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Abstract

Hallucinations in abstractive summarization
are model generations that are unfaithful to
the source document. Current methods for de-
tecting hallucinations operate mostly on noun
phrases and named entities, and restrict them-
selves to the XSum dataset, which is known to
have hallucinations in 3 out of 4 training exam-
ples (Maynez et al., 2020). We instead consider
the CNN/DailyMail dataset where the summa-
rization model has not seen abnormally many
hallucinations during training. We automati-
cally detect candidate hallucinations at the to-
ken level, irrespective of its part of speech. Our
detection comes essentially for free, as we only
use information the model already produces
during generation of the summary. This enables
practitioners to jointly generate a summary and
identify possible hallucinations, with minimal
overhead. We repurpose an existing factuality
dataset and create our own token-level anno-
tations. The evaluation on these two datasets
shows that our model achieves better precision-
recall tradeoffs than its competitors, which ad-
ditionally require a model forward pass.

1 Introduction

Large pretrained Transformers (Vaswani et al.,
2017; Devlin et al., 2019) have considerably ad-
vanced the state of the art in abstractive summa-
rization (Liu and Lapata, 2019; Lewis et al., 2020;
Zhang et al., 2020). However, model hallucinations
— where the information in the generated summary
is not faithful to the source document — are a promi-
nent remaining failure mode of these models.

A lot of recent work has addressed this problem,
predominantly on the XSum dataset (Narayan et al.,
2018). XSum is an outlier, however, in that over
75% of its reference summaries contain hallucina-
tions (Maynez et al., 2020). Models trained (or
finetuned) on this dataset are consequently prone to
hallucinate themselves when summarizing an arti-
cle. Additionaly, current work focuses on detecting
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Figure 1: BART cross-attentions align copied segments
of the summary with the respective segments in the
source. Attention weights are normalized by row. Only
the first summary and source sentences are shown.

hallucinations for noun phrases and named entities
(Wang et al., 2020; Durmus et al., 2020; Scialom
et al., 2021), sometimes with the addition of dates
and numbers (Narayan et al., 2021). Recent work
has shown, however, that summarization models
also make mistakes in other parts of speech, such
as predicates (Pagnoni et al., 2021).

In this paper, we aim to expand the current line
of research to a different dataset, and to remove the
restriction to entities. We use the diagonal cross-
attention patterns present in Transformer-based ab-
stractive summarization models (see Figure 1) to
align the summary with the source document. We
detect hallucinations in an unsupervised fashion for
segments of aligned and unaligned tokens by com-
puting statistics from the encoder’s self-attentions
and the decoder’s next-word probabilities. These
by-products arise when generating a summary with
any Transformer model. In this paper, we use
BART (Lewis et al., 2020). We evaluate our ap-
proach on two datasets.! We repurpose the factu-
ality dataset FRANK (Pagnoni et al., 2021), but
only 0.4% of tokens turn out to be hallucinations.
Therefore, we additionally create our own dataset

'Our data and code are available at https://github.
com/idiap/hallucination-detection.
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called TLHD-CNNDM, which contains token-level
annotations on examples heuristically selected to
have a higher chance of containing a hallucination.
Indeed 14.2% of tokens in TLHD-CNNDM are
hallucinations. Our method demonstrates good re-
sults compared to its competitors, while at the same
time requiring negligible additional computation.
At the same time, hallucination detection proves to
be a difficult task, in particular on intrinsic hallu-
cinations (defined in Section 3), where all models
struggle to detect any hallucinations.

2 Related Work

Several different methods have been proposed to
detect hallucinations. Specialized decoding strate-
gies are used to nudge the model to stay closer to
the source vocabulary (Aralikatte et al., 2021) or
its entities (Narayan et al., 2021). Multiple studies
use automatic question generation and answering
models to ask questions about entities in the gen-
erated summary, and try to answer them from the
source document (Wang et al., 2020; Durmus et al.,
2020; Scialom et al., 2021). If the question cannot
be answered from the source document, the entity
is considered a hallucination. Filippova (2020) de-
termine the degree of hallucination from the differ-
ences in probabilities assigned by a conditional and
an unconditional language model. In the related
area of factuality detection, Cao et al. (2022) use
the same idea to identify hallucinated but factual
summaries. Entailment-based classifiers are used
to evaluate a summary’s factuality at the level of
text or dependency arcs (Falke et al., 2019; Goyal
and Durrett, 2020). It is also common to create
synthetic data for a classifier by corrupting the in-
put, for hallucinations (Zhou et al., 2021) as well as
factuality (Cao et al., 2020; Kryscifiski et al., 2020).
However, the error distributions obtained syntheti-
cally can differ from those of models (Goyal and
Durrett, 2021). More types of factuality errors are
identified in Pagnoni et al. (2021) with a detailed
human annotation, finding discourse and semantic
frame errors. These detection methods can be used
to identify mistakes or rerank multiple outputs (e.g.
Ladhak et al., 2022).

