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ABSTRACT

Multi-robot manipulation tasks involve various control entities that can be sepa-
rated into dynamically independent parts. A typical example of such real-world
tasks is dual-arm manipulation. Learning to naively solve such tasks with rein-
forcement learning is often unfeasible due to the combinatorial explosion of sam-
ple complexity and exploration requirements growing with the dimensionality of
the action and state spaces. Instead, we would like to handle such environments
as multi-agent systems and have several agents control parts of the whole. How-
ever, decentralizing the generation of actions requires coordination across agents
through a channel limited to information central to the task. This paper pro-
poses an approach to coordinating multi-robot manipulation through learned la-
tent action spaces that are shared across different agents. We validate our method
in simulated multi-robot manipulation tasks and demonstrate improvement over
previous baselines in terms of sample efficiency and learning performance , and
interpretability.

F

τ

Figure 1: Two robot arms cooperating on an object lifting task. The red cube indicates the target
pose. Traditionally, two agents would control the separate robot arms in a control space of the robot
such as joint torque control. We explore the option of learning latent central actions spaces which
are robot-agnostic and central to the task. In our example, a possible action space would correspond
to the force F and torque τ acting on the center of mass of the cube.

1 INTRODUCTION

Most recent successes of reinforcement learning (RL) methods have been in single-agent environ-
ments. Applications include games (Mnih et al., 2013; Silver et al., 2016), robotics (Kober et al.,
2013), and autonomous driving (Kiran et al., 2021). However, many control problems can naturally
be distributed to multiple agents. For instance, in robotics, tasks involving multiple robots can be
framed as multi-agent systems.

In this work, we consider cooperative systems among the many other sub-categories of multi-agent
systems. Such environments can also be framed as single-agent RL problems, with policies receiv-
ing full observations and outputting a single action responsible for actuating all the different entities.
However, such an approach would suffer from great sample complexity due to the difficulty of explo-
ration and fitting a policy under high-dimensional exploding action, state, and observation spaces.

1



Under review as a conference paper at ICLR 2023

Instead, in a multi-agent reinforcement learning (MARL) approach, each agent is typically respon-
sible for actuating a sub-part of the environment and could have access to either all observations or
a subset. This simplifies the exploration and sample requirement for each individual agent.

Consequently However, multi-agent methods suffer from the lack of information present to each
agent, which results in multiple problems (Graña et al., 2011; Canese et al., 2021). Most notably,
from the perspective of each agent, the environment is no longer stationary, as the other agents are
now part of the environment and regularly update their policies and behavior. This increases the
difficulty of policy search. Furthermore, the lack of information about the other agents’ actions
makes coordination and estimation of interaction dynamics even harder than usual. Hence, in the
literature, multiple solutions have been proposed to approach these problems. Most of these methods
attempt to establish either an explicit or implicit communication channel between multiple agents,
allowing for sharing a certain amount of information that is assumed important to the task. The latter
refers to obtaining information about other agents through learned approximate models, not direct
communication. Examples of such methods include opponent modeling (Raileanu et al., 2018; Liu
et al., 2020; Yu et al., 2021) and latent intention/goal estimation (Xie et al., 2020; Wang et al., 2020).

Another challenge for multi-agent systems is the decentralized action generation. This problem
could also occur when all agents have access to the full state, but are only actuating a part of the
overall system. This aspect can be ignored for the classical application domains examined by previ-
ous MARL research, such as games and particle environments. However, it becomes critical when
dealing with physical tasks, such as dual-arm manipulation, where decoupled actions could lead
to instabilities and even damage the robots. Hence, in this work, we focus on this problem and
approach multi-robot manipulation from a different perspective.

We postulate that there exists an agent-agnostic latent action space that can alternatively be used for
solving certain families of cooperative multi-robot manipulation tasks. To illustrate the concept, let
us take the as example the task of multiple robot manipulators lifting a single object. In the standard
multi-agent approach to solving such a problem, each agent would be responsible for actuating one
of the robots. The different action spaces would correspond to some control commands that the
different robots could handle, such as joint torques, joint velocities, Cartesian poses, or others. The
ultimate goal of such a task is to move the object; hence a simpler and more intuitive action space
would control the object itself instead of the robot joints would ideally be expressed with respect
to the object and not the robots. For instance, such a control an action could represent a wrench
(force and torque) applied to the object’s center of mass. However, task-specific action spaces are
not trivial to implement unless the object is rigidly attached to the end-effector of the robot and its
physical properties are known. Hence, in this work, we aim to learn such an action space and use
it for learning multi-robot manipulation tasks that require coordination. We we propose a method
for learning latent central action spaces and learning decentralized policies acting independently in
these spaces. The previously mentioned example is an ideal case where the obtained latent action
space has an interpretable physical meaning. However, in this work, we restrict ourselves to the
general case where this shared latent space could also have a semantic uninterpretable meaning, and
study its effect on decentralized learning in cooperative multi-robot manipulation tasks.

