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ABSTRACT

Active learning strategy to query unlabeled samples nearer the estimated decision
boundary at each step has been known to be effective when the distance from the
sample data to the decision boundary can be explicitly evaluated; however, in nu-
merous cases in machine learning, especially when it involves deep learning, con-
ventional distance such as the `p from sample to decision boundary is not readily
measurable. This paper defines a theoretical distance of unlabeled sample to the
decision boundary as the least probable disagreement region (LPDR) containing
the unlabeled sample, and it discusses how this theoretical distance can be empir-
ically evaluated with a lower order of time complexity. Monte Carlo sampling of
the hypothesis is performed in approximating the theoretically defined distance.
Experimental results on various datasets show that the proposed algorithm con-
sistently outperforms all other high performing uncertainty based active learning
algorithms and leads to state-of-the-art active learning performance on CIFAR10,
CIFAR100, Tiny ImageNet and Food101 datasets. Only the proposed algorithm
outperforms random sampling on CIFAR100 dataset using K-CNN while all other
algorithms fail to do so.

1 INTRODUCTION

Active learning (Cohn et al., 1996) is a subfield of machine learning to attain data efficiency with
fewer labeled training data when it is allowed to choose the training data from which to learn. For
many real-world learning problems, large collections of unlabeled samples is assumed available, and
based on a certain query strategy, the label of the most informative data is iteratively queried to an
oracle to be used in retraining the model (Bouneffouf et al., 2014; Roy & McCallum, 2001; Sener
& Savarese, 2017b; Settles et al., 2008; Sinha et al., 2019; Sener & Savarese, 2017a; Pinsler et al.,
2019; Shi & Yu, 2019; Gudovskiy et al., 2020). Active learning attempts to achieve high accuracy
using as few labeled samples as possible (Settles, 2009).

Of the possible query strategies, uncertainty-based sampling (Culotta & McCallum, 2005; Scheffer
et al., 2001; Mussmann & Liang, 2018), which enhances the current model by labeling unlabeled
samples that are difficult for the model to predict, is a simple strategy commonly used in pool-based
active learning (Lewis & Gale, 1994). Nevertheless, many existing uncertainty-based algorithms
have their own limitations. Entropy (Shannon, 1948) based uncertainty sampling can query unla-
beled samples near the decision boundary for binary classification, but it does not perform well in
multiclass classification as entropy does not equate well with the distance to a complex decision
boundary (Joshi et al., 2009). Another approach based on MC-dropout sampling (Gal et al., 2017)
which uses a mutual information based BALD (Houlsby et al., 2011) as an uncertainty measure
identifies unlabeled samples that are individually informative. This approach, however, is not neces-
sarily informative when it is jointly considered with other samples for label acquisition. To address
this problem, BatchBALD (Kirsch et al., 2019) is introduced. However, BatchBALD computes,
theoretically, all possible joint mutual information of batch, and is infeasible for large query size.
The ensemble method (Beluch et al., 2018), one of the query by committee (QBC) algorithm (Se-
ung et al., 1992), has been shown to perform well in many cases. The fundamental premise behind
the QBC is minimizing the version space (Mitchell, 1982), which is the set of hypotheses that are
consistent with labeled samples. However, the ensemble method requires high computation load
because all networks that make up the ensemble must be trained.
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This paper defines a theoretical distance referred to as the least probable disagreement region
(LPDR) from sample to the estimated decision boundary, and in each step of active learning, labels
of unlabeled samples nearest to the decision boundary in terms of LPDR are obtained to be used
for retraining the classifier to improve accuracy of the estimated decision boundary. It is generally
understood that labels to samples near the decision boundary are the most informative as the samples
are uncertain. Indeed in Balcan et al. (2007), selecting unlabeled samples with the smallest margin
to the linear decision boundary and thereby minimal certainty attains exponential improvement over
random sampling in terms of sample complexity. In deep learning, it is difficult to identify samples
nearest to the decision boundary as sample distance to decision boundary is difficult to evaluate. An
adversarial approach (Ducoffe & Precioso, 2018) to approximate the sample distance to decision
boundary has been studied but this method does not show preservation of the order of the sample
distance and requires considerable computation in obtaining the distance.

2 DISTANCE: LEAST PROBABLE DISAGREEMENT REGION (LPDR)

This paper proposes an algorithm for selecting unlabeled data that are close to the decision boundary
which can not be explicitly defined in many of cases.

Let X , Y , H and D be the instance space, the label space, the set of hypotheses h : x → y and the
joint distribution over (x, y) ∈ X × Y . The distance between two hypotheses ĥ and h is defined
as the probability of the disagreement region for ĥ and h. This distance was originally defined in
Hanneke et al. (2014) and Hsu (2010):

ρ(ĥ, h) := PD[ĥ(X) 6= h(X)]. (1)

This paper defines the sample distance d of x to the hypothesis ĥ ∈ H based on ρ as the least
probable disagreement region (LPDR) that contains x:

d(x, ĥ) := inf
h∈H(x,ĥ)

ρ(ĥ, h) (2)

whereH(x, ĥ) = {h ∈ H : ĥ(x) 6= h(x)}.

Figure 1: An example of LPDR between a
sample x = x0 and a hypothesis ĥ = ha
in binary classification using the hθ(x) =
I[x > θ] on input x ∼ U [0, 1].

