
Proceedings of Machine Learning Research 1:1–15, 2023 NeurIPS 2023 Gaze Meets ML Workshop

FoVAE: Reconstructive Foveation as a Self-Supervised
Variational Inference Task for Visual Representation Learning

Anonymous anonymous

Anonymous anonymous

Anonymous anonymous

Abstract

We present the first steps toward a model of visual representation learning driven by a
self-supervised reconstructive foveation mechanism. Tasked with looking at one visual
patch at a time while reconstructing the current patch, predicting the next patch, and
reconstructing the full image after a set number of timesteps, FoVAE learns to reconstruct
images from the MNIST and Omniglot datasets, while inferring high-level priors about the
whole image. In line with theories of Bayesian predictive coding in the brain and prior
work on human foveation biases, the model combines bottom-up input processing with
top-down learned priors to reconstruct its input, choosing foveation targets that balance
local feature predictability with global information gain. FoVAE is able to transfer its priors
and foveation policy across datasets to reconstruct samples from untrained datasets in a
zero-shot transfer-learning setting. By showing that robust and domain-general policies of
generative inference and action-based information gathering emerge from simple biologically-
plausible inductive biases, this work paves the way for further exploration of the role of
foveation in visual representation learning.
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1. Introduction

From shrimp to humans, the visual systems of many animal species have converged on
foveation—a mechanism which allows an organism to attend to objects of interest by
maintaining and orienting a small area of high acuity within the visual field (Land, 2011;
Marshall et al., 2014). One advantage of this approach is its computational savings, as
it would be prohibitively costly to cover the entire retina with high-density retinal cells
(Akbas and Eckstein, 2017). We propose that animal foveation is not merely a convenient
biological constraint, but is vital to visual representation building. Inspired by prior work on
the human visual system, we aim to investigate the inductive biases that explicit foveation
introduces in models of computer vision.

The human visual cortex is broadly composed of two streams—ventral and dorsal
(Goodale and Milner, 1992). The ventral stream is involved in hierarchical form recognition
and object representation. Meanwhile, the dorsal stream is thought to guide actions such
as saccades and foveation, and represent positional information—largely in isolation from
the ventral stream. Despite this separation, humans are biased toward foveating between
distinct objects (Pajak and Nuthmann, 2013), indicating that the system of selecting the
next foveation is based on an interaction between the “what” and the “where”.

Psychophysical literature on human foveation reveals a bias towards looking at visual
patches with high informational content (Rajashekar et al., 2007), and the fovea is primed for
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the expected contents of the next fixation before the saccade begins (Kroell and Rolfs, 2022).
These properties create a dynamic in which the visual system must select its next foveation
to balance information gain with partial predictability. This view fits neatly with prevailing
theories of predictive coding in the brain, including in the visual cortex (Rao and Ballard,
1999), which postulate that the brain learns about its environment via hierarchical Bayesian
inference—predicting the environment from top-down priors while inferring information via
bottom-up processing.

Convergent evidence from machine learning also attests to the power of learning by
self-supervised environmental prediction (see Kojima et al., 2022; Cao et al., 2021; Oord et al.,
2016). Furthermore, Pathak et al. (2017) demonstrates that a model can learn to explore
video game environments with zero reward supervision by predicting its own representation
of its next action and the resulting game state.

We aim to show that vision models can learn robust and general visual representations
by performing next-element prediction in the context of a foveation sequence. To do so, we
propose a hierarchical variational autoencoder (VAE) model that learns to look around an
image in small patches across multiple time-steps, performing the following three objectives:

1. Reconstruct the current patch via variational inference.

2. Generate the location of the next foveation, and predict the contents of the
corresponding patch, by predicting the top-level latent encoding of the next patch.

3. After a set number of foveations, reconstruct the entire image using the
history of previously-seen top-level latent patch encodings.

Due to the competing losses for whole-image reconstruction and next-patch prediction,
we expect the learned foveation patterns to balance information gain and predictability.
That is, the contents of the next patch must be partially, but not wholly, captured in the
model’s priors, hopefully reflecting the same behaviors observed in humans (Rajashekar
et al., 2007; Kroell and Rolfs, 2022). Finally, we hypothesize that by decoupling the patch
representation and foveation mechanism from the reconstruction of the whole image, we
introduce a crucial inductive bias for representing patches and the relations between them,
as opposed to shallow statistical correlations between pixels. This may allow the foveation
and reconstruction policies learned by the network to generalize to unseen datasets.

