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Abstract

Real-world datasets often have missing values associated with complex generative
processes, where the cause of the missingness may not be fully observed. This
is known as missing not at random (MNAR) data. However, many imputation
methods do not take into account the missingness mechanism, resulting in biased
imputation values when MNAR data is present. Although there are a few methods
that have considered the MNAR scenario, their model’s identifiability under MNAR
is generally not guaranteed. That is, model parameters can not be uniquely deter-
mined even with infinite data samples, hence the imputation results given by such
models can still be biased. This issue is especially overlooked by many modern
deep generative models. In this work, we fill in this gap by systematically analyzing
the identifiability of generative models under MNAR. Furthermore, we propose a
practical deep generative model which can provide identifiability guarantees under
mild assumptions, for a wide range of MNAR mechanisms. Our method demon-
strates a clear advantage for tasks on both synthetic data and multiple real-world
scenarios with MNAR data.

1 Introduction

Missing data is an obstacle in many data analysis problems, which may seriously compromise the
performance of machine learning models, as well as downstream tasks based on these models. Being
able to successfully recover/impute missing data in an unbiased way is the key to understanding the
structure of real-world data. This requires us to identify the underlying data-generating process, as
well as the probabilistic mechanism that decides which data is missing.

In general, there are three types of missing mechanisms [44]. The first type is missing completely
at random (MCAR), where the probability of a data entry being missing is independent of both the
observed and unobserved data (Figure 1 (a)). In this case, no statistical bias is introduced by MCAR.
The second type is missing at random (MAR), which assumes that the missing data mechanism
is independent of the value of unobserved data (Figure 1 (b)). Under this assumption, maximum
likelihood learning methods without explicit modeling of the missingness mechanism can be applied
by marginalizing out the missing variables [3, 25, 28]. However, both MCAR and MAR do not hold
in many real-world applications, such as recommender systems [8, 14], healthcare [13], and surveys
[51]. For example, in a survey, participants with financial difficulties are more likely to refuse to
complete the survey about financial incomes. This is an example of missing not at random (MNAR),
where the cause of the missingness (financial income) can be unobserved. In this case, ignoring the
missingness mechanism will result in biased imputation, which will jeopardize down-stream tasks.
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Figure 1: Exemplar missing data situations. (a): MCAR; (b): MAR; (c)-(i): MNAR.

There are few works considering the MNAR setting in scalable missing value imputation. On the
one hand, many practical methods for MNAR does not have identifiability guarantees [12, 8, 24].
That is, the parameters can not be uniquely determined, even with access to infinite samples [33, 43].
As a result, missing value imputation based on such parameter estimation could be biased. On the
other hand, there are theoretical analyses on the identifiability in certain scenarios [33, 34, 35, 38, 53,
55, 57], but without associated practical algorithms for flexible and scalable settings (such as deep
generative models). Moreover, MNAR data have many possible cases (Figure 1) based on different
independence assumptions [38], making the discussion of identifiability difficult. This motivates
us to fill this gap by extending identifiability results of deep generative models to different missing
mechanisms, and provide a scalable practical solution.Our contribution are threefold:

• We provide a theoretical analysis of identifiability for generative models under different MNAR
scenarios (Section 3). More specifically, we provide sufficient conditions, under which the ground
truth parameters can be uniquely identified via maximum likelihood (ML) learning using observed
information [24]. We also demonstrate how the assumptions can be relaxed in the face of real-world
datasets. This provides foundation for practical solutions using deep generative models.

• Based on our analysis, we propose a practical algorithm model based on VAEs (Section 4), named
GINA (deep generative imputation model for missing not at random). This enables us to apply
flexible deep generative models in a principled way, even in the presence of MNAR data.

• We demonstrate the effectiveness and validity of our approach by experimental evaluations (Section
6) on both synthetic data modeling, missing data imputation in real-world datasets, as well as
downstream tasks such as active feature selection under missing data.

2 Backgrounds

2.1 Problem Setting

A critical component to develop model to impute MNAR data is the model identifiablity [18, 43]. We
give the definition below:

Definition 2.1 (Model identifiability). Assume pθ(X) is a distribution of some random variable
X , θ is its parameter that takes values in some parameter space Ωθ. Then, if pθ(X) satisfies
pθ1(X) ̸= pθ2(X) ⇐⇒ θ1 ̸= θ2,∀θ1, θ2 ∈ Ωθ, we say that pθ is identifiable w.r.t. θ on Ωθ.