3 Hallucination Detection

Definition. We adopt the definition from Maynez
et al. (2020), and define intrinsic hallucinations as
combinations of information from the source docu-
ment that cannot be inferred from it, and extrinsic

hallucinations as information that is not present in
the source document. Paraphrases and information
that can be directly inferred from the source doc-
ument, however, do not constitute hallucinations.
Furthermore, whether some information is a hallu-
cination is an orthogonal problem to whether that
information is factually correct, a question we do
not consider in this paper.

3.1 Unsupervised Hallucination Detection

In the process of generating a summary,
a Transformer-based abstractive summarization
model creates a number of by-products, such as de-
coder next-token generation probabilities, encoder
and decoder self-attentions, and decoder to encoder
cross-attentions, for each layer and attention head
of the model. These can be easily accessed from
e.g. the HuggingFace transformers library (Wolf
et al., 2020).

Motivation. It is debated whether model atten-
tions can be used to explain model decisions (Jain
and Wallace, 2019; Wiegreffe and Pinter, 2019) and
how much a Transformer encoder’s output repre-
sentation still represents the token at its position in
the input (Brunner et al., 2020). Nevertheless, we
posit that the diagonal attention patterns observed
in Figure 1, together with the fact that the source
and target tokens match for the entire segment, is a
strong enough signal to claim that a summarization
model copied this segment from the source.

Additionally, we conjecture that the faithfulness
of a summary to the source document is not inher-
ently a question that spans multiple sentences, in
contrast to a summary’s factuality (Pagnoni et al.,
2021). As a consequence, we detect hallucinations
at the token level by processing summary sentences
in isolation.

Initial alignment. From the observations above,
we start by aligning summary and source posi-
tions based on cross-attentions. In BART cross-
attentions, the maximum cross-attention weight is
often put on the beginning-of-sequence token in
the source. If the token is a preposition, a high
attention weight is also put on its preceding and
succeeding tokens. We therefore accept a target-
source alignment of target token ¢; iff it matches
a source token in its top-4 cross-attention weights.
This constitutes our initial alignment.

Context voting. In a second step, we expand the
initial alignment with a position-based voting algo-
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Figure 2: BART encoder self-attentions relate the
aligned segments seg, and seg, of the source document
(grey boxes) by their interactions (blue boxes). Only the
first two source sentences are shown.

rithm. For each target token t;, its context tokens
ticty ... ti_1,tis1,. .., tip in a window of size [2
around ¢; vote on the expected source position of
t; given their own alignment and an assumed di-
agonal attention pattern. If a token is not aligned
to the source, it does not vote. We accept a vote
when at least half the neighboring tokens agree. We
perform voting for a maximum of 10 rounds, and
we stop early when it has converged, which often
happens after 2 rounds.

After these two alignment stages, we have a set
of aligned segments, with a token-level correspon-
dence between summary and source, and a set of
unaligned tokens. We now look to detect intrinsic
hallucinations in the former set, and extrinsic ones
in the latter.

Classifying aligned tokens. Aligned tokens ap-
pear in the source document, and consequently do
not constitute extrinsic hallucinations. To assign a
probability of them being intrinsic hallucinations,
we compare characteristics of their aligned source
segments. Maynez et al. (2020) speculate that in-
trinsic hallucinations are potentially a failure of
document modeling. We add that the encoder may
also have performed well at document modeling,
but the communication to the decoder through the
representational bottleneck may have failed. In the
latter case, we should be able to read the associa-
tion of two source segments from the strength of
the encoder’s self-attentions between the two seg-
ments. We determine the association strength « of
two aligned segments seg; and seg, by the area-

2We choose | = 3 as our window size.
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Figure 3: Association strength o between aligned seg-
ments. The intrinsic hallucinations in the fourth segment
show the least interaction with other segments. Full ex-
ample in Appendix B.

normalized sum of encoder self-attention weights
(enc;; and encj;) between the two segments:
Zi€seg1,j636g2 enc;;j + encj;
2 x |seg, | * [segy|

a(seg;,segy) =

where ¢ and j are the source indices of segments
seg; and seg,, and |.| is the cardinality. Figure 2
visualizes the areas whose attention weights are
summed with blue boxes. The score for a segment
is the mean « to all other segments in its summary
sentence. The higher the score, the higher our
confidence in the two segments being semantically
close, and therefore not intrinsic hallucinations. As
an example, Figure 3 shows that the fourth segment
has the smallest association strength to the other
segments. Indeed, this is an intrinsic hallucination.
It talks about the present state of the mansion, while
the predicate concerns the past.

Classifying unaligned tokens. While unaligned
tokens can still appear in the source document and
result in an intrinsic hallucination, the prevalent
error mode for this set of tokens are extrinsic hal-
lucinations. We found that generated summaries
sometimes contain sentences entirely unrelated to
the article, most likely an artefact of data collection.
Our first score SBajign is the fraction of the summary
sentence tokens that are aligned.

