to 128 in CAM. Hyperparameter α 1085

in Eq. (6) is set to 0.7 in Limited Short Instruction 1086

Data Settings and 0.8 in Real-world Settings. 1087

B Baselines 1088

We will detail the baselines in our experiments. 1089

w/o SFT. For w/o SFT, we directly utilize the 1090

base model without alignment to get the experiment 1091

results, i.e., the results of LLaMA-2-7B-base-64k. 1092

w/o Long SFT. For baseline w/o Long SFT, 1093

we only use the short instruction data from the 1094

ShareGPT dataset to apply the supervised fine- 1095

tuning stage for alignment. The number of short in- 1096

struction samples used from the ShareGPT dataset 1097

is determined by the different settings. 1098

Full - 100%. For baseline Full - 100%, we use the 1099

full data of the LongAlign dataset, including 10k 1100

long instruction samples, to conduct the SFT for 1101

alignment. The number of short instruction sam- 1102

ples used from the ShareGPT dataset is determined 1103

by the different settings. 1104

Perplexity Guidance. We use the perplexity score 1105
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from LLM as guidance to select long instruction-1106

following samples according to Eq. (1). We select1107

the long instruction-following samples with the1108

highest perplexity scores as the most influential1109

samples to train the model. Meanwhile, the number1110

of short instruction samples used from ShareGPT1111

is determined by the different settings.1112

CaR. This work (Ge et al., 2024) proposes a1113

straightforward yet efficacious short instruction-1114

following selection framework. This method first1115

selects a subset that ensures the retention of a large1116

number of high-quality instructions and then sup-1117

plements a small number of high-quality instruc-1118

tions from each cluster to enhance the diversity1119

of the data while preserving instruction quality.1120

Specifically, this work first employs a small-scale1121

trained reward model to get the score of the sam-1122

ples. Meanwhile, the cluster model is employed to1123

cluster all candidate instruction pairs into k clus-1124

ters Finally, all instruction pairs are sorted based1125

on their scores, and the top n1 pairs are selected;1126

within each cluster, instruction pairs are sorted by1127

score, and the top n2 pairs are chosen. A high-1128

quality sub-dataset with preserved diversity is then1129

curated by duplicating n1 `kˆn2 pairs of instruc-1130

tions. We directly use the same reward model and1131

hyperparameters to select long samples. Mean-1132

while, the number of short samples used from1133

ShareGPT is determined by the different settings.1134

Cherry Selection. Li et al. (2024b) proposes a1135

method for autonomously sifting through expansive1136

open-source short instruction-following datasets to1137

discover the most influential training samples. At1138

the heart of this method is the hypothesis that dur-1139

ing their preliminary training stages with carefully1140

chosen instruction data, LLMs can develop an in-1141

trinsic capability to discern instructions. This foun-1142

dational understanding equips them with the dis-1143

cernment to assess the quality of broader datasets,1144

thus making it possible to estimate the instruction-1145

following difficulty in a self-guided manner. To1146

estimate the difficulty of a given example, this1147

work proposes a novel metric called Instruction-1148

Following Difficulty (IFD) score in which both1149

models’ capability to generate a response to a given1150

instruction and the models’ capability to generate1151

a response directly are measured and compared.1152

This method quantifies the challenge each sample1153

presents to the model and utilizes selected data with1154

standout IFD scores to hone the model. We apply1155

this method to select the long instruction-following1156

samples as the baseline. Meanwhile, the number of1157

short instruction samples used from ShareGPT is 1158

determined by the different settings. 1159

C Evaluations 1160

C.1 LongBench-Chat 1161

Evaluation Data. LongBench-Chat focuses on 1162

assessing LLMs’ instruction-following capability 1163

under the long context. LongBench-Chat includes 1164

50 long context real-world queries ranging from 1165

10k to 100k in length. It covers diverse aspects of 1166

instruction-following abilities such as reasoning, 1167

coding, summarization, and multilingual transla- 1168

tion over long contexts. It consists of 40 tasks in 1169

English and 10 in Chinese. GPT-4 (OpenAI, 2023) 1170

is employed to give a score on a scale of 10 to the 1171

machine-generated responses based on the anno- 1172

tated ground-truths. Bai et al. (2024) finds that 1173

with their proposed few-shot evaluation prompting, 1174

GPT-4’s correlation with human annotations not 1175

only aligns but also surpasses the level of agree- 1176

ment among human annotators. 1177

Evaluation Prompts. LongBench-Chat employs 1178

GPT-4 to score the model’s response in 1-10 based 1179

on a given human-annotated reference answer and 1180

few-shot scoring examples for each question. We 1181

use the same prompt as LongBench-Chat to get 1182

GPT-4’s evaluation shown in Figure 8. 1183

C.2 LongBench 1184

Evaluation Data. LongBench is the first bilin- 1185

gual, multitask benchmark tailored for long con- 1186

text understanding. LongBench includes differ- 1187

ent languages (Chinese and English) to provide a 1188

more comprehensive evaluation of the large mod- 1189

els’ bilingual capabilities in long-context under- 1190

standing. Detailed statistics of the used dataset in 1191

LongBench can be found in Table 4. 1192

Evaluation Prompts. We conduct GPT-4 evalua- 1193

tion for LongBench as Bai et al. (2024). As aligned 1194

models generally produce longer responses, rather 1195

than relying solely on the original automatic met- 1196

rics (e.g., ROUGE) to evaluate the models’ replies, 1197

we employ GPT-4 to assess the model outputs 1198

based on their alignment with the ground-truth an- 1199

swers on LongBench. For the first two QA tasks, 1200

the prompt for the GPT-4 evaluator is the same as 1201

Bai et al. (2024), shown in Figure 9. The prompt 1202

for GPT-4 evaluation on summarization tasks is the 1203

same as Bai et al. (2024), shown in Figure 10. 1204

Automatic Metrics Evaluation Results We show 1205

the detailed automatic metric evaluation results on 1206
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Dataset ID Source Avg len Auto Metric Language #data

Single-Document QA
NarrativeQA 1-1 Literature, Film 18,409 F1 English 200
Qasper 1-2 Science 3,619 F1 English 200
MultiFieldQA-en 1-3 Multi-field 4,559 F1 English 150
MultiFieldQA-zh 1-4 Multi-field 6,701 F1 Chinese 200

Multi-Document QA
HotpotQA 2-1 Wikipedia 9,151 F1 English 200
2WikiMultihopQA 2-2 Wikipedia 4,887 F1 English 200
MuSiQue 2-3 Wikipedia 11,214 F1 English 200
DuReader 2-4 Baidu Search 15,768 Rouge-L Chinese 200

Summarization
GovReport 3-1 Government report 8,734 Rouge-L English 200
QMSum 3-2 Meeting 10,614 Rouge-L English 200
MultiNews 3-3 News 2,113 Rouge-L English 200
VCSUM 3-4 Meeting 15,380 Rouge-L Chinese 200

Table 4: An overview of the dataset statistics in LongBench. ‘Source’ denotes the origin of the context. ‘Avg len’ is
computed using the number of words for the English datasets and the number of characters for the Chinese datasets.

