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ABSTRACT

The vulnerability of graph matching (GM) to adversarial attacks has received in-
creasing attention from emerging empirical studies, while the certified robustness
of GM has not been explored. Inspired by the technique of randomized smoothing,
in this paper, for the first time to our best knowledge, the certified robustness on
GM is defined and a new certification strategy is designed called Structure-based
Certified Robustness of Graph Matching (SCR-GM). Structural prior information
of nodes is used to construct a joint smoothing distribution matrix with physical
significance, which certifies a wider range than those obtained by previous itera-
tive optimization methods. Furthermore, we propose a certified space that can be
used to derive a strictly certified radius and two extra radii for evaluation. Experi-
mental results on GM datasets reveal that our strategy achieves state-of-the-art ℓ2
certified accuracy and regions. Source code will be made publicly available.

1 INTRODUCTION

As a well-known NP-hard problem in its general form (Yan et al., 2016) with wide applications e.g.
in computer vision and pattern recognition, graph matching (GM) refers to establishing correspon-
dences among two (Cho et al., 2010) or multiple graphs (Jiang et al., 2021). Given two input graphs
G1 = {V1,E1} and G2 = {V2,E2} with two sets of annotated nodes z1 ∈ Rn1×2 and z2 ∈ Rn2×2

(assumed in Euclidean space in this paper). Here, V1 ∈ Rdv×n1 and E1 ∈ Rde×m1 represent
the feature matrix of n1 nodes and m1 edges (likewise for V2 and E2). The similarities between
nodes and edges are formulated into a global affinity matrix K ∈ Rn1n2×n1n2 , whose diagonal and
off-diagonal elements store the node-to-node and edge to-edge affinities. It aims to maximize the
overall affinity score J of the matching nodes and the edges (Leordeanu & Hebert, 2005) in the form
of quadratic assignment problem (QAP) (Loiola et al., 2007):

max
X

J(X) = vec(X)⊤K vec(X),

s.t. X ∈ {0, 1}n1×n2 ,X1n1
= 1n1

,X⊤1n2
≤ 1n2

,
(1)

where vec(X) denotes the column-wise vector of the matching solution X ∈ {0, 1}n1×n2 which can
be a partial permutation matrix when n1 < n2. One common approach is to relax X’s raw binary
constraint into a continuous one (between [0,1]), especially in the form of (partial) doubly-stochastic
matrix S ∈ [0, 1]n1×n2 of which the sum of rows/columns is 1 (or zero for partial case). The final
X can be obtained by the Hungarian algorithm (Burkard & Dell’Amico, 2009): X = Hung(S).

Eq. 1 can also directly incorporate deep nets to obtain the learned affinity matrix K by learning the
raw attributes of the graphs e.g. CNNs for images from which the visual graphs are extracted, as well
as learning the structure via graph neural networks (GNNs) (Wang et al., 2019): K=NN(G1,G2).

Studies on robustness of machine learning models have attracted wide attention, while the robust-
ness of combinatorial solvers is an emergning and unmatured topic (Geisler et al., 2021; Lu et al.,
2021). Under the deep GM paradigm, Ren et al. (2022) reveal that the combinatorial GM algorithms
can also be sensitive to (additive) noise perturbations not only in appearance but also for structure,
similar to the node classification models (Dai et al., 2018; Sun et al., 2018), and an empirical de-
fense algorithm via an appearance-aware regularizer is proposed. So far, there still lacks principled
certified defense to provide theoretical robustness guarantees for GM (let alone other combinato-
rial problems). In fact, existing certified robustness mechanisms (including randomized smoothing)
in the graph domain (Rong et al., 2019; Bojchevski et al., 2020; Zügner & Günnemann, 2020; Jia
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et al., 2020) are confined to unconstrained node or graph-level classification/prediction within a sin-
gle graph, which cannot be readily adopted for solving the cross-graph and combinatorial problems
with structured output like the permutation matrix in GM.

Certifiable robustness studies solvers whose prediction at any point x is verifiably constant within
some set around x (Wong & Kolter, 2018). As a recent promising approach to achieve certified
defense, randomized smoothing (RS) (Lecuyer et al., 2019; Cohen et al., 2019) provides a general
robust guarantee applicable to large-scale neural networks against arbitrary attacks. Given an input
x and a base classifier, randomized smoothing constructs a ‘smoothed classifier’ which is certifi-
able within the region characterized by x and the smoothing distribution D. RS has been used in
certifying different models, e.g., image classification (Yang et al., 2020) and object detection in
vision (Chiang et al., 2020).

As an initiative for applying RS to GM1, in this paper we mainly consider two major challenges to
solve. C1: varying-size of input graphs. It is not suitable to certify graphs with different sizes by
using an identical smoothing distribution. C2: dependency of nodes in graph. The graph structure
as a whole carries important information for certification. For the first challenge, we could refer
to data-dependent certified robustness methods on image classification task. Some data-dependent
methods (Alfarra et al., 2022; Eiras et al., 2021; Hong & Hong, 2022; Labarbarie et al., 2022)
are proposed recently to vary and optimize the smoothing distributions D for larger certification
region. Therefore, these methods can also be used to construct varying smoothing distributions for
graphs with varying sizes. For the second challenge, we expect smoothing distributions constructing
correlations between nodes in a graph, which is lacking for current randomized smoothing. Data-
dependent methods consider little on the heterogeneity and structure of inputs. For example, Alfarra
et al. (2022) treat all pixels in one image equally, Eiras et al. (2021) treat pixels differently but cannot
reveal their correlation. Thus none of them can overcome the second challenge.

In this paper, we aim to solve certified robustness of GM, by analyzing the individual matching
robustness of each node, instead of the whole variation of the output matching matrix X in Eq. 1.
In particular, we study the node classification task when converting the relaxed solution S into the
final matching X (see Eq. 1 and the discussion therein), as such the RS-type certification phase can
be naturally introduced during the classification stage.

Specifically, we propose the Structure-based Certified Robustness of Graph Matching (SCR-GM)
which adopts joint Gaussian distribution instead of independent homogeneous distribution to con-
struct the smoothing solvers. As adversarial attacks tend to perturb the strongly correlated nodes
at the same time, the additive noise sampled from joint distribution with structural information and
physical meaning can reveal this correlation. According to our theoretical analysis, we obtain the
robustness guarantee on GM which describes a certified ℓ2-norm space ant its lower bound radius.
In addition, we propose another two radii to help evaluate the robustness more comprehensively.
We evaluate our strategy on Pascal VOC dataset (Everingham et al., 2010) with Berkeley annota-
tions (Bourdev & Malik, 2009) and simulation dataset with random node sets. Experimental results
reveal that our strategy outperforms the previous works (Cohen et al., 2019; Alfarra et al., 2022;
Eiras et al., 2021) on structural GM for ℓ2 certified accuracy and regions. Our contributions are as
follows:

1) We propose a general framework for incorporating existing RS-based techniques for certifying
graph matching solvers, as long as (which is often the case for both learning-based and classic
solvers) it involves a post-binarization step that converts the relaxed matching S (by an arbitrary
relaxed GM solver) to node matching.

2) Based our proposed framework, we present the first definition, to our best knowledge (see Eq. 5)
of certified robustness for a graph matching solver.

3) We propose a certification method dubbed structure-based certified robustness of GM (SCR-GM)
(see Sec. 4.3). It uses jointly distributed noise to model dependent node matching certification.

4) A certified space and lower bound radius are derived to guarantee robustness of graph match-
ing. Two radii are also devised for more complete evaluation of robustness, which complements
potentially safe regions and largest feasible perturbations.

1Another challenge is how to better handle the constraints of X, which is related to how to extend the
certification of the specific GM problem to other combinatorial solvers, which we leave for future work.
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2 RELATED WORK

We discuss works on certified robustness related to randomized smoothing and robustness of GM.
Certified Robustness related to Randomized Smoothing Lecuyer et al. (2019) propose random-
ized smoothing firstly as a certified adversarial defense, and use it to train the first certifiably robust
classifier for ImageNet. However, its guarantees are loose, then Cohen et al. (2019) shows that
adding Gaussian noise to classifiers enjoys a strict ℓ2 certification radius, with follow-ups presenting
new RS-type techniques, such as optimal perturbations at different norms, and certified robustness
definitions for different tasks. Alfarra et al. (2022) show that the variance of the Gaussian distribu-
tions can be optimized at each input so as to maximize the certification region. Meanwhile, Eiras
et al. (2021) extend isotropic smoothing distributions to generalized anisotropic counterparts. Hong
& Hong (2022) adopt the same anisotropic defination and further design a noise generator to effi-
ciently fine-tune the distributions. A recent work (Labarbarie et al., 2022) that relies on information
geometry techniques manages to prove larger regions than previous methods.