2 RELATED WORK

Multi-agent cooperative control Single-agent RL solutions to cooperative tasks do not scale well
due to the exploding state, observation, and action spaces. MARL methods handles this problem by
assigning different agents to different parts of the action and state spaces. This reduces the com-
plexity of learning and exploration of the individual components, but the overall problem remains
very challenging. MARL solutions could be simplified using custom policy parametrizations such
as finite state controllers (Bernstein et al., 2009; Amato et al., 2010) or transforming the problem to
enable tractable planning and search (Dibangoye & Buffet, 2018; Dibangoye et al., 2016). How-
ever, Alternatively, decentralized MARL methods fail to achieve a high level of coordination, which
is needed for physical systems control. This is due to the lack of information about the other agents’
observations, states, and consequently the actions they will take. Hence, several approaches have
been proposed to enable a feasible exchange of information during control. This could either be
achieved through explicit communication channels such as in Guestrin et al. (2002); Sukhbaatar
et al. (2016); Singh et al. (2018); Das et al. (2019); Pretorius et al. (2020); Niu et al. (2021), or via
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implicit information exchange as part of the policy architecture or the learning algorithm (Gupta
et al., 2017; Lee et al., 2020; Lowe et al., 2017). For instance, multiple methods are based on
modeling the other agents’ policies (Raileanu et al., 2018; Liu et al., 2020; Yu et al., 2021). This,
however, comes with the burden of training and tuning N × N policies for N agents. This kind
of method is usually based on the centralized training decentralized execution (CTDE) paradigm,
where training each policy can benefit from the information that is usually exclusive to the other
agents at execution time. Others have proposed using CTDE for learning a central dynamics model
and use the model for training decentralized policies (Zhang et al., 2021b; Willemsen et al., 2021).
Similarly, Lowe et al. (2017) and Foerster et al. (2018) propose training decentralized actors using
a centralized critic. Another common approach is to decompose the value function to the different
agents (Sunehag et al., 2018; Rashid et al., 2018). Beyond CTDE, multiple other solutions have
been proposed for alleviating the non-stationarity of MARL tasks. For instance, Liu et al. (2021)
propose engineering the reward function to punish competitive actions taken by individual agents.
Others proposed designing learning curricula that enforce a similar tendency (Bowling & Veloso,
2002; Mohseni-Kabir et al., 2019). Gupta et al. (2017) relied on policy parameter sharing across
agents, which allows multiple agents to use the same policy network while passing an agent index
as part of the observation. A more extensive overview on MARL can be found in (Zhang et al.,
2021a).

In multi-robot manipulation, the main problem with decentralized approaches is the lack of coordi-
nation between robots. Lee et al. (2020) tackle this problem by first learning robot-specific skills
and then learning a meta-policy that selects the skills each agent should execute. In this work, we
approach the problem from the perspective of action representations. We learn a latent action space
that is shared across agents. This enables all agents to share a copy of the same policy based on their
shared observations. Having a shared policy is only feasible due to the learned action space having
a lower dimensionality than the original action space of the whole system.

Latent action representation A common engineering problem in robotics is the choice of control
space. Different control types enable different kinds of behavior. For instance, motion control is
ideal for reaching a given goal but not perfectly suited for manipulating objects or applying forces.
Similarly, in RL, previous work showed that the choice of action space representation could lead
to improvements in sample efficiency, energy consumption, robustness (Martı́n-Martı́n et al., 2019;
Bogdanovic et al., 2020; Varin et al., 2019; Ulmer et al., 2021) or learning speed (Peng & van de
Panne, 2017). Types of action representation include torque, joint PD-controller, inverse dynamics,
muscle activation or variable impedance control (Peng & van de Panne, 2017; Varin et al., 2019;
Martı́n-Martı́n et al., 2019; Bogdanovic et al., 2020), but also DMPs can be seen as an action rep-
resentation (Buchli et al., 2011; Schaal, 2006). Bahl et al. (2020) embed DMPs in the action space
by having the policy outputs the DMP parameters. The studies further show that a relation between
the task space and choice of action space is of importance (Martı́n-Martı́n et al., 2019). More recent
publications also show the possibility of learning these action representations from observations and
interaction with the environment. Zhou et al. (2020) and Allshire et al. (2021) learn a conditional
variational autoencoder in order to obtain a latent action space. Policy search is then performed in
this latent action representation. During policy search, the decoder part of the auto-encoder is used
to transform the latent action back into the original action space. Similar to results about selecting
a different action space, the policy search benefits from increased convergence speed, stability, or
transfer ability. Zhou et al. (2020) additionally emphasizes constraining the policy to be within the
support of the dataset. Rana et al. (2022) learn a latent skill-based action space where the skills run
at a higher frequency than the policy actions. Karamcheti et al. (2021) use language embeddings to
inform the learning of latent action spaces. Ganapathi et al. (2022) integrate a differentiable imple-
mentation of forward kinematics in neural networks to combine cartesian and joint space control.