In other words, a model pθ(X) is identifiable, if different parameter configurations implies a different
probabilistic distributions over the observed variables. With identifiability guarantee, if the model
assumption is correct, the true generation process can be recovered. Next, we introduce necessary
notations and of missing data, and set up a concrete problem setting.
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Basic Notation. Similar to the notations introduced by [12, 44], let X be the complete set of
variables in the system of interest. We call it observable variables. Let I = {1, ..., D} be the index
set of all observable variables, i.e., X = {Xi|i ∈ I}. Let Xo denote the set of actually observed
variables, here O ∈ I is a index set such that Xo ⊂ X . We call O the observable pattern. Similarly,
Xu denotes the set of missing/unobserved variables, and X = Xo

⋃
Xu. Additionally, we use R to

denote the missing mask indicator variable, such that Ri = 1 indicates Xi is observed, and Ri = 0
indicates otherwise. We call a probabilistic distribution p(X) on X the reference distribution, that
is, the distribution that we would have observed if no missing mechanism is present; and we call
the conditional distribution p(R|X) the missing mechanism, which decides the probability of each
Xi being missing. Then, we can define the marginal distribution of partially observed variables,
which is given by log p(Xo, R) = log

∫
Xu

p(Xo, Xu, R)dXu . Finally, we will use lowercase letters
to denote the realized values of the corresponding random variable. For example, (xo, r) ∼ p(Xo, R)
is the realization/samples of Xo and R, and the dimensionality of xo may vary for each realizations.

Problem setting. Suppose that we have a ground truth data generating process, denoted by
pD(Xo, R), from which we can obtain (partially observed) samples (xo, r) ∼ pD(Xo, R). We
also have a model to be optimized, denoted by p(θ,λ)(Xo, Xu, R),where θ is the parameter of refer-
ence distribution pθ(X), and λ the parameter of missing mechanism pλ(R|X). Our goal can then be
described as follows:

• To establish the identifiability of the model p(θ,λ)(Xo, R). That is, we wish to uniquely and
correctly identify θ̂, such that pθ̂(X) = pD(X), given infinite amount of partially observed data
samples from ground truth, (xo, r) ∼ pD(Xo, R).

• Then, given the identified parameter, we will be able to perform missing data imputation, using
pθ̂(Xu|Xo). If our parameter estimate is unbiased, then our imputation is also unbiased, that is,
pθ̂(Xu|Xo) = pD(Xu|Xo) for all possible configurations of Xo.

2.2 Challenges in MNAR imputation

Recall the three types of missing mechanisms: if data is MCAR, p(R|X) = p(R); if if data is MAR,
p(R|X) = p(R|Xo); otherwise, we call it MNAR. When missing data is MCAR or MAR, missing
mechanism can be ignored when performing maximum likelihood (ML) inference based only on the
observed data [44], as:

argmax
θ

E(xo,r)∼pD(Xo,R) log pθ(Xo = xo) = argmax
θ

E(xo,r)∼pD(Xo,R) log pθ(Xo = xo, R = r)

where log p(Xo) = log
∫
Xu

p(Xo, Xu)dXu.In practice, ML learning on Xo can done by EM algo-
rithm [3, 24]. However, when missing data is MNAR, the above argument does not hold, and the
missing data mechanism cannot be ignored during learning. Consider the representative graphical
model example in Figure 1 (d), which has appeared in many context of machine learning. In this
graphical model, X is the cause of R, and the connections between X and R are fully connected, i.e.,
each single node in R are caused by the entire set X . All nodes in R are conditionally independent
from each other given X .

Clearly, this is an example of a data generating process with MNAR mechanism. In this case, Rubin
proposed to jointly optimize both the reference distribution pθ(X) and the missing data mechanism
pλ(R|X), by maximizing:

argmax
θ,λ

E(xo,r)∼pD(Xo,R) [log pθ(Xo = xo) + log pλ(R = r|Xo = xo)] (1)

This factorization is referred as selection modeling [12, 24]. There are multiple challenges if we
want to Eq. 1 to obtain a practical model that provide unbiased imputation. First, we need model
assumption to be consistent with the real-world data generation process, pD(Xo, R). Given a wide
range of possible MNAR scenarios, it is a challenge to design a general model. Secondly, the model
need to be identifiable to enable the possibility to learn the underlying process which leads to unbiased
imputation.
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2.3 Variational Autoencoders and its identifiability