However, all previous smoothing distributions D deprive the favorable prior knowledge which
mainly refers to the node location and graph structure in GM. Moreover, all of them at most certify
a single image or graph but do not consider the combinatorial nature of the prediction as in GM.

Robustness of Graph Matching Approximate GM solvers have been developed over the decades
from traditional learning-free methods (Emmert-Streib et al., 2016) to learning-based ones (Yan
et al., 2020). The seminal work (Zanfir & Sminchisescu, 2018) proposes a deep neural network
based pipeline for visual GM, in which the visual appearance features are learned via CNN, with
subsequent variants (Wang et al., 2019; Rolı́nek et al., 2020), among which a major improvement is
to explore the structural information using different techniques e.g. GNN, rather than only appear-
ance features for node/edge attributes as done in (Zanfir & Sminchisescu, 2018). Our work treats
the GM solver as blackbox regardless it is learning-based or not, as long as it involves a continuous
relaxation to obtain the intermediate double-stochastic matrix.

There is also an emerging line of research on adversarial attack and defense on (deep) GM. The
earlier work (Yu et al., 2019b) proposes a robust graph matching (RGM) model to improve the
robustness against perturbations e.g. distortion, rotation, outliers and noise. Zhang et al. (2020)
devise an adversarial attack model for deep GM networks, which uses kernel density estimation to
construct dense regions such that the neighboring nodes are indistinguishable. Ren et al. (2021)
devise two specific topology attacks in GM: inter-graph dispersion and intra-graph combination
attacks, and propose a resilient defense model. Ren et al. (2022) design an attack perturbing input
images and their hidden graphs together for deep (visual) GM, and further propose appearance-
aware regularizers to enlarge the disparity among similar keypoints for defense. However, the above
defense methods are all heuristic and lacks robustness certification in face of other unseen attacks.

3 PRELIMINARIES ON RANDOMIZED SMOOTHING

The original RS (Cohen et al., 2019) can transform an arbitrary base classifier f into a smoothed
classifier g that is certifiably robust under ℓ2 norm. For any input x, the smoothed classifier g returns
the most probable prediction of f for the random variable N (x;σ2I), which is defined by:

g(x) = argmax
c∈Y

P(f(x+ ε) = c), (2)

where ε ∼ N
(
0, σ2I

)
is isotropic Gaussian noise perturbing the input x. Then the certified radius

within which the output is unchanged for g(x+ δ) = cA that measures the certified robustness is:

R = ∥δ∥2 <
σ

2

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
, (3)

where the most probable class cA is returned with probability pA and the ‘runner-up’ class is returned
with probability pB . pA and pB are lower bound and upper bound of pA and pB respectively,
and Φ−1 is the inverse of the standard Gaussian cumulative distribution function. The smoothed
classifier g is robust around x within the ℓ2 radius in Eq. 3.

To enhance the certification, Alfarra et al. (2022) and Eiras et al. (2021) propose isotropic and
anisotropic distributions to maximize the certified region respectively. However, none of them can
explicitly encode the prior information of the inputs (e.g. the graph topology in GM) which means
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their distributions are randomly initialized. Differently, we propose a correlation matrix to reveal
the structural information in graphs, and in turn construct a joint Gaussian distribution to replace the
single Gaussian distribution, which not only makes the initial distribution physically meaningful,
but also eliminates the optimization process of finding the largest certified region.

4 METHODOLOGY

We first define the smoothed GM solver (be either neural network or traditional solver) and propose
a robustness guarantee. We then devise a new certification strategy SCR-GM using a physically
meaningful joint smoothing distribution. We also give two new radii to aid evaluating robustness.

4.1 PROBLEM FORMULATION

For pairwise GM with input
(
G1,G2, z

1, z2
)
, we mainly focus on the effect of perturbing two sets of

annotated nodes z1 ∈ Rn1×2 and z2 ∈ Rn2×2. For visual GM (Zanfir & Sminchisescu, 2018; Ren
et al., 2022) as widely considered in literature, z1 and z2 are node coordinates obtained by human
annotation or keypoint detectors. During the certification for perturbing nodes, here we consider
the node coordinates as the input while keep the node/edge attributes as unchanged. The robustness
guarantees of perturbing features are given in Appendix B.

As discussed in Sec. 3, randomized smoothing (RS) is a technique for constructing a smoothed
function g from an arbitrary base function f . In this paper, we technically convert a whole matching
problem into a set F regarding with binary classification based on the intermediate matrix S. The
set F can be expressed as: F = {fi|fi :

(
G1,G2, z

1, z2
)
→ rj , i ∈ n1, j ∈ n2}, where fi represents

that the i-th node in z1 matches the j-th node in z2 and rj represents the j-th node rj in z2. Such
a conversion allows us to certify the matching robustness for a single node, avoiding an imprecise
certification for the entire matching matrix. The smoothed network gi returns whichever node in z2

is most likely to match the node in z1 when the input is perturbed by joint smoothing noise:

gi = argmax
rj∈z2

P(fi
(
G1,G2, z

1 + ε, z2
)
= rj),

where ε ∼ N (0,Σ) , i ∈ n1, j ∈ n2.
(4)

For convenience, we simplify fi
(
G1,G2, z

1, z2
)

to fi(z
1) and derive the results by perturbing z1

only, as it is equivalent to robustness certification under joint perturbation to z1 and z2. Furthermore,
we propose a method which defines the smoothed function for certifying whole X as introduced in
Appendix. E. The distribution of noise ε is a joint Gaussian distribution matrix whose variance repre-
sents the correlation between nodes. In addition, Σ is a hyperparameter for certified function which
controls a robustness/accuracy trade-off and will be detailed in Sec. 4.3. Note that for robustness
certification, we only consider those nodes that can obtain a unique solution argmax in Eq. 4.

4.2 ROBUSTNESS GUARANTEE

Suppose that when the base function fi solves for the optimal matching of node i in z1, the most
probable node rA in z2 is returned with probability pA = maxsi∈Si

si, where Si is the i-th row of S.
Similarly, the probability of ”runner-up” node rB in z2 is denoted as pB , pB = maxsi∈Si,rB ̸=rA si.
We adopt an ℓ2 certified space to guarantee robustness of graph matching.

Theorem 1 (ℓ2 certified space) Let fi(z1) be node matching function, gi be defined as in Eq. 4,
and ε ∼ N (0,Σ). If pA ∈ [0, 1] and pB ∈ [0, 1] satisfy:

P
(
fi(z

1 + ε) = rA
)
≥ pA ≥ pB ≥ P(fi(z1 + ε) = rB), (5)

then for gi(z1 + δ) = rA, we can get the certified ℓ2 space for the addictive noise δ:

∥δ⊤B−1∥ <
1

2

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
, (6)

where B⊤B = Σ, and B ∈ Rn1×n1 is a full rank and real symmetric matrix based on the node
correlation in node matrix z1, and pA and pB are the lower bound of pA and upper bound of pB .

The detail settings and properties of B and Σ are described and illustrated in Section 4.3. The
complete proof of Theorem 1 is presented in Appendix A.
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(a) Smoothing distributions (b) Certified radius and ACR of a sample.

Figure 1: The smoothing distribution of the four RS methods in Fig. 1(a) (including RS (Cohen
et al., 2019), data-dependent randomized smoothing (DDRS) (Alfarra et al., 2022), anisotropic cer-
tification RS (ANCER) (Eiras et al., 2021) and SCR-GM, whose details are in experiment part), on
Pascal VOC. The inter-node correlation gradually increases over the four methods from (1) to (4)
with darker color. Fig. 1(b) shows certified radius ∥δ∥lower and their ACR (Zhai et al., 2020). The
center of the circle in Fig. 1(b) represents the position of the node in z1, while the radius of the cir-
cle represents its corresponding certified radius ∥δ∥lower calculated by Eq. 9. ACR shows the overall
certified robustness: the higher ACR, the better overall certified robustness.

Lemma 1 (Eigenvalue Comparison) For a real symmetric matrix A ∈ Rn×n, with λmax and λmin

as its maximum and minimum of eigenvalues, then ∀X ∈ Rn, λminX
⊤X ≤ X⊤AX ≤ λmaxX

⊤X.

Based on Lemma 1 and the certified space in Eq. 6, we can further obtain a certified ℓ2 norm radius:

∥δ⊤B−1∥2 = δ⊤Σ−1δ, (7)

δ⊤Σ−1δ ≤ λmaxδ
⊤δ, (8)

∥δ∥lower <
1

2
√
λmax

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
, (9)

where λmax is the maximum eigenvalue of Σ−1. We let the upper bound of δ⊤Σ−1δ satisfy the
constraint of Eq. 6, therefore a lower bound on ∥δ∥ can be obtained as ∥δ∥lower. Eq. 6 is an exact
constraint on the perturbation space which is a hyperellipsoid, while Eq. 9 describes minor axis of
the hyperellipsoid. Both of them are general expressions for arbitrary GM solvers and joint Gaussian
smoothing distributions which will be shown in Sec. 4.3.

