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ABSTRACT

For imitation learning algorithms to scale to real-world challenges, they must han-
dle high-dimensional observations, offline learning, and covariate-shift. We pro-
pose DITTO, an offline imitation learning algorithm which addresses all three of
these problems. DITTO does this by optimizing a novel distance measure defined
in the latent space of a learned world model. We create this measure by rolling out
the learned policy in the latent space of a learned world model, and compute the
divergence from expert trajectories over multiple time steps. We then minimise
this intrinsic reward through on-policy reinforcement learning. This approach has
multiple benefits: the policy is learned under its own induced state distribution,
so that we can use on-policy algorithms in the offline setting; the world model
provides a natural measure of learner-expert divergence, effectively acting as an
oracle to teach the learner how to recover from its mistakes; and, the world model
lets us decouple learning dynamics and control, into the world model and policy
respectively. DITTO is completely offline, requiring no online interactions at all.
Theoretically, we show that our formulation induces a divergence bound between
expert and learner, in turn bounding the difference in extrinsic reward. We test
our method on standard imitation learning benchmarks, including difficult Atari
environments from pixels alone, and achieve state-of-the-art performance in the
offline setting. We also adapt standard imitation learning algorithms to the world
model setting, and show that this considerably improves their performance and
robustness.

1 INTRODUCTION

Generating agents which can capably act in complex environments is challenging. In the most
difficult environments, hand-designed controllers are often insufficient so learning-based methods
must be used to achieve good performance. Imitation learning (IL) is an approach to policy learning
which bypasses reward specification by directly mimicking the behavior of an expert demonstrator.
The simplest kind of IL, behavior cloning (BC), trains an agent to predict an expert’s actions from
observations, then acts on these predictions at test time. However, this approach fails to account for
the sequential nature of decision problems, since decisions at the current step affect which states
are seen later. The distribution of states seen at test time will differ from those seen during training
unless the expert training data covers the entire state space, and the agent makes no mistakes. This
distribution mismatch, or covariate shift, leads to a compounding error problem: initially small
prediction errors lead to small changes in state distribution, which lead to larger errors, and eventual
departure from the training distribution altogether (Pomerleau, 1989). Intuitively, the agent has not
learned how to act under its own induced distribution. This was formalized in the seminal work of
Ross & Bagnell (2010), who gave a tight regret bound on the difference in return achieved by expert
and learner, which is quadratic in the episode length for BC.

Follow-up work in Ross et al. (2011) showed that a linear bound on regret can be achieved if the
agent learns online in an interactive setting with the expert: Since the agent is trained under its
own distribution with expert corrections, there is no distribution mismatch at test-time. This works
well when online learning is safe and expert supervision is possible, but is untenable in many real-
world use-cases such as robotics, where online learning can be unsafe, time-consuming, or otherwise
infeasible. This captures a major open challenge in imitation learning: on one hand, we want to
generate data on-policy to avoid covariate shift, but on the other hand, we may not be able to learn
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online due to safety or other concerns. The algorithm we present, DITTO, is the first work to solve
this challenge in a way that scales to high-dimensional observations (e.g. pixels).

Ha & Schmidhuber (2018) propose a two-stage approach to policy learning, where agents first learn
to predict the environment dynamics with a recurrent neural network called a “world model” (WM),
and then learn the policy inside the WM alone. This approach is desirable since it enables on-policy
learning offline, given the existence of the world model. Similar model-based learning methods
have recently achieved success in standard online RL settings (Hafner et al., 2021), and impressive
zero-shot transfer of policies trained solely in the WM to physical robots (Wu et al., 2022).

When learning a policy, it is important to quantify how well the policy generalizes to unseen inputs.
However, in imitation learning there is a conceptual difficulty in measuring generalization perfor-
mance. Although we could evaluate policy performance on held-out expert state-action pairs (e.g.
by measuring prediction accuracy), this fails to reflect the performance we should expect from the
policy at test-time. This is because we are not evaluating the policy in the state distribution it will be
acting under, namely its own induced distribution. This is where world models provide a solution:
we can perform roll-outs with our learned policy from arbitrary expert starting states, then measure
the latent divergence between the observed trajectories and the expert trajectories over multiple time
steps. The learner-expert state divergence over time is a natural measure of counterfactual imitation
performance, but is not possible without the world model providing the latent space over which a
meaningful distance measure can be computed. This novel insight underpins the both the strong
empirical performance of DITTO (achieving expert performance on IL from pixels where previous
methods could not), and our theoretical contributions. We show that multi-step latent divergence
not only provides a measure of imitation performance, but optimizing this measure with standard
RL algorithms provably induces imitation learning. To confirm the generalization properties of our
algorithm, we test in environments for which there is an extrinsic reward function, and study the re-
lationship between our proposed imitation divergence measure and the extrinsic reward. As shown
in Figure 2, DITTO achieves both the least latent divergence from the expert, and greatest reward in
the environment, despite achieving the lowest expert action prediction accuracy. This confirms our
hypothesis that latent divergence is a useful measure of imitation performance and generalization
capability beyond standard metrics like prediction accuracy.