In this work, we use a similar action auto encoding structure as in (Allshire et al., 2021; Zhou et al.,
2020), and extend it to multi-agent systems. We propose a structure that enables sharing latent action
information and yet still is able to perform decentralized control under partial-observability.

3 METHOD

We are mainly interested in learning multi-robot manipulation tasks. Typically, such tasks involve
multiple robot manipulators (i. e. robot arms) that simultaneously interact with an object to achieve a
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Figure 2: System overview under full agent observability. (Left) we use a conditional autoencoder
for learning the central latent action space. The encoder receives all observations and actions from
all agents and produces a latent action vc. This latent action together with the full observation is
given to the agent specific decoders together with the observation. Each decoder outputs an action
that is in the original action space of the corresponding agent. (Right) All agents share the same
policy acting in the latent action space. We use the learned decoders to map the latent action into
their original action space.

predefined goal. Having a single actor control all robots would ideally lead to good coordination, but
would suffer greatly from the curse of dimensionality in exploration due to the large action and state
spaces. Alternatively, control could be split into multiple agents handling one robot each. By doing
so, we reduce the dimensionality of the individual agents’ action and state spaces, hence reducing
the sample complexity and exploration requirements. However, by decentralizing the process of
action generation, coordination between the different agents’ policies becomes challenging. One
main Another main difference to single-agent approaches is the lack of information present to each
agent at execution time. Namely, each agent can only receive a subset of all the observations of
the environment. The local agent observations usually correspond to agent-specific observations oi
(e.g., proprioceptive measurements in a robotics scenario) and task-related observations oc (e.g.,
object poses), that are shared across all agents’ observations. More importantly, each agent is solely
aware and responsible for producing its own actions. This makes cooperating toward a common
goal very difficult due to the lack of action coordination.

3.1 PROBLEM FORMULATION

Decentralized cooperative control tasks could be formulated as decentralized partially-
observable Markov decision processes (Dec-POMDP). A Dec-POMDP is defined by the set
⟨N,X , {Ui}i∈{1,...,N}, T , {ri}i∈{1,...,N}, γ, {Oi}i∈{1,...,N}, ρ⟩, whereN is number of agents (N =
1 corresponds to the single-agent problem), X is the state space shared by all agents, Ui is the action
space for agent i, T represents the environment dynamics, ri is the reward function for agent i, γ is
the discount factor, Oi is the observation space of agent i, and ρ is the initial state distribution. Since
we are interested in cooperative tasks, all agents share the same reward r1 = r2 = · · · = rN . Dec-
POMDP is a special type of partially observed stochastic games. Optimally solving Dec-POMDPs
is a challenging combinatorial problem that is NEXP-complete (Bernstein et al., 2002), in contrast
to MDPs, which are P-complete (Papadimitriou & Tsitsiklis, 1987).

3.2 CENTRAL LATENT ACTION SPACES

Previous approaches relied on the centralized training and decentralized execution paradigm to allow
using full observation and action information at least at training time. We follow this line of work
and propose learning a latent central action space V , which is shared across all agents. Controls
in this space represent single actions acting on the whole environment and should somehow be
translated again into commands to be executed by the individual robots. The motivation behind
this method is that cooperative tasks usually involve different agents manipulating the same entities
to achieve a high-level goal. The overall action that is reflected on those entities is a result of all
the control commands from all the agents. To illustrate this, we once again consider the scenario of
multiple robots lifting a single object. While the original action spaces of each agent would typically
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Figure 3: System overview under partial agent observability. (Left) we use a conditional autoencoder
for learning the central latent action space. The encoder receives all observations and actions from
all agents and produces a latent action v. The latent action contains agent-specific actions vi as well
as a central latent action vc. This latent action together with each agent’s observation are given to the
agent specific decoders together with the observation. Each decoder outputs an action that is in the
original action space of the corresponding agent. (Right) All agents share the same policy acting on
the object in the latent action space. They each have a separate policy acting the latent agent-specific
action space. We use the learned decoders to map the latent action into their original action space.

correspond to a control space of each robot, like torque control, the resulting action on the object can
be simply represented by the force and torque applied to its center of mass. This idea is illustrated
in figure 1. This concept is neither restricted to physical systems nor to single entities, i. e. the latent
action could have semantic meaning and act on more than one entity. Our approach is illustrated in
figure 2. We learn a central latent action space using a conditional autoencoder. Given this model,
all agents share a single policy to output actions in the latent action space, and translate the given
actions to the orignal action space of each robot based on the learned decoders.