2. Background

Most state-of-the-art approaches to computer vision tasks rely on convolutional neural
networks (CNNs). These models process every patch of the image simultaneously, and
are conceptually equivalent to a retina uniformly covered with cells of equal resolution.
CNNs are highly inaccurate models of human vision, and fail to account for a wide range
of human behaviors (Bowers et al., 2022; German and Jacobs, 2020; Brendel and Bethge,
2019). Although soft attention methods (Xu and Saenko, 2016; Sharma and Jalal, 2021; Song
et al., 2022) improve upon the performance of CNNs for downstream tasks, the attentional
patterns learned bear little resemblance to human foveation patterns (Jain and Wallace,
2019; van Dyck et al., 2021). Some work has shown the benefits of explicitly modeling
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(a) MNIST sample, with FCG
pooling rings plotted

(b) Resulting foveated patch, af-
ter applying FCG

Figure 1: Example of Foveal Cartesian Geometry (FCG) applied at a centered position in
an MNIST sample. White space in (a) is padded with the value of the closest
non-padding pixel. Coordinates in the top left denote the the center of the patch.

foveation, achieving equivalent or better performance on image-based tasks at a fraction of
the computational cost (see Pramod et al., 2022; Lukanov et al., 2021).

In the last decade, VAEs (Kingma and Welling, 2014; Higgins et al., 2016) have emerged
as one of the leading approaches to self-supervised representation learning. Recently, Child
(2021) have shown that a very deep hierarchical VAE (VDVAE) is able to achieve very
high likelihood on natural image modeling. Recurrent VAE models have previously been
used for image reconstruction, such as DRAW (Gregor et al., 2015), AIR (Eslami et al.,
2016) and DooD (Liang et al., 2022). Most similarly to the current work, AIR and its
extension SQAIR (Kosiorek et al., 2018) learn to represent visual scenes in an unsupervised
manner by variationally reconstructing scene objects in discrete time-steps. At test time,
AIR generalizes to unseen numbers of objects, novel object orientations, and represents
complex objects in part-whole hierarchies.

3. Method

The proposed model (FoVAE) learns to represent image inputs one patch at a time via a
variational reconstructive task. See Appendix A for full details of the model operation.

3.1. Foveal patches

Departing from prior VAE scene representation methods (Eslami et al., 2016; Nash et al.,
2017), FoVAE is applied to small input patches without explicitly assuming the existence of
objects. This allows the model to tractably build representations directly from input pixels
without requiring CNN features or looking at the entire image. For a given foveal center
in image coordinates a = {x, y}, a foveated representation of the image is computed using
Foveal Cartesian Geometry (Lukanov et al., 2021; Martinez-Carranza and Altamirano Robles,
2006). As shown in Figure 1, pixels in a small radius around the center of the foveation are
sampled directly, representing the high-resolution area of the biological fovea. The remainder
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Figure 2: Simplified model schematic. At timestep t = i, the model infers the top-level
hierarchical latent vector zL,i, infers the next foveation position ai+1 and generates
the top-level latent ẑL,i+1 of the next patch at location ai+1. After foveation to
ai+1, loss is computed as the likelihood of the observed next-step latent vectors
given the ones generated from the previous step p(zk,i+1|ẑk,i+1). Likelihood loss is
denoted by the red arrows. Image reconstruction and details of LVAE are omitted.

of the input patch is filled by averaging pixel values of farther-away pixels, with the radius
of the average pooling proportional to the pixels’ distance from the center1.

3.2. Foveation

As shown in Figure 2, at each timestep t = i FoVAE first reconstructs the current foveal
patch through variational inference. Following Child (2021), the proposed architecture is a
Deep Ladder VAE (LVAE; Sønderby et al. (2016)), consisting of a deterministic bottom-up
feature extraction network D, which conditions, through inference network Q, a hierarchical
top-down generative network P . This yields a set of hierarchical latent vectors z1≤k≤L,t=i,
where L is the number of hierarchical layers of the VAE.

At timestep i, top-level latent vectors zL,t<i of all patches seen so far condition the
distribution of the location of the next foveation at=i+1. After sampling the next location,
we predict the top-level latent vector of the next patch, conditioned on the top-level latent
vectors of the patches at all prior timesteps and the location of the next foveation. In line
with the two-stream hypothesis of human vision, the networks which predict the location
and content of the next foveation share no parameters.

After sampling the next top-level latent vector ẑL,i+1, we predict the contents of the next
patch with top-down generative inference, using the same network P as for current-patch
generation. After next-patch prediction, foveation to the next location ai+1 is performed.

1. In practice this is implemented as several concentric square rings, with farther rings corresponding to
larger radii of average pooling across neighboring pixels. We omit the foveal patch generation algorithm
for brevity, please see Martinez-Carranza and Altamirano Robles (2006) for more details.
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Table 1: Average whole-image reconstruction losses for networks trained on (a) MNIST and
(b) Omniglot, on the validation sets of both datasets.