LongBench in Table 5. Meanwhile, we can see that1207

using 30% of the whole long instruction-following1208

dataset (GATEAU-LLaMA-30%) can achieve the1209

best performance of LongBench in two different1210

settings. This is because of its ability to maintain1211

an optimal balance between the volume and quality1212

of the long instruction-following samples it utilizes,1213

leading to the most desirable results.1214

C.3 MT-Bench1215

Evaluation Data. MT-Bench is a comprehensive1216

benchmark comprising 80 multi-turn questions. It1217

is designed to assess the ability to engage in multi-1218

turn conversations and follow instructions. The1219

benchmark covers common use cases and empha-1220

sizes challenging questions to effectively differen-1221

tiate among models. It is meticulously designed1222

to distinguish chatbots based on their fundamental1223

capabilities, which include writing, roleplay, extrac-1224

tion, reasoning, mathematics, coding, knowledge1225

in STEM fields, and knowledge in the humanities1226

and social sciences. MT-Bench prompts large lan-1227

guage models, such as GPT-4, to serve as judges1228

and evaluate the quality of the models’ responses.1229

Zheng et al. (2023) conducted a series of experi-1230

ments and found that LLM judges like GPT-4 can1231

align impressively well with both controlled and1232

crowd-sourced human preferences, achieving over1233

80% agreement. For each turn, GPT-4 assigns a1234

score on a scale of 1 to 10. We then report the1235

average score across all turns.1236

More Detailed Results. We show the detailed1237

results of MT-Bench in Table 6. 1238

C.4 GPT-4 Version 1239

For all the evaluations using the GPT-4 (includ- 1240

ing LongBench-Chat, LongBench, MT-Bench, and 1241

Needle in the Haystack test), we used GPT-4 API 1242

in August 2024 to ensure that we keep the same as 1243

Bai et al. (2024). According to the documents from 1244

OpenAI, GPT-4 API points to GPT-4-0613 API. 1245

D General Characteristics of Selected 1246

Samples from GATEAU 1247

Utilizing GPT-4, we evaluate each sample on five 1248

aspects: the coherence of long input contexts, the 1249

necessity of long input contexts, helpfulness of 1250

response, the faithfulness of response, and the 1251

complexity of instruction. Different from the 1252

previous GPT-4 evaluation detailed in Appendix 1253

C.4, we use GPT-4-Turbo API (now points to 1254

GPT-4-Turbo-2024-04-09) as our evaluator, as 1255

this version of API has larger context window to 1256

conduct the more correct evaluation for our long 1257

input contexts. To ensure stable evaluation results, 1258

we use GPT-4 to score twice on 200 selected sam- 1259

ples, and then average these scores to obtain the 1260

final results. The prompt for GPT-4 evaluation on 1261

different characteristics can be found in Figure 11, 1262

Figure 12, Figure 13, Figure 14, and Figure 15. 1263

E Human Evaluation 1264

During the human evaluation, the participants fol- 1265

low the principles in Figure 16 to make the decision. 1266
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Model Single-Doc QA Multi-Doc QA Summarization

1-1 1-2 1-3 1-4 Avg 2-1 2-2 2-3 2-4 Avg 3-1 3-2 3-3 3-4 Avg

Real-world Settings
w/o SFT 0.9 3.9 6.4 3.6 3.7 7.3 8.7 2.1 15.4 8.4 23.9 6.2 14.0 1.8 11.5
w/o Long SFT 16.8 29.1 45.8 48.7 35.1 27.8 17.6 11.4 25.3 20.5 27.4 23.3 27.8 14.3 23.2
Full - 100% 18.4 29.9 46.1 49.9 36.1 27.1 20.8 11.2 30.0 22.3 28.7 24.0 26.7 15.9 23.8

Perplexity Guidance - 10% 19.9 32.0 46.6 45.8 36.1 22.1 23.2 10.4 30.3 21.5 31.3 23.8 26.0 17.7 24.7
CaR - 10% 16.9 24.1 47.6 42.3 32.7 22.1 19.8 11.3 30.0 20.8 31.9 23.1 26.2 18.6 25.0
Cherry Selection - 10% 19.9 30.8 47.2 43.1 35.3 25.2 21.4 10.6 28.3 21.4 30.0 24.1 25.1 17.0 24.1
GATEAU-LLaMA - 10% 23.5 34.2 49.6 54.5 40.5 28.7 25.0 12.1 30.5 24.0 31.2 24.7 26.9 18.9 25.4
∆ compared to Full - 100% +5.1 +4.3 +3.5 +4.6 +4.4 +1.6 +4.2 +0.9 +0.5 +1.8 +2.5 +0.7 +0.2 +3.0 +1.6

Perplexity Guidance - 30% 21.1 33.6 46.1 46.7 36.9 23.4 21.0 10.1 30.1 21.2 30.2 24.7 26.4 18.9 25.1
CaR - 30% 18.0 24.4 46.9 45.0 33.6 25.4 20.8 14.4 29.4 22.5 30.1 24.8 26.5 18.2 24.9
Cherry Selection - 30% 20.5 33.1 48.0 51.0 38.2 26.7 20.4 13.5 29.1 22.4 30.4 24.1 26.9 17.7 24.8
GATEAU-LLaMA - 30% 23.7 34.1 49.6 54.6 40.5 30.1 23.8 14.9 30.4 24.8 30.5 24.9 27.2 18.9 25.4
∆ compared to Full - 100% +5.3 +4.2 +3.5 +4.7 +4.4 +3.0 +3.0 +3.7 +0.4 +2.5 +1.8 +0.9 +0.5 +3.0 +1.6

Perplexity Guidance - 50% 19.2 32.8 50.1 49.5 37.9 27.1 23.1 12.1 31.1 23.4 31.5 24.1 27.1 18.7 25.4
CaR - 50% 17.6 24.5 47.6 44.7 33.6 29.3 19.4 17.3 29.6 23.9 30.3 23.7 26.0 18.2 24.6
Cherry Selection - 50% 19.0 32.6 51.7 49.6 38.2 26.2 23.9 13.5 30.4 23.5 30.5 23.8 26.9 18.8 25.0
GATEAU-LLaMA - 50% 20.2 33.4 52.1 49.8 38.9 30.7 25.2 15.0 32.5 25.8 31.3 24.6 27.1 18.8 25.5
∆ compared to Full - 100% +1.8 +3.5 +6.0 -0.1 +2.8 +3.6 +4.4 +3.8 +2.5 +3.6 +2.6 +0.6 +0.4 +2.9 +1.6

Limited Short Instruction Data Settings
w/o SFT 0.9 3.9 6.4 3.6 3.7 7.3 8.71 2.1 15.4 8.4 23.9 6.2 14.0 1.78 11.5
w/o Long SFT 13.8 19.2 38.3 37.1 27.1 15.2 14.7 8.2 25.7 16.0 29.4 24.4 25.0 19.3 24.5
Full - 100% 14.7 20.1 37.0 37.0 27.2 15.4 13.8 8.6 26.7 16.1 29.3 24.5 25.6 18.6 24.5