We combine the above insights to propose a new imitation learning algorithm called Dream Imi-
tation (DITTO), which addresses the tension between offline and on-policy imitation learning, by
training an agent using on-policy RL inside a learned world model using a reward based on the
divergence between between the agent and expert demonstrations. We evaluate DITTO on chal-
lenging IL benchmark domains. Since existing methods – behavior cloning (BC) and generative
adversarial imitation learning (GAIL, Ho & Ermon (2016)) – fail to achieve competitive perfor-
mance on pixel-based observations in these benchmarks, we adapt them to the world model setting.
This creates novel algorithms (D-BC, D-GAIL) which outperform their non-adapted forms, but are
outperformed by DITTO.

Our main contributions are summarized as follows:

• We discuss how world models relieve the tension between offline and on-policy learning
methods, which mitigates covariate shift from offline learning. We show how the latent
space of a learned world model provides a natural measure of state divergence, which
can be used e.g. to measure imitation performance without access to an extrinsic reward
function.

• We present two novel extensions of baseline IL algorithms (BC, GAIL) to the world model,
offline setting (D-BC, D-GAIL).

• We demonstrate the first fully offline model-based imitation learning method that achieves
strong performance on Atari from pixels, outperforming competitive baselines.

• We propose a latent-matching intrinsic reward which can be used to induce imitation learn-
ing using powerful reinforcement learning methods, and relate it to similar commonly used
adversarial and sparse formulations.
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2 RELATED WORK

2.1 IMITATION LEARNING

Imitation learning algorithms can be classified according to the set of resources needed to produce a
good policy. Ross et al. (2011) give strong theoretical and empirical results in the online interactive
setting, which assumes that we can both learn while acting online in the real environment, and that
we can interactively query an expert policy to e.g. provide the learner with the optimal action in
the current state. Follow-up works have progressively relaxed the resource assumptions needed to
produce good policies. Sasaki & Yamashina (2021) show that the optimal policy can be recovered
with a modified form of BC when learning from imperfect demonstrations, given a constraint on
the expert sub-optimality bound. Brantley et al. (2020) study covariate shift in the online, non-
interactive setting, and demonstrate an approximately linear regret bound by jointly optimizing the
BC objective with a novel policy ensemble uncertainty cost, which encourages the learner to return
to and stay in the distribution of expert support. They achieve this by augmenting the BC objective
with the following uncertainty cost term:

Varπ∼ΠE (π(a|s)) = 1

E

E∑
i=1

(πi(a|s)−
1

E

E∑
j=1

πj(a|s))2 (1)

This term measures the total variance of a policy ensemble ΠE = {π1, ..., πE} trained on disjoint
subsets of the expert data.They optimize the combined BC plus uncertainty objective using standard
online RL algorithms, and show that this mitigates covariate shift.

Inverse reinforcement learning (IRL) can achieve improved performance over BC by first learning a
reward from the expert demonstrations for which the expert is optimal, then optimizing that reward
with on-policy reinforcement learning. This two-step process, which includes on-policy RL in the
second step, helps IRL methods mitigate covariate shift due to train and test distribution mismatches.
However, the learned reward function can fail to generalize outside of the distribution of expert states
which form its support.

A recent line of work treats IRL as divergence minimization: instead of directly copying the expert
actions, they minimize a divergence measure between expert and learner state distributions

min
π

D
(
ρπ, ρE

)
(2)

where ρπ(s, a) = (1 − γ)
∑∞
t=0 γ

tP (st = s, at = a) is the discounted state-action distribution
induced by π, and D is a divergence measure between probability distributions. The popular GAIL
algorithm (Ho & Ermon, 2016) constructs a minimax game in the style of GANs (Goodfellow et al.,
2014) between the learner policy π, and a discriminator Dψ which learns to distinguish between
expert and learner state distributions

max
π

min
Dψ

E(s,a)∼ρE [− logDψ(s, a)] + E(s,a)∼ρπ [− log (1−Dψ(s, a))] (3)

This formulation minimizes the Jensen-Shannon divergence between the expert and learner policies,
and bounds the expected return difference between agent and expert. However, Wang et al. (2019)
point out that adversarial reward learning is inherently unstable since the discriminator is always
trained to penalize the learner state-action distribution, even if the learner has converged to the expert
policy. This finding is consistent with earlier work (Brock et al., 2019) which observed discriminator
overfitting, necessitating early stopping to prevent training collapse. Multiple works have reported
failure getting GAIL to work with high-dimensional observations, such as those in the pixel-based
environments we study (Brantley et al., 2020) (Reddy et al., 2020).