(a)

MNIST → Omniglot

Base 7.8 24.5
+ mask-to-last 6.9 17.5
+ big-patch - -

(b)

Omniglot → MNIST

Base 8.7 40.8
+ mask-to-last 6.9 21.5
+ big-patch 8.2 25.1

The reconstruction loss for this component is the log probability of the real latent vectors
for the next patch given their predictions, at all layers.

After the foveation to the next patch, the processing of the new current patch proceeds
as described above. Finally, after T timesteps of foveation, the entire input image is
reconstructed from the set of observed top-level foveal latent vectors zL,t≤T . This action is
performed using the same next-patch prediction process, while forcing the location of the next
patch a. The final loss objective of FoVAE is the sum of the weighted reconstruction losses
for: current patch reconstruction, next patch prediction, and whole-patch reconstruction,
along with the corresponding KL divergence terms, for all foveation timesteps2.

4. Experiments

We first evaluate FoVAE on the MNIST (Lecun et al., 1998) and Omniglot (Lake et al., 2015)
datasets in isolation. Our metric is whole-image reconstruction loss, as it comprises the entire
image and achieving a low value of this loss requires learning good patch representations,
aggregation of patch information across timesteps, and a sensible foveation strategy. Whole-
image reconstruction loss also serves as a proxy for the computationally-expensive image log
likelihood calculations. In addition, we evaluate whole-image reconstruction loss on Omniglot
for networks trained on MNIST, and vice versa. In order to do well on this out-of-domain
task, the network must learn patch representations that generalize across domains. Finally,
we also analyze the learned patterns of foveation and the quality of the reconstructions.

We evaluate FoVAEs with two latent layers, with z1 having 20 latent dimensions and
z2 having 10. This accounts for more featural variation in the low-level details than in
higher-level patch descriptions3. As a starting point, each foveal patch is 6× 6 pixels, with
the middle 4× 4 being the fovea, and the periphery being located close to the center (see
top row of Figure 3). In the big-patch variant, we explore expanding the periphery to
two rings with a larger degree of pooling on the second ring. Finally in the mask-to-last
variant we explore restricting the next patch prediction network to only condition zL,i+1 on
the top-level vector of the current step zL,i.

As shown in Tables 1(a) and 1(b), whole-image reconstruction loss increases as expected
when transferring across domains. We also observe the following phenomena:

2. Please see Appendix A for the full loss formulation.
3. Please see Appendix B for further hyperparameters.
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(a) MNIST-masklast on Omniglot (b) MNIST-masklast on Omniglot

(c) Omniglot-masklast on MNIST (d) Omniglot-masklast on MNIST

Figure 3: Learned foveation behavior of: (a,b) MNIST-masklast model on two Omniglot
samples and (c,d) Omniglot-masklast model on two MNIST samples. Top row:
movement of the foveal sampling grid. Second row: resulting foveal patch. Third
row: variational reconstruction of patch. Fourth row: next-patch prediction. Each
column is one timestep. All foveations start in the center of the image.

1. MNIST transfer to Omniglot achieves, on average, better performance
than transfer from Omniglot to MNIST. This result is unexpected, because MNIST is
a simpler dataset, and thus we would expect the priors learned from MNIST to skew more
strongly toward digit-like shapes (which indeed it does, see qualitative analysis below). It is
possible that this result stems from the fact that MNIST is simpler to learn to reconstruct to
saturation. In contrast, Omniglot is more difficult and varied than MNIST, and the network
is forced to rely on shallow strategies such as statistical correlation, which do not generalise.
Future work will investigate whether this disparity persists if the networks are trained to
saturation on their respective datasets.

2. Conditioning only on the current top-level latent vector is beneficial both in-
and out-of-domain, on both datasets. We believe that this result stems from a fundamental
difference in the behaviors learned by the model, due to the change in inductive biases
between the two conditions. Removing historical foveation information may force the next
patch prediction network to pay more attention to local features such as lines, edges and
peripheral cues. This guides the next foveation to areas of high local predictability while still
collecting globally-novel information and avoiding the drastic changes in foveation position,
as far-away patches are usually not predictable. Meanwhile, access to historical foveations
may allow the network to have stronger global priors about the contents of every image
patch. This would allow it to optimize more strongly for predictability over information
gain, reducing its performance.

3. Adding more global context in the form of a larger periphery to the foveal
patch reduces performance. As above, this finding is also likely due to the change in the
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(a) Original Omniglot samples

(b) Recon. by Omniglot model

(c) Recon. by MNIST model

(d) Original MNIST samples

(e) Recon. by MNIST model

(f ) Recon. by Omniglot model

Figure 4: In- and out-of-domain reconstructions of Omniglot and MNIST validation samples.

balance of surface-level priors-based global predictability, as opposed to incentivizing local
exploration in the absence of global information.