Figure 1 shows an example of LPDR. Let’s define
H = {hθ : hθ(x) = I[x > θ]} on input x sam-
pled from uniform distribution D = U [0, 1] where
I[·] is an indicator function. Suppose x = x0 and
ĥ = ha ∈ H when a < x0. Here, H(x0, ha) con-
sists of all hypotheses whose prediction on x0 is in
disagreement with ha(x0) = 1, i.e., H(x0, ha) =
{hb ∈ H : hb(x0) = 0} = {hb ∈ H : b > x0}.
Then, the LPDR between x0 and ha, d(x0, ha) =
x0 − a as the infimum of the distance between ha
and hb ∈ H(x0, ha) is ρ(ha, hx0

) = x0 − a.

Here, the sample distribution D is unknown, and
H(x, ĥ) may be uncountably infinite. Therefore, a
systematic and empirical method for evaluating the distance is required. One might the procedure
below: Sample hypotheses sets H′ = {h′ : ρ(ĥ, h′) ≤ ρ′} in terms of ρ′, and perform grid search
to determine the smallest ρ′ such that there exists h′ ∈ H′ satisfying ĥ(x) 6= h′(x) for a given x.
Sampling the hypotheses within the ball can be performed by sampling the corresponding param-
eters with the assumption that the expected hypothesis distance is monotonically increasing for the
expected distance between the corresponding parameters (see Assumption 1). This scheme is based
on performing grid search on ρ′ and is therefore computationally inefficient. However, unlabeled
samples can be ordered according to d without grid search with the assumption that there exists aH′

such that variation ratio V (x) = 1− f (x)m /|H′| and d(x, ĥ) have strong negative correlation where
f
(x)
m = maxc

∑
h′∈H′ I[h′(x) = c] (see Assumption 2).
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Figure 2: Empirical validation of Assumption 1. Left figure: Relationship between approximated
hypothesis distance and σ at step t = 0. Hypothesis distance is almost linearly proportional to
log(σ) in the ascension. Right figure: Relationship between variation ratio and σ (MNIST). Sample
distance to the decision boundary can be expressed as σ at which the variation ratio is not zero for
the first time (white arrow). The unlabeled samples are ordered in terms of LPDR.

Figure 3: Empirical validation of Assumption 2. Left figure: Spearman’s rank correlation coefficient
between LPDR and the variation ratio in terms of σ showing that there exists a σ such that LPDR
and the variation ratio have a strong rank correlation. Right figure: An example of strong negative
correlation between both ranks when log(σ) = −5.0. Samples with increasing LPDR or variation
ratio are ranked from high to low.

Assumption 1. The expected distance between ĥ and randomly sampled h is monotonically in-
creasing in the expected distance between the corresponding ŵ and w, i.e., E[‖ŵ − w1‖ | ŵ] ≤
E[‖ŵ − w2‖ | ŵ] implies that E[ρ(ĥ, h1) | ĥ] ≤ E[ρ(ĥ, h2) | ĥ] where ŵ,w1 and w2 are the
parameters pertaining to ĥ, h1 and h2 respectively.

Assumption 2. There exists a hypothesis set H′ sampled around ĥ having the property that large
variation ratio for a given sample data implies small sample distance to ĥ with high probability, i.e.,
there existsH′ such that V (x1) ≥ V (x2) implies that d(x1, ĥ) ≤ d(x2, ĥ) with high probability.

3 EMPIRICAL STUDIES OF LPDR

3.1 HYPOTHESES AND PARAMETERS IN DEEP NETWORKS: ASSUMPTION 1

The distance between two hypotheses can be approximated by vectors of the predicted labels on
random samples by the hypotheses:

ρ(ĥ, h) ≈ ρe(ĥ, h) =
1

m

m∑
i=1

I
[
ĥ(x(i)) 6= h(x(i))

]
(3)

where x(i) is the ith sample for i ∈ [m]. The h is sampled by sampling model parameter w ∼
N (ŵ, Iσ2) where ŵ is the model parameter of ĥ, and the expectation of distances between w and
ŵ depends on σ. The ρe is obtained by the average of 100 times for a fixed σ. The left-hand side
of Figure 2 shows the relationship between ρe and σ on various datasets and deep networks. The
ρe increases almost monotonically as σ increases. This implies that the order is preserved between
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the σ and ρe. Furthermore, the ρe is almost linearly proportional to log(σ) in the ascension of the
graph, i.e., σ ∝ eβρe for some β > 0. The right-hand side of Figure 2 shows V with respect to σ for
each unlabeled sample on MNIST. The sample distance to the decision boundary can be expressed
as σ at which the variation ratio is not zero for the first time (white arrow), where the indices of
unlabeled samples in y-axis are ordered by LPDR. The variation ratio increases as the σ increases,
and it is expected that the data point with short distance has the large variation ratio compared to the
data point with long distance on a certain range of σ.

3.2 LPDR VS VARIATION RATIO: ASSUMPTION 2

The left-hand side of Figure 3 shows Spearman’s rank correlation coefficient (Spearman, 1904)
between LPDR and the variation ratio with respect to σ. The correlation is calculated using only
unlabeled samples whose variation ratio is not 0. The strong rank correlation is verified when the σ
has the appropriate value. Too larger value of σ generates hypotheses too far away from ĥ, which
is not helpful to measure the distance. The right-hand side of Figure 3 shows an example of σ
(log(σ) = −5.0) which makes LPDR and the variation ratio have a strong negative correlation on
MNIST, that is, the data point with larger variation is closer to the decision boundary. Results for
various datasets and networks are presented in Appendix C.