Variational auto-encdoers [17, 41, 64] is a flexible deep generative model that is commonly used for
estimating densities of pD(X). It takes the following form:

log pθ(X) = log

∫
Z

dZpθ(X|Z)p(Z), (2)

where Z is some latent variable model with prior p(Z), and pθ(X|Z) is given by pθ(X|Z) =
N (fθ(Z), σ), with fθ(·) being a neural network parameterized by θ. Generally, VAEs do not have
identifiability guarantees w.r.t. θ [16]. Nevertheless, inspired by the identifiablity of nonlinear ICA,
[16] shows that the identifiability of VAE can be established up to equivalence permutation under mild
assumptions, if the unconditional prior p(Z) of VAE is replaced by the following the conditionally
factorial exponentially family prior,

pT,ζ(Z|U) ∝
∏
i=1

Q(Zi) exp[

K∑
j=1

Ti,j(Zi)ζi,j(U)], (3)

where U is some additional observations (called auxiliary variables), Q(Zi) is some base measure,
Ti(U) = (Ti,1, ..., Ti,K) the sufficient statistics, and ζi(U) = (ζi,1, ..., ζi,K) the corresponding
natural parameters. Then, the new VAE model given by

log pθ(X|U) = log

∫
Z

dZpθ(X|Z)pT,ζ(Z|U) (4)

is identifiable (Theorem 1 and 2 of [16], see Appendix G).We call the model (4) the identifiable VAE.
Unfortunately, this identifiability results for VAE only hold when all variables are fully observed;
thus, it cannot be immediately applied to address the challenges of dealing with MNAR data stated
in Section 2.2. Next, we will analyze the identifiablity of generative models under general MNAR
settings (Section 3), and propose a practical method that can be used in MNAR (Section 4).

3 Establishing model identifiability under MNAR

One key issue of training probabilistic models under MNAR missing data is its identifiability. Recall
that (Definition 2.1) model identifiability characterize the property that the mapping from parameter θ
to the distribution pθ(X) is one-to-one. This is often closely related to maximum likelihood learning.
In fact, it is not hard to show that Definition 2.1 is equivalent to the following Definition 3.1:
Definition 3.1 (Equivalent definition of identifiability). We say a model pθ(X) is identifiable, if:

arg max
θ∈Ωθ

Ex∼pθ∗ (X) log pθ(X = x) = θ∗, ∀θ∗ ∈ Ωθ (5)

In other words, the “correct” model parameter θ∗ can be identified via maximum likelihood learning
(under complete data), and the ML solution is unbiased. Similarly, when MNAR missing mechanism
is present, we perform maximum likelihood learning on both Xo and R using Eq. 1. Thus, we need
log pθ,λ(Xo, R) to be identifiable under MNAR, so that we can correctly identify the ground truth
data generating process, and achieve unbiased imputation. The identifiability of log pθ,λ(Xo, R)
under MNAR is usually not guaranteed, even in some simplistic settings [33]. In this section, we
will give the sufficient conditions for model identifiability under MNAR, and study how these can be
relaxed for real-world applications

3.1 Sufficient conditions for identifiability under MNAR

In this section, we give sufficient conditions where the model parameters θ can be uniquely identified
by Rubin’s objective, Eq. 1. Our aim is to i), find a set of model assumptions, so that it can cover
many common scenarios and be flexible for practical interests; and ii), under those conditions, we
want to show that its parameters can be uniquely determined by the partial ML solution Eq. 1. As
shown in Figure 1, MNAR have many possible difference cases depending on its graphical structures.
We want our results to cover every situation.

Instead of doing case by case analysis, we will start our identifiability anaylsis with one fairly general
case as the example shown in Figure 1 (h) where the missingness can be caused by other partially
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observed variable, by itself (self-masking) or by latent variables. Then, we will discuss how these
analysis can be applied to other MNAR scenarios in Section 3.2.

Data setting D1. Suppose the ground truth data generation process satisfies the following conditions:
all variables X are generated from a shared latent confounder Z, and there are no connections among
X; and the missingness indicator R variable can not be the parent of other variables. A typical
example of such distribution is depicted in Figure 1 (h).We further assume that pD(Xo, Xu, R) has
the following parametric form: pD(Xo, Xu, R) =

∫
Z

∏
d pθ∗

d
(Xd|Z)p(Z)pλ∗(R|X,Z)dZ, where

pλ∗(R|X,Z) =
∏

d pλ∗
d
(Rd|X,Z), for some θ∗, λ∗.