Perplexity Guidance - 10% 15.4 19.2 41.0 37.8 28.4 15.0 14.8 8.5 25.6 16.0 28.8 23.9 26.1 17.8 24.2
CaR - 10% 11.5 17.7 37.7 30.0 24.2 15.6 12.5 8.4 25.9 15.6 29.3 24.1 26.2 18.2 24.5
Cherry Selection - 10% 14.6 19.2 41.2 37.7 28.2 15.7 14.6 7.6 25.3 15.8 29.4 24.1 26.0 17.8 24.3
GATEAU-LLaMA - 10% 17.1 20.7 43.4 38.3 29.9 19.9 18.5 8.2 26.8 18.4 29.6 24.3 26.3 18.3 24.6
∆ compared to Full - 100% +2.4 +0.6 +6.4 +1.3 +2.7 +4.5 +4.7 -0.4 +0.1 +2.2 +0.3 -0.2 +0.7 -0.3 +0.1

Perplexity Guidance - 30% 15.3 20.6 42.3 38.2 29.1 17.4 15.9 8.6 27.5 17.4 28.3 24.3 25.7 19.0 24.3
CaR - 30% 13.6 18.3 41.0 30.5 25.9 16.7 15.8 9.4 27.0 17.2 28.8 24.3 25.3 18.4 24.2
Cherry Selection - 30% 15.9 19.5 42.3 39.0 29.2 17.3 16.3 9.3 26.2 17.3 29.2 25.0 26.1 18.2 24.6
GATEAU-LLaMA - 30% 17.7 20.4 43.1 38.6 29.9 22.5 18.5 11.6 27.7 20.1 30.5 24.3 26.8 19.7 25.3
∆ compared to Full - 100% +3.0 +0.3 +6.1 +1.6 +2.7 +7.1 +4.7 +3.0 +1.0 +4.0 +1.2 -0.2 +1.2 +1.1 +0.8

Perplexity Guidance - 50% 16.4 20.6 39.1 37.1 28.3 16.7 16.4 8.2 26.0 16.8 29.3 25.1 25.2 19.1 24.7
CaR - 50% 12.1 18.1 40.4 30.4 25.3 17.3 15.1 9.0 26.3 16.9 28.3 23.6 25.1 18.9 24.0
Cherry Selection - 50% 15.5 19.5 38.9 37.3 27.8 15.4 16.3 8.8 26.1 16.7 30.6 24.8 25.3 18.9 24.9
GATEAU-LLaMA - 50% 18.5 22.5 43.9 39.1 31.0 17.9 16.7 9.6 28.0 18.1 30.1 25.3 26.6 19.4 25.3
∆ compared to Full - 100% +3.8 +2.4 +6.9 +2.1 +3.8 +2.5 +2.9 +1.0 +1.3 +1.9 +0.8 +0.8 +0.9 +0.8 +0.8

Table 5: Automatic metrics evaluation results (%) on LongBench in two different settings. We use the ID to
represent the dataset in LongBench, e.g., 1-1 is the ID of the NarrativeQA dataset.

If the final result can not be determined by major-1267

ity voting, we will hold a discussion among the1268

participants and vote on the result again.1269

F Needle in the Haystack Test1270

We conduct “Needle in A HayStack” experiments1271

in Figure 5 to test the model’s ability to utilize in-1272

formation from 10 different positions. This task1273

asks for the model to retrieve a piece of fact (the1274

‘needle’) that is inserted in the middle (positioned at1275

a specified depth percent) of a long context window1276

(the ‘haystack’). These results show that GATEAU1277

can help LLMs to utilize information from differ-1278

ent positions within long texts, resulting in a de-1279

crease in the model’s retrieval error. Following the1280

same original configuration as the original method1281

(Gkamradt, 2023), we use “The best thing to do in1282

San Francisco is eat a sandwich and sit in Dolores1283

Park on a sunny day.” as the needle fact, and Paul1284

Graham’s essays as the long haystack context. We1285

use the same prompt as Bai et al. (2024): “What is 1286

the best thing to do in San Francisco? Here is the 1287

most relevant sentence in the context:”. 1288

G Parameter Study 1289

As shown in Figure 6, we conduct experiments 1290

to explore the impact of the important hyperpa- 1291

rameter α in Eq. (6). We report the results of 1292

GATEAU-LLaMA - 50% on LongBench-Chat in 1293

two settings. Overall, although the choice of dif- 1294

ferent α will have some impact on the LLM’s 1295

performance, the performance will always be im- 1296

proved over the baseline Full-100%, i.e., using 1297

the whole training dataset without data selection. 1298

Meanwhile, we also find that using both the Homol- 1299

ogous Model’s Guidance and Contextual Aware- 1300

ness Measurement will further improve the per- 1301

formance than only using one of them. This is 1302

because the Homologous Model’s Guidance and 1303

Contextual Awareness Measurement attempts to 1304
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Model First-turn Second-turn Writing Roleplay Reasoning Math Coding Extraction STEM Humanities

Real-world Settings
w/o SFT 43.5 25.6 44.5 44.0 35.0 16.5 18.0 28.0 42.0 48.8
w/o Long SFT 60.0 47.4 73.8 72.0 44.0 22.0 25.5 42.5 63.0 86.5
Full - 100% 60.0 48.7 78.5 70.3 45.5 19.0 29.0 42.0 67.5 83.0

Perplexity Guidance - 10% 63.1 48.9 68.7 67.0 43.5 26.5 33.2 50.5 69.8 88.5
CaR - 10% 59.8 50.0 76.5 75.3 44.5 24.5 24.8 43.5 64.2 84.9
Cherry Selection - 10% 63.0 50.5 74.5 73.8 42.3 25.0 32.5 48.3 70.3 87.5
GATEAU-LLaMA - 10% 63.1 54.1 73.8 79.2 43.8 26.5 27.8 46.0 77.0 94.8
Perplexity Guidance - 30% 62.1 47.8 69.0 63.7 46.0 28.0 28.4 49.0 72.5 82.2
CaR - 30% 60.0 48.6 79.3 77.0 38.5 21.0 19.8 44.0 71.9 83.0
Cherry Selection - 30% 61.6 47.0 68.2 71.5 39.8 22.0 26.3 50.8 69.3 88.4
GATEAU-LLaMA - 30% 64.1 50.4 78.0 73.5 42.0 24.5 29.5 46.8 73.8 92.1
Perplexity Guidance - 50% 62.3 49.6 79.0 71.0 47.3 24.5 28.0 42.0 69.5 86.3
CaR - 50% 61.6 47.9 74.0 77.3 39.0 21.5 24.5 42.0 67.8 91.8
Cherry Selection - 50% 62.9 49.6 77.8 76.2 48.3 22.5 30.5 35.8 68.2 91.5
GATEAU-LLaMA - 50% 64.1 50.4 78.0 73.5 42.0 24.5 29.5 46.8 73.8 92.1

Limited Short Instruction Data Settings
w/o SFT 43.5 25.6 44.5 44.0 35.0 16.5 18.0 28.0 42.0 48.8
w/o Long SFT 56.4 44.5 66.3 65.8 46.5 21.0 23.5 38.3 63.5 79.1
Full - 100% 54.5 40.9 65.8 56.0 35.5 21.0 23.5 34.0 67.5 78.3