For unaligned tokens in mostly-aligned sen-
tences, we conjecture that generations by a strong
language model fit in well (both syntactically and
semantically) with the source document and the
summary written so far, and thus should be ex-
pected by the model. In the opposite case, unex-
pected generations lead to a higher amount of sur-
prisal. The expected surprisal of a language model
can be quantified with the entropy of its next-word
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Figure 4: Summary containing an extrinsic hallucination (tokens in bold red). The decoding entropy of the first
hallucinated token is high, those of the subsequent tokens are low. We determine the hallucination score (Eq. 2) of
the entire segment (Definition in Eq. 3) from its first token.

decoding probabilities (Meister et al., 2020). Fig-
ure 4 shows the decoding entropy of an example
summary. We thus propose a second score Sengropy
as the inverse smoothed decoding entropy:

1

Bentropy (tz) - m

2
with H (¢;) the entropy of the next-word probability
distribution of target token ;.

Only the generation of the first token of an unex-
pected segment is surprising (as seen in Figure 4),
and subsequent completions of the segment have
high probability and low entropy. We therefore split
a span of unaligned tokens into segments based on
the decoding entropy. The construction is as fol-
lows: As long as the decoding entropy of the next
token ¢; decreases the mean decoding entropy of
the current segment seg, it is added. Otherwise a
new segment is started.

th Eseg H(tj)

otherwise.

seg Ut
t;

/

seg’ = ’

3)

Converting scores to probabilities. All our
faithfulness scores are nonnegative, and upper
bounded by 1. A higher score means less chance
of hallucination. We therefore convert each faith-
fulness score s to a hallucination probability p by
scaling and inverting it.

S — Smin

p=1- “4)

Smax — Smin
where spin and spax are the minimum and maxi-
mum scores across the entire dataset. In an offline
evaluation setting, one can compute all scores on a
dataset first, and then get spi, and spyax. For the on-
line setting, these values have to be set. On our two
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datasets, we observe that the minimum and maxi-
mum values do not change much, so we expect the
current values to transfer to new datasets. They are
[0,0.02] for «, [0.08,0.71] for Bentropy> and Salign
is already in the correct range.

BART-GBP. As we will see in the ablation study
in the results in Section 5, the association strength
a decreases the performance of our detection
method. Our final model, BART-GBP (BART gen-
eration by-products), therefore only uses the B41ign
and Bengopy SCOTES.

4 Experiments

We study CNN/DailyMail (Hermann et al., 2015),
a summarization dataset known to be highly extrac-
tive (Grusky et al., 2018) and therefore less likely
to contain a lot of hallucinations.

4.1 Datasets

Finding an existing dataset to evaluate our method
is difficult, since we need access to the model’s
attentions and decoding probabilities alongside the
outputs.

FRANK. We repurpose FRANK, a factual-
ity metric evaluation dataset (Pagnoni et al.,
2021). It consists of 250 summaries from the
CNN/DailyMail test set, obtained from SummEval
(Fabbri et al., 2021). FRANK introduces a typology
of factual errors, which we convert to hallucination
annotations by using examples of predicate, entity
and circumstance errors as candidates for intrinsic
hallucinations, and out-of-article errors as candi-
dates for extrinsic hallucinations. Our publically
available model version produces slightly different
outputs from theirs, so we manually correct labels



where the outputs differ. Our adapted dataset con-
tains 57 hallucinated words (31 intrinsic, 26 ex-
trinsic) which corresponds to 0.4% of the 15,700
total words. At the sentence level, 3.5% contain at
least one hallucinated word (31/897), while at the
summary level it is 9.2% (23/250).

TLHD-CNNDM. Since the number of halluci-
nations in FRANK is low, we additionally collect
human annotations ourselves. We produce BART
model outputs for the CNN/DailyMail test set (ex-
cluding the FRANK examples) by using the stan-
dard HuggingFace implementation with the default
parameters. To arrive at an interesting dataset, we
first rank summary sentences by two criteria: 1) the
number of non-contiguous alignments to the source
document found by lexical overlap, and 2) the num-
ber of words that do not appear in the source doc-
ument. Both criteria are length-normalized. We
pick the top 75 examples from both lists, arriving
at 150 summary sentences. We then perform a
human annotation as detailed in Appendix C. Our
dataset contains 299 hallucinated words out of a
total 2,100 (14.2%). Of those hallucinations, 51
are intrinsic, and 248 are extrinsic. Of the 150
sentences, 78 contain at least one hallucination
(52%). The annotator agreement with the major-
ity class (following Durmus et al., 2020) is 94.6%,
and 73.9% and 86.3% for intrinsic and extrinsic
hallucinations, respectively. We name our dataset
TLHD-CNNDM (token-level hallucination detec-
tion for CNN/DailyMail).