To combat problems with adversarial training, Wang et al. (2019) and Reddy et al. (2020) consider
reducing IL to RL on an intrinsic reward

r(s, a) =

{
1 if (s, a) ∈ DE

0 otherwise
(4)

where DE is the expert dataset. While this sparse formulation is impractical e.g. in continuous action
settings, they show that a generalization of the intrinsic reward using support estimation by random
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network distillation (Burda et al., 2019) results in stable learning that matches the performance of
GAIL without adversarial training. Ciosek (2022) showed that this formulation is equivalent to
divergence minimization under the total variation distance, and produced a bound on the difference
in extrinsic reward achieved between the expert and a learner trained with this approach.

Other approaches to imitation include the DICE family of methods (Kostrikov et al., 2019) (Kim
et al., 2022), which directly minimize an off-policy estimate of the state divergence between expert
and learner, and optimal transport methods (Luo et al., 2023), which minimize the Wasserstein
distance between the expert’s and learner’s state-action distributions. These methods are effective
when low-dimensional proprioceptive states and actions are available, but have not yet demonstrated
strong performance in high-dimensional observation environments, such as the pixel-based ones we
study.

2.2 WORLD MODELS

World models have recently emerged as a promising approach to model-based learning. Ha &
Schmidhuber (2018) defined the prototypical two-part model: a variational autoencoder (VAE) is
trained to reconstruct observations from individual frames, while a recurrent state-space model
(RSSM) is trained to predict the VAE encoding of the next observation, given the current latent
state and action. World models can be used to train agents entirely inside the learned latent space,
without the need for expensive decoding back to the observation space. Hafner et al. (2020) intro-
duced Dreamer, an RL agent which is trained purely in the latent space of the WM, and successfully
transfers to the true environment at test-time. Wu et al. (2022) showed that the same approach can
be used to simultaneously learn a model and agent policy to control a physical quadrupedal robot
online, without the control errors usually associated with transferring policies trained only in simu-
lation to a physical system (Hwangbo et al., 2019).

In this work, we propose the use of world models to address a number of common problems in imita-
tion learning. Intrinsic rewards which induce imitation learning, like those introduced in Reddy et al.
(2020) and Wang et al. (2019), can pose challenging online learning problems, since the rewards
are sparse or require tricky additional training procedures to work in high-dimensional observation
spaces. Similarly, approaches like GAIL (Ho & Ermon, 2016) and AIRL (Fu et al., 2018) require
adversarial on-policy training that is difficult to make work in practice. In contrast, our approach
remedies both the online learning and reward specification problems by performing safe offline pol-
icy learning solely inside the compact latent space of the world model, and uses a natural divergence
measure as reward: distance between learner and expert in the world model latent space. This pro-
vides a conceptually simple and dense reward signal for imitation by reinforcement learning, which
we find outperforms competitive approaches in data efficiency and asymptotic performance.

3 DREAM IMITATION

We study imitation learning in a partially observable Markov decision process (POMDP) with dis-
crete time-steps and actions, and high dimensional observations generated by an unknown environ-
ment. The POMDP M is composed of the tuple M = (S,A,X ,R, T ,U , γ), where s ∈ S is the
state space, a ∈ A is the action space, x ∈ X is the observation space, γ is the discount factor,
and r = R(s, a) is the reward function. The transition dynamics are Markovian, and given by
st+1 ∼ T (· | st, at). The agent does not have access to the underlying states, and only receives
observations represented by xt ∼ U(· | s). The goal is to maximize the discounted sum of extrinsic
(environment) rewards E[Σtγtrt], which the agent does not have access to.

Training proceeds in two parts: we first learn a world model from recorded sequences of observa-
tions, then train an actor-critic agent to imitate the expert in the world model. The latent dynamics
of the world model define a fully observable Markov decision process (MDP), since the model states
ŝt are Markovian. Model-based rollouts always begin from an observation drawn from the expert
demonstrations, and continue for a fixed set of time steps H , the agent training horizon. The agent
is rewarded for matching the latent trajectory of the expert.
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Figure 1: The learner begins from random expert latent states during training, and generates on-
policy latent trajectories in the world model. The intrinsic reward 8 encourages the learner to recover
from its mistakes over multiple time steps to match the expert trajectory.