Then, consider the following model:

Model assumption A1. We assume that our model has the same graphical representation, as well as
parametric form as data setting D1, that is, our model can be written as:

pθ,λ(Xo, R) =

∫
Xu,Z

dXudZ
∏
d

pθd(Xd|Z)
∏
d

pλd
(Rd|X,Z)p(Z) (6)

Here, (θ, λ) ∈ Ω are learnable parameters that belong to some parameter space Ω = Ωθ × Ωλ. Each
θ is the parameter that parameterizes the conditional distribution that connects Xd and Z, pθd(Xd|Z).
Assume that the ground truth parameter of pD belongs to the model parameter space, (θ∗, λ∗) ∈ Ω.

Given such a model, our goal is to correctly identify the ground truth parameter set-
tings given partially observed samples from pD(Xo, Xu, R). That is, let (θ̂, λ̂) =

argmax(θ,λ)∈Ω E(xo,r)∼pD(Xo,R) log p(θ,λ)(Xo = xo, R = r), we would like to achieve θ̂ = θ∗. In
order to achieve this, we must make additional assumptions.

Assumption A2. Subset identifiability: There exist a partition2 of I, denoted by AI = {Os}1≤s≤S ,
such that: for all Os ∈ AI , pθ(Xos) is identifiable on a subset of parameters {θd|d ∈ Os}.

This assumption basically formalizes the idea of divide and conquer: we partition the whole index
set into several smaller subsets {Os}1≤s≤S , on which each reference distribution pθ(XOs) is only
responsible for the identifiability on a subset of parameters.

Assumption A3. There exists a collection of observable patterns, denote by ĀI := {O′
l}1≤l≤L, such

that: 1), ĀI is a cover 2 of I; 2), pD(X,RO′
l
= 1, RI\O′

l
) > 0 for all 1 ≤ l ≤ L; and 3), for all

index c ∈ O′
l, there exists Os ∈ AI defined in A2, such that c ∈ Os ⊂ O′

l.

This assumption is about the strict positivity of the ground truth data generating process,
pD(Xo, Xu, R). Instead of assuming that complete case data are available as in [38], here we
assumes we should at least have some observations, pD(X,Ro = 1, Ru = 0) > 0 for O ∈ ÂI , on
which pθ(Xo) is identifiable.

To summarize, A1 ensures that our model has the same graphical representation/parametric forms as
the ground truth; A2 pθ(Xo) =

∫
Xu

pθ(Xo, Xu)dXu should be at least identifiable for a collection
of observable patterns that forms a partition of I; and Assumption A3 ensures that pD(Xo, Xu, R)
should be positive for certain important patterns (i.e., those on which pθ(Xo) is identifiable). In
Appendix C, we will provide a practical example that satisfies those assumptions. Given these
assumptions, we have the following proposition (See Appendix C for proof.):

Proposition 1 (Sufficient conditions for identifiability under MNAR). Let pθ,λ(Xo, Xu, R) be a
model on the observable variables X , and missing pattern R, and pD(Xo, Xu, R) be the ground
truth distribution. Assume that they satisfies Data setting D1, Assumptions A1, A2 and A3.

Let Θ = argmax(θ,λ)∈Ω E(xo,r)∼pD(Xo,R) log p(θ,λ)(Xo = xo, R = r) be the set of ML solutions of
Equation 1. Then, we have Θ = {θ∗} ×Θλ. That is, the ground truth model parameter θ∗ can be
uniquely identified via (partial) maximum likelihood learning.

Missing value imputation as inference. Given a model p(θ)(Xo, Xu), the missing data imputation
problem can be then formularized by the Bayesian inference problem pθ(Xu|Xo) ∝ pθ(Xu, Xo).
If the assumptions of Proposition 1 are satisfied, it enables us to correctly identify the ground truth

2It can be arbitrary partition in the set theory sense.
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reference model parameter, θ∗. Therefore, the imputed values sampled from the posterior pθ∗(Xu|Xo)
will be unbiased, and can be used for down stream decision making tasks.

Remark: Note that Proposition 1 can be extended to the case where model identifiability is defined
by equivalence classes [16, 53]. See Appendix F for details.

3.2 Relaxing “correctness of parametric model” assumption (A1)

In this section, we further extend our previous results to the general MNAR cases including all
different examples in Figure 1. In particular, we would like to see the if the same model setting
in Section 3.1 can be applied to scenarios where pD(Xo, Xu, R) and pθ,λ(Xo, Xu, R) might have
different parametric forms, or even different graphical representations.