Perplexity Guidance - 10% 61.9 39.5 73.8 61.8 39.3 27.5 29.1 47.1 58.5 72.3
CaR - 10% 59.3 40.3 66.5 64.3 49.3 21.5 26.3 28.8 62.0 80.5
Cherry Selection - 10% 53.0 42.3 56.8 72.3 39.5 17.0 26.5 34.8 59.3 75.3
GATEAU-LLaMA - 10% 62.2 44.6 69.9 67.5 39.8 24.0 27.5 50.7 66.3 83.0
Perplexity Guidance - 30% 58.9 41.4 69.4 68.0 37.0 28.5 28.9 47.8 57.8 64.8
CaR - 30% 52.8 44.3 67.0 66.5 37.3 25.0 24.8 28.5 68.5 71.0
Cherry Selection - 30% 54.8 36.6 67.5 57.5 34.0 19.5 20.4 35.5 63.5 69.7
GATEAU-LLaMA - 30% 62.0 43.7 62.0 65.7 45.4 27.5 31.7 41.7 71.7 72.0
Perplexity Guidance - 50% 57.6 40.9 59.5 74.5 41.0 25.0 26.0 37.3 55.3 75.3
CaR - 50% 58.3 44.1 70.0 67.2 43.3 25.5 30.5 28.5 71.5 73.5
Cherry Selection - 50% 57.7 41.4 70.0 63.2 37.5 18.3 26.3 43.9 61.1 76.5
GATEAU-LLaMA - 50% 64.2 44.1 61.5 67.0 46.3 28.0 31.4 47.0 65.8 84.3

Table 6: Detailed results (%) of MT-Bench.

measure the difficulty brought by the long-range1305

dependencies from two different perspectives, i.e.,1306

separately measuring the difficulty of generating1307

corresponding responses and understanding long1308

input contexts due to the long-range dependencies.1309

Meanwhile, we further explore the impact of the1310

length of the segment L in CAM. We report the1311

results of GATEAU-LLaMA - 50% on LongBench-1312

Chat in Real-world Settings. As shown in Figure1313

7, different segment lengths affect the model’s per-1314

formance; however, as long as a reasonable length1315

value is chosen, the fluctuations in model perfor-1316

mance are not significant. Meanwhile, the per-1317

formance will always be improved over using the1318

whole long SFT dataset (namely Full-100%) and1319

only using the HMG method (namely -w/o CAM),1320

showing the effectiveness of our proposed CAM.1321

H OOD Case Study1322

As part of our research on aligning LLMs on long1323

context, we further come up with a practical case1324

study shown in Figure 17. We use an out-of-1325

distribution (OOD) query, which has not been en-1326

countered in the long context SFT data. Specifi-1327

cally, we select the Biden-Trump debate transcript1328

1 from the 2024 election season as the OOD query, 1329

because this debate is organized subsequent to the 1330

collection of our used training datasets. We show 1331

the results generated by GATEAU-LLaMA-30% 1332

and Full-100% in Real-world settings. We high- 1333

light the sentences that can be easily misunderstood 1334

or contain factual errors (e.g., this debate is orga- 1335

nized in 2024 instead of 2020). We can find that our 1336

method achieves better faithfulness and fluency. 1337

I Discussion 1338

I.1 Discussion about Execution Time and 1339

GPU Burdens 1340

Execution Time. Based on the principle of mak- 1341

ing full use of GPU devices (e.g., using a multi- 1342

processing strategy), we list the execution time in 1343

Table 9. We can find that GATEAU introduces 1344

an acceptable offline time overhead compared to 1345

the supervised fine-tuning stage and improves the 1346

overall performance of long-context LLMs. Per- 1347

plexity Guidance applies a single LLM to compute 1348

the score, thus, it achieves less execution time but 1349

1https://edition.cnn.com/2024/06/27/politics/read-biden-
trump-debate-rush-transcript/index.html
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(a) Limited Short Instruction Data Settings
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(b) Real-world Settings 
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Figure 5: Needle in the Haystack test.

Figure 6: Results (%) on LongBench-Chat with different hyperparameter α in Eq. (6).
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Figure 7: Results (%) on LongBench-Chat with differ-
ent hyperparameter L in CAM.

worse performance in our experiments. Meanwhile,1350

another strong baseline Cherry Selection introduces1351

an additional training stage and computes the pro-1352

posed Instruction-Following Difficulty (IFD) by1353

applying the forward propagation twice on a single1354

long SFT data, thus necessitating more execution1355

time compared to our proposed HMG. Meanwhile,1356

our CAM and HMG can process the data in parallel1357

to further decrease the execution time, e.g., only 81358

hours with 16xA800 80G GPUs. The experimental1359

results of our proposed GATEAU demonstrate that1360

the additional execution time is worthwhile.1361

GPU Burdens. GATEAU is designed to score 1362

long SFT data and then select the influential sam- 1363

ples used for alignment. Thus, our method does 1364

not introduce the additional memory burden dur- 1365

ing the SFT stage and inference stage. For HMG, 1366

we compute perplexity scores generated from two 1367

models for a given SFT data in parallel and use the 1368

computed perplexity scores (cached in JSON files) 1369

to get the HMP score as shown in Eq. (2). Thus, 1370

HMG does not introduce additional GPU memory 1371

burden, only introducing acceptable additional exe- 1372

cution time as shown in Table 9. The GPU memory 1373

requirements of CAM rise from the calculation of 1374

the attention scores for lengthy inputs, as well as 1375

the perplexity score computation. This process is 1376

equivalent to performing two forward passes over 1377

the dataset without updating gradients, thus it does 1378

not add an extra GPU memory burden. 1379

I.2 Discussion about Whether GATEAU Can 1380

Fit in Other LLMs 1381

We explore whether GATEAU can fit in other 1382

LLMs in Table 7. We further apply GATEAU on 1383

ChatGLM3-6B-base-8k (Zeng et al., 2023) and 1384
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Model LongBench LongBench-Chat MT-Bench

Single-Doc QA Multi-Doc QA Summarization Avg First-turn Second-turn Avg

Real-world Settings
GATEAU-ChatGLM3 - 6B - 50% 30.2 20.0 24.6 60.2 63.2 50.2 56.7
-w/o Data Selection (i.e., Full - 100%) 26.6 16.9 23.4 55.9 59.2 47.6 53.4

GATEAU-LLaMA3 - 8B - 50% 42.1 30.2 26.1 65.3 72.8 58.4 65.6
-w/o Data Selection (i.e., Full - 100%) 35.2 24.3 25.6 54.4 67.2 54.2 60.7

Limited Short Instruction Data Settings
GATEAU-ChatGLM3 - 6B - 50% 24.4 15.4 22.4 57.0 57.2 49.2 53.2
-w/o Data Selection (i.e., Full - 100%) 20.2 13.2 21.2 50.4 55.4 45.2 50.3

GATEAU-LLaMA3 - 8B - 50% 34.2 25.3 25.2 63.2 68.4 55.2 61.8
-w/o Data Selection (i.e., Full - 100%) 30.2 23.2 24.7 55.6 62.3 50.2 56.3

Table 7: Results (%) of GATEAU-ChatGLM3 and GATEAU-LLaMA3 series. We show automatic metrics evaluation
results on LongBench.

Model LongBench LongBench-Chat MT-Bench

Single-Doc QA Multi-Doc QA Summarization Avg First-turn Second-turn Avg

Real-world Settings
GATEAU-LLaMA - 7B - 50% 39.1 27.5 27.8 50.2 55.7 45.3 50.5
-w/o Data Selection (i.e., Full - 100%) 37.5 24.5 26.9 45.6 52.5 42.1 47.3

Limited Short Instruction Data Settings
GATEAU-LLaMA - 7B - 50% 32.5 19.2 26.4 54.2 50.0 42.8 46.4
-w/o Data Selection (i.e., Full - 100%) 28.4 17.0 25.5 48.2 47.5 41.4 44.5

Table 8: Experiments to explore whether GATEAU can fit in other long SFT datasets. We use LongAlpaca as the
long SFT dataset. We show automatic metrics evaluation results on LongBench.