3.1 PRELIMINARIES

We show that bounding the learner-expert state distribution divergence in the world model also
bounds their return difference in the actual environment, and connect our method to the IL as di-
vergence minimization framework (Ghasemipour et al., 2019). Rafailov et al. (2021) showed that
for a learned dynamics model T̂ whose total variation from the true transitions is bounded such that
DTV(T (s, a), T̂ (s, a)) ≤ α ∀(s, a) ∈ S ×A and Rmax = max(s,a) R(s, a) then∣∣J (πE ,M)− J (π,M)

∣∣ ≤ α
Rmax

(1− γ)2︸ ︷︷ ︸
learning error

+
Rmax

1− γ
DTV

(
ρEM, ρπM̂

)
︸ ︷︷ ︸

adaptation error

(5)

where J (π,M) is the expected return of policy π in MDP M, and M̂ is the “imagination MDP”
induced by the world model. This implies the difference between the expert return and the learner
return in the true environment is bounded by two terms, 1) a term proportional to the model ap-
proximation error α, which could in principle be reduced with more data, and 2) a model domain
adaptation error term, which captures the generalization error of a model trained under data from
one policy, and deployed under another. Rafailov et al. (2021) also show that bounding the diver-
gence between latent distributions upper bounds the true state distribution divergence. Formally,
given a latent representation of the transition history zt = q(x≤t, a<t) and a belief distribution
P (st | x≤t, a<t) = P (st | zt), then if the policy conditions only on the latent representation zt
such that the belief distribution is independent of the current action P (st | zt, at) = P (st | zt),
then the divergence between the latent state distribution of the expert and learner upper bounds the
divergence between their true state distribution:

Df (ρπM(x, a) ∥ ρEM(x, a)) ≤ Df (ρπM(s, a) ∥ ρEM(s, a)) ≤ Df (ρπM(z, a) ∥ ρEM(z, a)) (6)

Where Df is a generic f -divergence , e.g. KL or TV. This result, along with equation 5, suggests that
minimizing divergence in the model latent space is sufficient to bound the expected expert-learner
return difference.

Reward To bound expert-learner state distribution divergences, prior approaches have focused
on sparse indicator function rewards (Ciosek, 2022), or adversarial reward learning (Ghasemipour
et al., 2019). We propose a new formulation, which rewards the agent for matching the expert
latent state-action pairs over an episode. In particular, for an arbitrary distance function d, agent
state-action latent zπt , and a set of expert state-action latents DE :

rintt (zπt ) = 1− min
zE∈DE

d(zπt , z
E) (7)

Any function of this form rewards matching the agent’s state-action pairs to the expert’s, as studied
in Ciosek (2022). The major differences in our formulation are that we calculate the reward on the
learned model latent states, as well as compute a simple smoothed divergence, meaning an exact
match isn’t required for a reward. We give a proof in the supplementary material showing how to
make this relaxed reward compatible with the theoretical results from Ciosek (2022), such that an
exact divergence bound is obtained. In particular, we prove that maximizing this reward bounds the
total variation in latent-state distributions between the expert and learner, as well as bounding their
extrinsic reward difference.
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Intuitively, matching latent states between the learner and expert is easier than matching observa-
tions, since the representations learned from generative world model training should provide a much
richer signal of state similarity. In practice, the minimization over DE can be computationally ex-
pensive, so we modify the objective 7 to exactly match learner latent states to expert latents from the
same time-step, as shown in Figure 1. In particular, we randomly sample consecutive expert latents
zEt:t+H from DE and unroll the agent from the same starting state in the world model, yielding a
sequence of agent latents zπt:t+H . Finally, we compute a reward at each step t as follows:

rintt (zEt , z
π
t ) = 1− d(zEt , z

π
t ) =

zEt · zπt
max(∥zEt ∥, ∥zπt ∥)2

(8)

This formulation changes our method from distribution matching to mode seeking, since states fre-
quently visited by the expert will receive greater reward in expectation. We found that this modified
dot product reward empirically outperformed L2 and cosine-similarity metrics.

3.2 ALGORITHM

Dataset World model training can be performed using datasets generated by policies of any
quality, since the model only predicts transition dynamics. The transition dataset is composed of N
episodes en of sequences of observations xt, actions at: D = {(xt, at)∥en∥t=0 | n ∈ N}.

World model architecture We adapt the architecture proposed by Hafner et al. (2021), which is
composed of an image encoder, a recurrent state-space model (RSSM) which learns the transition
dynamics, and a decoder which reconstructs observations from the compact latent states. The en-
coder uses a convolutional neural network (CNN) to produce representations, while the decoder is a
transposed CNN. The RSSM predicts a sequence of length T deterministic recurrent states (ht)Tt=0,
each of which are used to parameterize two distributions over stochastic hidden states. The stochas-
tic posterior state zt is a function of the current observation xt and recurrent state ht, while the
stochastic prior state ẑt is trained to match the posterior without access to the current observation.
The current observation is reconstructed from the full model state, which is the concatenation of
the deterministic and stochastic states ŝt = (ht, zt). For further details, see the model architecture
section in the appendix.