To start with, we would like to point out that the mismatch between pD(Xo, Xu, R) and the model
pθ,λ(Xo, Xu, R) can be, to a certain extend, modeled by the mappings between spaces of parameters.
Let Ω ⊂ RI denote the parameter domain of our model, pθ,λ(Xo, Xu, R). Suppose we have a
mapping Φ : Ω ⊂ RI 7→ RJ , such that (θ, λ) ∈ Ω ⊂ Ω is mapped to another parameter space
(τ, γ) = Φ(θ, λ) ∈ Ξ ⊂ RJ via Φ(·). Here, Ω is a subset of Ω on which Φ is defined. Then, the
re-parameterized pθ,λ(Xo, Xu, R) on parameter space Ξ can be rewritten as:

p̃τ,γ(Xo, Xu, R) := pΦ−1(τ,γ)(Xo, Xu, R)

Assuming that the inverse mapping Φ−1 exists. Then trivially, if pθ,λ(Xo, R) is identifiable with
respect to θ and λ, then p̃τ,γ(Xo, R) should be also identifiable with respect to τ and γ:

Proposition 2. Let Ω ⊂ RI be the parameter domain of the model pθ,λ(Xo, Xu, R). Assume that
the mapping Φ : (θ, λ) ∈ Ω ⊂ RI 7→ (τ, γ) ∈ Ξ ⊂ RJ is one-to-one on Ω (equivalently, the inverse
mapping Φ−1 : Ξ 7→ Ω is injective, and Ω is its image set). Consider the induced distribution with
parameter space Ξ, defined as p̃τ,γ(Xo, R) := pΦ−1(τ,γ)(Xo, R). Then, p̃ is identifiable w.r.t. (τ, γ),
if pθ,λ(Xo, R) is identifiable w.r.t. θ and λ.

Proposition 2 basically shows that if two distributions pθ,λ(Xo, R) and p̃τ,γ(Xo, R) are related by a
mapping Φ with nice properties, than the identifiability will translate between them. This already
covers many scenarios of the data-model mismatch. For example, consider the case where ground
truth data generation process satisfies the following assumption:

Data setting D2 Suppose the ground truth pD(Xo, Xu, R) satisfies: X are all generated by shared la-
tent confounders Z (as in D1), and R cannot be the cause of any other variables as in [38, 56].
Typical examples are given by any of the cases in Fig 1(excluding (j) where R1 is the cause
of R2). Furthermore, the ground truth data generating process is given by the parametric form
pD(Xo, Xu, R) = p̃τ∗,γ∗(Xo, Xu, R), where Ξ = Ξτ × Ξγ denotes its parameter space.

Then, for such ground truth data generating process, we can show that we can always find a model in
the form of Equation 6, such that there exists some mapping Φ, that can model their relationship:

Lemma 1. Suppose the ground truth data generating process p̃τ∗,γ∗(Xo, Xu, R) satisfies setting
D2. Then, there exists a model pθ,λ(Xo, Xu, R), such that: 1), pθ,λ(Xo, Xu, R) can be written
in the form of Equation 6 (i.e., Assumption A1; and 2), there exists a mapping Φ as described in
Proposition 2, such that p̃τ,γ(Xo, R) = pΦ−1(τ,γ)(Xo, R), for all (τ, γ) ∈ Ξ.

Model identification under data-model mismatch. Since we showed the identifiability can be
preserved under the parameter space mapping (Proposition 2), next we will prove that if the model
pθ,λ(Xo, Xu, R) is trained on partially observed data points sampled from p̃τ,λ(Xo, Xu, R) that
satisfies data setting D2, then the ML solution is still unbiased. For this purpose, inspired by Lemma
1, we work with the following additional assumption:

Model Assumption A4 Let p̃τ∗,γ∗(Xo, Xu, R) denote our ground truth data generating process that
satisfies data setting D2. Then, we assume our model pθ,λ(Xo, Xu, R) is the one that satisfies the
description given by Lemma 1. That is, its parametric form is given by Equation 6, and there exists a
mapping Φ as described in Proposition 2, such that p̃τ,γ(Xo, R) = pΦ−1(τ,γ)(Xo, R).

Then, we have the following proposition:
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Proposition 3 (Sufficient conditions for identifiability under MNAR and data-model mismatch).
Let pθ,λ(Xo, Xu, R) be a model on the observable variables X and missing pattern R, and
pD(Xo, Xu, R) be the ground truth distribution. Assume that they satisfies Data setting D2, Assump-
tion A2, A3, and A4. Let Θ = argmax(θ,λ)∈Ω E(xo,r)∼pD(Xo,R) log p(θ,λ)(Xo = xo, R = r) be the
set of ML solutions of Equation 1. Then, we have Θ = {Φ−1

τ (τ∗)} ×Θλ. Namely, the ground truth
model parameter τ∗ of pD can be uniquely identified (as Φ(θ∗)) via ML learning.