The time complexity is discussed to validate the efficiency of using variation ratio. Let m, N
and nσ be the unlabeled sample size, |H′| and the number of grid for σ respectively. Ordering
unlabeled samples in terms of LPDR by grid search with respect to σ requires the time complexity
of m × N × nσ (see the right-hand side of Figure 2). However, using variation ratio for ordering
unlabeled samples reduces the time complexity to m×N . In the case of nσ = cN for some c > 0,
then the time complexity can be reduced from O(mN2) to O(mN).

4 ALGORITHM FOR LPDR

4.1 FRAMEWORK

Let Lt and Ut be the labeled and unlabeled samples at step t. At step t, LPDR trains model
parameters ŵt using labeled samples Lt, and constructs H′ by sampling the model parameters
w′n ∼ N (ŵt, Iσ

2) for n ∈ [N ]. Then, LPDR queries the top q unlabeled samples having highest
variation ratio from the pool data Pt ⊂ Ut of size m.

4.2 CONSTRUCTION OF SAMPLED HYPOTHESIS SET

It is important to set an appropriate σ when constructing H′ as variation ratios goes to 0 with de-
creasing σ (see the right-hand side of Figure 2) and the rank correlation goes to zero with increasing
σ (see the left-hand side of Figure 3). Theoretically, let’s consider the binary classification with
logistic regression where the predicted label is defined as y = sgn(xTw) and supx∈X ‖x‖∞ <∞.
Then the following theorem holds and the proof is described in Appendix A.

Theorem 1. Suppose that w′n for n = 1, . . . , N are generated with the variance of σ2. For all x,
the followings hold: 1) As N → ∞, 1 − f (x)m /N goes to 0 in probability as σ2 goes to 0, 2) As
N → ∞, 1 − f (x)m /N goes to 1/2 in probability for binary classification using logistic regression
as σ2 goes to∞.

The implication of Theorem 1 is that when σ is too small or too large, it would be difficult to compare
the sample distances of unlabeled samples. In this active learning task, at least q most informative
unlabeled samples must be identified. To meet this condition, it is reasonable to set ρ′n denoted in the
Algorithm 1 as ρ∗ = q/m, which is not very small and is less than 1/2 in general, forN hypotheses.

This can be attained by updating σ′n as σ′n+1 = σ′ne
−β(ρ′n−ρ

∗) where β > 0 (see Appendix D).
The Figure 10 in Appendix E shows the final test accuracy with respect to target ρ′n on MNIST
dataset. The LPDR performs best when the target ρ′n is roughly ρ∗. In addition, the range of target
ρ′n, associated with the best performance, is wide; thus, LPDR is relatively robust against target ρ′n.
Furthermore, LPDR is robust against hyperparameters β, N and sampling layers (see Appendix F).
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Algorithm 1 Least Probable Disagree Region (LPDR)
Input:
L0, U0 : Initial labeled and unlabeled samples
m, q : Size of pool data and number of queries
σ2
0 : Initial variance for sampling
ρ∗ : Target hypothesis distance (= q/m)

Procedure:
1: for step t = 0, 1, 2, . . . , T − 1
2: Train parameters ŵt with Lt, then evaluate its empirical error ε̂t on Lt
3: σt → σ′1
4: for n = 1, 2, . . . , N
5: Sample parameters w′n ∼ N (ŵt, Iσ

′2
n ) for h′n

6: Compute γn = e−(ε
′
n−ε̂t)+ where ε′n is empirical error of w′n on Lt

7: Compute ρ′n = ρe(ĥt, h
′
n)

8: Update σ′n+1 = σ′ne
−β(ρ′n−ρ

∗) where β > 0
9: end for

10: σ′N+1 → σt+1

11: Compute Vw(x(i)) = 1− f (i)w /
∑N
n=1 γn where f (i)m = maxc

∑N
n=1 γnI

[
h′n(x(i)) = c

]
12: Get I∗ = arg maxI⊂IPt ,|I|=q

∑
i∈I Vw(x(i)) where IPt

=
{
j : x(j) ∈ Pt ⊆ Ut

}
13: Update Lt+1 = Lt ∪

{(
x(i), y(i)

)}
i∈I∗ and Ut+1 = Ut \

{
x(i)

}
i∈I∗

14: end for

Meanwhile, the efficiency of querying samples in the disagreement region of the version space is
well known both theoretically (Hanneke et al., 2014) and empirically (Beluch et al., 2018). When
the trained hypothesis ĥt is in the version space, the sampled hypotheses h′ns are in the version space
with high probability, but there are cases where they are outside the version space (see Appendix G).

Thus, LPDR gives weight γn on the prediction of sampled hypothesis h′n where γn = e
−(ε′n−ε̂t)+

is a function of ε̂t = errLt
(ĥt) and ε′n = errLt

(h′n). Here, (·)+ is max{0, ·} and errL(h) is the
empirical error of h on L. Then, LPDR uses weighted variation ratio Vw as a function of the
weighted frequency of the modal class fw as defined below:

Vw(x(i)) = 1− f
(i)
w∑N

n=1 γn
(4)

where f (i)w = maxc
∑N
n=1 γnI

[
h′n(x(i)) = c

]
and x(i) ∈ Pt ⊆ Ut.