4.2 Model Details

For generating our summaries, attentions and
decoding probabilities, we wuse the BART-
large model finetuned on CNN/DailyMail
(’ facebook/bart-large-cnn’) from the Hug-
gingFace transformers library®, with its default
parameters. In generation with beam search,
multiple beams are active at each generation step,
but only one beam is eventually selected. We
extract the attention and decoding probabilities of
this beam with our own code. When inspecting
cross-attentions, we found layers 10 and 11 (out
of 12) to show the cleanest diagonal patterns (as
presented in Figure 1). Other layers either have
less focused attention, or they look at the previous
token (mostly lower layers), the beginning-of-
sequence token, or periods. We average the

3https ://github.com/huggingface/transformers

attentions from layers 10 and 11. We select the
same layers for the encoder self-attentions.

4.3 Baselines

As baselines, we use four classes of models: lexi-
cal overlap, an entity-focused question-generation-
answering model, a dependency entailment-based
model, and a token-level classification model
trained on synthetic data.

Lexical-n. This baseline lexically aligns the sum-
mary and the source document. It greedily adds the
longest matching span, down to a span length of
n. This baseline classifies all unaligned tokens as
(presumably extrinsic) hallucinations. For aligned
tokens, our most successful heuristic determines
the hallucination probability for each aligned span
as the fraction of aligned tokens that have an align-
ment in the same source sentence as the current
span:

|tokens aligned to same source sentencel

|all aligned tokens| -G
FEQA. FEQA (Durmus et al., 2020) generates
questions about the summary’s entities, then tries
to answer them from the source document. It then
computes the token-level F1 score between the
summary’s text and the predicted text span from
the source. Unmatched answers indicate halluci-
nations. We compute word-level probabilities by
averaging the F1 scores of all spans the word is
part of.

DAE. Dependency arc entailment (DAE) (Goyal
and Durrett, 2020, 2021) decides from its depen-
dency arcs whether the generated summary sen-
tence is entailed by the source document. While
DAE is technically a factuality detection method,
we conjecture that hallucinations in the summary
should not be entailed by the source document ei-
ther. In footnote 6 of Goyal and Durrett (2021), the
authors propose that a word is non-factual if any of
its arcs is non-factual. We therefore compute word
hallucination probabilities as the maximum proba-
bility of non-factuality of its dependency arcs. We
use their model variant trained with entity-based
synthetic data on CNN/DailyMail.

Fairseq. With the help of synthetic training
data, where factual tokens have been automati-
cally replaced with hallucinations, pretrained lan-
guage models can be finetuned to directly pre-
dict a hallucination label for each input token
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Figure 5: Precision-recall curves for all hallucinations in the FRANK and TLHD-CNNDM datasets.

Method BestF1 PR AUC ROC AUC
FRANK
FEQA* 0.0245 0.0062 0.3327
DAE* 0.0419 0.0157 0.7164
Fairseq w/o ref*  0.1651 0.0723 0.8129
Fairseq w/ ref* 0.0682 0.0232 0.7017
Lexical-1 0.1913 0.0677 0.8788
Lexical-2 0.0854 0.0335 0.8058
Lexical-3 0.0610 0.0268 0.7672
BART-GBP 0.2778 0.1777 0.8934
TLHD-CNNDM
FEQA* 0.3156 0.2031 0.3899
DAE* 0.3167 0.1988 0.5803
Fairseq w/o ref*  0.3957 0.3255 0.7375
Fairseq w/ ref* 0.2672 0.1714 0.5521
Lexical-1 0.3937 0.2819 0.6846
Lexical-2 0.3535 0.2166 0.4802
Lexical-3 0.3025 0.1785 0.2599
BART-GBP 0.3806 0.3502 0.7332

Table 1: Best F1 score on the precision-recall curve,
area under precision-recall curve, and area under the
ROC curve. Methods marked with * require an addi-
tional model forward pass, which increases runtime and
resource use.

(Zhou et al., 2021). We use the model finetuned
on XSum and evaluate how it transfers to the
CNN/DailyMail dataset. Since we compare to
our unsupervised method, we leave retraining the
model on CNN/DailyMail to future work. We eval-
uate both model settings, with and without access
to the reference summary. We call this method
Fairseq based on its Github repository name.

5 Results

We use precision-recall curves to evaluate the hal-
lucination detection methods. Precision-recall is

the preferred metric when finding the instances of
the positive class (hallucinations) has exceptionally
high value compared to the instances of the nega-
tive class. Appendix A also shows ROC curves.

Main result. Our main result is shown in Table 1,
which considers performance when classifying hal-
lucinations of both intrinsic and extrinsic type. We
present the best F1 score on the precision-recall
curve, the area under the precision-recall curve,
and the area under the ROC curve. Additionally,
we show whether the method requires an additional
model forward pass, which incurs a longer runtime
and higher resource costs, by marking the respec-
tive methods (with *). BART-GBP performs best
on the FRANK dataset, and has the largest AUC
for precision-recall on the TLHD-CNNDM dataset.
For the other metrics, it is close behind the high-
est score, all while being completely unsupervised.
Fairseq without access to the reference summary
performs well on TLHD-CNNDM, but worse on
FRANK. The setting without access to the refer-
ence summary does better across all datasets and
metrics, and is therefore reported from now on.