Remark: practical implications Proposition 3 allows us to deal with the cases where the parameter-
ization of ground truth data generating process and model distribution are related through a set of
mappings, {Φo}. In general, the graphical structure of pD(Xo, Xu, R) can be any cases in Figure 1
excluding (j). Then, in those cases, we are still able to use a model that corresponds to Equation 6
(Fig 1 (h)) to perform ML learning, provided that our model is flexible enough (Assumption A4).
This greatly improves the applicability of our identifiability results, and we can build a practical
algorithm based on Equation 6 to handle many practical MNAR cases.

4 GINA: A Practical Imputation Algorithm for MNAR

In the previous section, we have established the identifiability conditions for models in the form of
Equation (6). However, in order to derive a practically useful algorithm, we still need to specify
a parametric form of the model, that is both flexible and compatible with our assumptions. In
this section, by utilizing the results in Section 3, we propose GINA, a deep generative imputation
model for MNAR data (Figure 2). GINA fulfill identifiability assumptions above, and can handle
general MNAR case as discussed in section 3.2. The code is released at https://github.com/
microsoft/project-azua.

θ

λ

ϕ zn

xnd

D

Rn

un

N

Figure 2: Graphical represen-
tations of our GINA.

The parametric form of GINA We use utilize the flexibility of
deep generative models to model the data generating process. We
assume that the reference model pθ(X) is parameterized by an iden-
tifiable VAE (see Section 2.3) to satisfy Assumption A2. That is,
pθ(X|U) =

∫
Z
dZpϵ(X−f(Z))p(Z|U), where U is some fully ob-

served auxiliary inputs. The decoder pϵ(X−fθ(Z)) is parameterized
by a neural network, f : RH 7→ RD. For convenience, we will drop
the input U to pθ(X|U), and simply use pθ(X) to denote pθ(X|U).
Finally, for the missing model pλ(R|X,Z), we use a Bernoulli likeli-
hood model, pλ(R|X,Z) :=

∏
d πd(X,Z)Rd(1− πd(X,Z))1−Rd ,

where πd(X,Z) is parameterized by a neural network.

In Appendix G, we show that GINA fulfill the required assumptions
of Proposition 1 and 3. Thus, we can use GINA to identify the
ground truth data generating process, and perform missing value
imputation under MNAR. The consistency of estimation result is also given in Appendix H.

Learning and imputation In practice, the joint likelihood in Equation 1 is intractable. Similar to the
approach proposed in [12], we introduce a variational inference network, qϕ(Z|Xo), which enable us
to derive a importance weighted lower bound of log pθ,λ(Xo, R):

log pθ,λ(Xo, R) ≥ LK(θ, λ, ϕ,Xo, R) := Ez1,...,zK ,x1
u,...,x

K
u ∼pθ(Xu|Z)qϕ(Z|Xo) log

1

K

∑
k

wk

where wk =
pλ(R|Xo,Xu=xk

u,Z=zk)pθ(Xo,Z=zk)
qϕ(Z=zk|Xo)

is the importance weights. Note that we did not
notate the missing pattern R as additional input to qϕ, as this information is already contained in Xo.
Then, we can optimize the parameters θ, λ, ϕ by solving the following optimization problem

θ∗, λ∗, ϕ∗ = argmax
θ,λ,ϕ

E(xo,r)∼pD(Xo,R)LK(θ, λ, ϕ,Xo = xo, R = r)

Given θ∗, λ∗, ϕ∗, we can impute missing data by solving the approximate inference problem:

pθ(Xu|Xo) =

∫
Z

pθ(Xu|Z)pθ(Z|Xo)dZ ≈
∫
Z

pθ(Xu|Z)qϕ(Z|Xo)dZ.

Thus, GINA can be used to predict missing data even when the data are MNAR.
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5 Related works

We mainly review recent works for handling MNAR data. In Appendix A, we provide a brief review
of traditional methods that deal with MCAR and MAR.

When the missing data is MNAR, a general framework is to learn a joint model on both observable
variables and missing patterns [24], in which a model of missing data is usually assumed [52, 11].
This approach is also widely adopted in imputation tasks. For example, in the field of recommender
systems, different probabilistic models are used within such a framework [8, 30, 58, 22, 21]. A
similar approach has also been taken in the context of causal approach to imputation [60, 59, 20].
Similar to the use of the missing model, they have used an explicit model of exposure and adopted a
causal view, where MNAR is treated as a confounding bias. Apart from these, inverse probability
weighting methods are also used to debias the effect of MNAR [48, 58, 29] for imputation.