If H′ is a subset of the version space in realizable case, the sample complexity of LPDR follows
Hanneke’s theorem (Hanneke et al., 2014). Let Λ be the sample complexity defined as the smallest
integer t such that for all t′ ≥ t, err(ht′) ≤ ε where err(h) := PD[h(X) 6= Y ] with probability at
least 1 − δ. Then, LPDR achieves a sample complexity Λ such that, for D in the realizable case,
∀ε, δ ∈ (0, 1),

Λ(ε, δ,D) . ξ ·
(
D log ξ + log

(
log(1/ε)

δ

))
· log

1

ε

where D and ξ are the VC-dimension ofH and the disagree coefficient with respect toH and D.

When ξ = O(1), in terms of ε, the number of labeled samples required by LPDR is just
O(log(1/ε) · log log(1/ε)), while the number of labeled samples by a passive learning is Ω(1/ε).
Therefore, in this case, LPDR provides an exponential improvement over passive learning in sample
complexity (Hsu, 2010).

5 EXPERIMENTS

This section discusses experimental results on 8 benchmark datasets: MNIST (LeCun et al., 1998),
CIFAR10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2019), EMNIST (Cohen et al., 2017),
CIFAR100 (Krizhevsky et al., 2009), Tiny ImageNet (subset of the ILSVRC dataset containing
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Table 1: Experimental settings for comparing the performance on various datasets are summarized.
Epochs is the maximum number of training epochs. Data size denotes the sizes of datasets for
training / validation / test. Acquisition size denotes the number of samples for the initial model +
number of samples acquired in each step (from the number of samples in the pool data)→Maximum
number of samples acquired during training.

Dataset Model Epochs
Data size

train / val / test
Acquisition size

MNIST S-CNN 50 55,000 / 5,000 / 10,000 20 +20 (2K) → 1,020

CIFAR10 K-CNN 150 45,000 / 5,000 / 10,000 200 +100 (2K) → 10,200

SVHN K-CNN 150 68,257 / 5,000 / 26,032 200 +100 (2K) → 10,200

EMNIST K-CNN 100 75,000 / 5,000 / 10,000 235 +150 (2K) → 15,235

CIFAR100 K-CNN 150 45,000 / 5,000 / 10,000 2,000 +500 (5K) → 27,000

CIFAR100 WRN-16-8 100 45,000 / 5,000 / 10,000 5,000 +2,000 (10K) → 25,000

Tiny ImageNet WRN-16-8 200 90,000 / 10,000 / 10,000 10,000 +5,000 (20K) → 50,000

Food101 WRN-16-8 200 60,600 / 15,150 / 25,250 6,000 +3,000 (15K) → 30,000

HAM10000 WRN-16-8 100 7,015 / 1,500 / 1,500 500 +300 (3K) → 3,500

200 categories rather than the usual 1000 categories; Russakovsky et al., 2015), Food101 (Bossard
et al., 2014) and HAM10000 (Tschandl et al., 2018) datasets. For fair comparison with other ac-
tive learning algorithms, simple two layered CNN, referred to as ‘S-CNN’ (Chollet et al., 2015) is
used for MNIST and four layered CNN, referred to as ‘K-CNN’ (Chollet et al., 2015) is used for
CIFAR10, SVHN, EMNIST and CIFAR100. Additionally, Wide-ResNet (WRN-16-8; Zagoruyko
& Komodakis, 2016) is used for CIFAR100, Tiny ImageNet, Food101 and HAM10000.

Figure 4–7 show magnified plots of test accuracy to accentuate the difference in performance among
different methods: initial labeled sample sizes are not shown in the figures. Figures that include
initial labeled sample size are presented in Appendix H.

5.1 EXPERIMENTAL SETTINGS

Experimental settings regarding total number of epochs, data size and acquisition size are summa-
rized in Table 1, and other details concerning the model, optimizer, batch size, learning rate and
hyperparameters are presented in Appendix B.

5.2 RESULTS FOR MNIST, CIFAR10, SVHN AND EMNIST

A number of experiments are conducted to compare performance of LPDR with other high perform-
ing uncertainty based active learning algorithms on 8 datasets. Figure 4 shows the test accuracy
with respect to the number of labeled samples on MNIST, CIFAR10, SVHN and EMNIST datasets.
Each algorithm is denoted such as ‘LPDR’: the proposed algorithm, ‘Random’: random sampling,
‘Entropy’: entropy based uncertainty sampling, ‘MC-BALD’: MC dropout sampling using BALD,
‘MC-VarR’: MC dropout sampling using variation ratio (Ducoffe & Precioso, 2015) and ‘ENS-
VarR’: ensemble method. Overall, LPDR either performs best or comparable with all other algo-
rithms. Its performance is consistent regardless of the benchmark datasets. In the early step, LPDR
significantly outperforms all other algorithms on MNIST and CIFAR10 datasets. Of all the algo-
rithms compared, Entropy performed the worst. MC-BALD performed well only on SVHN dataset:
it seems that the performance of BALD is highly dependent on the dataset. With the query size set
to 1, LPDR outperforms BatchBALD on MNIST dataset (see Appendix I). Although MC-VarR and
ENS-VarR are based on different sampling methods, both perform similarily-both outperforming all
others on EMNIST dataset, while showing a significant drop in performance compared to LPDR
on SVHN and CIFAR10 datasets. It is observed that the performances of other algorithms have
a relatively strong data dependency compared to LPDR. On CIFAR10 dataset, the performances of
MC-VarR and ENS-VarR are no better than that of Random, and Entropy and MC-BALD have lower
performance than Random. These results can be attributed to the low network capacity compared to
the data complexity. This issue will be discussed in next section.
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Figure 4: The performance comparison of LPDR with the uncertainty based active learning algo-
rithms on MNIST, CIFAR10, SVHN and EMNIST datasets (Random: random sampling, Entropy:
entropy based uncertainty sampling, MC-BALD: MC dropout sampling with BALD, MC-VarR: MC
dropout sampling with variation ratio, ENS-VarR: ensemble network with variation ratio). Over-
all, LPDR consistently either performs best or comparable with all other algorithms regardless of
dataset. The performance of all algorithms except LPDR tend to be data dependent.