Agent architecture We use a standard stochastic actor-critic architecture with an entropy bonus.
The actor observes Markovian recurrent states from the world model, and produces distributions
over its action space, which we sample from to get actions. The critic regresses the λ-target (Sutton
& Barto, 2005), computed from the sum of intrinsic rewards with a value bootstrap at the episode
horizon. For further details, see the agent architecture section in the appendix.

Algorithm Learning proceeds in two phases: First, we train the WM on all available demonstra-
tion data using the ELBO objective 11. Next, we encode expert demonstrations into the world model
latent space, and use the on-policy actor critic algorithm described above to optimize the intrinsic
reward 8, which measures the divergence between agent and expert over time in latent space. In
principle, any on-policy RL algorithm could be used in place of actor-critic. We describe the full
procedure in Algorithm 1.

4 EXPERIMENTS

To the best of our knowledge, we are the first to recover expert performance in the pixel-based
environments we study in the offline setting, and the first to propose an offline model-based imitation
learning algorithm which is not derived from behavior cloning. Prior works generally focus on
improving behavior cloning (Sasaki & Yamashina, 2021), or study a mixed setting with some online
interactions allowed (Rafailov et al., 2021) (Kidambi et al., 2021). To demonstrate the effectiveness
of world models for imitation learning, we train without any interaction with the true environment,
nor any reward information.

Recent state-of-the-art imitation learning algorithms (Sasaki & Yamashina, 2021) (Kim et al., 2022)
(Kostrikov et al., 2019) have mostly been limited in evaluation to low-dimensional perfect state
observation environments. To test the effectiveness of world models for policy learning that can scale
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Algorithm 1 Dream Imitation (DITTO)

1: Require demonstration data D =
{
(xt, at, xt+1)

∥en∥
t=0 | n ∈ N

}
2: Initialize world model parameters ϕ
3: while not converged do ▷ World model learning
4: Draw Bwm transition sequences {(xt, at, xt+1)

k+L
t=k } ∼ D

5: Compute all sequential RSSM components according to eqn 10
6: Update ϕ with ELBO loss 11
7: end while
8: Initialize actor and critic parameters θ, ψ
9: while not converged do ▷ Agent training

10: Draw Bac expert latent state sequences (ŝEτ ) ∼ D̂E

11: Generate trajectories (ŝπτ , aτ )
t+H
τ=t with aτ ∼ πθ(· | ŝτ )

12: Compute rewards rint
τ (ŝπτ , ŝ

E
τ ) and values vψ(ŝπτ )

13: Compute λ-returns V λτ = rt + γ
(
(1− λ)v(ŝπτ+1) + λV λτ+1

)
, V λτ+H = v(ŝπτ+H)

14: Update critic on λ-targets:
∑t+H
τ=t

1
2 (vψ(ŝ

π
τ )− sg(V λτ ))

2

15: Update actor with eqn 16
16: end while

to partially-observable, high-dimensional observation environments, such as robotic manipulation
from video feeds, we evaluate on difficult pixel-based environments. We test in standard pixel-based
Atari environments considered by recent SOTA online methods, e.g. Brantley et al. (2020) (Reddy
et al., 2020). We evaluate on a subset of the Atari domain for which strong baseline experts are
available from the RL Baselines Zoo repository (Raffin, 2020), as well as a pixel-based continuous
control environment.

4.1 AGENTS

To test the performance of our algorithm, we compare DITTO to a standard baseline method, be-
havior cloning, and to two methods which we introduce in the world model setting.

Behavior cloning We train a BC model end-to-end from pixels, using a convolutional neural
network architecture. Compared to prior works which study behavior cloning from pixels in Atari
games (Hester et al., 2017)(Zhang et al., 2020)(Kanervisto et al., 2020), our baseline implementation
achieves stronger results, even in games where it is trained with lower-scoring data.

Dream agents We adapt GAIL (Ho & Ermon, 2016) and BC to the world model setting, which
we dub D-GAIL and D-BC respectively. D-GAIL and D-BC both receive world model latent states
instead of pixel observations. The D-BC agent is trained with maximum-likelihood estimation on
the expert demonstrations in latent space, with an additional entropy regularization term which we
found stabilized learning:

LBC = E(ŝ,a)∼D̂E [− log (π(a|ŝ))− ηBCH(π(ŝ))] (9)

The D-GAIL agent is trained on-policy in the world model using the adversarial objective from
Equation 3. The D-GAIL agent optimizes its learned adversarial reward with the same actor-critic
formulation used by DITTO, described in Section 3.2. We train both DITTO and D-GAIL with a
fixed horizon of H = 15. At test-time, the model-based agent policies are composed with the world
model encoder and RSSM to convert high-dimensional observations into latent representations.