Our quantitative findings are supported by visual analysis of foveation patterns and sam-
ple reconstruction quality. Figures 3(a) and 3(b) shows the foveation, patch reconstruction,
and next-patch prediction process for a FoVAE model trained on MNIST and tested on
Omniglot samples. Foveations largely follow the contours of the figures, maximizing local
predictability. Individual patch reconstructions are reasonable despite many of the contours
of the figure not matching those within the domain of MNIST. However in Figure 3(b),
next-patch prediction struggles due to the dissimilarity of the sample to the training set,
which is reflected in the whole-image reconstruction in the second column of Figure 4(c) 4.

Figures 3(c) and 3(d) and Figure 4(f ) show an analogous set of visualizations for FoVAE
trained on Omniglot and tested on MNIST. In Figure 3(c), FoVAE fails to follow the contour
of the novel sample, with a correspondingly poor reconstruction. In Figure 3(d) it fares
better, successfully foveating around the shape. Both samples exhibit subpar next-patch
prediction, relying on broad directional predictions rather than predicting specific features.
As mentioned above, this may be due to the Omniglot-specific biases not yet refined into
domain-general behavior due to the complexity of the Omniglot dataset. However, due
to the variety of patches presented in Omniglot, the reconstructions of MNIST by the
Omniglot are overall more faithful to the MNIST domain (Figure 4(f )), while the influence
of MNIST-specific priors on the reconstructions of Omniglot in Figure 4(c) is evident.

5. Conclusions

In this paper, we present the first steps toward a more biologically-plausible model of visual
representation learning, driven by a self-supervised reconstructive foveation mechanism.
Tasked with looking at one patch at a time while reconstructing the current patch, predicting
the next patch, and reconstructing the full image after a set number of timesteps, FoVAE

4. Future work would explore continuous learning in this setting, where as in neural predictive coding, large
errors in next-patch prediction would drive domain-adaptive behavioral shifts.
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learns to attend to object contours in the MNIST and Omniglot datasets, while inferring
high-level priors about the whole image. In line with the two-stream hypothesis of the
human visual system, theories of Bayesian predictive coding in the brain and prior work
on human foveation biases, FoVAE combines bottom-up input processing with top-down
learned priors to reconstruct its input, choosing foveation targets that balance local feature
predictability with global information gain. We further demonstrate a surprising result,
in which constraining the amount of information the model has about the content of its
historical foveations actually improves reconstructive performance. FoVAE is able to transfer
its priors and foveation policy across datasets, and is able to integrate novel bottom-up
inputs from MNIST with previously-learned top-down priors from Omniglot to reconstruct
samples from the new dataset in a zero-shot transfer-learning setting. By showing that
robust and domain-general policies of generative inference and action-based information
gathering emerge from simple biologically-plausible inductive biases, this work paves the
way for further exploration of the role of foveation in visual representation learning.

6. Limitations and Future Work

Many aspects of the presented model have been left unexplored. Firstly, we evaluate FoVAE
on two simple datasets, which are sufficient to show the generalization capabilities of the
model, but are too simple to require truly robust foveation policies. The simplicity and
small size of the inputs also do not evidence the computational benefits of the foveation
mechanism over methods that process the entire input at once—indeed, the presented model
would scale effortlessly to 1024 × 1024 pixel images at near-constant memory use, which
would strain most CNN architectures and completely rule out the use of MLP-based prior
approaches like DRAW and AIR. Additionally, using more complex datasets such as the
single-object ImageNet (Deng et al., 2009) and multi-object GQA (Hudson and Manning,
2019) would allow us to explore whether the learned foveation patterns of the model exhibit
the same part-whole hierarchy bias (Biederman, 1995) and object-centered bias (Pajak and
Nuthmann, 2013) present in human foveation and object recognition.

Furthermore, we only present models with two variational inference layers, whereas the
results of Child (2021) required a VAE architecture with close to 80 layers. This limitation
is due to the well-attested difficulty of getting deep VAEs to converge stably (Dehaene and
Brossard, 2021). The depth of the VAE and the choice of which layer(s) to use to infer the
next foveation position, directly affect the breadth of the priors modeled by the network. We
theorize that if the VAE is made very deep, with the next foveation position conditioned not
on the top-level latent zL but on latents derived from layer i in the middle of the layer stack,
the layers above i will start to encode priors about input patches which are position-invariant.
The emergence of spatial and other invariants at increasingly higher layers of the hierarchy
can be studied by traversing the latent space of high-level priors, manipulating the prior
and observing the changes in the generated image. Studying representations of the same
patch in the contexts of different images would likely also be illuminating—for example, the
representation of the circles present in the digits 9 and 8. An invariant coding of the two at
a particular level of the hierarchy would indicate that the model has learned to represent
the same ”part” separately from the context of the larger ”whole”, with the larger context
being delegated to higher levels in the hierarchy in order to select the next foveation.
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David Dehaene and Rémy Brossard. Re-parameterizing VAEs for stability, June 2021. URL
http://arxiv.org/abs/2106.13739. arXiv:2106.13739 [cs].