Methods Execution Time

Real-world Settings
Training on the full dataset 176 GPU hours
Selecting long SFT data via HMG 64 GPU hours
Selecting long SFT data via CAM 48 GPU hours
Selecting long SFT data via Cherry Selection 80 GPU hours
Selecting long SFT data via Perplexity Guidance 32 GPU hours

Table 9: Execution time.

ChatGLM3-6B-base-64k (Bai et al., 2024), then1385

fine-tune ChatGLM3-6B-base-64k using the se-1386

lected samples. We also conduct the experiments1387

on LLaMA3-8B-base-8k and LLaMA3-8B-base-1388

64k, then fine-tune LLaMA3-8B-base-64k using1389

the selected samples. We can find consistent im-1390

provements on three benchmarks compared to us-1391

ing the full long SFT dataset. This indicates that1392

GATEAU effectively fits in other LLMs.1393

I.3 Discussion about Whether GATEAU Can1394

Fit in Other Long SFT Datasets1395

Meanwhile, we explore whether GATEAU can1396

fit in other long SFT datasets. Specifically, we1397

implement our proposed GATEAU on the long1398

SFT dataset LongAlpaca (Chen et al., 2024b),1399

which contains 9,000 long SFT samples. As1400

shown in Table 8, we can find that our method1401

GATEAU achieves consistent improvements on1402

three benchmarks, including long-context under-1403

standing benchmark and two instruction-following1404

benchmarks, showing the GATEAU can generalize 1405

across different long SFT datasets. 1406

I.4 Discussion about the Diversity of Selected 1407

Samples 1408

In this section, we further explore the diversity of 1409

selected samples. We employ the cluster model 1410

as CaR (Ge et al., 2024) to cluster all candidate 1411

instruction pairs into k clusters. Specifically, we 1412

employ the k-Means algorithm and a sentence trans- 1413

former model, which is used to map sentences to a 1414

384-dimensional dense vector space. Subsequently, 1415

semantic features are PCA-reduced to retain 95% 1416

of dimensions. Finally, by setting the number of 1417

clusters as k “
a

n{2 for n long SFT samples, all 1418

10k long SFT samples are clustered into 70 clusters. 1419

Finally, all samples are sorted based on their scores 1420

according to Eq. (6), and the top n1 samples are 1421

selected. Within each cluster, samples are sorted 1422

by score from GATEAU, and the top n2 pairs are 1423

chosen. We set n2 to 1, which is the same as Ge 1424

et al. (2024). Finally, we can get n1 ` k ˚ n2 (i.e., 1425

4300`70˚1) samples and use these selected data to 1426

train the model, namely -w Diversity-preserved Se- 1427

lection. We report the results of GATEAU-LLaMA 1428

- 50% on LongBench-Chat and MT-Bench. Shown 1429

in Table 11, we find that using Diversity-preserved 1430

Selection does not consistently improve the perfor- 1431

mance, showing our proposed GATEAU has im- 1432

plicitly ensured the diversity of selected long SFT 1433
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Model LongBench LongBench-Chat MT-Bench

Single-Doc QA Multi-Doc QA Summarization Avg First-turn Second-turn Avg

Real-world Settings
GATEAU-LLaMA - 7B - 50% 38.9 25.8 25.5 56.8 64.1 50.4 57.3
-w/o Extended Context Windows 38.1 25.4 25.6 55.8 63.7 50.6 57.1
-w/o Norm in Eq. (2) 37.5 24.1 25.3 56.2 64.1 50.4 57.3
Homologous Model’s Guidance 38.4 24.3 25.1 53.2 61.7 51.5 56.6
Perplexity Guidance 37.9 23.4 25.4 49.8 62.3 49.6 55.9
Non-Homologous Model’s Guidance 37.2 23.2 24.8 48.2 59.2 49.3 54.3

Limited Short Instruction Data Settings
GATEAU-LLaMA - 7B - 50% 31.0 18.1 25.3 59.0 64.2 44.1 54.2
-w/o Extended Context Windows 29.2 18.8 25.2 57.6 60.2 44.0 52.1
-w/o Norm in Eq. (2) 29.7 18.7 24.9 55.2 62.0 40.1 51.1
Homologous Model’s Guidance 28.5 17.5 24.7 53.2 61.3 42.4 51.8
Perplexity Guidance 28.3 16.8 24.7 51.0 57.6 40.9 49.2
Non-Homologous Model’s Guidance 28.7 16.8 24.8 50.2 60.1 40.3 50.2

Table 10: Discussion about Homologous Model’s Guidance.

Models LongBench-Chat MT-Bench

Real-world Settings
GATEAU-LLaMA - 7B - 50% 56.8 57.3
-w/ Diversity-preserved Selection 56.2 57.8

Limited Short Instruction Data Settings
GATEAU-LLaMA - 7B - 50% 59.0 54.2
-w/ Diversity-preserved Selection 59.2 53.4

Table 11: Experiments to explore the diversity of se-
lected samples by GATEAU.

data. This is because HMG and CAM separately1434

measure the difficulty of generating corresponding1435

responses and understanding long input contexts1436

due to the long-range dependencies, thus the final1437

score derived from two different perspectives in-1438

herently ensures the diversity of selected long SFT1439

data. Meanwhile, as shown in Table 6, GATEAU1440

achieves better overall performance and more bal-1441

anced performance in 8 different tasks, showing its1442

effectiveness and diversity of selected samples.1443

I.5 Discussion about Homologous Model’s1444

Guidance1445

We further explore some key questions in the Ho-1446

mologous Model’s Guidance.1447

Why Do We Need Homologous Models? Homol-1448

ogous Model’s Guidance (HMG) aims to assess1449

the degree of long-range dependencies required1450

for the corresponding response generation by com-1451

paring the perplexity scores of the response be-1452

tween two homologous models with different con-1453

text windows. The idea behind HMG is that the1454

primary difference between homologous models1455

with varying context windows lies in their different1456

capabilities for modeling long-range dependencies1457

instead of other capabilities. Thus, the disparity1458

in the perplexity scores can be interpreted as re-1459

flecting the difference in the long-range dependen- 1460

cies modeling capabilities required to generate the 1461

given response. To evaluate the effectiveness of 1462

our idea, we replace LLaMA-2-7B-base-4k with 1463

Qwen-2-7b-base-8k (Yang et al., 2024) as model 1464

θA in Eq. (2), namely Non-Homologous Model’s 1465

Guidance. As shown in Table 10, we find Non- 1466

Homologous Model’s Guidance achieves worse per- 1467

formance than Homologous Model’s Guidance in 1468

two designed settings. It shows that HMG can 1469

exclusively measure the richness of long-range de- 1470

pendency relations in long SFT samples. As non- 1471

homologous models have different pre-training 1472

phases and model architectures, the modified Eq. 1473

(2) can not effectively measure the degree of long- 1474

range dependencies required for response genera- 1475

tion and introduce the influence brought by other 1476

different capabilities of non-homologous models, 1477

resulting in worse performance. 1478

Why Do We Apply Normalization in Eq. (2) ? 1479

We apply softmax normalization to each score in 1480

Eq. (2) to determine its respective ranking among 1481

the datasets for two perplexity scores. This is be- 1482

cause our early experiments observed that applying 1483

softmax normalization can further improve the per- 1484

formance shown in Table 10. This may due to 1485

the fact that some extremely noisy samples tend to 1486

have large perplexity scores, which in turn lead to 1487

unstable HMP scores if we do not apply normal- 1488

ization in Eq. (2). Training LLMs on these noisy 1489

samples further leads to poor results. 1490

What Will Happen if We Do not Extend the 1491

Context Windows of LLaMA-2-4k? Our early 1492

experiments also explore what will happen if we 1493

do not extend the context windows of model θA 1494

in Eq. (2). As shown in Table 10, we are sur- 1495
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Models Perplexity