All model-based policies in our experiments use an identical multi-layer perceptron (MLP) archi-
tecture for fair comparison in terms of the policies’ representation capacity, while the BC agent is
parameterized by a stacked CNN and MLP architecture which mirrors the world model encoder plus
agent policy. We found that D-GAIL was far more stable than expected, since prior works (Reddy
et al., 2020) (Brantley et al., 2020) reported negative results training GAIL from pixels in the easier
online setting. This suggests that world models may be beneficial for representation learning even in
the online case, and that other online algorithms could be improved with world model pre-training,
followed by policy training in the latent space.
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Figure 2: We compare mean extrinsic reward from rollouts in the true environment (BeamRider)
throughout agent training (left) to agents’ mean latent distance from the expert (center), and mean
expert action prediction accuracy (right). Both latent distance and accuracy are calculated on held-
out expert trajectories used for validation. Latent distance is defined as Ld = 1 − rint. DITTO
explicitly minimizes this quantity, and achieves the greatest generalization performance in the true
environment. Perfect agreement with the expert would result in Ld = 0, but this is impossible to
achieve since the world model is stochastic. Counter-intuitively, expert action prediction accuracy
is negatively correlated with generalization performance in the true environment.

We evaluate our algorithm and baselines on 5 Atari environments, and one continuous control en-
vironment, using strong PPO agents (Schulman et al., 2017) from the RL Baselines3 Zoo (Raffin,
2020) as expert demonstrators, using NE = {4, 8, 15, 30, 60, 125, 250, 500, 1000} expert episodes
to train the agent policies in the world model. To train the world models, we generate 1000 episodes
from a pre-trained policy, either PPO or advantage actor-critic (A2C) (Mnih et al., 2016), which
achieves substantially lower reward compared to PPO. Surprisingly, we found that the A2C and
PPO-trained world models performed similarly, and that only the quality of the imitation episodes
affected final performance. We hypothesize that this is because the A2C and PPO-generated datasets
provide similar coverage of the environment. It appears that the world model can learn environment
dynamics from broad classes of datasets as long as they cover the state distribution well. The data-
generating policy’s quality is relevant for imitation learning, but appears not to be for dynamics
learning, apart from coverage.

4.2 RESULTS

We are interested in pushing imitation learning towards real-world deployments, which necessitate
dealing with high-dimensional observations and offline learning, as mentioned in section 1. Esti-
mating out-of-distribution imitation performance is particularly difficult in the offline setting, since
by definition we do not have expert data there and cannot compare what our agent does to what an
expert would have done. This highlights a flaw with standard offline imitation metrics such as expert
action prediction accuracy, which only tell us about the learner’s performance in the expert’s distri-
bution, and may not be predictive of the learner’s performance under its own induced distribution.

Figure 2 shows the performance of different algorithms throughout training in the true environ-
ment, contrasted with two imitation metrics: latent distance, which we propose as a more robust
measure of generalization performance for imitation; and expert action prediction accuracy, a stan-
dard imitation benchmark which is meant to capture generalization capability. DITTO achieves
the lowest latent distance from expert under its own distribution in the world model. We find that
counter-intuitively, action prediction accuracy is negatively correlated with actual environment (i.e.
extrinsic) performance, whereas our latent distance measure is predictive of performance in the en-
vironment. This supports our hypothesis that metrics which are limited to evaluation in the expert
distribution are inadequate for predicting the performance of imitation learners when deployed to the
true environment, since they neglect the sequential nature of decision problems and the subsequent
policy-induced covariate shift. Our results suggest that action prediction accuracy in the expert’s
distribution does not measure generalization performance.