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, June 2009. doi: 10.1109/CVPR.2009.5206848.
ISSN: 1063-6919.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale, October 2020. URL https://arxiv.org/abs/2010.11929v2.

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray
Kavukcuoglu, and Geoffrey E. Hinton. Attend, Infer, Repeat: Fast Scene Understand-
ing with Generative Models, August 2016. URL http://arxiv.org/abs/1603.08575.
arXiv:1603.08575 [cs].

Joseph Scott German and Robert A. Jacobs. Can machine learning account for human
visual object shape similarity judgments? Vision Research, 167:87–99, February 2020.

9

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005743
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005743
https://psyarxiv.com/5zf4s/
https://psyarxiv.com/5zf4s/
http://arxiv.org/abs/1904.00760
http://arxiv.org/abs/1904.00760
http://arxiv.org/abs/2106.02514
http://arxiv.org/abs/2011.10650
http://arxiv.org/abs/2106.13739
https://arxiv.org/abs/2010.11929v2
http://arxiv.org/abs/1603.08575


Anonymous Anonymous Anonymous

ISSN 0042-6989. doi: 10.1016/j.visres.2019.12.001. URL https://www.sciencedirect.

com/science/article/pii/S0042698919302147.

Melvyn A. Goodale and A. David Milner. Separate visual pathways for perception and
action. Trends in Neurosciences, 15(1):20–25, January 1992. ISSN 0166-2236. doi: 10.1016/
0166-2236(92)90344-8. URL https://www.sciencedirect.com/science/article/pii/

0166223692903448.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra.
DRAW: A Recurrent Neural Network For Image Generation, May 2015. URL http:

//arxiv.org/abs/1502.04623. arXiv:1502.04623 [cs].

Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs), July 2020. URL
http://arxiv.org/abs/1606.08415. arXiv:1606.08415 [cs] version: 4.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning Basic Visual
Concepts with a Constrained Variational Framework. November 2016. URL https:

//openreview.net/forum?id=Sy2fzU9gl.

Drew A. Hudson and Christopher D. Manning. GQA: A New Dataset for Real-World Visual
Reasoning and Compositional Question Answering, May 2019. URL http://arxiv.org/

abs/1902.09506. arXiv:1902.09506 [cs].

Sarthak Jain and Byron C. Wallace. Attention is not Explanation, May 2019. URL
http://arxiv.org/abs/1902.10186. arXiv:1902.10186 [cs].

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, May 2014. URL
http://arxiv.org/abs/1312.6114. arXiv:1312.6114 [cs, stat] version: 11.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large Language Models are Zero-Shot Reasoners, October 2022. URL http://arxiv.

org/abs/2205.11916. arXiv:2205.11916 [cs].

Adam R. Kosiorek, Hyunjik Kim, Ingmar Posner, and Yee Whye Teh. Sequential Attend,
Infer, Repeat: Generative Modelling of Moving Objects, November 2018. URL http:

//arxiv.org/abs/1806.01794. arXiv:1806.01794 [cs, stat].

Lisa M Kroell and Martin Rolfs. Foveal vision anticipates defining features of eye movement
targets. eLife, 11:e78106, September 2022. ISSN 2050-084X. doi: 10.7554/eLife.78106.
URL https://doi.org/10.7554/eLife.78106. Publisher: eLife Sciences Publications,
Ltd.

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, December
2015. doi: 10.1126/science.aab3050. URL https://www.science.org/doi/full/10.

1126/science.aab3050. Publisher: American Association for the Advancement of Science.

10

https://www.sciencedirect.com/science/article/pii/S0042698919302147
https://www.sciencedirect.com/science/article/pii/S0042698919302147
https://www.sciencedirect.com/science/article/pii/0166223692903448
https://www.sciencedirect.com/science/article/pii/0166223692903448
http://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1606.08415
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
http://arxiv.org/abs/1902.09506
http://arxiv.org/abs/1902.09506
http://arxiv.org/abs/1902.10186
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/1806.01794
http://arxiv.org/abs/1806.01794
https://doi.org/10.7554/eLife.78106
https://www.science.org/doi/full/10.1126/science.aab3050
https://www.science.org/doi/full/10.1126/science.aab3050


FoVAE: Reconstructive Foveation for Visual Representation Learning

Michael F. Land. Oculomotor behaviour in vertebrates and invertebrates. In Simon P.
Liversedge, Iain Gilchrist, and Stefan Everling, editors, The Oxford Handbook of Eye
Movements, page 0. Oxford University Press, August 2011. ISBN 978-0-19-953978-9. doi:
10.1093/oxfordhb/9780199539789.013.0001. URL https://doi.org/10.1093/oxfordhb/

9780199539789.013.0001.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998. ISSN 1558-2256.
doi: 10.1109/5.726791. Conference Name: Proceedings of the IEEE.