LLaMA-2-7B-base-4k 3.72
LLaMA-2-7B-base-64k 2.61

Table 12: Perplexity from base models on LongAlign.

prised to find that -w/o Extended Context Windows1496

also achieves competitive results in three bench-1497

marks compared to GATEAU-LLaMA. Even the1498

perplexity score PPLθApy|c, xq from the model θA1499

can be very large, e.g., the value of PPLθApy|c, xq1500

can be larger than 1000, the value after softmax1501

normalization is still useful and applicable in the1502

Homologous Models’ Guidance. This interesting1503

finding can be used to reduce the complexity of ap-1504

plying Homologous Models’ Guidance and achieve1505

competitive performance.1506

Is the Perplexity Score from the Base Model1507

Really so High that It Can Not Accurately Mea-1508

sure the Difficulty? As the base model performs1509

well on conditional generation tasks like continua-1510

tion, it should be able to generate accurate perplex-1511

ity scores on the response of instruction-following1512

data, even though the model might not be able to1513

produce high-quality responses correctly, because1514

these two capabilities are not the same. We explore1515

whether our long-context LLM would produce in-1516

correct perplexity values in Table 12. We calculate1517

the average perplexity value generated by LLaMA-1518

2-7B-base-64k for the entire long SFT dataset Lon-1519

gAlign during the whole HMG process, which is1520

2.61. We further calculate the average perplex-1521

ity value generated by LLaMA-2-7B-base-4k for1522

the entire long SFT dataset LongAlign during the1523

whole HMG process, which is 3.72. This is because1524

we expand the base frequency of the RoPE position1525

encoding by 200 times (from 10,000 to 2,000,000)1526

to extend the context windows and avoid the model1527

conducting extreme perplexity score (e.g., >1,000)1528

in HMG. Thus, there is no issue of the perplexity1529

from the base model being too high to accurately1530

measure the difficulty.1531

Can the Perplexity Score Generated from the1532

Base Model be Used as Guidance to Select Influ-1533

ential Samples? The perplexity of the responses1534

computed with the base model is an intuitive met-1535

ric, as it measures the difficulty of the data sample1536

during the generation. As shown in Table 1, Table1537

2, Table 5, and Table 8, we find simply using high1538

perplexity (namely Perplexity Guidance in our pa-1539

per) can also improve the performance compared1540

Models LongBench-Chat MT-Bench

Real-world Settings
GATEAU-LLaMA - 7B - 50% 56.8 57.3
w/ ICL Alignment 56.2 57.9

Limited Short Instruction Data Settings
GATEAU-LLaMA - 7B - 50% 59.0 54.2
w/ ICL Alignment 59.4 53.5

Table 13: Experiments to explore whether alignment
via in-context learning helps HMG.

Methods Data Overlap Ratio with GATEAU

Cherry LLM 12%
CaR 5%

Table 14: Data overlap of top 10% of long SFT data
selected by baselines and our proposed GATEAU.

with using the whole long SFT dataset, indicat- 1541

ing that the effectiveness of the perplexity score 1542

from the base model in selecting long SFT samples. 1543

Cherry Selection (Li et al., 2024b) also finds using 1544

the Instruction-Following Difficulty (a variant of 1545

perplexity score) computed with the base model 1546

also works in selecting SFT samples. According to 1547

these experiments, we believe that the perplexity 1548

generated from a base model can be used as posi- 1549

tive guidance to select SFT samples. Therefore, the 1550

use of the perplexity score generated from the base 1551

model in our method makes sense when selecting 1552

long SFT data. Meanwhile, our method HMG is 1553

designed to minimize the influence of other factors 1554

(e.g., the limited instruction-following ability of a 1555

base model) and model the difficulty in modeling 1556

the long-range dependencies to construct the more 1557

effective guidance of long SFT data selection, and 1558

further improve overall performance. For CAM, 1559

utilizing perplexity scores to compute importance 1560

scores is also reasonable, and the experiments show 1561

improvement even when only using CAM. 1562

We further conduct additional experiments to 1563

explore the effect of perplexity scores generated 1564

from the base model. In HMG, we use in-context 1565

learning technology to align the base model and 1566

use the perplexity score from the aligned model 1567

to select long SFT data. Specifically, we use the 1568

same 3 demonstration examples as URIAL (Lin 1569

et al., 2024). In this way, we can get models more 1570

aligned without updating the parameters. How- 1571

ever, as shown in Table 13, using the aligned model 1572

via in-context learning does not consistently im- 1573

prove the final performance. This indicates that 1574
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Model LongBench LongBench-Chat MT-Bench

Single-Doc QA Multi-Doc QA Summarization Avg First-turn Second-turn Avg

Real-world Settings
GATEAU-LLaMA - 7B - 10% 40.5 24.0 25.4 55.4 63.1 54.1 58.6
-w/o Mixed-Quality Data 39.1 22.4 24.6 53.6 61.8 52.3 57.1

Limited Short Instruction Data Settings
GATEAU-LLaMA - 7B - 10% 29.9 18.4 24.6 58.0 62.2 44.6 53.4
-w/o Mixed-Quality Data 28.7 17.5 24.2 55.6 61.2 42.3 51.8

Table 15: Discussion about training models on mixed-quality data.