To learn a latent central action space, we use Stochastic Gradient Variational Bayes (Kingma &
Welling, 2013) to overcome the intractable inference distributions involved in learning mappings to
this space. First we look at the case where each agent receives full observations o ∈ O1×O2×· · ·×
ON . For that, we introduce the graphical models in figure 2. The generative process of each agent’s
original action ui is conditioned on the latent central action v and the observation o (figure 11a).
The latter is also used during the inference process, as shown in figure 11b. Additionally—to infer
latent actions—actions from all agents u = [u1, . . . ,uN ] are needed. This is possible since the
inference/encoder network will not be used for producing actions in the original space at execution
time. Based on this model, all agents could share a copy of the same policy, which outputs a latent
central action v based on the full observation o. However, they would each have a different decoder
to translate the latent action v into their original action space. This is illustrated in figure 11c for
a hypothetical environment with two agents. The extension to more agents is trivial. Having a
shared policy is feasible in this scenario since the latent action space is supposed to have a lower
dimensionality than the aggregated action space of all control agents (e. g. robots). To illustrate this,
we go back to the lifting example. Controlling the joint velocity of two robots with six degrees of
freedom would result in an action space with a dimension of twelve. Instead, controlling the wrench
applied to the object only requires an action space with six dimensions. Note that this number does
not grow with the number of agents or robots. We derive a lower bound to the marginal likelihood:

p(u | o) =
∫
pθ(u | o,v) pψ(v | o) dv

ln p(u | o) = ln

∫
pθ(u | o,v) pψ(v | o) qϕ(v | o,u)

qϕ(v | o,u)
dv

≥
∫
qϕ(v | o,u) ln(pθ(u | o,v)) pψ(v | o)

qϕ(v | o,u)
dv

= Eqϕ(v|o,u)[ln pθ(u | o,v)− ln qϕ(v | o,u) + ln pψ(v | o)]
= Eqϕ(v|o,u)[ln pθ(u | o,v)]−KL(qϕ(v | o,u) || pψ(v | o)) (1)

= L(u, θ, ϕ, ψ |o), (2)
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Figure 4: Close-up screenshots from the simulation environments used in our experiments. The
environments are provided by robosuite (Zhu et al., 2020). (left) dual-arm-peg-in-hole environment
(middle) dual-arm-lift and (right) four-arm-lift environment with modified gripper structure.

where KL(||) is the Kullback-Leibler divergence, q(v | o,u) is the approximate posterior distribu-
tion:

qϕ(v | o,u) = N
(
v;µv, σ

2
v

)
[µv, σv] = gϕ(o,u). (3)

Since the generative process of each agent’s action is distributed, the likelihood is composed of
multiple terms:

pθ(u | o,v) = [pθ1(u1 | o,v), . . . , pθN (uN | o,v)], (4)
Where θi refers to decoder parameters for agent i, and θ = {θi}i∈N . Note that the prior is condi-
tioned on the observations. It is parameterized by ψ and has a policy-like form pψ(v | o). We train
it simultaneously to the encoder and decoders using the same loss function from equation (2). We
provide a more elaborate derivation of this loss in appendix A.2.

As mentioned, agents in a Dec-POMDP have only access to a subset of the observations. However,
we notice that in most environments, a certain part of the observations is shared across all agents, and
that is usually related to either objects in the scene or any kind of other task-specific observations; but
not to the agent’s embodiment. Even when this condition fails, it could be enforced in the learning
process. For instance, in (Liu & Kitani, 2022), the latent space is designed to contain information
about the object relevant to the task.

We introduce a new set of graphical models, as seen in figure 12. In this new model, the latent action
space is partitioned into N + 1 parts. The first N correspond to latent actions vi, which are specific
to each agent. The last part vc is central and shared with all agents. The generative process of each
agent’s action (in the original action space) is now conditioned on the agent’s observation oi, the
latent agent-specific action vi, and the latent central action vc. As for inference, the whole latent
action variable is conditioned on the full observation o and the full action u. As in the previous
case, using the full observation and action for inference is possible because the encoder would not
be used during control. Instead, each agent has a set of two policies: one policy producing the latent
agent-specific action vi based on oi; and another policy that is shared across all agents, and which
generate the latent central action based on the shared observation oc. These two latent actions are
then concatenated and decoded into the original action space of the agent. We show the architecture
of the policy in figure 12. Note that the policy updates also affect the decoder. The new lower bound
is very similar to the one in equation (2), with the minor difference of:

pθ(u | o,v) = [pθ1(u1 | o1,oc,v1,vc), . . . , pθN (uN | oN ,oc,vN ,vc)]. (5)