4.3 JOINT SMOOTHING DISTRIBUTION

In contrast to isotropic (Alfarra et al., 2022) and anisotropic (Eiras et al., 2021) distributions, SCR-
GM reflects the structure of graph while achieving efficiency by avoiding gradient optimization.

We first construct the correlation matrix B based on the similarity between nodes in matrix z1. B is
a full rank and real symmetric matrix whose element bmn denotes the correlation between m-th and
n-th node in z1. We define a similarity using Euclidean distance as follows:

bmn = 1/(1 +
dmn

γ
), (10)

where dmn is the Euclidean distance between the m-th and n-th nodes, and γ is the normalization
coefficient which controls the degree of correlation. We also uses other three similarity measures
to construct B including cosine similarity, pearson similarity and dice similarity as in Appendix C.
Nodes in close proximity are more susceptible to perturbations with similar intensity, while pertur-
bations added to nodes at larger distances are almost independent.

The diagonal elements in B indicate the intensity of perturbation at nodes, while the non-diagonal
elements reveal the correlation between nodes. Then by B⊤B = Σ, we can get the smoothing
distribution Σ to sample the additive noise for the input. Σ is a positive definite matrix, which
determines the feasibility of radii derived in this work.
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In contrast, the distribution in (Eiras et al., 2021) is a diagonal matrix with different diagonal ele-
ments, which cannot represent the correlation between nodes; and the distribution in (Alfarra et al.,
2022) is a diagonal matrix with the same diagonal elements, which directly treats all nodes without
difference. In fact when inter-node correlations and the differences of noise intensity are neglected,
Σ can degenerate into the above two distributions. Therefore, Σ is a generalized setting that allows
all distributions to be compared in the same framework.

For comparison, we need to keep Σ at the same order of magnitude as the previous three distribu-
tions (Cohen et al., 2019; Eiras et al., 2021; Alfarra et al., 2022). We take a similar strategy as that
in (Eiras et al., 2021) to ensure that:

min
i

1

λx
i

r (x,Σx) ≥ min
i

θxi r (x,Θ
x) , (11)

where λx
i is the eigenvalue of (Σx)−1, Θx is the distribution in (Eiras et al., 2021), θxi is the diagonal

element of Θx and r = 1
2

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
. Therefore, the four distributions mentioned

above can be calculated and analyzed incrementally. The visualization of the four distributions
calculated from a same original σ (Cohen et al., 2019) are shown in Fig. 1(a). Moreover, Σx can
trade-off the certified accuracy and radius, the eigenvalue λx

i is positively correlated with the certified
accuracy and negatively correlated with the certified radius.

4.4 EVALUATING CERTIFICATES

In Sec. 4.2, Eq. 6 reveals the certified space which is however difficult to quantify and compare.
Though Eq. 9 represents a certified and quantifiable form, it actually ignores a large portion of the
certified space. We therefore propose two more effective radii to help evaluate the robustness. Eq. 9
is the certification for the worst case of the input, Eq. 13 is the certification for all cases and Eq. 12
reveals the maximum potential for immunity to perturbations. Combining the three radii allows a
complete evaluation of the robustness for solvers.

By Lemma 1 and Eq. 7 we define a maximum radius of the certified space:

∥δ∥max =
1

2
√
λmin

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
), (12)

where λmin is the minimum eigenvalue of Σ−1, and δ⊤Σ−1δ ≥ λminδ
⊤δ. ∥δ∥max denotes the

ℓ2-norm maximum value for all possible perturbations. Inspired by (Eiras et al., 2021), we can also
measure the certified space in terms of ellipsoidal volume. By using the formula for the volume of
the ellipsoid: V (R) = rn

√
πn/Γ(n/2 + 1)

∏n
i=1 ξi (Kendall, 2004) where ξi is the i-th radius of

the ellipsoid, we can get a proxy radius ∥δ∥volume as:

∥δ∥volume = r
√
π/

 n
√

Γ(n/2 + 1) 2n

√√√√1/

n∏
i

λi

 , (13)

where r = 1
2

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
and λi is the eigenvalue of Σ−1. When all λi are the same,

the certification result will be the same as the traditional method (Cohen et al., 2019). As described
in section 4.2, the certified space is a hyperellipsoid geometrically, ∥δ∥lower represents the minor
axis, ∥δ∥max represents the major axis, ∥δ∥volumn is a proxy radius of a hypersphere with the same
volume as the hyperellipsoid. The whole certification process is shown in Algorithm 1.

5 EXPERIMENTS

We evaluate our strategy in three aspects: i) For deep graph matching, we compare three radii in
Eq. 9, Eq. 12 and Eq. 13 obtained by different certified methods on four GM networks; ii) For non-
learning GM methods, we perform synthetic experiments on the widely-used solver RRWM (Cho
et al., 2010); iii) We reveal the impact of Σ on the certification results by ablation study.

5.1 EVALUATION SETTINGS

Following the GM literature (Wang et al., 2021), we mainly evaluate our method on Pascal VOC
dataset (Everingham et al., 2010) with Berkeley annotations (Bourdev & Malik, 2009). All the
experiments are conducted on CPU (Intel(R) Core(TM) i7-7820X CPU @ 3.60GHz) and GPU
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Algorithm 1 Graph Matching Robustness Certification with SCR-GM.
Input: Graph pair (G1,G2) of size z1 and z2; set of base classifier F; DDRS (Alfarra et al., 2022)
and ANCER (Eiras et al., 2021); original σ; normalization coefficient γ; sampling times k0.
Output: Matching set M and radius set ∆.

1: Obtain data-dependent σ∗
x by adapting (see details in Appendix C) an off-the-shelf DDRS

method (Alfarra et al., 2022) to the graph setting;
2: Obtain Anisotropic Θx by adapting (see details in Appendix C)) an off-the-shelf ANCER

method (Eiras et al., 2021);
3: Obtain B and regularized Σ described in Sec. 4.3 according to Eq. 10 and 11;
4: Sample k0 noisy samples for left node matrix:z11

′
, . . . , z1k0

′ ∼ N
(
z1,Σ

)
.

5: Compute the matching result for nodes in z1:
M = {mi| argmaxrj∈z2

∑k0

k=1 I
{
fi

(
z1k

′
)
= rj

}
}.

6: Sample k(k = 10k0) noisy samples for G1’s node matrix:z11
′
, . . . , z1k

′ ∼ N
(
z1,Σ

)
.

7: Calculate one-sided confidence lower bound pA and pB using M as described in (Cohen et al.,
2019) for every node in z1, get set PA and PB .

8: for pA and pB in PA and PB do
9: if pA < 1

2 then
10: mi ABSTAIN; set ∥δi∥lower=∥δi∥max=∥δi∥volume=0, append ∆;
11: // Discard nodes with low matching confidence.
12: else
13: Compute radius ∥δi∥lower, ∥δi∥max and ∥δi∥volume described in Sec. 4.4, append ∆.
14: end if
15: end for
16: return M, ∆

(GTX 2080 Ti GPU). We validate the certified robustness on four representative deep GM mod-
els: GMN (Zanfir & Sminchisescu, 2018), PCA-GM (Wang et al., 2019), CIE-H (Yu et al., 2019a),
NGMv2 (Wang et al., 2021) and also a non-deep method RRWM (Cho et al., 2010). In this work,
data processing and parameter settings are the same as the original papers unless otherwise specified.

The compared methods include RS (Cohen et al., 2019), DDRS (Alfarra et al., 2022) and AN-
CER (Eiras et al., 2021). Since the anisotropic method in (Hong & Hong, 2022) is the same
as in (Eiras et al., 2021) and (Hong & Hong, 2022) does not provide any code, we choose to
compare with (Eiras et al., 2021). We follow the procedure as much similar as possible to that
in (Cohen et al., 2019). In (Cohen et al., 2019), the certified accuracy (CA) is defined as:
CA(R) = Ex,y [1(∥δ∥ ≥ R)1{g(x) = y}] . In our method, g represents the smoothed function
defined in Eq. 4, x denotes the input node in test set, and y is its ground truth matching node. ∥δ∥
denotes the certified radius calculated by Eq. 9, Eq. 12, Eq. 13, R is the scale of x-axis, 1 is an
indicator function. To quantify the improvement, we use Average Certified Radius (ACR) in (Zhai
et al., 2020): Ex,y [∥δ∥1{g(x) = y}] . We use ℓlower

2 , ℓmax
2 and ℓΣ2 to express ∥δ∥lower, ∥δ∥max and

∥δ∥volume in the experiments.