using only base models in the HMG phase can also1575

achieve good results. Therefore, HMG can effec-1576

tively minimize the influence of other factors (e.g.,1577

the limited instruction-following ability of a base1578

model) and model the difficulty in modeling the1579

long-range dependencies. Meanwhile, from the1580

real-world implementation viewpoint, directly us-1581

ing the base model is more efficient and at the same1582

time effective as well.1583

I.6 Discussion about Orthogonality with1584

Baselines1585

To provide additional evidence of the unique ben-1586

efits of our approach, we conduct additional ex-1587

periments to analyze the orthogonality between1588

GATEAU and various baselines. Specifically, we1589

calculate the overlap of the top 10% of long SFT1590

data selected by other baselines and our method in1591

Limited Short Instruction Data Settings. As shown1592

in the Table 14, we can find a significant differ-1593

ence between the samples selected by the baselines1594

focused on short SFT data selection (i.e., Cherry1595

LLM and CaR) and those selected by our proposed1596

GATEAU. This is because GATEAU is designed to1597

identify the influential long samples enriched with1598

long-range dependency relations to achieve better1599

long context alignment instead of focusing on se-1600

lecting short SFT data. Thus, GATEAU grasps im-1601

portant patterns that differ from the existing base-1602

lines. Furthermore, how to utilize such orthogo-1603

nality to improve the final performance remains a1604

promising research topic. We attempt to explore1605

how to utilize it to further improve the final perfor-1606

mance in our future work.1607

I.7 Discussion about Training Models on1608

Mixed-Quality Data1609

We further attempt to explore whether there exists1610

an optimal balance between low-scoring and high-1611

scoring long SFT samples that enables the long-1612

context LLM to perform even better than using the1613

samples with high scores. Specifically, we use long1614

SFT samples from the top 5% and bottom 5% to 1615

form the training samples, namely Mixed-Quality 1616

Data. As shown in Table 15, we find that this 1617

strategy does not improve the final performance of 1618

the LLMs This indicates that our strategy of using 1619

top-ranked samples is effective. 1620

J Case Study for Characteristics of 1621

Selected Samples 1622

We conduct a case study to show the difference 1623

between samples with high or low scores generated 1624

by GATEAU. In Figure 18, we show the sample 1625

with the highest score and the sample with the low- 1626

est score in Real-world Settings. We highlight the 1627

low-quality sentences. We can find that the sample 1628

with the highest score shows better faithfulness and 1629

fluency, showing the effectiveness of our method in 1630

selecting high-quality influential samples for long 1631

context alignment. 1632
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LongBench-Chat Evaluation Prompt

[Instructions] You are asked to evaluate the quality of the AI assistant’s answers to user questions as
an impartial judge, and your evaluation should take into account factors including correctness (high
priority), helpfulness, accuracy, and relevance. The scoring principles are as follows:
1. Read the AI assistant’s answer and compare the assistant’s answer with the reference answer.
2. Identify all errors in the AI Assistant’s answers and consider how much they affect the answer to
the question.
3. Evaluate how helpful the AI assistant’s answers are in directly answering the user’s questions and
providing the information the user needs.
4. Examine any additional information in the AI assistant’s answer to ensure that it is correct and
closely related to the question. If this information is incorrect or not relevant to the question, points
should be deducted from the overall score.
Please give an overall integer rating from 1 to 10 based on the above principles, strictly in the
following format: "[[rating]]", e.g., "[[5]]".

[Question] {}
[Reference answer begins] {} [Reference answer ends]
Below are several assistants’ answers and their ratings:
[Assistant’s answer begins] {} [Assistant’s answer ends] Rating: [[{}]]
[Assistant’s answer begins] {} [Assistant’s answer ends] Rating: [[{}]]
[Assistant’s answer begins] {} [Assistant’s answer ends] Rating: [[{}]]

Please rate the following assistant answers based on the scoring principles and examples above:
[Assistant’s answer begins] {} [Assistant’s answer ends]
Rating:

Figure 8: LongBench-Chat evaluation prompt.

23



LongBench Evaluation Prompt for QA tasks

You are asked to evaluate the quality of the AI assistant’s answers to user questions as an impartial
judge, and your evaluation should take into account factors including correctness (high priority),
and comprehensiveness (whether the assistant’s answer covers all points). Read the AI assistant’s
answer and compare it against the reference answer, and give an overall integer rating of 1, 2, or 3
(1 = wrong or irrelevant, 2 = partially correct, 3 = correct and comprehensive) based on the above
principles, strictly in the following format: "[[rating]]", e.g., "[[2]]".

Question: {Question}
Reference answer: {Groundtruth}
Assistant’s answer: {Response}
Rating:

Figure 9: LongBench evaluation prompt for QA tasks.

LongBench Evaluation Prompt for Summarization Tasks

You are asked to evaluate the quality of the AI assistant’s generated summary as an impartial
judge, and your evaluation should take into account factors including correctness (high priority),
comprehensiveness (whether the assistant’s summary covers all points), and coherence. Read the AI
assistant’s summary and compare it against the reference summary, and give an overall integer rating
on a scale of 1 to 5, where 1 is the lowest and 5 is the highest based on the evaluation criteria, strictly
in the following format: "[[rating]]", e.g., "[[3]]".

Reference summary: {Groundtruth}
Assistant’s summary: {Response}
Rating:

Figure 10: LongBench evaluation prompt for summarization tasks.

Evaluation Prompt for the Coherence of Long Input Contexts

You are asked to evaluate the Long Input Contexts as an impartial judge, and your evaluation should
follow these scoring principles:
1. Read the given Long Input Contexts carefully.
2. Evaluate the fluency and coherence of Long Input Contexts.
3. Evaluate whether the Long Input Contexts are focused and relevant.

Please give an overall integer rating from 1 to 5 based on the above principles, strictly in the following
format:"[[rating]]", e.g. "[[5]]".

Please rate the following Long Input Contexts based on the scoring principles:

[Long Input Contexts begins]
{Long Input Contexts}
[Long Input Contexts ends]

Rating:

Figure 11: Evaluation prompt for the coherence of long input contexts.
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Evaluation Prompt for the Necessity of Long Input Contexts

You are asked to evaluate the Long Input Contexts as an impartial judge, and your evaluation should
follow these scoring principles:
1. Read the given Instruction, Long Input Contexts and Assistant’s answer carefully.
2. Evaluate how difficult it is for the Assistant to follow the given Instruction without the given Long
Input Contexts.
3. Evaluate how necessary the given Long Input Contexts are to get the Assistant’s answer. If the
Long Input Contexts are meaningless or irrelevant, points should be deducted from the overall score.

Please give an overall integer rating from 1 to 5 based on the above principles, strictly in the following
format: "[[rating]]", e.g., "[[5]]".

[Instruction begins]
{Instruction}
[Instruction ends]

[Long Input Contexts begins]
{Long Input Contexts}
[Long Input Contexts ends]

Please rate the following assistant answers based on the scoring principles:

[Assistant’s answer begins]
{Assistant’s answer}
[Assistant’s answer ends]

Rating:

Figure 12: Evaluation prompt for necessity of long input contexts.
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Evaluation Prompt for the Faithfulness of Response

You are asked to evaluate the AI assistant’s answers to user questions as an impartial judge, and your
evaluation should follow these scoring principles:
1. Read the given Instruction, Long Input Contexts, and Assistant’s answer carefully.
2. Identify all errors in the AI Assistant’s answers and consider how much they affect the answer to
the question.
3. Evaluate how faithful the AI assistant’s answers are to follow the Instruction, i.e., how correct and
closely related to the Instruction.
4. Evaluate how faithful the AI assistant’s answers are based on the Long Input Contexts, i.e., how
correct and closely related to the Long Input Contexts.

Please give an overall integer rating from 1 to 5 based on the above principles, strictly in the following
format: "[[rating]]", e.g., "[[5]]".

[Instruction begins]
{Instruction}
[Instruction ends]

[Long Input Contexts begins]
{Long Input Contexts}
[Long Input Contexts ends]

Please rate the following assistant answers based on the scoring principles:

[Assistant’s answer begins]
{Assistant’s answer}
[Assistant’s answer ends]

Rating:

Figure 13: Evaluation prompt for faithfulness of response.
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Evaluation Prompt for the Helpfulness of Response

You are asked to evaluate the AI assistant’s answers to user questions as an impartial judge, and your
evaluation should follow these scoring principles:
1. Read the given Instruction and Assistant’s answer carefully.
2. Identify all errors in the AI Assistant’s answers and consider how much they affect the answer to
the question.
3. Evaluate how helpful the AI assistant’s answers are in directly answering the user’s questions and
providing the information the user needs.