Figure 5: Performance comparison with respect to the network capacity on CIFAR100 dataset. The
performances of all algorithms except LPDR are much worse than that of Random when using K-
CNN, which has a relatively smaller network capacity than that of WRN-16-8. LPDR is able to
perform consistently better than Random regardless of the network capacity.

5.3 RESULTS FOR CIFAR100 WITH K-CNN AND WIDE-RESNET

In order to compare the performance of the algorithms with respect to the network capacity, exper-
iments are conducted using networks of different capacity but on the same dataset. Figure 5 shows
the results of test accuracy with respect to the number of labeled samples on CIFAR100 dataset with
K-CNN and WRN-16-8. The left-hand figure is the results of using K-CNN, which has a relatively
smaller network capacity than that of WRN-16-8. With the exception of LPDR, the performances
of all algorithms are much worse than that of Random. The right-hand figure is the result of using
WRN-16-8, which has a relatively larger network capacity. In contrast to the results for K-CNN,
most algorithms outperform Random. With a large network capacity, the performance gap between
LPDR and the other algorithms is reduced, but LPDR still outperforms others. LPDR is able to
perform consistently better than Random regardless of the network capacity, and it seems to be
particularly effective with low capacity networks.
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Figure 6: The performance comparison on Tiny ImageNet and Food101 datasets with WRN-16-8.
LPDR outperforms all other algorithms in more difficult tasks.

5.4 RESULTS FOR TINY IMAGENET AND FOOD101

Experiments on a more difficult task are conducted. Figure 6 shows test accuracy with respect to
the number of labeled samples on Tiny ImageNet and Food101 datasets with WRN-16-8. Tiny
ImageNet and Food101 are considered to be more difficult than CIFAR100. Even on more difficult
tasks, LPDR outperforms all other algorithms.

5.5 RESULTS FOR HAM10000

Figure 7: The performance comparison on
HAM10000 dataset with WRN-16-8. LPDR
outperforms all other algorithms on imbal-
anced dataset.

Additional experiments are conducted to compare
the performance of the algorithms on imbalanced
HAM10000 dataset with WRN-16-8. Figure 7
shows the results of the test accuracy with respect to
the number of labeled samples. The LPDR outper-
forms all other algorithms compared. Figure 15 in
Appendix J shows the results of AUC with respect
to the number of labeled samples. The LPDR per-
forms comparable with all other algorithms.

To sum up the comparing algorithms across all ex-
perimental settings and repetitions, rank and Dolan-
More curves are presented in Appendix K. The
LPDR consistently achieves top rank for all steps
and significantly outperforms the other algorithms in
all experimental settings.

6 RELATED WORK

Other than uncertainty-based sampling framework (Culotta & McCallum, 2005; Scheffer et al.,
2001; Mussmann & Liang, 2018; Lewis & Gale, 1994; Gal et al., 2017; Kirsch et al., 2019; Beluch
et al., 2018) for active learning, decision-theoretic framework based methods such as expected model
change (Settles et al., 2008) have certain relevance to the proposed LPDR as unlabeled samples
nearer the decision boundary which LPDR is attempting to identify have larger gradients leading
larger model change. Recently, adversarial approaches are proposed to discriminate labeled and
unlabeled samples (Gissin & Shalev-Shwartz, 2019; Sinha et al., 2019; Zhang et al., 2020), and
after performing adversarial learning, any unlabeled samples that is most confidently predicted as
unlabeled is queried and used to retrain the network. Here adversarial learning is used to indirectly
identify sample near the decision boundary.

7 CONCLUSION

This paper defines a theoretical distance of unlabeled sample to the decision boundary referred to
as the least probable disagreement region (LPDR) containing the unlabeled sample for active learn-
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ing. LPDR can be evaluated empirically with low computational load by making two assumptions
regarding parameters of the hypothesis space, variation ratio and the LPDR. The two assumptions
are empirically verified.

Experimental results on various datasets show that LPDR consistently outperforms all other high
performing uncertainty based active learning algorithms and leads to state-of-the-art active learning
performance on CIFAR10, CIFAR100, Tiny ImageNet, and Food101 datasets. In addition, LPDR is
able to perform consistently better than random sampling regardless of the network capacity while
all other algorithms compared fail to do so.