5.2 EXPERIMENTS ON DEEP GRAPH MATCHING

We first set the initial σ of RS to σ ∈ {1, 5, 10, 15, 20}, and calculate the smoothing distribution of
σ∗
x in DDRS and Θx in ANCER, where iteration number in DDRS and ANCER is equal to 100.

Then we set normalization coefficient γ = 5 and compute the joint distribution matrix Σ of SCR-
GM. Fig. 1(b) shows the certified radius ∥δ∥lower and ACR on a sample of our method and baselines
which indicates that the overall certified robustness of our methods is superior to the baselines. Then
we evaluate our strategy on four deep GM methods, the relationship of top-1 certified accuracy and
three radii (ℓlower

2 , ℓmax
2 and ℓΣ2 ) are plotted in Fig. 2, which only shows the case of σ = 5. When

the radius on x-axis is the same, the higher the certified accuracy on y-axis, the better the certified
robustness. The certified accuracy of our method is slightly lower sometimes than baselines when
∥δ∥lower is small. However, when ∥δ∥lower is large, the accuracy of baseline decreases significantly
or even fails completely while our method maintains a more respectable accuracy. When evaluating
using ∥δ∥max and ∥δ∥volume, the advantages of our method are more obvious.
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Figure 2: Top-1 certified accuracy on ℓlower
2 , ℓmax

2 and ℓΣ2 certification by different RS-type methods
(σ = 5) on four GM methods. SCR-GM almost always achieves a larger certification radius while
maintaining the similar certified accuracy.

(a) Perturbing node location (b) Perturbing feature

Figure 3: Certified robustness on non-learning method RRWM by perturbing node location in
Fig. 3(a) and perturbing features in Fig. 3(b) on a simulation dataset.

We calculate the ACR ∥δ∥lower of four different RS-type methods (σ = 5) and four GM methods as
shown in Tab. 1, which indicates that our method shows a better certified robustness performance
over the whole dataset. To show the impact of certified robustness on the accuracy of the solvers,
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(a) Vary correlation ratio (b) The trade-off of Σ

Figure 4: (a) The effect of joint smoothing distribution Σ on Pascal VOC using SCR-GM for
NGMv2. As Σ embodies more correlations between nodes, the wider certified radius is achieved.
(b) Σ can trade-off the certified accuracy and radius using SCR-GM for NGMv2 on Pascal VOC.

we use Tab. 2 to show the accuracy of base function, the standard accuracy and certified accuracy of
different certified radius ∥δ∥lower using NGMv2 algorithm on Pascal VOC dataset. More results are
detailed in Appendix D.1.

5.3 EXPERIMENTS ON NON-LEARNING GM METHODS

For non-learning GM, we certify the effectiveness of SCR-GM using simulation experiments on
classic non-learning solver RRWM. First we randomly generate two sets of node matrices and cal-
culate their affinity matrix K using Gaussian kernel affinity function. Then we obtain the robustness
results by perturbing node locations and edge features respectively using RS and SCR-GM smooth-
ing distributions. We set σ = 0.5 and σ = 0.004 respectively in Fig. 3(a) and 3(b). Our method
has similar performance corresponding to the same ∥δ∥lower as the baseline. Moreover, it performs
better on the other two cases which indicates that the guarantee space certified by our method is
wider and its overall robustness is better. We only compare the results using RS and SCR-GM in
this experiment, because DDRS and ANCER require the gradient optimization of networks, and
they are not applicable to non-learning GM solvers.

5.4 THE EFFECT OF JOINT SMOOTHING DISTRIBUTION

First, we simplify B by retaining only the higher correlation values in the matrix accord-
ing to the correlation radio p and setting other values to 0. The radio is set to p ∈
{0%, 20%, 40%, 60%, 80%, 100%} where 100% represents SCR-GM retaining all the correlation
coefficients and 0% represents ANCER without correlation coefficients. Results in Fig. 4(a) demon-
strate the effectiveness of the Σ which can be used to get a better certified robustness properties.
Then, we verify the impact of initial σ for Σ and the results are plotted in Fig. 4(b). Hyperparameter
σ determines the scale of Σ which controls a trade-off between certified robustness and accuracy.

6 CONCLUSION AND OUTLOOK

We have proposed a definition of certified robustness on structural graph matching and design a
method SCR-GM that utilizes the correlation between nodes to construct a joint smooth distribution.
We obtain ℓ2 norm certified space and radius for certification. For evaluation, we propose two
additional radii by eigenvalue properties. Experiments on deep GM networks and classic solvers
show that our method achieves a state-of-art robustness guarantee.

Potential impact & limitations. The currently technique is confined with the graph in Euclidean
space (and specifically 2D graphs for experiments), a more general formulation is QAP where the
perturb may be directly added on the affinity matrix K. A significant direction is enabling robustness
certification on the combinatorial solvers whereby GM is one of such cases. We hope this work can
inspire subsequent research in this promising area where theoretical results are welcomed given the
recent intensive empirical studies (Bengio et al., 2021; Yan et al., 2020).
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The appendix contains rich supplemental material to enrich the technical details of the paper, as well
as our originally proposed techniques for certifying the overall solution X.

A PROOFS OF THEOREM 1

Here we provide the complete proof for Theorem 1. We first prove the following Lemma 2 which is
inspired by the Neyman-Pearson for Gaussians lemma derived in (Cohen et al., 2019) and introduce
Lemma 3 which makes random vector independent after linear transformation.

Lemma 2 (Neyman-Pearson for Joint Gaussian Noise) Let X ∼ N (x,Σ) and Y ∼
N (x+ δ,Σ). Let h : Rd → {0, 1} be any deterministic or random function. Then:

1. If S =
{
k ∈ Rd : δTΣ−1k ≤ β

}
for some β and P(h(X) = 1) ≥ P(X ∈ S), then P(h(Y ) =

1) ≥ P(Y ∈ S).

2. If S =
{
k ∈ Rd : δTΣ−1k ≥ β

}
for some β and P(h(X) = 1) ≤ P(X ∈ S), then P(h(Y ) =

1) ≤ P(Y ∈ S).

Proof. This lemma is the special case of Neyman-Pearson when X and Y are joint Gaussian noises
with means x and x+ δ. It suffices to simply show that for any β, there is some t > 0 for which:{

k : δTΣ−1k ≤ β
}
=

{
z :

µY (k)

µX(k)
≤ t

}
,

{
k : δTΣ−1k ≥ β

}
=

{
z :

µY (k)

µX(k)
≥ t

}
.

(14)

For ease of representation, we use S ∈ Rd×d (with element sij) instead of Σ−1. The likelihood ratio
for this choice of X and Y turns out to be:

uY (k)

uX(k)
=

exp
(
− 1

2 (k − (x+ δ))TΣ−1(k − (x+ δ))
)

exp
(
− 1

2 (k − x)TΣ−1(k − x)
)

=
exp

(
− 1

2

∑d
i

∑d
j (ki − (xi + δi)) sij (kj − (xj + δj))

)
exp

(
− 1

2

∑d
i

∑d
j (ki − xi) sij (kj − xj)

)
= exp

(
δTΣ−1k − δTΣ−1x− 1

2
δTΣ−1δ

)
= exp

(
δTΣ−1k + b

)
≤ t,

where b is a constant, specifically b = −δTΣ−1x− 1
2δ

TΣ−1δ. Therefore given any β, we may take
t = exp(β + b) and get this correlation:

δTΣ−1k ≤ β ⇐⇒ exp (β + b) ≤ t,

δTΣ−1k ≥ β ⇐⇒ exp (β + b) ≥ t.
(15)

Lemma 3 (Joint Gaussian Distribution) If there is a random vector X ∼ N (µ,Σ), where µ ∈ Rn

is the mean vector. A positive semi-definite real symmetric matrix Σ ∈ Sn×n
++ is the covariance

matrix of X . There is a full rank matrix B ∈ Rn×n, which makes X = BZ + µ, Z ∼ N (0, I) and
B⊤B = Σ.

Then we can prove Theorem 1, recall:

Theorem 1.

Let fi(z1) be node matching function, gi be defined as in Eq. 4, and ε ∼ N (0,Σ). If pA ∈ [0, 1]
and pB ∈ [0, 1] satisfy:

P
(
fi(z

1 + ε) = rA
)
≥ pA ≥ pB ≥ P(fi(z1 + ε) = rB). (16)
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Then for gi(z1 + δ) = rA, we can get the certified ℓ2 space for the addictive noise δ:

∥δ⊤B−1∥ <
1

2

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
, (17)

where B⊤B = Σ, B ∈ Rn1×n1 is a full rank and real symmetric matrix based on the physical
relationships in node matrix z1, and pA and pB are the lower bound of pA and the upper bound of
pB , respectively.