Please give an overall integer rating from 1 to 5 based on the above principles, strictly in the following
format: "[[rating]]", e.g. "[[5]]".

[Instruction begins]
{Instruction}
[Instruction ends]

Please rate the following assistant answers based on the scoring principles:

[Assistant’s answer begins]
{Assistant’s answer}
[Assistant’s answer ends]

Rating:

Figure 14: Evaluation prompt for helpfulness of response.
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Evaluation Prompt for the Complexity of Instruction

You are asked to evaluate the Instruction as an impartial judge, and your evaluation should follow
these scoring principles:
1. Read the given Instruction carefully.
2. Evaluate the scope of the Instruction, i.e., whether the Instruction encompasses information
necessary for successful completion.
3. Evaluate the depth of the Instruction, i.e., whether the Instruction provides thorough details and
nuances.
4. Evaluate whether the Instruction integrates multiple steps or concepts that require careful attention
and understanding.
5. If the Instruction is too easy to follow, points should be deducted from the overall score.
Please give an overall integer rating from 1 to 5 based on the above principles, strictly in the following
format: "[[rating]]", e.g., "[[5]]".

Please rate the following Instruction based on the scoring principles and examples above:

[Instruction begins]
{Instruction}
[Instruction ends]

Rating:

Figure 15: Evaluation prompt for complexity of instruction.
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The Principles of Human Evaluation

You are asked to evaluate the responses generated by different models, and your evaluation should
follow these principles:
1. Correctness: Focus primarily on whether the response covers the key points in the reference
answer. For reference answers containing multiple key points, look for how many of these the
response accurately addresses and score accordingly.
2. Helpfulness: Evaluate how helpful the AI assistant’s answers are in directly answering the user’s
questions and providing the information the user needs.
3. Faithfulness: Examine any additional information in the AI assistant’s answer to ensure that it
is correct and closely related to the question. If this information is incorrect or not relevant to the
question, points should be deducted from the overall score.
4. Coherence: Evaluate how fluent and coherent the AI assistant’s answers are. Also, consider
deducting points for overly verbose responses or those that are excessively generalized.

Finally, please make a decision among the 3 opinions, including Win, Tie, and Loss.

Figure 16: The principles of human evaluation.
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OOD Case Study

  User:
[Debate transcript begins] {}
[Debate transcript ends]
[Instruction begins]
As a professional summarizer, create a concise and comprehensive summary of the provided debate, while adhering to
these guidelines:
1. Craft a summary that is detailed, in-depth, and complex, while maintaining clarity and conciseness.
2. Use proper grammar, punctuation, and spelling.
3. Write in a formal, objective, and impartial tone.
4. Provide a clear and accurate summary of the debate, without bias or personal opinions.
[Instruction ends]
Summary:

� Ours: The CNN presidential debate between President Joe Biden and former President Donald Trump was held in
Atlanta, Georgia. The debate was moderated by CNN anchors Jake Tapper and Dana Bash. The debate covered various
topics including the economy, immigration, foreign policy, democracy, and more. On the economy, President Biden
defended his administration’s actions, stating that he inherited a disastrous situation from the previous administration.
He highlighted his administration’s job creation efforts and infrastructure spending. Former President Trump criticized
Biden’s policies, claiming that Biden’s tax hikes and regulations were hurting the economy. On immigration, President
Biden defended his administration’s handling of the border crisis, stating that he had increased border patrol and asylum
officers. Former President Trump criticized Biden’s immigration policies, claiming that Biden was allowing "terrorists"
to enter the country. On foreign policy, President Biden criticized former President Trump’s handling of foreign affairs,
particularly in regards to Russia and Ukraine. He stated that Trump had encouraged Putin to invade Ukraine and that
Trump had not done enough to stop the war. Former President Trump defended his actions, stating that he had put pressure
on Ukraine to investigate Biden’s son and that he had not done enough to stop the war because he was focused on China.
On democracy, President Biden criticized former President Trump’s handling of the January 6th attack on the Capitol,
stating that Trump had encouraged the protesters to go to the Capitol. Former President Trump defended his actions, stating
that he had spoken peacefully and patriotically. Overall, the debate was contentious and both candidates strongly defended
their records and policies.

⌢ Full - 100%: The debate between President Joe Biden and former President Donald Trump was held in Atlanta, Georgia,
on October 22, 2020. The debate was moderated by CNN anchors Jake Tapper and Dana Bash. The debate focused on
various issues such as the economy, immigration, foreign policy, democracy, and more. On the issue of the economy,
President Biden argued that he inherited a disastrous economy from Trump, with high unemployment rates and no jobs.
He claimed that his policies have helped create jobs and increase wages for working-class Americans. Trump, on the
other hand, claimed that he had the best economy in history and that Biden’s policies have caused inflation and driven up
prices. On the issue of immigration, Trump claimed that Biden was allowing "millions of people to come in and destroy our
country." He also claimed that Biden was responsible for the worst border crisis in history. Biden argued that Trump had
left the border in chaos and that his policies had caused the crisis. On foreign policy, Trump claimed that he had brought
the United States to the brink of war with Iran and that he had made a deal with North Korea that was a "disaster." Biden
argued that Trump had put the United States in a dangerous position with his rhetoric and that he had made the world a
more dangerous place. On democracy, Trump claimed that the election was rigged and that he had won the election. Biden
argued that Trump had incited a violent insurrection at the Capitol and that he had undermined democracy. In conclusion,
the debate was contentious and both candidates presented their respective arguments and policies. However, it remains to
be seen how the voters will interpret the debate and how it will impact the election outcome.

Figure 17: OOD case study.
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Case Study for Characteristics of Selected Samples

� Sample with the highest score:

[Long Input Contexts begins]
{Long Input Contexts}
[Long Input Contexts ends]

Instruction: Since what year has SAS been giving customers around the world THE POWER TO
KNOW®?

Response: Based on the information in the doc, SAS has been giving customers around the world
THE POWER TO KNOW® since 1976. Specifically, the last paragraph states: "SAS is the leader
in business analytics software and services, and the largest independent vendor in the business
intelligence market. Through innovative solutions, SAS helps customers at more than 65,000 sites
improve performance and deliver value by making better decisions faster. Since 1976 SAS has been
giving customers around the world THE POWER TO KNOW®." Therefore, the answer is that SAS
has been giving customers THE POWER TO KNOW® since 1976.

⌢ Sample with the lowest score:

[Long Input Contexts begins]
{Long Input Contexts}
[Long Input Contexts ends]

Instruction: Bookertainment服务的主要目标市场是哪里?该服务是否会扩大到其他国家?

Response: 根据文档的内容, Bookertainment服务的主要目标市场是芬兰。文档提到芬兰目前
有约550万居民,并且娱乐行业的就业人数也在增长,这表明Bookertainment服务在芬兰市场存
在机会。但是文档也提到, Bookertainment的最初目标市场是芬兰,如果业务 successful,可以逐
步扩展到斯堪的纳维亚其他国家。所以服务目前只针对芬兰市场,但未来有可能扩大到斯堪
的纳维亚地区。文档没有提及会扩展到其它非斯堪的纳维亚国家。

Figure 18: Case study for characteristics of selected samples.
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