The precision-recall plots in Figure 5 give further
details on the main result. BART-GBP manages
to get high precision for the data points where it
is most certain, something other methods struggle
with. At higher levels of recall, the difficulty of
the task leads to lower precision scores across all
methods. The FRANK dataset, where only 0.4%
of tokens are hallucinations, is very challenging
(see Figure 5a). With 14.2% of positive labels,
TLHD-CNNDM is less extreme, but still proves to
be difficult for all methods, as seen in Figure 5b.
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Figure 6: Precision-recall curves for the label subsets of extrinsic and intrinsic hallucinations in the FRANK (6a,

6b) and TLHD-CNNDM (6¢, 6d) datasets.

Extrinsic hallucinations. Figures 6a and 6¢
show the models’ performance on the label sub-
set of extrinsinc hallucinations. To evaluate on
this subset, we remove data points that are gold
intrinsic hallucinations in order to not unfairly pe-
nalize models for detecting those, and vice versa
for evaluation of intrinsic hallucinations. Apart
from BART-GBP and Fairseq, the Lexical-1 base-
line manages to find some hallucinations. However,
it does not provide a fine-grained trade-off between
precision and recall, in contrast to BART-GBP.

Intrinsic hallucinations. As we can see from
Figures 6b and 6d, finding intrinsic hallucinations
proves to be very difficult for all methods. We there-
fore zoom in both graphs on the y-axis. BART-GBP
performs well relative to the baselines. Notably for
the TLHD-CNNDM dataset, DAE manages to find
some hallucinations at some of its highest proba-
bility selections, but quickly diminishes at higher
recall.

In summary, BART-GBP gets consistent and
very competitive results in both datasets and on
all label subsets, even while being an unsupervised
method. The ROC curves in Figures 8 and 9 in
Appendix A further confirm this finding.

Ablation study. We are interested to see how
each of our designed scores contributes to finding
hallucinations. In Table 2, we show an ablation
study with the area under the precision-recall curve
as the performance metric. We see that of all indi-
vidual scores, Saiign performs best. Combining it
with Benropy (by taking the maximum of both prob-
abilities for each token) further improves results on
the TLHD-CNNDM dataset, but not on FRANK.
« performs barely above a baseline that would clas-
sify all data points as hallucinations. This came
as a surprise to us, as we expected « to perform
better from the motivation in Section 3.1. Adding
« to the 3 scores decreases performance drastically.

Scores FRANK TLHD-CNNDM
o 0.0051 0.1440
/Balign 0.1993 0.3260
Bentropy 0.0685 0.3198
/Balign > Bentropy 0.1777 0.3502
@, Batign» Bentropy ~ 0.0390 0.1687

Table 2: Ablation study for different combinations of
scores. Metric is area under precision-recall curve.
BART-GBP is the combination of Buiign and Bentropy-

This comes from the fact that our scores are not
calibrated, so the distribution of each score will
be different. As a result, when taking the max of
multiple scores, one of them may dominate. When
we plot a histogram of our scores’ values, we see
that this is the case for «, leading to such a perfor-
mance deterioration in the case of combining all
three scores. Since « on its own does not score
well, we do not further calibrate our scores.

Maximum possible hallucination recall. We
motivated our approach by arguing that token-
level methods are superior to entity-based question-
generation-answering systems (like FEQA) or de-
pendency arc entailment-based DAE. These meth-
ods may miss some hallucinated tokens as they
only compute hallucination probabilities for a sub-
set of all tokens. To verify how many these are, we
analyze the recall each method achieves when it
classifies all tokens that it considers as positives.

The results are shown in Table 3. The disad-
vantage for FEQA and DAE is substantial. FEQA
classifies less than half of the tokens labeled as
hallucinations in the FRANK and TLHD-CNNDM
dataset. DAE is limited to a recall of around 80%,
as it cannot detect tokens that are not part of one of
the dependency arcs considered for entailment.

254



Method Maximum possible recall
FRANK
FEQA 38.60%
DAE 80.70%
Fairseq 100.00%
Lexical-n 100.00%
BART-GBP 100.00%
TLHD-CNNDM
FEQA 46.15%
DAE 77.93%
Fairseq 100.00%
Lexical-n 100.00%
BART-GBP 100.00%

Table 3: Maximum possible recall of FEQA (entity-
based), DAE (dependency arc entailment), and the
token-level methods Fairseq, Lexical-n and BART-GBP.

Score All  Extrinsic  Intrinsic
FRANK
Aligned (o) 50.88% 11.54% 83.87%
Unaligned (Bentropy) 52.63% 96.15% 16.13%
Both (Buiign) 100.00% 100.00%  100.00%
TLHD-CNNDM
Aligned () 19.06% 11.29% 56.86%
Unaligned (Bentropy) 81.27% 88.71% 45.10%
Both (Baiign) 100.00%  100.00%  100.00%

Table 4: Maximum possible recall of aligned and un-
aligned token scores wrt. all, extrinsic, or intrinsic hal-
lucinations.