Yichao Liang, Joshua B. Tenenbaum, Tuan Anh Le, and N. Siddharth. Drawing out of
Distribution with Neuro-Symbolic Generative Models, June 2022. URL http://arxiv.

org/abs/2206.01829. arXiv:2206.01829 [cs].

Hristofor Lukanov, Peter König, and Gordon Pipa. Biologically Inspired Deep Learning
Model for Efficient Foveal-Peripheral Vision. Frontiers in Computational Neuroscience,
15, 2021. ISSN 1662-5188. URL https://www.frontiersin.org/articles/10.3389/

fncom.2021.746204.

N. J. Marshall, M. F. Land, and T. W. Cronin. Shrimps that pay attention: saccadic eye
movements in stomatopod crustaceans. Philosophical Transactions of the Royal Society B:
Biological Sciences, 369(1636):20130042, February 2014. doi: 10.1098/rstb.2013.0042.
URL https://royalsocietypublishing.org/doi/10.1098/rstb.2013.0042. Pub-
lisher: Royal Society.

Jose Martinez-Carranza and Leopoldo Altamirano Robles. A New Foveal Cartesian Geometry
Approach used for Object Tracking. volume 2006, pages 133–139, February 2006.

Charlie Nash, S M Ali Eslami, Chris Burgess, Irina Higgins, Daniel Zoran, Theophane
Weber, and Peter Battaglia. The Multi-Entity Variational Autoencoder. 2017.

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and
Koray Kavukcuoglu. Conditional Image Generation with PixelCNN Decoders, June 2016.
URL http://arxiv.org/abs/1606.05328. arXiv:1606.05328 [cs].

Maciej Pajak and Antje Nuthmann. Object-based saccadic selection during scene perception:
Evidence from viewing position effects. Journal of Vision, 13(5):2, April 2013. ISSN
1534-7362. doi: 10.1167/13.5.2. URL https://doi.org/10.1167/13.5.2.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-Driven
Exploration by Self-Supervised Prediction. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages 488–489, Honolulu, HI,
USA, July 2017. IEEE. ISBN 978-1-5386-0733-6. doi: 10.1109/CVPRW.2017.70. URL
http://ieeexplore.ieee.org/document/8014804/.

R. T. Pramod, Harish Katti, and S. P. Arun. Human peripheral blur is optimal for
object recognition. Vision Research, 200:108083, November 2022. ISSN 0042-6989.
doi: 10.1016/j.visres.2022.108083. URL https://www.sciencedirect.com/science/

article/pii/S004269892200089X.

11

https://doi.org/10.1093/oxfordhb/9780199539789.013.0001
https://doi.org/10.1093/oxfordhb/9780199539789.013.0001
http://arxiv.org/abs/2206.01829
http://arxiv.org/abs/2206.01829
https://www.frontiersin.org/articles/10.3389/fncom.2021.746204
https://www.frontiersin.org/articles/10.3389/fncom.2021.746204
https://royalsocietypublishing.org/doi/10.1098/rstb.2013.0042
http://arxiv.org/abs/1606.05328
https://doi.org/10.1167/13.5.2
http://ieeexplore.ieee.org/document/8014804/
https://www.sciencedirect.com/science/article/pii/S004269892200089X
https://www.sciencedirect.com/science/article/pii/S004269892200089X


Anonymous Anonymous Anonymous

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving Language
Understanding by Generative Pre-Training. 2018.

Umesh Rajashekar, Ian van der Linde, Alan C. Bovik, and Lawrence K. Cormack. Foveated
analysis of image features at fixations. Vision Research, 47(25):3160–3172, November 2007.
ISSN 0042-6989. doi: 10.1016/j.visres.2007.07.015. URL https://www.sciencedirect.

com/science/article/pii/S0042698907003252.

Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: a functional
interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1):
79–87, January 1999. ISSN 1546-1726. doi: 10.1038/4580. URL https://www.nature.

com/articles/nn0199_79. Number: 1 Publisher: Nature Publishing Group.