LPDR is simple enough to be applied to various classification tasks with deep networks: the im-
plementation requires only sampling a subset of parameters (parameters in the last FC layer of the
deep network). Additionally, LPDR is capable of quick and reliable performance in a variety of dif-
ferent settings with only a computational load that is not much higher than that of other uncertainty
sampling methods. In conclusion, LPDR is an effective uncertainty based sampling algorithm in
pool-based active learning.
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APPENDIX

A PROOF OF THEOREM 1

Assume that ‖ŵt‖ = 1 without the loss of generality, and ‖x‖ 6= 0 to avoid the null case. The
predicted label of x by w′n disagrees with that by ŵt if sgn

(
xTw′n

)
6= sgn

(
xTŵt

)
, here, sgn(0) =

1. Note that
xTw′n = xTŵt + σxTe′n where e′n = (Zn1, . . . , Zn|w|)

T,

and Znks are independent random variables from N (0, 1). The event of {sgn
(
xTw′n

)
6=

sgn
(
xTŵt

)
} is equal to that of E1 ∪E2 where E2 = {σxTe′n ≥ 0,xTŵt < 0} and E2 = {σxTe′n <

0,xTŵt ≥ 0}. Thus, the proof has two folds: the cases of 1) E1 and 2) E2.
In the first fold,

P [E1] = P
[
σxTe′n ≥ |xTŵt|

]
= P

[
σ‖x‖Z ≥ |xTŵt|

]
= 1− Φ

(
a (x, ŵt)

σ

)
where Z ∼ N (0, 1), Φ is the cumulative distribution function of the normal distribution, and
a (x, ŵt) = |xTŵt|/‖x‖. Note that σxTe′n ∼ N (0, σ2‖x‖2). Consequently, P[E1] < 1/2 due
to a (x, ŵt) > 0. Hence, the following

f
(x)
m

N
=

N∑
n=1

1

N
I
[
ĥt(x) = h′n(x)

]
goes to value greater than 1/2 in probability as N → ∞ because Var(f

(x)
m /N) → 0 as N → ∞.

Therefore, as N →∞, ∀x, the variation ratio is

1− f
(x)
m

N
= 1−

N∑
n=1

1

N
I
[
ĥt(x) = h′n(x)

]
→ 1− Φ

(
a (x, ŵt)

σ

)
in probability. This is due to that f (x)m is the frequency of mode class with probability tending to 1
as N →∞. By the smoothness of Φ,

1− f
(x)
m

N
→ 1− Φ(∞) = 0 as σ2 → 0

and

1− f
(x)
m

N
→ 1− Φ(0) =

1

2
as σ2 →∞.

Next, in the second fold,

P [E2] = P
[
σxTe′n < −|xTŵt|

]
= P

[
σ‖x‖Z < −|xTŵt|

]
= Φ

(
−a (x, ŵt)

σ

)
.

Consequently, P[E2] < 1/2. Hence the following

f
(x)
m

N
=

N∑
n=1

1

N
I
[
ĥt(x) = h′n(x)

]
goes to the value greater than 1/2 in probability as N →∞ because Var(f

(x)
m /N)→ 0 as N →∞.

Therefore, as N →∞, ∀x, the variation ratio is

1− f
(x)
m

N
= 1−

N∑
n=1

1

N
I
[
ĥt(x) = h′n(x)

]
→ Φ

(
−a (x, ŵt)

σ

)
= 1− Φ

(
a (x, ŵt)

σ

)
in probability. This is due to that f (x)m is the frequency of mode class with probability tending to 1
as N →∞. By the smoothness of Φ,

1− f
(x)
m

N
→ 1− Φ(∞) = 0 as σ2 → 0
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and

1− f
(x)
m

N
→ 1− Φ(0) =

1

2
as σ2 →∞.

This completes the proof.

�

B EXPERIMENTAL SETTINGS

B.1 DATASETS

MNIST (LeCun et al., 1998) is a dataset of handwritten digits which has a training set of 60, 000
samples and a test set of 10, 000 samples in 10 classes. Each sample is a black and white image and
28× 28 in size.

CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) are labeled subsets of the 80 million tiny images
dataset which have a training set of 50, 000 samples and a test set of 10, 000 samples in 10 and 100
classes respectively. Each sample is a color image and 32× 32 in size.

SVHN (Netzer et al., 2019) is a real-world digit image dataset which has a training set of 73, 257
samples and a test set of 26, 032 samples in 10 classes. Each sample is a color image and 32× 32 in
size.

EMNIST (Cohen et al., 2017) is a dataset of handwritten character digits which has a training set
of 80, 000 samples and a test set of 10, 000 samples in 47 classes. Each sample is a black and white
image and 28× 28 in size.

Tiny ImageNet is a subset of the ILSVRC (Russakovsky et al., 2015) dataset which has 100, 000
samples in 200 classes. Each sample is a color image and 64 × 64 in size. In experiments, Tiny
ImageNet is split into two parts: a training set of 90, 000 samples and a test set of 10, 000 samples.

Food101 (Bossard et al., 2014) is a fine grained dataset which has a training set of 75, 750 samples
and a test set of 25, 250 samples in 101 classes. Each sample is a color image and resized to 75×75.

HAM10000 (Tschandl et al., 2018) is a imbalanced dataset which has 10, 015 samples in 7 classes.
Each sample is a color image and resized to 75 × 75. In experiments, HAM10000 is split into two
parts: a training set of 8, 515 samples and a test set of 1, 500 samples.

All datasets are used without any preprocessing of images.