Maximum recall of (un)aligned tokens. Align-
ing the summary with the source document forms
the basis of our method. How many hallucinations
are part of aligned spans, and how many are un-
aligned? We perform this analysis in Table 4. We
can see that extrinsic hallucinations are mostly part
of unaligned spans, which are scored by Bentropy-
Intrinsic hallucinations in the FRANK dataset are
mostly part of aligned spans, scored by «. In the
TLHD-CNNDM dataset, however, intrinsic hallu-
cinations are only part of aligned spans around half
of the time.

Note that aligned and unaligned scores can add
up to slightly more than 100%. This occurs when
some BPE tokens of the same word are aligned and
others are not (e.g. when a name appears together
with a possessive ’s).

6 Conclusion

We have presented BART-GBP, a method to detect
hallucinations from the by-products of summary
generation of a BART abstractive summarization
model, trained and evaluated on CNN/DailyMail.
We first aligned the segments of the summary and
source document using cross-attentions, and then
used encoder self-attentions and decoding proba-
bilities to detect intrinsic and extrinsic hallucina-
tions, respectively. This happens with minimal
computational overhead, compared to prior work
that uses external models that require an additional
model forward pass. Our evaluations show that this
is a difficult task, and especially intrinsic halluci-
nation detection needs to be addressed by future
work. We hope to contribute to this endeavor with
our method and our token-level annotated dataset,
TLHD-CNNDM.

Limitations

The results in this paper are limited by several fac-
tors. Firstly, the definition of what constitutes a
hallucination is neither set in stone, nor a mathe-
matical construct, and therefore open to interpre-
tation. We experienced this first-hand from the
feedback of our annotators. This makes the task of
teaching a model to identify hallucinations all the
more difficult, and the gap to optimal performance
in the results (for all methods) makes this visible.
Another limitation is given by the model under
study. We already mentioned in Section 3.1 that
the interpretability of attention patterns is a debated
topic in the research community. A model trained
to faithfully explain its decisions would be even
better suited to perform this kind of analysis.

Transfer to other models. While we do not as-
sume that our method transfers easily to some
attention-based RNN architectures, we saw indica-
tions that it could transfer to other Transformer-
based summarization models. In initial exper-
iments, we have used BERTSUMABS (Liu and
Lapata, 2019), which shows very similar cross-
attention patterns (see Figure 7). There are some
small differences, however. BERTSUMARBS puts its
maximum attention weight to the copied word more
often, but still shows a lot of attention to CLS/SEP
tokens in the source and BOS/EOS tokens in the
summary. Additionally, the tokenization is differ-
ent which can have an impact on the alignment
stage. In BART, for example, the same word can
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Figure 7: BERTSUMARBS cross-attention patterns are
very similar to those of BART, both Transformer-based
summarization models.

be tokenized in different ways when it is preceeded
by the BOS token, a whitespace, or punctuation.
This sometimes prevented our method from align-
ing the same word due to unmatched tokens.

Transfer to other datasets. We do not expect
these results to transfer to datasets that have a large
percentage of hallucinations, i.e. XSum. We are
not aware of other datasets with those same hallu-
cination characteristics. However, we expect that
other summarization datasets could benefit from
our method, especially those that are similarly ex-
tractive as CNN/DailyMail. The scoring range to
convert scores into probabilities may have to be
recomputed.

Prevalence of sports topics in hallucinations.
The prevalence of sports topics in CNN/DailyMail
hallucinations hints at divergence issues between
the source and reference (Wiseman et al., 2017;
Dhingra et al., 2019; Kryscinski et al., 2019) for
these topics: True additional information (such as
standings) is added by the author/editor. It is inter-
esting to note that while models trained on XSum
learn to hallucinate consistently, CNN/DM models
learn to hallucinate on sports topics. While re-
moving hallucinations from the training data could
address hallucinations, this seems infeasible, and
detecting hallucinated model outputs is a more prac-
tical approach.

Ethical Considerations

By using a large pretrained language model, this
study inherits the issues that come with these mod-
els, i.e. reproduction of biased or offensive content
that appeared in the pretraining corpus, which in-
cludes documents on the web. Unexpected and
unwanted model behavior should be reduced. De-
tecting hallucinations is one of the methods to do
so, which can prevent misrepresentation of the text

to be summarized by the model, and avoid dis-
tributing potentially misleading and in the worst
case harmful content. On the other hand, a danger
in using an imperfect model to detect hallucina-
tions can be to create a false sense of security and
lower the vigilance of people tasked with checking
model outputs.