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS:

The encoders, decoders, prior distributions, and policies involved in this method are implemented
as multi-layer perceptrons neural networks using PyTorch (Paszke et al., 2019). All distributions
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dual-arm-peg-in-hole dual-arm-lift four-arm-lift

Figure 5: Episodic rewards in simulated multi-robot manipulation tasks. We compare our method
(CLAS) to centralized single-agent and decentralized multi-agent approaches. Our approach out-
performs the considered decentralized multi-agent approaches in all environments. It also manages
to solve the four-arm-lift task in which all the single-agent and decentralized multi-agent fail.

are transformed gaussian distributions using a hyperbolic tangent function (tanh). Actor, critic,
and prior networks have two hidden layers. Encoders and decoders have three hidden layers. For
training, we use the Adam optimizer (Kingma & Ba, 2014). Each policy is optimized using soft-
actor-critic (SAC) (Haarnoja et al., 2018). All modules are trained using randomly sampled data
from the replay buffer. The latter contains trajectories sampled from the previously described multi-
agent policy. At the beginning of training, we only update the latent action model using random
actions in a warm-up phase that lasts for a hundred thousand steps. We found this step to help the
training performance and stability.

We designed our experiments to investigate the following questions: (Q1) Can central latent action
spaces help coordinate action generation in decentralized cooperative robotic manipulation? (Q2)
Does our method improve sample efficiency with respect to the selected baselines? (Q3) Can our
method reach or exceed the performance of single-agent approaches with full-state information?
(Q4) Is our method scalable to more than two-arm manipulation tasks? (Q5) Does our method
recover meaningful and task-relevant action representations?

4.2 ENVIRONMENTS

We evaluated our method in three simulated environments based on robosuite (Zhu et al., 2020). The
environments are selected/built such that they require cooperation between multiple robot arms. Due
to the lack of standardized environments that are suitable for our use case (i. e. multi-robot manipu-
lation), we use existing environments from public benchmarks when suitable and build alternatives
when needed. Due to the nature of our problem, we select environments that have continuous state
and action spaces. In all of the environments, each agent observations are the corresponding robot’s
joint position and velocity as well as its end-effector pose.

Dual-arm-peg-in-hole. In the first environment, two robot arms cooperate on the peg-in-hole task.
A close-up view of the scene and the objects can be seen on the left in figure 4. We are using the
original reward from robosuite, which is composed of a reaching and orientation reward. The shared
observation oc corresponds to the poses of the peg and hole and the distance between them.

Dual-arm-lift. For the second environment, we decided to use the dual-arm-lift environment. In
this environment, a rectangular pot with two handles is placed on a surface between two robot arms.
The task for each robot is to reach and grip the handle before cooperatively lifting the pot off the sur-
face. During initial experiments, we noticed that the provided reward does not promote cooperation
and can be easily tricked. The maximum reward per time step can be reached by controlling a single
agent to tilt and lift the pot only slightly off the table. This is due to the generous maximum tilt angle
of 30◦ and the successful lift height of 0.10. The other major component of the reward measures the
ability to reach and grasp the pot handles. However, we are not interested in assessing the reaching
and gripping capabilities but want to rather reward a cooperative lifting behavior. Therefore we are
considering the following modifications to the reward of the environment. At the start of an episode,
we move each robot’s end-effector close to its handle and weld the pot handle to the end-effector
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with a distance constraint in the MuJoCo ((Todorov et al., 2012)) simulator. We chose a distance
constraint because it constrains the position but leaves rotational coordinates free. We remove the
gripper fingers to avoid unwanted collisions. We visualize the resulting starting condition in the
middle of figure 4. We also modify the reward function to enforce success only during high lifts.
Additionally, the maximum tilt angle is reduced such that both robots must cooperate to keep the
pot at a level at all times. We describe the final reward in equation (6) in the appendix. The shared
observation oc corresponds to the pose of the pot.

Four-arm-lift. The third environment is an extension of the dual-arm-lift environment and uses
two additional robot arms to lift the pot (i. e. total of four robot arms). Here the pot weight is
increased to keep the coordination requirement. We build this environment for the sole purpose of
testing scalability to more than two robots/agents. The pot with four handles and the robot arms’
placement can be seen on the right in figure 4.

The changes to the lifting environments were evaluated with manual human control to ensure that
tricking the system or solving the task with a single robot arm is not possible. Keeping a high reward
was only possible when the pot is lifted vertically for a long period of steps. All environments use a
joint velocity controller which receives desired joint velocities from the policy.