Figure 3 plots the performance of DITTO against our proposed world model baselines and standard
BC. In MsPacman and Qbert, most methods recover expert performance with the least amount of
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Figure 3: Results on five Atari environments from pixels, with fixed horizon H = 15. In all en-
vironments, DITTO matches or exceeds expert performance, and matches or exceeds all baselines.
In MsPacman and Qbert, all model-based methods immediately recover expert performance with
minimal data. In MsPacman, we observe adversarial collapse of D-GAIL. We follow Agarwal et al.
(2021) for offline policy evaluation, and report the mean reward achieved across 10 gradient steps
with 20 validation simulations, to avoid lottery-ticket policy results. Shaded regions show ±1 stan-
dard error. The experts are strong pre-trained PPO agents from the RL Baselines3 Zoo.

data we tested, and are tightly clustered, suggesting these environments are easier to learn good
policies in, even with little data. D-GAIL exhibited adversarial collapse twice in MsPacman, an im-
provement over standard GAIL, which exhibits adversarial collapse uniformly in prior works which
study imitation learning from pixels in Atari (Reddy et al., 2020)(Brantley et al., 2020). In con-
trast, DITTO always recovers or exceeds average expert performance in all tested environments,
and matches or outperforms the baselines in terms of both sample efficiency and asymptotic perfor-
mance. Further results and ablations can be found in the appendix.

5 CONCLUSION

Addressing covariate shift in imitation learning is a long-standing problem. In this work we pro-
posed DITTO, a method which addresses this problem in the challenging offline setting. DITTO
achieves greater performance, and superior sample efficiency compared to strong baselines which
we introduce for the offline setting. DITTO is the first offline imitation learning algorithm to solve
these difficult Atari environments from pixels. Model-based methods are typically thought to cause
generalization challenges, since agents trained in a learned model can learn to exploit generalization
failures of both the dynamics or learned reward function. In contrast, our formulation encourages
learners to return to the data distribution using a simple fixed reward function defined in the model
latent space. Our results demonstrate that world models are an effective solution to policy-induced
covariate shift. Addressing the combined difficulties of high-dimensional partially observable envi-
ronments and offline learning are key challenges to scale imitation learning to real world challenges.

9



Under review as a conference paper at ICLR 2024

6 REPRODUCIBILITY STATEMENT

In order to ensure reproducibility of the results, all hyperparameters used in our experiments are
included in the appendix. The code for the experiments will be made available for the reviewing
process. The code will be made publicly available for the camera-ready version.
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A PROOF OF DIVERGENCE REWARD BOUND

We prove a corollary of proposition 1 from Ciosek (2022). Ciosek (2022) uses many intermediate re-
sults and definitions, so we encourage the reader to reference their work while reading to understand
this proof.
Corollary A.1. Suppose we also have another imitation learner, which uses the same data-set of
size N, and still satisfies Assumption 3, but instead trains on some other intrinsic reward, R′

int which
satisfies (for some ϵ > 0):

R′
int(s, a) = 1,∀(s, a) ∈ D

0 ≤ R′
int(s, a) ≤ 1− ϵ, otherwise

Let ρJ be the limiting state-action distribution of this imitation learner. Then:

||ρJ − ρE ||TV ≤ η

ϵ

EρJ [R] ≥ EρE [R]−
η

ϵ

Proof. Lemma 5 trivially still holds with R′
int instead of Rint, as R′

int ≥ Rint always,
∀ρ,Eρ[R′

int] ≥ Eρ[Rint]. Hence the bound holding true for EρI [Rint] implies it holds for
EρI [R′

int] too.

Lemma 7 holds with κ replaced by κ
ϵ , so the result is EρI [R] ≥ (1 − κ

ϵ )EρE [R] − 4τmix
κ
ϵ .

We do this by considering their proof in Appendix D. The properties of the intrinsic reward are
utilised in just one paragraph, after equation 25. This is done in stating that

∑
ℓ
ℓMℓ

T → EρI [Rint]

and B+1
T → 1 − EρI [Rint]. This is not true for R′

int. Let pa be the limiting chance of the ex-
pert agreeing with theR′

int imitation agent. Almost by definition,
∑
ℓ
ℓMℓ

T → pa and B+1
T → 1−pa.

Note that EρI [R′
int] ≤ pa + (1 − pa)(1 − ϵ); we yield a reward of 1 every time we

agree, and at most 1 − ϵ if we disagree. Hence, using 1 − κ = EρI [R′
int], we have

1− κ ≤ pa + (1− pa)(1− ϵ) = 1− ϵ+ paϵ, hence pa ≥ 1− κ
ϵ .

So, taking limits as done in the original proof, we have:

EρI [R] ≥ paEρE [R]− (1− pa)4τmix − 0

= pa ≥ pa(EρE [R] + 4τmix)− 4τmix

≥ (1− κ

ϵ
)(EρE [R] + 4τmix)− 4τmix

Now, combining these lemmas is exactly as in section 4.4 in Ciosek (2022). The factor of 1
ϵ carries

forward, yielding EρJ [R] ≥ EρE [R]− η
ϵ as required.