One issue that is often ignored by many MNAR methods is the model identifiability. Both parametric
and non-parametric identifiability under MNAR has been discussed for certain cases ( [34, 33, 35, 57,
55, 53]). For example, [57] proposed the instrumental variable approach to help the identification of
MNAR data. [33] investigated the identifiability of normal and normal mixture models, and showed
that identifiability for parametric models is highly non-trivial under MNAR. [34] studied conditions
for nonparametric identification using shadow variable technique. Despite the resemblance to the
auxiliary variable in our approach, [33, 34] mainly considers the supervised learning (multivariate
regression) scenario. [38, 37, 50] also discussed a similar topic based on a graphical and causal
approach in a non-parametric setting. Although the notion of recoverability has been extensively
discussed, their methods do not directly lead to practical imputation algorithms in a scalable setting.
On the contrary, our work takes a different approach, in which we handle MNAR with a parametric
setting, by dealing with learning and inference in latent variable models. We step aside from the
computational burden with the help of recent advances in deep generative models for scalable
imputation.

There has been a growing interest in applying deep generative models to missing data imputation. In
[28, 25, 40], scalable methods for training VAEs under MAR have been proposed. Similar methods
have also been advocated in the context of importance weighted VAEs, multiple imputation [32], and
heterogeneous tabular data imputation [40, 26, 27]. Generative adversarial networks (GANs) have
also been applied to MCAR data [63, 19]. More recently, deep generative models under MNAR have
been studied [12, 5, 6], where different approaches such as selection models [44, 7] and pattern-set
mixture models [23] has been combined with partial variational inference for training VAEs. However,
without additional assumptions, the model identifiability remains unclear in these approaches, and
the posterior distribution of missing data conditioned on observed data might be biased.

6 Experiments

We study the empirical performance of the proposed algorithm of Section 4 with both synthetic data
(Section 6.1) and two real-world datasets with music recommendation (Section 6.2) and personalized
education (Section 6.3) . The experimental setting details can be found in Appendix B.

6.1 Synthetic MNAR dataset

We first consider 3D synthetic MNAR datasets. We generate three synthetic datasets with nonlinear
data generation process (shown in Appendix B.1). For all datasets, X1, X2, X3 are generated via the
latent variables, Z1, Z2, Z3 ,where X1 are fully observed and X2 and X3 are MNAR. For dataset A,
we apply self-masking(similar to Figure 1(c)): Xi will be missing if Xi > 0. For datasets B and C,
we apply latent-dependent self-masking: Xi will be missing, if g(Xi, Z1, Z2, Z3) > 0, where g is a
linear mapping whose coefficients are randomly chosen.

We train GINA and baseline models with partially observed data. Then, we use the trained models to
generate random samples. By comparing the generated samples with the ground truth data density,
we can evaluate whether pD(X) is correctly identified. Results are visualized in Figure 3. In addition,
we show the imputation results in Appendix J. Across three datasets, PVAE performs poorly, as it
does not account for the MNAR mechanism. Not-MIWAE performs better than PVAE, as it is able to
generate samples that are closer to the mode. However, it is still biased more towards the observed
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Figure 3: Visualization of generated X2 and X3 from synthetic experiment. Row-wise (A-C) plots
for dataset A, B, and C, respectively; Column-wise (i-iv): training set (only displays fully observed
samples), PVAE samples, Not-MIWAE samples, and GINA samples, respectively. Contour plot:
kernel density estimate of ground truth density of complete data;

values. On the other hand, GINA is much more aligned to ground truth, and is able to recover the
ground truth from partially observed data. This experiment showed the clear advantage of our method
under different MNAR situations.

6.2 Recommender dataset imputation with random test set

Method Test MSE
Matrix Factorization Methods
PMF 1.401
IPW-PMF 1.375
Deconfounded-PMF 1.329
PMF-MNAR 1.483
PMF-MAR 1.480
VAE-based models
PVAE 1.259±0.003
PVAE w/o IW 1.261±0.004
Not-MIWAE 1.078±0.000
GINA 1.052±0.002
Others
CPTv-MNAR 1.056
Logitvd-MNAR 1.141
AutoRec 1.199
Oracle-test 1.057

Table 1: Test MSE on Yahoo! R3

Next, we apply our models to recommendation sys-
tems on Yahoo! R3 dataset [30, 60] for user-song
ratings which is designed to evaluate MNAR impu-
tation. It contains an MNAR training set of more
than 300K self-selected ratings from 15,400 users on
1,000 songs, and an MCAR test set of randomly se-
lected ratings from 5,400 users on 10 random songs.
We train all models on the MNAR training set, and
evaluate on MCAR test set. This is repeated 10 times
with different random seeds. Both the missing model
for GINA (p(R|X,Z)) and Not-MIWAE (p(R|X))
are parameterized by linear neural nets with Bernoulli
likelihood functions. The decoders for GINA, PVAE,
and Not-MIWAE uses Gaussian likelihoods with the
same network structure. See Appendix B for imple-
mentation details and network structures.