To show that gi(z1 + δ) = rA, it follows from the definition of gi that we need to show that

P
(
fi(z

1 + δ + ε) = rA
)
≥ P(fi(z1 + δ + ε) = rB).

In the derivation, rB is actually not just “runner-up” node, but any node that is different from rA.
We define the random variables:

X := z1 + ε = N
(
z1,Σ

)
,

Y := z1 + δ + ε = N
(
z1 + δ,Σ

)
.

We know that:
P (fi(X) = rA) ≥ pA,

P (fi(X) = rB) ≤ pB .
(18)

Our goal is to show that
P (fi(Y ) = rA) > P (fi(Y ) = rB) . (19)

According to lemma 2, we can define the half-spaces:

A =
{
k : δTΣ−1(k − z1) ≤ ∥δTΣ−1B∥Φ−1

(
pA

)}
,

B =
{
k : δTΣ−1(k − z1) ≥ ∥δTΣ−1B∥Φ−1 (1− pB)

}
.

Claim 1 shows that P(X ∈ A) = pA, therefore we can get P (fi(X) = rA) ≥ P(X ∈ A). Hence
we may apply Lemma 2 with h(z) := 1 [fi(z) = rA] to conclude:

P (fi(Y ) = rA) ≥ P(Y ∈ A). (20)

Similarly, we obtain P (fi(X) = rB) ≤ P(X ∈ B). Hence we may apply Lemma 2 with h(z) :=
1 [fi(z) = rB ] to conclude:

P (fi(Y ) = rB) ≤ P(Y ∈ B). (21)

Combining Eq. 20 and 21, we can get the conditions of Eq. 19:

P (f(Y ) = rA) ≥ P(Y ∈ A) > P(Y ∈ B) ≥ P (f(Y ) = rB) . (22)

According to Claim 3 and Claim 4, we can get P(Y ∈ A) and P(Y ∈ B) as:

P(Y ∈ A) = Φ

(
Φ−1

(
pA

)
− δTΣ−1δ

∥δTΣ−1B∥

)
,

P(Y ∈ B) = Φ

(
Φ−1 (pB) +

δTΣ−1δ

∥δTΣ−1B∥

)
.

(23)

Finally, we obtain that P(Y ∈ A) > P(Y ∈ B) if and only if:

δTΣ−1δ

∥δTΣ−1B∥
<

1

2

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
,

δT (BTB)−1δ

∥δT (BTB)−1B∥
<

1

2

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
.

Because B is a real symmetric matrix (BT = B), we can finally get:

∥δTB−1∥ <
1

2

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
,

which recovers the theorem statement.
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A.1 LINEAR TRANSFORMATION AND DERIVATION

We obtain four equations based on linear transformation:

Claim 1. P(X ∈ A) = pA

Proof. Recall that A =
{
k : δTΣ−1(k − z1) ≤ ∥δTΣ−1B∥Φ−1

(
pA

)}
and X ∼ N (z1,Σ), ac-

cording to lemma 3, we can get:

P(X ∈ A) = P
(
δTΣ−1(X − z1) ≤ ∥δTΣ−1B∥Φ−1

(
pA

))
= P

(
δTΣ−1N (0,Σ) ≤ ∥δTΣ−1B∥Φ−1

(
pA

))
= P

(
δTΣ−1BN (0, I) ≤ ∥δTΣ−1B∥Φ−1

(
pA

))
= P

(
∥δTΣ−1B∥N (0, 1) ≤ ∥δTΣ−1B∥Φ−1

(
pA

))
= Φ

(
Φ−1

(
pA

))
= pA.

Claim 2. P(X ∈ B) = pB

Proof. Recall that B =
{
k : δTΣ−1(k − z1) ≥ ∥δTΣ−1B∥Φ−1 (1− pB)

}
and X ∼ N (z1,Σ),

according to lemma 3, we can get:

P(X ∈ B) = P
(
δTΣ−1(X − z1) ≥ ∥δTΣ−1B∥Φ−1 (1− pB)

)
= P

(
δTΣ−1N (0,Σ) ≥ ∥δTΣ−1B∥Φ−1 (1− pB)

)
= P

(
δTΣ−1BN (0, I) ≥ ∥δTΣ−1B∥Φ−1 (1− pB)

)
= P

(
∥δTΣ−1B∥N (0, 1) ≥ ∥δTΣ−1B∥Φ−1 (1− pB)

)
= 1− Φ

(
Φ−1 (1− pB)

)
= pB .

Claim 3. P(Y ∈ A) = Φ
(
Φ−1

(
pA

)
− δTΣ−1δ

∥δTΣ−1B∥

)
Proof. Recall that A =

{
k : δTΣ−1(k − z1) ≤ ∥δTΣ−1B∥Φ−1

(
pA

)}
and Y ∼ N (z1 + δ,Σ),

according to lemma 3, we can get:

P(Y ∈ A) = P
(
δTΣ−1(Y − z1) ≤ ∥δTΣ−1B∥Φ−1

(
pA

))
= P

(
δTΣ−1N (δ,Σ) ≤ ∥δTΣ−1B∥Φ−1

(
pA

))
= P

(
δTΣ−1(BN (0, I) + δ) ≤ ∥δTΣ−1B∥Φ−1

(
pA

))
= P

(
δTΣ−1BN (0, I) + δTΣ−1δ ≤ ∥δTΣ−1B∥Φ−1

(
pA

))
= P

(
∥δTΣ−1B∥N (0, 1) ≤ ∥δTΣ−1B∥Φ−1

(
pA

)
− δTΣ−1δ

)
= P

(
N (0, 1) ≤ Φ−1

(
pA

)
− δTΣ−1δ

∥δTΣ−1B∥

)
= Φ

(
Φ−1

(
pA

)
− δTΣ−1δ

∥δTΣ−1B∥

)
.

Claim 4. P(Y ∈ B) = Φ
(
Φ−1 (pB) +

δTΣ−1δ
∥δTΣ−1B∥

)
Proof. Recall that B =

{
k : δTΣ−1(k − z1) ≥ ∥δTΣ−1B∥Φ−1 (1− pB)

}
and Y ∼

N (z1 + δ,Σ), according to lemma 3, we can get:
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P(Y ∈ B) = P
(
δTΣ−1(Y − z1) ≥ ∥δTΣ−1B∥Φ−1 (1− pB)

)
= P

(
δTΣ−1N (δ,Σ) ≥ ∥δTΣ−1B∥Φ−1 (1− pB)

)
= P

(
δTΣ−1(BN (0, I) + δ) ≥ ∥δTΣ−1B∥Φ−1 (1− pB)

)
= P

(
δTΣ−1BN (0, I) + δTΣ−1δ ≥ ∥δTΣ−1B∥Φ−1 (1− pB)

)
= P

(
∥δTΣ−1B∥N (0, 1) ≥ ∥δTΣ−1B∥Φ−1 (1− pB)− δTΣ−1δ

)
= P

(
N (0, 1) ≥ Φ−1 (1− pB)−

δTΣ−1δ

∥δTΣ−1B∥

)
= P

(
N (0, 1) ≤ Φ−1 (pB) +

δTΣ−1δ

∥δTΣ−1B∥

)
= Φ

(
Φ−1 (pB) +

δTΣ−1δ

∥δTΣ−1B∥

)

B ROBUSTNESS GUARANTEE WHEN PERTURBING FEATURES

For GM with input
(
G1,G2, z

1, z2
)

for matching prediction X, we now focus on the effect of per-
turbing node features. Recall that the set F can be expressed as: F = {fi|fi :

(
G1,G2, z

1, z2
)
→

rj , i ∈ n1, j ∈ n2} where G1 = {V1,E1} and G2 = {V2,E2}, fi represents that the i-th node in
z1 matches the j-th node in z2, rj is the j-th node in z2. Now we define a new smoothed network
gi that returns whichever node in z2 is most likely to match the node in z1 when perturbing node
features V1 ∈ Rdv×n1 by joint smoothing distribution noise:

gi = argmax
rj∈z2

P(fi
(
V1 + ε,E1,V2,E2, z

1, z2
)
= rj),

where ε ∼ N (0,Σ) , i ∈ n1, j ∈ n2.
(24)

For notational convenience, we simplify fi
(
V1 + ε,E1,V2,E2, z

1, z2
)

to fi(V1). Suppose that
when the base function fi solves for the optimal matching of node i in z1, the most probable node
rA is returned with probability pA = maxsi∈Si si, where Si is the i-th row of S. The probability
of ”runner-up” node rB is denoted as pB , pB = maxsi∈Si,rB ̸=rA si. Similarly, we obtain an ℓ2
certified space to guarantee robustness of graph matching when perturbing features as follows.