Himanshu Sharma and Anand Singh Jalal. Visual question answering model based on
graph neural network and contextual attention. Image and Vision Computing, 110:
104165, June 2021. ISSN 0262-8856. doi: 10.1016/j.imavis.2021.104165. URL https:

//www.sciencedirect.com/science/article/pii/S0262885621000706.

Jingkuan Song, Pengpeng Zeng, Lianli Gao, and Heng Tao Shen. From Pixels to Objects:
Cubic Visual Attention for Visual Question Answering. June 2022. doi: 10.48550/arXiv.
2206.01923. URL https://arxiv.org/abs/2206.01923v1.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
Ladder Variational Autoencoders, May 2016. URL http://arxiv.org/abs/1602.02282.
arXiv:1602.02282 [cs, stat].

Leonard Elia van Dyck, Roland Kwitt, Sebastian Jochen Denzler, and Walter Roland
Gruber. Comparing Object Recognition in Humans and Deep Convolutional Neural
Networks—An Eye Tracking Study. Frontiers in Neuroscience, 15, 2021. ISSN 1662-453X.
URL https://www.frontiersin.org/articles/10.3389/fnins.2021.750639.

Ronald J. Williams and David Zipser. A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks. Neural Computation, 1(2):270–280, June 1989. ISSN
0899-7667. doi: 10.1162/neco.1989.1.2.270. Conference Name: Neural Computation.

Huijuan Xu and Kate Saenko. Ask, Attend and Answer: Exploring Question-Guided Spatial
Attention for Visual Question Answering. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling, editors, Computer Vision – ECCV 2016, Lecture Notes in Computer Science,
pages 451–466, Cham, 2016. Springer International Publishing. ISBN 978-3-319-46478-7.
doi: 10.1007/978-3-319-46478-7 28.

Appendix A. Operation details

A.1. Current patch reconstruction

Firstly, at each timestep the FoVAE model reconstructs the current foveal patch through
variational inference. Following Child (2021), the proposed architecture is a Deep Ladder
VAE (LVAE; Sønderby et al. (2016)), consisting of a deterministic bottom-up feature

12

https://www.sciencedirect.com/science/article/pii/S0042698907003252
https://www.sciencedirect.com/science/article/pii/S0042698907003252
https://www.nature.com/articles/nn0199_79
https://www.nature.com/articles/nn0199_79
https://www.sciencedirect.com/science/article/pii/S0262885621000706
https://www.sciencedirect.com/science/article/pii/S0262885621000706
https://arxiv.org/abs/2206.01923v1
http://arxiv.org/abs/1602.02282
https://www.frontiersin.org/articles/10.3389/fnins.2021.750639


FoVAE: Reconstructive Foveation for Visual Representation Learning

extraction network D which conditions, through inference network Q, a hierarchical top-
down generative network P . For an input patch x, at each layer of the hierarchical model
1 < n < L:

dn = Dn(dn−1) (1)

{µ̂q,n, σ̂q,n} = Qn(dn) (2)

{µp,n, σp,n} = Pn(zn+1) (3)

where d0 = x, and for the top layer, µp,L = µ̂q,L and σp,L = σ̂q,L.

The top-down and bottom-up parameters are then combined through precision-weighted
averaging, producing the final parameters of the latent posterior distribution:

σq,n =
1

σ̂−2
q,n + σ−2

p,n
(4)

µq,n =
µ̂q,nσ̂

−2
q,n + µp,nσ

−2
p,n

σ̂−2
q,n + σ−2

p,n
(5)

Combining the parameters via averaging (as in Sønderby et al. (2016)) as opposed to
parametrically (as in Child (2021)) ensures that the top-down and bottom-up parameters
lie in the same space and allows us to avoid training a separate network for prior-only
generation.

Finally, the n-th layer latent vector for the current patch zn is sampled from a normal
distribution parameterized by µq,n and σ2

q,n:

zn ∼ N (µq,n, σ
2
q,n) (6)

At the end of the generative process, z0 is taken to be a variational reconstruction of the
original input x. The Gaussian log likelihood of the input forms the first component of the
model’s loss:

Lcr = log p(x|z0) (7)

In line with other VAE approaches, we also constrain the KL divergence of each latent
vector from a standard-normal Gaussian prior:

Lcd =

L∑
n=1

KL(zn || N (0, 1)) (8)

A.2. Inferring the next foveation

At timestep i, top-level latent vectors of all patches zL seen so far condition the distribution
of the location of the next foveation ai+1:

{µa,i+1, σa,i+1} = NPPa({zL,1, zL,2 . . . zL,i}) (9)

ai+1 ∼ N (µa,i+1, σ
2
a,i+1) (10)
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where µa, σa, a are 2-dimensional vectors describing the mean, standard deviation and
sampled values of the x and y locations of the next foveation, respectively. After sampling,
ai+1 is normalized to lie in [−1, 1] by a scaled sigmoid function.