B.2 SETTINGS

S-CNN, which is the Keras MNIST CNN implementation (Chollet et al., 2015), consists of [3×3×
32 conv - 3×3×64 conv - 2×2 maxpool - dropout (0.25) - 128 dense - dropout (0.5) - #class dense
- softmax] layers. K-CNN, which is the Keras CIFAR CNN implementation (Chollet et al., 2015),
consists of [two 3 × 3 × 32 conv - 2 × 2 maxpool - dropout (0.25) - two 3 × 3 × 64 conv - 2 × 2
maxpool - dropout (0.25) - 512 dense - dropout (0.5) - #class dense - softmax] layers. WRN-16-8
is a wide residual network that has 16 convolutional layers and a widening factor 8 (Zagoruyko &
Komodakis, 2016). The optimizer, initial learning rate, learning rate schedule and batch size for
each experimental setting are described in Table 2. He normal initialization is used for all models.
All experiments are run for a fixed number of acquisition steps until a certain amount of training
data is labeled. Results are averaged over 5 repetitions. For all datasets, the initial labeled samples
for each repetition are randomly sampled according to the distribution of the training set. For MC
dropout we use 100 forward passes, and ensemble consists of 5 networks of identical architecture but
different random initialization and random batches. For LPDR, we set σ0 = 0.01, β = 1, N = 100
and parameter sampling is applied to the last dense layer of each network.
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Table 2: Settings for Training

Dataset Model Optimizer Learning Rate
Learning Rate Schedule
×decay [epoch schedule]

Batch Size

MNIST S-CNN Adam 0.001 - 32
CIFAR10 K-CNN Adam 0.0001 - 64

SVHN K-CNN Adam 0.0001 - 64
EMNIST K-CNN Adam 0.0001 - 64

CIFAR100 K-CNN Adam 0.0001 - 64
CIFAR100 WRN-16-8 Nesterov 0.05 ×0.2 [60, 80] 128

Tiny ImageNet WRN-16-8 Nesterov 0.1 ×0.2 [60, 120, 160] 128
Food101 WRN-16-8 Nesterov 0.1 ×0.2 [60, 120, 160] 128

HAM10000 WRN-16-8 Nesterov 0.05 ×0.2 [60, 80] 64

C RANK CORRELATION BETWEEN LPDR AND VARIATION RATIO

Figure 8 shows an example of negative Spearman’s rank correlation between LPDR and the variation
ratio for each experimental setting. Samples with increasing LPDR or variation ratio are ranked from
high to low. The σ is selected to satisfy ρ′n = ρ∗ = q/m at initial step.

Figure 8: An example of negative Spearman’s rank correlation between LPDR and the variation
ratio for each experimental setting.

D REGULATING ρ′n BY THE VARIANCE OF SAMPLING

The left-hand side of Figure 9 shows the ρ′n with respect to the active learning progress. For all
experiments, LPDR reliably guides the ρ′n to be ρ∗ = q/m (MNIST: 0.01, CIFAR10: 0.05, SVHN:
0.05, EMNIST: 0.075, CIFAR100 (KCNN): 0.1, CIFAR100 (WRN): 0.2, Tiny ImageNet: 0.25,
Food101: 0.2 and HAM10000: 0.1) after the initial few steps. The right-hand side of Figure 9 shows
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log(σ) with respect to the active learning progress. For all experiments, the variance of sampling
increases as the labeling proceeds. This is because larger variance is required to make the ρ′n = ρ∗

since unlabeled samples move away from the learned decision boundary from labeled samples due
to an increase in network confidence as the number of labeled samples increases.

Figure 9: The ρ′n and σ with respect to the labeling proceeds for all experimental settings. LPDR
reliably guides the ρ′n to be the target value by increasing the variance of sampling as the number of
labeled samples increases.

E FINAL TEST ACCURACY VS TARGET ρ′n

The Figure 10 shows the final test accuracy with respect to target ρ′n on MNIST dataset. The results
show that at around ρ∗(= 0.02), it performs the best for q = 20 and m = 1000. In addition, the
range of target ρ′n, associated with the best performance, is wide (0.01 ∼ 0.1); thus, LPDR is robust
against the target ρ′n in the wide range.

Figure 10: The final accuracy with respect to the target ρ′n on MNIST dataset. LPDR performs best
in a wide range of the target ρ′n.

F ROBUSTNESS OF LPDR AGAINST HYPERPARAMETERS

LPDR has four hyperparameters: 1) the initial variance of sampling σ0; 2) the positive hyperparam-
eter for regulating the variance of sampling β; 3) the number of sampled hypotheses N , and 4) the
layer index of the network to which sampling is applied. The σ0 has no significant effect on the per-
formance of LPDR since σ is adaptively regulated based on the ρ′n while sampling the sampled hy-
pothesis. Thus, σ0 is not examined in detail. Figure 11 shows the performance comparison with re-
spect to the hyperparameters of LPDR on MNIST and CIFAR10 datasets. The left figures show that
there is no significant difference in the performance of LPDR for various β ∈ {0.1, 1, 10} on both
datasets. The robustness of LPDR against β is based on the sufficient buffer for regulating σ since the
range of target ρ′n associated with the best performance is wide. The middle figures show that there
is no significant difference in the performance of LPDR for various N ∈ {5, 10, 20, 50, 100, 200}
on both datasets. The robustness of LPDR against N is based on the sufficient discrimination in the
variation ratio for identifying q most informative unlabeled samples with a small number of sampled
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Figure 11: The performance comparison with respect to the hyperparameters of LPDR on MNIST
and CIFAR10 datasets. LPDR is robust against β and N , and has no significant performance differ-
ence whether the sampling is applied to the parameters of last layer or all layers.

hypotheses by setting ρ∗ = q/m. The right figures show that there is no significant difference in the
performance of LPDR for the sampling to the parameters of last layer and to the parameters of all
layers of the networks on both datasets.

Figure 12: The empirical errors of the learned and the sampled hypotheses with respect to the
acquisition step for all experimental settings. It is observed that the empirical error of the learned
hypothesis or the sampled hypothesis is not zero.