Theorem 2 (ℓ2 certified space when perturbing features) Let fi(V1) be node matching function,
gi be defined as in Eq. 24, and ε ∼ N (0,Σ). If pA ∈ [0, 1] and pB ∈ [0, 1] satisfy:

P (fi(V1 + ε) = rA) ≥ pA ≥ pB ≥ P(fi(V1 + ε) = rB), (25)

then for gi(V1 + δ) = rA, we can get the certified ℓ2 space for the addictive noise δ:

∥δ⊤B−1∥ <
1

2

(
Φ−1

(
pA

)
− Φ−1 (pB)

)
, (26)

where pA and pB are the lower bound of pA and the upper bound of pB respectively. We set
B⊤B = Σ where B ∈ R(dv×n1)×(dv×n1) is a diagonal matrix.

Different from the correlation matrix in Eq. 10, B is a diagonal matrix similar as (Eiras et al., 2021).
However, B is obtained by structure-based prior knowledge rather than the optimization process
in (Eiras et al., 2021). We divide the node feature V1 into n1 parts and add independent identically
distributed noise of the same intensity (denoted by bm,m ∈ n1) to each part. The noise intensity of
m-th part bm is defined as bm = dm

d σ where d is the whole distance between nodes in z1, dm is the
distance between the m-th node and other nodes, the original σ is the same as described in (Cohen
et al., 2019). This setting indicates that outlier points are more resistant to perturbation. Finally we
can derive the same radius forms as Eq. 9, 12 and 13.
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C EXPERIMENTAL SETUP

In this work, we evaluate our strategy on deep graph matching networks and a classic non-learning
solver. The procedures to obtain the baseline networks and the evaluation methods are detailed as
follows.

C.1 BASELINE OF CERTIFICATION METHODS

In terms of certification, the baselines we considered are RS (Cohen et al., 2019), DDRS (Alfarra
et al., 2022) and ANCER (Eiras et al., 2021). We adapt the off-the-shelf DDRS and ANCER to
obtain the data-dependent distribution σ∗

x and anisotropic distribution Θx for graph matching. We
add noise to graphs and use pA = maxsi∈Si

si and pB = maxsi∈Si,rB ̸=rA si to calculate the gap
value Φ−1(pA) − Φ−1(pB) (Si is the i-th row of S). The optimization equations and parameters
remain the same as the original algorithms.

Then we use SCR-GM to get our joint distribution Σ. Finally, we use the Monte Carlo algorithms
in (Cohen et al., 2019) to sample noises according to different distributions and output three radii
derived in Sec. 4.2 and 4.4. The sample number n and n0 are set to 1000 and 100 due to the
efficiency of graph matching networks, and other parameters are the same as the original network
settings (Cohen et al., 2019). We also use hypothesis test (Hung & Fithian, 2019) as in (Cohen et al.,
2019) by using α to represent the probability of getting incorrect matching results. In this paper, we
set α = 0.001, so there is a high probability (99.9% in this paper) to ensure the certification. α can
be set arbitrarily small hence in theory our method is highly reliable.

C.2 EVALUATION ON DEEP GRAPH MATCHING

For deep graph matching, we mainly evaluate our method on Pascal VOC dataset (Everingham et al.,
2010) with Berkeley annotations (Bourdev & Malik, 2009). We follow the protocol of (Wang et al.,
2021) and filter out poorly annotated images. In the experiment, we use 100 inputs (containing
approximately 650 nodes) of 20 categories to certify the matching robustness.

We check our strategy on four representative deep graph matching methods: GMN (Zanfir & Smin-
chisescu, 2018), PCA-GM (Wang et al., 2019), CIE-H (Yu et al., 2019a) and NGMv2 (Wang
et al., 2021), while use the checkpoints of these GM models collected by ThinkMatch (https:
//github.com/Thinklab-SJTU/ThinkMatch).

We directly evaluate the certified robustness of these networks without fine-tune training.

C.3 EVALUATION ON NON-LEARNING METHOD

For non-learning method, we mainly evaluate our method on simulation data which contains ran-
domly generated node pairs. In the experiment, we use 100 inputs (each contains 5-10 nodes ran-
domly) and evaluate the strategy on classic solver RRWM (Cho et al., 2010). For evaluation, we
extract node features and calculate the affinity matrix K using Gaussian kernel affinity function.
Then we perturb node locations and features separately and obtain the certified robustness results.

C.4 SIMILARITY MEASURES

In addition to Eq. 10, we also uses other three similarity measures to construct B including cosine
similarity, pearson similarity and dice similarity as follows.

For two points in the Euclidean space Rn: A = (a1, a2, · · · , an) and B = (b1, b2, · · · , bn), cosine
similarity is defined as follows:

Cosine Similarity(A,B) =
A ·B

∥A∥2 · ∥B∥2
=

∑n
i=1 aibi√∑n

i=1 a
2
i ·

√∑n
i=1 b

2
i

∈ [−1, 1]. (27)
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Table 1: The ACR ∥δ∥lower of four different RS-type methods (σ = 5) and four GM methods on
Pascal VOC dataset.

NGMv2 CIE-H PCA-GM GMN

RS 4.189 2.880 2.745 2.037
DDRS 5.936 3.505 3.307 2.741
ANCER 6.300 3.367 3.179 2.517
SCR-GM 7.107* 3.726* 3.455* 2.745*

Table 2: The accuracy of base function (BA) of NGMv2, standard accuracy (SA) and certified
accuracy (CA) of different certified radius ∥δ∥lower using NGMv2 algorithm (σ = 5) on Pascal VOC
dataset.

BA (%) SA (%) CA (%) R=3.5 CA (%) R=7.0 CA (%) R=10.5

SCR-GM 77.3 75.6 63.7 51.5* 36.4*
ANCER 77.3 76.5 64.2 49.1 23.8
DDRS 77.3 77.4* 66.6 50.5 18.2
RS 77.3 76.7 66.9* 0.0 0.0

Pearson similarity is defined as follows:

Pearson Similarity(A,B) =
cov(A,B)

σA · σB
=

∑
i=1

(
ai − Ā

)
·
(
bi − B̄

)√∑n
i=1

(
ai − Ā

)2 ·√∑n
i=1

(
bi − B̄

)2 ∈ [−1, 1],

(28)
where Ā =

∑n
i=1 ai/n, B̄ =

∑n
i=1 bi/n.

Dice similarity is defined as follows:

Dice Similarity(A,B) =
2
∑n

i=1 aibi∑n
i=1 (a

2
i + b2i )

, (29)

where A and B can not be zero point at the same time.

D EXPERIMENTAL RESULTS

D.1 CERTIFICATION RESULTS OF DEEP GRAPH MATCHING

D.1.1 PERTURBING NODE LOCATION

For perturbing node location, we report certified accuracy at ℓlower
2 , ℓmax

2 and ℓΣ2 radii, for each
certified method RS (Cohen et al., 2019), DDRS (Alfarra et al., 2022), ANCER (Eiras et al., 2021)
and SCR-GM, each network GMN (Zanfir & Sminchisescu, 2018), PCA-GM (Wang et al., 2019),
CIE-H (Yu et al., 2019a) and NGMv2 (Wang et al., 2021), each original σ (σ = 1, 5, 10, 15 and 20).
Figures 5, 6, 7 and 8 show certified results on different graph matching networks, respectively.

In addition, we certify the effect of the normalization parameter γ, and Fig. 12 shows the results
on NGMv2 (Wang et al., 2021) algorithm and σ is set to 5. Tab. 3 shows the impact of different
choices for constructing B on the certified robustness. B constructed by Euclidean distance and Dice
similarity perform better on the certified robustness. The advantage of B constructed by Euclidean
distance is more obvious when the radius is larger.

D.1.2 PERTURBING FEATURES

For perturbing node features, we only compare our strategy with RS (Cohen et al., 2019) due to
the excessive inefficiency of DDRS (Alfarra et al., 2022) and ANCER (Eiras et al., 2021). We set
original σ as σ = 0.25, 0.5, 1, 1.5 and 2, other settings are the same as Appendix D.1.1. Fig. 9
shows certified results on different graph matching networks when perturbing node features.
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Table 3: The impact of different similarity measures for constructing B on the certified robustness.

SA (%) CA (%) R=3.0 CA (%) R=6.0 CA (%) R=9.0 CA (%) R=12.0

Euclidean 75.2 64.3 53.3* 42.0* 24.1*
Dice 75.6* 65.5* 52.3 41.0 23.5
Cosine 75.6 65.1 52.0 41.0 23.5
Pearson 75.6 65.2 51.8 40.7 23.6

Figure 5: Top-1 certified accuracy on ℓlower
2 , ℓmax

2 and ℓΣ2 certification by different RS-type methods
on NGMv2 methods. Hyperparameter σ trade-off the certified accuracy and radii.