4.3 BASELINES:

To validate our method, we compare it to well-established baselines that have been previously ap-
plied to continuous control. We refrain from comparing it to various methods which serve a different
goal, i. e. our approach is meant to handle the problem of decentralized action generation, while pre-
vious work is more concerned with the lack of information available to each agent as well as the
non-stationarity of the environment from the perspective of each agent. Our experiments include the
following baselines:

• SINGLE: refers to having a single agent controlling all robots.
• LASER: uses a latent action space on top of a single agent controlling all robots. This is based on

the work in (Allshire et al., 2021).
• FULL DEC: refers to having all agents trained with the exact observations and actions they will

have access to during execution. The agents are not provided with a communication channel.
• SHARED Q: similar architecture to FULL DEC, but all agents are trained using a central critic.

This baseline is based on the work in (Lowe et al., 2017).
• CLAS: refers to our method and abbreviates “central latent action spaces.”

The first two single-agent approaches are included as strong baselines and reference. They serve us
to better understand the different environments and to elaborately analyze our results. Finally, to
make the comparison more reliable, we use SAC for training the different agents in all baselines.

4.4 RESULTS

Task Performance. Figure 5 shows the episodic reward obtained by our method and the base-
lines on the two considered environments. Looking at the single-agent approaches, we observe that
both baselines reach high reward areas for the dual-arm tasks. However, they both fail to solve
the four-arm-lift task. At the end of training, the best mean episode reward achieved by a single
agent is substantially smaller than the maximum possible reward and has a very large variance. This
illustrates the problem of learning multi-robot manipulation tasks with large action and observa-
tion spaces with a single-agent RL approach. In contrast to the dual-arm tasks, the four-arm-lift
environment features state and action spaces twice the size.

Next, we analyze the results from MARL-based methods. FULL DEC and SHARED Q struggle
to keep up with single-agent RL methods. Both methods do not explicitly encourage coordina-
tion. Hence, This this result might indicate that our environments are well-suited for studying Dec-
POMDPs, since they require a certain degree of coordination to be solved. The two approaches
manage to solve the peg-in-hole task but struggle in the two other environments. They also lead to
very similar results. In contrast, our method (CLAS) successfully solves all tasks even under partial
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Success rates over 10 evaluation runs under ex-
ternal disturbances.

FULL DEC SHARED Q CLAS

none 70% 100% 100%
[0, 50] 30% 80% 100%
[50, 100] 20% 60% 100%
[100, 150] 10% 70% 100%
[150, 200] 20% 40% 100%
[200, 250] 0% 40% 100%
[250, 300] 0% 30% 90%
[300, 350] 0% 20% 60%

Figure 6: Effect of applying disturbances (forces) at the center of mass of the pot in the four-arm-lift
environment. (left) Episode reward (right) success rate under different ranges of disturbances. Re-
sults are based on 10 evaluation runs. Our method demonstrates robustness against different ranges
of disturbances in comparison to the other decentralized baselines, which success rate decreases
dramatically as we increase the disturbance.

observability. In the dual-arm-peg-in-hole environment, it reaches a high episode reward after only
250 thousand environment interaction steps, while the two other MARL approaches fail to do so
in triple the number of steps. Furthermore, it achieves a final performance very close to the one
achieved by single-agent methods. In the dual-arm-lift environment, our approach outperforms both
MARL-based baselines. Additionally, it surpasses the final performance of the two other MARL
approaches after only a half amount of steps. More importantly, CLAS slightly outperforms the
single-agent methods. In the four-arm-lift environment, CLAS is the only studied method that man-
ages to solve the task and achieve a high reward. Even the single-agent baselines which have access
to full state information fail in this task. This indicates that acting in the latent central action space
enables coordinated control even under partial observability and action decentralization. Finally, we
notice that our method leads to significantly lower performance variance, which makes deploying it
in real-world scenarios more reliable.

Robustness analysis. We aim to evaluate the coordination capability of our method by quantifying
its robustness to external disturbances. We perform this experiment on the four-arm-lift environment
and compare the different decentralized baselines to our method. For each method, we pick the
model from the training run with the best achieved performance. We then evaluate the corresponding
agents in the same environment as before, however, when additionally applying an external force
to the center of mass of the pot. The force is applied during the steps in the interval [10, 100] and
the values of the force vector are uniformly sampled at each step to be in a certain range. We
experimented with multiple ranges. The results can be seen in figure 6. Under no disturbances
(”none”), all methods achieve a high reward and a decent success rate. After applying disturbances
in the range [200 − 250], FULL DEC fails in all evaluation runs to solve the task. The success rate
of SHARED Q goes down to 40%, but its reward remains relatively high as the agent manages to lift
the pot a bit but not always to the target height. On the other hand, our method CLAS is almost not
affected by this level of disturbances. As expected, when increasing the magnitude of the forces, all
methods start to fail more often at solving the task, but CLAS appears to remain reasonably robust.