In this study, we also conducted a human evalua-
tion. The privacy of our annotators is respected by
labeling each example’s answers with annotator_0,
annotator_1 and annotator_2, respectively. Their
answers consist exclusively of an extracted text
span from the summary sentence in question. No
personal information was collected. With regard to
the presented content in the evaluation, the articles
are part of the publically available CNN/DailyMail
test set, and supposedly do not contain offensive
content. The generated summaries were checked
manually. We did not hear any negative feedback
from our annotators in this or any other regard.
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A ROC Results

Figures 8 and 9 show the ROC curves on the
FRANK and TLHD-CNNDM datasets. There is
a large label imbalance in both datasets, with the
positive class only making up 0.4% of FRANK’s
labels, and 14.2% of those in the TLHD-CNNDM
dataset. This has to be considered when looking at
these figures.

BART-GBP performs best on both datasets and
label subsets, except for intrinsic hallucinations in
the TLHD-CNNDM dataset in Figure 9¢, where
DAE and Lexical-1 perform better.

One thing that is easily visible from the ROC
curves is the fraction of positive labels that can be
discovered by a detection method. When a curve
flattens out, it is no longer able to find more halluci-
nations without labeling all tokens as positive. This
further highlights the strengths of the token-level
methods BART-GBP and Lexical-n.

B Hallucination Examples

We present two examples of hallucinations,
one of intrinsic hallucination from the FRANK
dataset, and one of extrinsic hallucination from
the TLHD-CNNDM dataset. In the former
example, Mike Tyson’s mansion is now in a
gaudy, abandoned state, but was not while he
still lived in it. In the latter example, the name
of the stadium (Old Trafford) is never mentioned
in the article, so it is an extrinsic hallucination.
As an aside, factuality cannot be determined,
since the article only talks about a "meeting" of
the two teams and does not mention the home team.

Intrinsic hallucination from FRANK.
Article: (CNN)A trip to a former heavyweight
champ’s gaudy, abandoned mansion. The tallest
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Figure 8: ROC curves for hallucinations in the FRANK dataset.

TLHD-CNNDM (all hallucinations)
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TLHD-CNNDM (intrinsic hallucinations)

—— BART-GBP (AUC = .733)

—— FEQA (AUC = .390)

—— DAE (AUC = .580)

—— Fairseq (AUC = .738)
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—— Lexical-2 (AUC = .480)
Lexical-3 (AUC = .260)
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Figure 9: ROC curves for hallucinations in the TLHD-CNNDM dataset.

and fastest "giga-coaster” in the world. A dramatic
interview with a famed spiritual leader — and the

tearful reaction by one of his former students.

These are some of the best videos of the week: In
the 1980s and ’90s — before he moved to Vegas and
started keeping tigers as pets — former heavyweight
boxer Mike Tyson lived in a Southington, Ohio,
mansion. The home featured an indoor swimming
pool, a marble-and-gold Jacuzzi (with mirrored
ceiling, naturally) and an entertainment room large
enough for small concerts. Tyson sold the house in

1999; it’s due to become, of all things, a church.

The video can be seen at the top of this story. Not
a fan of roller coasters? You may want to skip
the next video — but for the rest of us, the thrill of
watching is the next best thing to being there. The
Fury 325 can be found at Carowinds amusement
part in Charlotte, North Carolina. Watch the video:
In a CNN exclusive, Alisyn Camerota looked
into allegations that Bikram yoga creator Bikram

Choudhury sexually assaulted six former students.

"He’s a person who’s based a lot of truths on a
lot of lies," said Sarah Baughn, who alleges that
Choudhury sexually assaulted her. Watch the
video: CNN’s Karl Penhaul spoke to a shepherd
who witnessed the final seconds of Germanwings
Flight 9525, which crashed in the French Alps

last week. "I saw the plane heading down along
the valley and I said, "My God, it’s going to hit
the mountain,” " Jean Varrieras told Penhaul. "I
ducked my head. Then after that, I saw the
smoke." Watch the video: Magician and comedian
Penn lJillette was part of a panel speaking to
CNN’s Don Lemon about the controversial Indiana
religious freedom law. Jillette, an avowed atheist
and libertarian, noted "we are not talking about
forcing people to engage in gay sex, or even
endorse gay sex." His provocative opening led
to an energetic back-and-forth with the Alliance
Defending Freedom’s Kristen Waggoner and the
ACLU’s Rita Sklar. Watch the video: A professor
of physics at a British university asked 100 people
to create a composite with facial features they
thought were beautiful — and then asked another
100 to rate their attractiveness. You’ll never guess
what celebrities best fit the model. Watch the
video:

BART summary: Former heavyweight champ
Mike Tyson lived in a gaudy, abandoned mansion
in Ohio. CNN’s Karl Penhaul spoke to a shepherd
who witnessed the final seconds of Germanwings
Flight 9525. Penn lJillette was part of a panel
speaking to CNN’s Don Lemon about the contro-
versial Indiana religious freedom law.
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Intrinsic hallucinations: gaudy, abandoned