G EMPIRICAL ERRORS OF LEARNED AND SAMPLED HYPOTHESES

Figure 12 shows the empirical error of the learned and the sampled hypotheses with respect to the
acquisition step for all experimental settings. In many cases, the empirical error of the learned
hypothesis becomes zero, thus it is placed in the version space, while the sampled hypothesis is
often placed outside the version space, e.g., in SVHN dataset. Even in the cases of EMNIST and
CIFAR100 with K-CNN datasets, as the number of labeled samples increases, the empirical error of
the learned and the sampled hypothesis increases. To address this situation, LPDR incorporates the
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Figure 13: The test accuracy with respect to the number of labeled samples from initial to final step
for all experimental settings.

weighted hypotheses based on the prediction error difference between the learned and the sampled
hypotheses, and it works well empirically.

H PLOTS FOR TEST ACCURACY

Figure 13 shows the test accuracy with respect to the number of labeled samples from initial to final
step for all experimental settings.

I LPDR VS MC-BATCHBALD

Figure 14 shows the performance comparison between LPDR and MC-BALD on MNIST dataset
using S-CNN when the query size is 1 or 20. LPDR significantly outperforms MC-BatchBALD on
MNIST dataset when q = 1 such that MC-BatchBALD is completely identical to MC-BALD. LPDR
is also expected to outperform MC-BatchBALD even when q > 1: LPDR with q > 1 performs better
than MC-BALD with q = 1 that MC-BatchBALD with q > 1 does not exceed (Kirsch et al., 2019).

Figure 14: The comparison of performance between LPDR and MC-BALD on MNIST dataset
where the query size is 1 or 20. The performance of BatchBALD with q > 1 does not exceed that
of MC-BALD (q = 1) and LPDR (q = 20) outperforms MC-BALD (q = 1).
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J AUC OF HAM10000 DATASET

On imbalanced dataset, the performance comparison is performed not only for accuracy but also
for AUC. Figure 15 shows the results of AUC with respect to the number of labeled samples on
HAM10000 dataset. LPDR performs comparable with Entropy or ENS-VarR performing better
than other algorithms.

Figure 15: The comparison of AUC on HAM10000 dataset. LPDR performs comparable with the
best performing algorithms.

K RANK AND DOLAN-MORE CURVES

Figure 16: The rank and Dolan-More curves of the algorithms across all experimental settings and
repetitions. The left figure shows rank curve which is the mean of ranks on all datasets at each step.
LPDR consistently is top-ranked for all steps. The right figure shows the each algorithm’s Dolan-
More curves which present the fraction of problems in which the algorithm has the performance gap
from the best competitor. LPDR maintains the highest value for all τ .

Table 3: The mean (± standard deviation) of performance gap from the best competitor for all
steps of each algorithm on each dataset. LPDR significantly outperforms the other algorithms on all
datasets.

MNIST CIFAR10 SVHN EMNIST CIFAR100 CIFAR100-W T. ImageNet Food101 HAM10000

LPDR 0.17±0.04 0.22±0.07 0.15±0.02 0.13±0.04 0.23±0.10 0.50±0.15 0.42±0.18 0.13±0.09 0.29±0.11

Random 3.45±0.46 1.56±0.07 3.08±0.16 2.80±0.08 0.62±0.17 1.67±0.46 1.41±0.49 1.74±0.48 2.52±0.39

Entropy 1.20±0.27 2.28±0.19 1.92±0.15 0.95±0.13 3.19±0.34 1.19±0.28 1.82±0.36 2.17±0.03 0.98±0.40

MC-BALD 1.91±0.48 2.25±0.16 0.45±0.04 0.78±0.18 1.80±0.35 1.17±0.10 1.00±0.22 1.53±0.09 2.04±0.29

MC-VarR 0.86±0.30 1.76±0.46 1.06±0.11 0.21±0.09 2.20±0.44 0.92±0.27 1.06±0.37 1.72±0.01 1.92±0.30

ENS-VarR 0.65±0.34 1.74±0.18 0.97±0.06 0.22±0.04 2.13±0.28 1.57±0.34 1.85±0.26 1.31±0.31 0.81±0.29

Rank curves and Dolan-More curves are used to compare the performance of the algorithms across
all experimental settings and repetitions. Figure 16 shows the rank and Dolan-More curves for all
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algorithms considered in the experiment. The rank curve of each algorithm in the left-hand figure
represents the mean of ranks on all datasets at each steps of active learning. LPDR consistently is
top-ranked for all steps.

The right-hand figure shows Dolan-More curves defined as follows (Dolan & Moré, 2002). Let accpa
be the final test accuracy of the a algorithm on the p problem. After defining the performance gap as
∆p
a = maxx(accpx)−accpa, we can define Dolan-More curve Ra(·) as a function of the performance

gap factor τ :

Ra(τ) =
#(p : ∆p

a ≤ τ)

np

where np is the total number of evaluations for the problem p. Thus, Ra(τ) is the ratio of problems
with performance gap between algorithm a and the best performing competitor not more than τ .
Note that Ra(0) is the ratio of problems on which algorithm a performs the best. LPDR has the
highest value Ra(0) = 43.3%, and LPDR maintains the highest Ra(τ) for all τ .

Table 3 presents the mean and the standard deviation of performance gap from the best competi-
tor for all steps of each algorithm on each dataset. Consistent with all the results so far, LPDR
significantly outperforms the other algorithms in all experimental settings.
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