Interpreting Analyzing the central latent action space. To further validate our method, we exam-
ine the shared latent actions produced during evaluation. Figure 7a shows trajectories of the shared
latent actions produced by our model for the dual-arm-lift task. We observe that most shared latent
action dimensions are active during control. One of the latent actions is constant during execution
which illustrates that our approach could successfully recover a lower-dimension action space even
when configured differently. Furthermore, we notice that the sequence of actions from the most
varying latent action (in red) highly correlates with the z-position trajectory of the pot (figure 7b).
The z-position follows the mentioned latent action with a slight time delay. In this case, this la-
tent action represents desired z-positions of the pot needed to lift it. This is an interesting finding
since our approach does not explicitly enforce any physical form or structure on the latent action
space. The emergence of this property is purely due to the compression capabilities of variational
autoencoders. Note that the plots in figure 7 are qualitative results only meant to illustrate emergent
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(a) (b)

Figure 7: Central latent action trajectories for the lifting task. (a) Trajectories of all latent action
dimensions. (b) Correlation between one shared latent action and the z position of the pot. The
z-position trajectory of the pot (blue curve) follows the latent action trajectory (red curve).

latent actions spaces, and do not mean that our approach is interpretable. We provide additional
experimental analysis in appendix B.

5 CONCLUSION

We propose latent central action spaces for decentralized multi-agent control in cooperative tasks.
The main idea behind our method is to enable coordinated control of multiple robot manipulators
based on sharing a latent action space that is agent-agnostic. During training time, our approach
benefits from central access to all observations and actions and uses this data to train the latent
action space model. During execution, each agent benefits from the latent central action model
to produce control commands that are coordinated with other agents. We compare our approach
to different baselines and show that latent central action spaces improve the overall performance
and efficiency of learning. Interestingly, our method solves a task in which centralized baselines
struggle. Finally, we show that our approach improves robustness against external disturbances. as
well as interpretability.
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A FURTHER DETAILS

A.1 MODELS

We provide further figures illustrating the computational architecture and graphical models related
to the different components of the algorithm. Figure 8 shows the grahical models of the policies in-
volved in our method under full and partial observability. The corresponding computational models
are shown in figure 9 and figure 10.

A.2 DERIVATIONS

Here we go over the derivation of equation 1 and provide more steps and explanations on how the
derivation is performed:

p(u | o) =
∫
pθ(u | o,v) pψ(v | o) dv

ln p(u | o) = ln

∫
pθ(u | o,v) pψ(v | o)dv

ln p(u | o) = ln

∫
pθ(u | o,v) pψ(v | o) qϕ(v | o,u)

qϕ(v | o,u)
dv

≥
∫
qϕ(v | o,u) ln

(
pθ(u | o,v) pψ(v | o)

qϕ(v | o,u)

)
dv

= Eqϕ(v|o,u)
[
ln
(
pθ(u | o,v) pψ(v | o)

qϕ(v | o,u)

)]
= Eqϕ(v|o,u)[ln pθ(u | o,v)− ln qϕ(v | o,u) + ln pψ(v | o)]
= Eqϕ(v|o,u)[ln pθ(u | o,v)]−KL(qϕ(v | o,u) || pψ(v | o))
= L(u, θ, ϕ, ψ |o).

The inequality step is based on Jensen’s inequality, the pre-last step is due to the product and quotient
rules of logarithms, and the last step is based on the definition of the KL divergence. The derivation
is in line with the original lower bound derivation for variational autoencoders (Kingma & Welling,
2013).

A.3 LIMITATIONS AND FUTURE WORK

One limitation of our method is that it does not explicitly force physically meaningful latent action
spaces to be produced. We chose to avoid such a constraint in this work, to keep the approach
applicable to different domains. However, having latent central actions with physical interpretations
or domain-relevant meaning, in general, could be very handy, especially for controlling physical
systems in the real world. We leave this for future work. Furthermore, we noticed in our experiments
that our approach could have a trivial solution where the shared latent action space is ignored. This
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Figure 8: Graphical models of the policies used by CLAS for the cases of partial (a) and full observ-
ability (b).
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Figure 9: Computational models of the autoencoders under full observability.

solution could be obtained in cases where the shape of the agent-specific latent actions is chosen to
be equal to the original agent action space shape. However, the trivial solution also leads to better
results than the previous baselines due to the centralized training of the latent action space model.

B EXPERIMENTS

B.1 SETUP

Here we provide further details concerning our setup and experimental design, as to enable easy
reproduction of our work.