B WORLD MODEL ARCHITECTURE

We adapt the recurrent state space model (RSSM) introduced by Hafner et al. (2021). The RSSM
components are:

Model state: ŝt = (ht, zt)

Recurrent state: ht = fϕ(ŝt−1, at−1)

Prior predictor: ẑt ∼ pϕ(ẑt | ht)
Posterior predictor: zt ∼ qϕ(zt | ht, xt)
Image reconstruction: x̂t ∼ pϕ(x̂t | ŝt)

(10)

All components are implemented as neural networks, with a combined parameter vector ϕ. Since
the prior model predicts the current model state using only the previous action and recurrent state,
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without using the current observation, we can use it to learn behaviors without access to observa-
tions or decoding back into observation space. The prior and posterior models predict categorical
distributions which are optimized with straight-through gradient estimation (Bengio et al., 2013).
All components of the model are trained jointly with a modified ELBO objective:

min
ϕ

Eqϕ(z1:T |a1:T ,x1:T )

[
T∑
t=1

− log pϕ(xt | ŝt) + βDKL-B(qϕ(zt | ŝt) ∥ pϕ(ẑt | ht))

]
(11)

where DKL-B(q ∥ p) denotes KL balancing (Hafner et al., 2021), which is used to control the regu-
larization of prior and posterior towards each other with a parameter δ,

DKL-B(q ∥ p) = δ DKL(q ∥ sg(p))︸ ︷︷ ︸
posterior regularizer

+(1− δ)DKL(sg(q) ∥ p)︸ ︷︷ ︸
prior regularizer

(12)

and sg(·) is the stop gradient operator. The idea behind KL balancing is that the prior and poste-
rior should not be regularized at the same rate: the prior should update more quickly towards the
posterior, which encodes strictly more information.

C AGENT ARCHITECTURE

The agent is composed of a stochastic actor which samples actions from a learned policy with
parameter vector θ, and a deterministic critic which predicts the expected discounted sum of future
rewards the actor will achieve from the current state with parameter vector ψ. Both the actor and
critic condition only on the current model state ŝt, which is Markovian:

Actor: at ∼ πθ(at | ŝt)
Critic: vψ(ŝt) ≈ Eπθ,pϕ [ΣHt=0γ

trt]
(13)

We train the critic to regress the λ-target (Sutton & Barto, 2005)

V λt = rt + γ
(
(1− λ)vψ(ŝt+1) + λV λt+1

)
, V λt+H = vψ(ŝt+H) (14)

which lets us control the temporal-difference (TD) learning horizon with the hyperparameter λ.
Setting λ = 0 recovers 1-step TD learning, while λ = 1 recovers unbiased Monte Carlo returns, and
intermediate values represent an exponentially weighted sum of n-step returns. In practice we use
λ = 0.95. To train the critic, we regress the λ-target directly with the objective:

min
ψ

Eπθ,pϕ

[
H−1∑
t=1

1
2 (vψ(ŝt)− sg(V λt ))

2

]
(15)

There is no loss on the last time step since the target equals the critic there. We follow Mnih et al.
(2015), who suggest using a copy of the critic which updates its weights slowly, called the target
network, to provide the value bootstrap targets.

The actor is trained to maximize the discounted sum of rewards predicted by the critic. We train the
actor to maximize the same λ-target as the critic, and add an entropy regularization term to encour-
age exploration and prevent policy collapse. We optimize the actor using REINFORCE gradients
(Williams, 2004) and subtract the critic value predictions from the λ-targets for variance reduction.
The full actor loss function is:

L(θ) = Eπθ,pϕ

H−1∑
t=1

− log πθ(at | ŝt)sg(V λt − vψ(ŝt))︸ ︷︷ ︸
reinforce

− ηH(πθ(ŝt))︸ ︷︷ ︸
entropy regularizer

 (16)

D HYPERPARAMETERS

E ADDITIONAL RESULTS
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Table 1: Experimental hyperparameters

Description Symbol Value

Number of world model training episodes N 1000
Number of expert training episodes NE {4, 8, 15, 30, 60, 125, 250, 500, 1000}
World model training batch size Bwm 50
World model training sequence length L 50
Agent training batch size Bac 512
Agent training horizon H 15
Discount factor γ 0.95
TD(λ) parameter λ 0.95
KL-Balancing weight β 0.1
KL-Balancing trade-off parameter δ 0.8
Actor-critic entropy weight η 5× 10−2

Behavior cloning entropy weight ηBC 0.1
Optimizer - Adam
All learning rates - 3× 10−4

Actor-critic target network update rate - 100 steps

Figure 4: Left: Results on continuous control environment BipedalWalker, from pixels. Right:
Training time horizon ablation. Note that both DITTO and D-GAIL achieve their maximum perfor-
mance at a similar training time horizon. We conjecture that this hyperparameter is environment-
specific, and report results for all environments with fixed H = 15.
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