D.2 CERTIFICATION RESULTS OF NON-LEARNING METHODS

In this section, we report certified accuracy at ℓlower
2 , ℓmax

2 and ℓΣ2 radii, for certified method (Cohen
et al., 2019) and SCR-GM on RRWM (Cho et al., 2010). We set original σ as σ = 0.3, 0.4 and 0.5
when perturbing node locations, while we set σ = 0.001, 0.004 and 0.006 when perturbing features.
Fig. 13 and 14 show certified results on the classic solver.
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Figure 6: Top-1 certified accuracy on ℓlower
2 , ℓmax

2 and ℓΣ2 certification by different RS-type methods
on CIE-H methods.

20



Under review as a conference paper at ICLR 2023

Figure 7: Top-1 certified accuracy on ℓlower
2 , ℓmax

2 and ℓΣ2 certification by different RS-type methods
on PCA-GM methods.
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Figure 8: Top-1 certified accuracy on ℓlower
2 , ℓmax

2 and ℓΣ2 certification by different RS-type methods
on GMN methods.
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Figure 9: Top-1 certified accuracy on ℓlower
2 , ℓmax

2 and ℓΣ2 certification by different RS-type methods
on NGMv2, CIE-H, PCA-GM and GMN methods.
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E CERTIFIED ROBUSTNESS OF THE SOLUTION X ’S STRUCTURE

In Sec. 4, we focus on the certified robustness of node matching results in the graph rather than the
whole graph matching result. Our work treats the GM solver as blackbox to get the relaxed matching
S, then uses a post-binarization step to to modify the output format X and get the node matching
function set F. Then we certify the robustness of F.

However, we can also certify the robustness of the full matrix X which is able to utilize more graph
structure information, as well as fully consider the constrains in Eq. 1.

E.1 DEFINITION

Consider a graph matching problem from input space to partial permutation matrices X . As dis-
cussed above, randomized smoothing (RS) is a technique for constructing a smoothed function g
from an arbitrary base function f . When queried at the input

(
G1,G2, z

1, z2
)
, the smoothed func-

tion g returns whichever matrix X the base function f is most likely to return when z1 is perturbed
by noise:

g = argmax
X∈X

P(f
(
G1,G2, z

1 + ε, z2
)
= X),

where ε ∼ N (0,Σ) .
(30)

The distribution of additive noise ε is a joint Gaussian distribution matrix whose variance Σ repre-
sents the correlations between nodes. In addition, Σ is a hyperparameter for certified function which
controls the robustness/accuracy trade-off.

E.2 ROBUSTNESS GUARANTEE FOR X

We define a robustness guarantee with confidence c ∈ [0, 1], which ensures that the similarity be-
tween the output matrix calculated by g and its ground truth matrix Xg is not less than a confidence
c. Suppose that when the base function f solves

(
G1,G2, z

1 + ε, z2
)
, its output matrices whose

similarity to Xg is not less than c are returned with probability p:

X ′ =

{
Xi

∣∣∣∣∣Xi ·Xg

Xg ·Xg
≥ c,Xi ∈ X

}
,

p = P(Xi|Xi ∈ X ′)

(31)

Our main result is that smoothed function g is robust within a ℓ2 certified space, which also holds if
we replace p with a lower bound p.

Theorem 3 (ℓ2 certified space for X ) Let f be a matching function, g be defined as in Eq. 30, and
ε ∼ N (0,Σ). Suppose XA ∈ X ′ and p ∈ ( 12 , 1] satisfy:

P(f
(
G1,G2, z

1 + ε, z2
)
= XA, XA ∈ X ′) ≥ p. (32)

Then we can get the certified ℓ2 space for the addictive noise δ:

∥δ⊤B−1∥ < Φ−1
(
p
)
, (33)

which guarantees g
(
G1,G2, z

1 + δ, z2
)
∈ X ′. In Eq. 6, B⊤B = Σ and B ∈ Rn1×n1 is a full rank

and real symmetric matrix based on the node correlation in node matrix z1.

The detail settings and properties of B and Σ are the same as in Section 4.3.

Based on Lemma 1 and the certified space in Eq. 33, we can further obtain a certified ℓ2 norm radius:

∥δ∥lower <
1√
λmax

(
Φ−1

(
p
))

, (34)

where λmax is the maximum eigenvalue of Σ−1.

We can define a maximum radius of the certified space:

∥δ∥max =
1√
λmin

(
Φ−1

(
p
))
), (35)
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Algorithm 2 Graph Matching Robustness Certification for X with SCR-GM.
Input: Graph pair (G1,G2) of size z1 and z2; base function f of graph matching; DDRS (Alfarra
et al., 2022) and ANCER (Eiras et al., 2021); original σ; normalization coefficient γ; sampling times
k0; matrix similarity confidence c.
Output: Matching result X̂g and radius R.

1: Obtain data-dependent σ∗
x by adapting (see details in Appendix C) an off-the-shelf DDRS

method (Alfarra et al., 2022) to the graph setting;
2: Obtain Anisotropic Θx by adapting (see details in Appendix C)) an off-the-shelf ANCER

method (Eiras et al., 2021);
3: Obtain B and regularized Σ described in Sec. 4.3 according to Eq. 10 and 11;
4: Sample k0 noisy samples for G1’s node matrix:z11

′
, . . . , z1k0

′ ∼ N
(
z1,Σ

)
.

5: Compute the approximate ground truth matrix X̂g .
6: Sample k(k = 10k0) noisy samples for G1’s node matrix:z11

′
, . . . , z1k

′ ∼ N
(
z1,Σ

)
and get an

approximate output set X̂ .
7: Calculate one-sided confidence lower bound p using set X̂ and Eq. 31.
8: if p < 1

2 then
9: X ABSTAIN; set ∥δi∥lower=∥δi∥max=∥δi∥volume=0, append R;

10: //Discard matching result with low confidence.
11: else
12: Compute radius ∥δi∥lower, ∥δi∥max and ∥δi∥volume described in Sec. 4.4, append R.
13: end if
14: return X̂g , R

where λmin is the minimum eigenvalue of Σ−1. The proxy radius ∥δ∥volume is as follows:

∥δ∥volume = r
√
π/

 n
√

Γ(n/2 + 1) 2n

√√√√1/

n∏
i

λi

 . (36)

The whole robustness certification process is shown in Algorithm 2. In fact, we cannot get the
real Xg and X during certification stage, so we use Monte Carlo sampling to estimate it. We first
sample f

(
G1,G2, z

1 + ε, z2
)

with n0 times and add all permutation matrices to get Xs, then we use
Sinkhorn and Hungarian algorithm to approximate Xg . During certification, if the approximated X̂g

is not the same as the ground truth matrix Xg , we consider that the certification for this sample has
failed. Then we sample f

(
G1,G2, z

1 + ε, z2
)

with n times and put all possible matrices into set X̂
to approximate X . When n is large, X̂ and X are relatively close.

E.3 EXPERIMENTS

We evaluate our methods on deep graph matching networks and non-learning solvers. The evaluation
settings are the same as in Sec. 5.1.

E.3.1 EXPERIMENTS ON DEEP GRAPH MATCHING

We focus on certifying the robustness of node locality and compare ℓlower
2 , ℓmax

2 , ℓΣ2 certification
using four certified methods on four deep GM algorithms.

We first set the initial σ of RS to σ ∈ {1, 5, 10, 15, 20}, the confidence c = 0.9 and calculate
the smoothing distribution of σ∗

x in DDRS and Θx in ANCER, where iteration number in DDRS
and ANCER is equal to 100. Then we set normalization coefficient γ = 5 and compute the joint
distribution matrix Σ of SCR-GM. Then we evaluate our strategy on four deep GM methods, the
relationship of top-1 certified accuracy and three radii (ℓlower

2 , ℓmax
2 and ℓΣ2 ) is plotted in Fig. 10.

When the radius on x-axis is the same, the higher the certified accuracy on y-axis, the better the
certified robustness.

Our method outperforms the baseline on NGMv2 algorithm, which means that the certified accuracy
is higher when the radii (ℓlower

2 , ℓmax
2 and ℓΣ2 ) is the same. On CIE-H and PCA-GM algorithms, the
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Figure 10: Top-1 certified accuracy on ℓlower
2 , ℓmax

2 and ℓΣ2 certifying the full matrix X by dif-
ferent RS-type methods (σ = 1) on four GM methods. SCR-GM almost always achieves a larger
certification radius while maintaining the similar certified accuracy.

certified accuracy of our method is slightly lower sometimes than baselines when ℓlower
2 radius is

small. However, when ℓlower
2 radius is large, the accuracy of baselines decrease significantly or

even fail completely while our method maintains a more respectable accuracy. When evaluating
using ℓmax

2 and ℓΣ2 radii, the certified results of our method are similar as the baselines. On GMN
algorithm, our certification results are a bit worse than ANCER. In short, the certified robustness
advantage of our method is more obvious on the algorithm with better matching accuracy itself.