The environments we used are based on joint velocity control action spaces. Each agent receives
the corresponding robot’s proprioceptive measurements, and the shared observation corresponds to
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Figure 10: Computational models of the autoencoders under partial observability.
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Figure 11: Graphical models under full access to observations for all agents. (a) action generation,
(b) latent action inference and (c) policy structure for a two-agent scenario. During generation of
actions ui each agent i requires input from global observations o and central latent actions v. In
order to infer latent actions v information from all agents and the global observation is needed.
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Figure 12: Graphical models under partial agent observability. (a) action generation, (b) latent action
inference, and (c) computational structure of policy with decoder. During generation of action ui the
input observation excludes all the other agents observations o−i and latent actions v−i. Inference is
done based on observations and actions from all agents.

16



Under review as a conference paper at ICLR 2023

0.5 1.0 1.5
step 1e6

100

200

300

400

ep
iso

di
c 

re
wa

rd

CLAS
FULL_DEC
SHARED_Q
LASER (2e6)
SINGLE (2e6)

dual-arm-lift

100000 200000 300000 400000 500000
step

0

100

200

300

400

ep
iso

di
c 

re
wa

rd

CLAS
SHARED_Q
FULL_DEC
LASER (1.5e6)
SINGLE (1.5e6)

four-arm-lift

Figure 13: Results under full agent observability.

object observations. For evaluation, we run each episode for 500 steps leading to maximal reward
of 500. We run all evaluation experiments 10 times with different random seeds.

The reward used in the Lift environment is the following:

rlift = max(d− 0.05, 0)

rdir =

{
1, for cos(α) ≥ cos(10◦)
0, for cos(α) < cos(10◦)

r =
1

3

{
3 rdir, for d > 0.35
10 rdir + rlift, for d ≤ 0.35,

(6)

where d represents the distance between the surface and the pot, α the tilt angle of the pot.

B.2 RESULTS UNDER FULL OBSERVABILITY

Here we study the performance of our method in the case where all agents have access to the full
observation. We again compare to the same baselines. Similar to the results in section 4, our methods
outperforms all MARL baselines in terms of final reward and sample efficiency. It also approaches
the performance of the centralized single agents, and even outperforms them in four-arm-lift.

B.3 ABLATIONS

In section 4, we showed that the shared latent actions are active during control. To make sure that
the shared latent actions are not ignored during execution we perform the following experiment. We
replace the shared latent actions with zeros during inference, and compare the achieved episodic
reward to the standard case using our method. The results are in figure 15. For the peg-in-hole
environment, the difference in performance is minor. This is mainly due to the fact that this task
does not necessarily involve objects that are independent of the robots. Instead the peg and hole are
attached to the corresponding robot. The improvement in results shown by our method in figure 5
is mainly due to the centralized training of the latent action space model. However, for the lifting
environments, where a robots-independent object is to be manipulated, masking the shared latent
action makes a huge difference. Namely, masking the shared latent actions with zeros leads to very
low rewards. These two results indicate that our action space model maps robot actions into actions
acting on the objects in some space.

B.4 RESULTS UNDER ASYMMETRY OF ACTION SPACES

To check whether our approach is capable of handling asymmetric action spaces and multiple robots,
we compare its performance to the baselines again in the dual-arm-lift environments. However, this
time we use two different robots in the environment, namely we use a Panda and a Sawyer robot.
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Figure 14: Reward plots in the dual-arm-lift environments when using two different robots with
different action spaces.

The panda is equipped with a joint velocity action space and Sawyer with an operational space
controller. The results are in figure 14. CLAS is the only decentralized method that finds policies
capable of lifting the pot, while the other two decentralized baselines as well as SINGLE struggle to
do so.

B.5 COORDINATION

To demonstrate the coordination achieved by both agents we plot the desired joint velocity generated
by the policy and the achieved joint velocity for both agents. This can be seen in figure 16 and 17. We
notice that the dominant pattern across all plots is the diagonal. This shows that the policy outputs
are used by both robots as opposed to having one robot being controlled by a policy, while the other
being purely reactive and ignoring its policy outputs. The fourth joint is the only exception, where
some policy outputs are ignored (mapped to zeros). However, also in this case, the most values fall
on the diagonal.

B.6 QUALITATIVE RESULTS

We attach a video to the supplementary material (”lift.mp4”), showing our method controlling two
arm to perform the previously described lifting task.
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Figure 15: Effect of masking the shared latent action on the achieved total reward.
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Figure 16: Plots of the achieved joint velocity based on the commanded joint velocity for the two
agents involved in the Lifting task. Each row indicates a joint [1-4].
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Figure 17: Plots of the achieved joint velocity based on the commanded joint velocity for the two
agents involved in the Lifting task. Each row indicates a joint [5-7].
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