After sampling the next location, we predict the top-level latent vector of the next patch,
conditioned on the top-level latent vectors of the patches at all prior timesteps and the
location of the next foveation.

{µ̂p,L,i+1, σ̂p,L,i+1} = NPPp([zL,1 . . . zL,i], ai+1) (11)

ẑL,i+1 ∼ N (µ̂p,L,i+1, σ̂
2
p,L,i+1) (12)

The next-patch prediction networks NPPa and NPPp are implemented as Vision Trans-
formers (ViT, Dosovitskiy et al. (2020)), which excels at modeling long-range dependencies
between elements of arbitrary-length sequences. Both networks take as input the top-level
latent vectors zL seen so far, and for NPPp, the 2-dimensional coordinates of the center of
the next foveation ai+1 are appended to each input latent vector. Similar to autoregressive
teacher forcing approaches (Williams and Zipser, 1989; Radford et al., 2018), the NPP
networks infer the parameters of the next top-level latent vector in the input sequence, and
the true top-level latent vector of the next patch is added to the input sequence at the next
timestep. In line with the two-stream hypothesis of human vision (ventral and dorsal, as in
Goodale and Milner (1992)), NPPa and NPPp share no parameters.

After sampling the next top-level latent vector ẑL,i+1, we predict the contents of the next
patch with top-down generative inference, using the same network P as for current-patch
generation (Equation 3):

{µ̂p,n,i+1, σ̂p,n,i+1} = Pn(ẑn+1,i+1) (13)

ẑn,i+1 ∼ N (µ̂p,n,i+1, σ̂
2
p,n,i+1) (14)

x̂i+1 = ẑ0,i+1 is the prediction of the contents of the next patch. After next-patch
prediction, foveation to the next location ai+1 is performed. The reconstruction loss for this
component of the model is the log probability of the real latent vectors for the next patch
given their predictions, at all layers.

Lnr = log p(xi+1|x̂i+1) +
L∑

n=1

p(zn,i+1|ẑn,i+1) (15)

The KL divergence losses are calculated both on the divergence of the latent vectors from
a standard-normal prior, and on the divergence of the next position from a standard-normal
prior5.

Lnd =

L∑
n=1

KL(ẑn,i+1 || N (0, 1)) (16)

Lad = KL(ai+1 || N (0, 1)) (17)

After the foveation to the next patch, the processing of the new current patch proceeds
according to Section A.1.

5. The latter term is appropriate as positions in both x and y dimensions are normalized to lie in [−1, 1]
and this constraint encourages the network to foveate to all locations equally a priori.
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A.3. Whole input reconstruction

Finally, after T timesteps of foveation, the entire input image is reconstructed from the
set of foveal latent vectors {zL,i}, 1 ≤ i ≤ T . This is performed using the same next-patch
prediction process in Section A.2, while forcing the location of the next patch a, instead of
sampling it from the appropriate distribution6.

Lir =
∑
a

log p(xT+1|x̂T+1) (18)

This objective performs the same role as the ”canvas painting” objective of DRAW (Gregor
et al., 2015) and AIR (Eslami et al., 2016), while avoiding the computational cost of a
potentially-huge canvas.

A.4. Optimization

The final loss objective of the model is a summation of the reconstruction losses from the
preceding sections—current patch reconstruction, next patch prediction, and whole-patch
reconstruction—and the corresponding KL divergence terms, for all foveation timesteps. As
in β-VAE (Higgins et al., 2016), each term is weighted by a β parameter.

L =
T∑
i=1

βcrLcr + βnrLnr + βirLir + βcdLcd + βadLad + βndLnd (19)

This objective is optimized jointly, applying the reparameterization trick (Kingma and
Welling, 2014) when sampling from normal distributions is required to allow backpropagation.

Appendix B. Model hyperparameters

All mappings of D, Q and P are implemented by feed-forward neural networks with two
layers of 512 neurons each, each layer preceded by a GELU nonlinearity (Hendrycks and
Gimpel, 2020). Thus, each dn ∈ R512. Each network performs 10 steps of free foveation,
after which it is used to reconstruct the entire input image using foveation to forced locations.
Each network is trained using the Adam optimizer on its respective dataset for 5000 epochs,
using a learning rate of 0.0001.

6. In practice we only reconstruct a randomly-sampled 10% of possible input image patches, due to significant
computational savings with no decrease in performance.

15


	Introduction
	Background
	Method
	Foveal patches
	Foveation

	Experiments
	Conclusions
	Limitations and Future Work
	Operation details
	Current patch reconstruction
	Inferring the next foveation
	Whole input reconstruction
	Optimization

	Model hyperparameters