E.3.2 EXPERIMENTS ON NON-LEARNING GM METHODS

For non-learning GM, we certify the effectiveness of SCR-GM using simulation experiments on
classic non-learning solver RRWM. First we randomly generate two sets of node matrices and cal-
culate their affinity matrix K using Gaussian kernel affinity function. Then we obtain the robustness
results by perturbing node locations and edge features respectively using RS and SCR-GM smooth-
ing distributions. We set σ = 0.1 and σ = 0.0001 respectively in Fig. 11(a) and 11(b). Our
method has similar performance of the certified accuracy corresponding to the same ∥δ∥lower with
the baseline. However, our method performs better on ∥δ∥volume and ∥δ∥max which indicates that
the guarantee space certified by our method is wider and its overall robustness is better. We only
compare the results using RS and SCR-GM in this experiment, because DDRS and ANCER require
the gradient optimization of networks, and they are not applicable to non-learning GM solvers.

26



Under review as a conference paper at ICLR 2023

(a) Perturbing node location (b) Perturbing feature

Figure 11: Certified robustness for the full matrix X on non-learning method RRWM by perturbing
node location in Fig. 11(a) and perturbing features in Fig. 11(b) on a simulation dataset.

E.4 PROOF

To show that g
(
G1,G2, z

1 + δ, z2
)
∈ X ′, it follows from the definition of g that we need to show

that:

P(f
(
G1,G2, z

1 + ε+ δ, z2
)
= XA, XA ∈ X ′) ≥ P(f

(
G1,G2, z

1 + ε+ δ, z2
)
= XB , XB /∈ X ′).

We define two random variables:

I :=
(
G1,G2, z

1 + ε, z2
)
=

(
G1,G2,N

(
z1,Σ

)
, z2

)
O :=

(
G1,G2, z

1 + ε+ δ, z2
)
=

(
G1,G2,N

(
z1 + δ,Σ

)
, z2

)
.

We know that:
P(f(I) = XA, XA ∈ X ′) ≥ p. (37)

Our goal is to show that

P(f(O) = XA, XA ∈ X ′) > P(f(O) = XB , XB /∈ X ′). (38)

According to lemma 2, we can define the half-spaces:

A =
{
k : δTΣ−1(k −

(
G1,G2, z

1, z2
)
) ≤ ∥δTΣ−1B∥Φ−1

(
p
)}

,

B =
{
k : δTΣ−1(k −

(
G1,G2, z

1, z2
)
) ≥ ∥δTΣ−1B∥Φ−1

(
p
)}

.

Claim 1 shows that P(I ∈ A) = p, therefore we can get P(f(I) = XA, XA ∈ X ′) ≥ P(I ∈ A).
Hence we may apply Lemma 2 to conclude:

P(f(O) = XA, XA ∈ X ′) ≥ P(O ∈ A). (39)

Similarly, we obtain P(f(I) = XB , XB /∈ X ′) ≤ P(I ∈ B). Hence we may apply Lemma 2 to
conclude:

P(f(O) = XB , XB /∈ X ′) ≤ P(O ∈ B). (40)

Combining Eq. 39 and 40, we can get the conditions of Eq. 38:

P(f(O) = XA, XA ∈ X ′) ≥ P(O ∈ A) > P(O ∈ B) ≥ P(f(O) = XB , XB /∈ X ′). (41)

According to Claim 3 and Claim 4, we can get P(O ∈ A) and P(O ∈ B) as:

P(O ∈ A) = Φ

(
Φ−1

(
p
)
− δTΣ−1δ

∥δTΣ−1B∥

)
,

P(O ∈ B) = Φ

(
−Φ−1

(
p
)
+

δTΣ−1δ

∥δTΣ−1B∥

)
.

(42)
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Finally, we obtain that P(O ∈ A) > P(O ∈ B) if and only if:

δTΣ−1δ

∥δTΣ−1B∥
< Φ−1

(
p)
)
,

δT (BTB)−1δ

∥δT (BTB)−1B∥
< Φ−1

(
p)
)
.

Since B is a real symmetric matrix (BT = B), we can finally get:

∥δTB−1∥ < Φ−1
(
p)
)
,

which recovers the theorem statement.

E.4.1 LINEAR TRANSFORMATION AND DERIVATION

We obtain four equations based on linear transformation: Claim 1. P(I ∈ A) = p

Proof. Recall that A =
{
k : δTΣ−1(k −

(
G1,G2, z

1, z2
)
) ≤ ∥δTΣ−1B∥Φ−1

(
p
)}

, according to
lemma 3, we can get:

P(I ∈ A) = P
(
δTΣ−1(I −

(
G1,G2, z

1, z2
)
) ≤ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
δTΣ−1N (0,Σ) ≤ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
δTΣ−1BN (0, I) ≤ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
∥δTΣ−1B∥N (0, 1) ≤ ∥δTΣ−1B∥Φ−1

(
p
))

= Φ
(
Φ−1

(
p
))

= p.

Claim 2. P(I ∈ B) = 1− p

Proof. Recall that B =
{
k : δTΣ−1(k −

(
G1,G2, z

1, z2
)
) ≥ ∥δTΣ−1B∥Φ−1

(
p
)}

, according to
lemma 3, we can get:

P(I ∈ B) = P
(
δTΣ−1(I −

(
G1,G2, z

1, z2
)
) ≥ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
δTΣ−1N (0,Σ) ≥ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
δTΣ−1BN (0, I) ≥ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
∥δTΣ−1B∥N (0, 1) ≥ ∥δTΣ−1B∥Φ−1

(
p
))

= 1− Φ
(
Φ−1

(
p
))

= 1− p.

Claim 3. P(O ∈ A) = Φ
(
Φ−1

(
p
)
− δTΣ−1δ

∥δTΣ−1B∥

)
Proof. Recall that A =

{
k : δTΣ−1(k −

(
G1,G2, z

1, z2
)
) ≤ ∥δTΣ−1B∥Φ−1

(
p
)}

and O ∼(
G1,G2,N

(
z1 + δ,Σ

)
, z2

)
, according to lemma 3, we can get:

P(O ∈ A) = P
(
δTΣ−1(O −

(
G1,G2, z

1, z2
)
) ≤ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
δTΣ−1N (δ,Σ) ≤ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
δTΣ−1(BN (0, I) + δ) ≤ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
δTΣ−1BN (0, I) + δTΣ−1δ ≤ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
∥δTΣ−1B∥N (0, 1) ≤ ∥δTΣ−1B∥Φ−1

(
p
)
− δTΣ−1δ

)
= P

(
N (0, 1) ≤ Φ−1

(
p
)
− δTΣ−1δ

∥δTΣ−1B∥

)
= Φ

(
Φ−1

(
p
)
− δTΣ−1δ

∥δTΣ−1B∥

)
.
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Claim 4. P(O ∈ B) = Φ
(
−Φ−1

(
p
)
+ δTΣ−1δ

∥δTΣ−1B∥

)
Proof. Recall that B =

{
k : δTΣ−1(k −

(
G1,G2, z

1, z2
)
) ≥ ∥δTΣ−1B∥Φ−1

(
p
)}

and O ∼(
G1,G2,N

(
z1 + δ,Σ

)
, z2

)
, according to lemma 3, we can get:

P(O ∈ B) = P
(
δTΣ−1((O −

(
G1,G2, z

1, z2
)
) ≥ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
δTΣ−1N (δ,Σ) ≥ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
δTΣ−1(BN (0, I) + δ) ≥ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
δTΣ−1BN (0, I) + δTΣ−1δ ≥ ∥δTΣ−1B∥Φ−1

(
p
))

= P
(
∥δTΣ−1B∥N (0, 1) ≥ ∥δTΣ−1B∥Φ−1

(
p
)
− δTΣ−1δ

)
= P
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Figure 12: Top-1 certified accuracy on ℓlower
2 , ℓmax

2 and ℓΣ2 for certification by changing γ on
NGMv2 methods. When γ is smaller, the correlation values are overall smaller, the hyperellipsoidal
volume is smaller, and vice versa.

Figure 13: Top-1 certified accuracy on ℓlower
2 , ℓmax

2 and ℓΣ2 certification on RRWM methods by
perturbing node locations (from left to right σ = 0.3, 0.4 and 0.5).
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Figure 14: Top-1 certified accuracy on ℓlower
2 , ℓmax

2 and ℓΣ2 certification on RRWM methods by
perturbing features (from left to right σ = 0.001, 0.004 and 0.006).
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