Extrinsic hallucination from TLHD-CNNDM.
Article: Gareth Barry has advised his Everton
team-mate Ross Barkley against moving to Manch-
ester City at this young stage of his career. Barry
speaks from experience having spent four seasons
at the Etihad before arriving on Merseyside and
the veteran midfielder believes it is still too early
for the 21-year-old to decide on his future. Ahead
of the Toffees meeting with Manchester United
on Sunday, Barry told the Mirror: ’Personally, I
think he’s still too young to make that move. Ross
Barkley’s rise to stardom has seen him repeatedly
linked with Premier League champions Man City .
Everton team-mate Gareth Barry has advised the
youngster not to leave Goodison too soon . "He’s
still learning the game. He’s got the right manager
here to push him to the next level. *As soon as
he reaches that next level, then there’s another
decision to be made. At the moment, I think it’s
too early.” And asked if considered the Premier
League champions to be a graveyard for young
talent, Barry added: ’I think so, yeah.” Barkley
has overcome his early season struggles to play
an influential role in Everton’s recent revival and
Barry believes the youngster he mentors daily
can achieve anything he wants in the game. The
21-year-old signs autographs for fans after coming
through a difficult start to the season . Veteran
midfielder Barry spent four seasons at City before
being found surplus to requirements . ’I sit next to
him in the changing room at the training ground. I
speak to Ross quite often,” said Barry. ’You feel
sorry for him sometimes because the expectation
is getting thrown on to his shoulders — people are
expecting of him, week in, week out, goals and
assists. 'That hasn’t happened, but at the same
time he’s still improving as a player and growing
in maturity. "His ability and his strengths are there
for everyone to see, he can go on and be a top top
player.’

BART summary: Ross Barkley has been linked
with a move to Manchester City. Everton team-
mate Gareth Barry believes it is too early for
the 21-year-old to leave Goodison Park. Barry
spent four seasons at the Etihad before arriving on
Merseyside. Everton face Manchester United at
Old Trafford on Sunday.

Extrinsic hallucinations: at Old Trafford

C Human Annotation Details

Our human annotation was performed with 3 sets
of 3 annotators, each annotating 50 examples. The
full instructions are given below, together with an
example of how the human annotation task looks.

Hallucination detection

This study evaluates hallucinations in automatic
summarization models. A hallucination is informa-
tion that is not directly supported by the article that
the model has to summarize.

Main question: Can the summary sentence in
question be inferred directly from the article?
There are two types of hallucinations: intrinsic and
extrinsic hallucinations. They are defined as fol-
lows (from Maynez et al., 2020):

Intrinsic hallucination: Combination of informa-
tion from the article that does not follow from it
Extrinsic hallucination: Information not present
in the article

Not a hallucination: Paraphrases, or information
directly inferred from the article

Importantly, this is not a question of whether the
summary is true or false, just whether it faithfully
represents the information in the article.

The goal in this study is to annotate a summary
sentence with intrinsic and extrinsic hallucinations,
by copying the words that cannot be inferred from
reading the article. Here’s an example (the part
in red is the annotation that you will do [your
annotations can stay black]):

Example annotation

Article: Manchester City was defeated by Crystal
Palace 2-1 at the Etihad Stadium on Sunday. Glenn
Murray and Jason Puncheon scored the goals for
Palace, while Yaya Toure was the only scorer for
City. City’s best striker Sergio Aguero was left
on the bench for yet another game. The result is
especially shocking when comparing the squad’s
total transfer fees: £40m pounds for Crystal Palace
vs. £500m for Manchester City.

Full summary: Crystal Palace beat Manchester
City 2-1 on Saturday. Yaya Toure was left on the
bench, and Crystal Palace have spent £40m on
transfer fees so far this season.

Sentence in question: Yaya Toure was left on the
bench, and Crystal Palace have spent £40m on
transfer fees so far this season.

Intrinsic hallucinations: Yaya Toure

Extrinsic hallucinations: so far this season
Explanation: It was Sergio Aguero that was left

260



on the bench, not Yaya Toure (since he scored a
goal, we know that he was playing). We’re looking
for a hallucination that is as small as possible,
that’s why we didn’t mark “Yaya Toure was left
on the bench”, or “was left on the bench”. For the
extrinsic hallucination, there is no mentioning that
the spending was for this season only. There is
also a mistake in the first sentence of the summary
(Saturday vs. Sunday in the article), but this is not
the sentence in question, so we ignore it.

Notes

¢ If there are no hallucinations, leave the line
blank.

e If there are multiple hallucinations in the sen-
tence, separate them with a comma.

* Sometimes a sentence is not complete, or
there are multiple sentences in one, but a pe-
riod is missing to separate them. Just treat
the “sentence in question” as if it were a sin-
gle sentence. (These are artifacts of sentence
splitting/the training data, which we do not
evaluate here.)

* The examples below have a visual help: Text
overlaps of more than two words between the
sentence and the article are written in bold
and numbered at the end, like this: [1]. This
is just a help for you to find information faster,
and does not mean the model copied the parts
from there. Example: Article: This year’s
harvest was[1] especially rich on apples.[2]
Sentence: This year’s harvest was[1] high
on apples.[2]

* Hint: Read the sentence in question first, and
then look for the relevant information in the
article.
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