We compare to the following baselines: 1), probabilistic matrix factorization (PMF) [36]; 2), inverse
probability weighted PMF [48]; 3), Deconfounded PMF [60]; 4), PMF with MNAR/MAR data [8];
5), CPTv and Logitv models for MNAR rating [30]; 6), Oracle [8]: predicts ratings based on their
marginal distribution in the test set; and 7) AutoRec [49]: Autoencoders that ignores missing data.

Results are shown in Table 1. Our method (GINA) gives the best performance among all methods.
Also, VAE-based methods are consistently better than PMF-based methods, and MNAR-based models
consistently outperform their MAR versions. More importantly, among VAE-based models, our
GINA outperforms its non-identifiable counterpart (Not-MIWAE), and MAR counterpart (PVAE),
where both models can not generate unbiased imputation.
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6.3 Missing data imputation and active question selection on Eedi education dataset

Finally, we apply our methods to the Eedi education dataset [61], one of the largest real-world
education response datasets. We consider the Eedi competition task 3 dataset, which contains over 1
million responses from 4918 students to 948 multiple-choice diagnostic questions. Each diagnostic
question is a multiple-choice question. We consider predicting whether a student answers a question
correctly or not. Over 70% of the entries are missing. The dataset also contains student metadata
which we use as the auxiliary variables. In this experiment, we randomly split the data in a 90% train/
10% test/ 10% validation ratio, and train our models on the response outcome data.

We evaluate our model on two tasks. Firstly, we perform missing data imputation, where different
methods perform imputation over the test set. As opposed to Yahoo! R3 dataset, now the test set
is MNAR, thus we use the evaluation method suggested by [60], where we evaluate the average
per-question MSE For each question, over all students with non-empty response. Then, the MSEs of
all questions averaged. We call this metric the debiased MSE. While regular MSE might be biased
toward questions with more responses, the debiased MSE treats all questions equally, and can avoid
selection bias to a certain degree. We report results for 10 repeats in the first column in Table 2. We
can see that our proposed GINA achieves significantly improved results comparing to the baselines.

Secondly, we evaluate personalized education through active question selection [28] on the test set
which is task 4 from this competition dataset. The procedure is as follows: for each student in the
test set, at each step, the trained generative models are used to decide which is the most informative
missing question to collect next. This is done by maximizing the information reward as in [28] (see
Appendix I for details). Since at each step, different students might collect different questions, there
isn’t a simple way to debias the predictive MSE as in the imputation task. Alternatively, we evaluate
each method with the help of question meta data (difficulty level, which is a scalar). Intuitively, when
the student response to the previously collected question is correct, we expect the next diagnostic
question which has higher difficulty levels, and vice versa. Thus, we can evaluate the mean level
change after correct/incorrect responses, and expect them to have significant differences. We also
perform t-test between the level changes after incorrect/correct responses and report the p-value.

Table 2: Performance on Eedi education dataset (with standard errors)

Method Debiased
MSE

Level change
(correct)

Level change
(incorrect)

p-value

PVAE 0.194±0.001 0.131±0.138 -0.101±0.160 0.514
Not-MIWAE 0.192±0.000 0.062±0.142 -0.073±0.179 0.561
GINA 0.188±0.001 0.945±0.151 -0.353±0.189 1.01×10−7

We can see in Table 2, GINA is the only method that reports a significant p-value (<0.05) between
the level changes of next collected questions after incorrect/correct responses which are desired. This
further indicates that our proposed GINA predicts the unobserved answer with the desired behavior.

7 Conclusion

In this paper, we provide a analysis of identifiability for generative models under MNAR, and studies
sufficient conditions of identifiability under different scenarios. We provide sufficient conditions
under which the model parameters can be uniquely identified, via joint maximum likelihood learning
on Xo and R. Therefore, the learned model can be used to perform unbiased missing data imputation.
We proposed a practical algorithm based on VAEs, which enables us to apply flexible generative
models that is able to handle missing data in a principled way. The main limitation of our proposed
practical algorithm is the need for auxiliary variables U , which is inherited from identifiable VAE
models [16]. In practice, they may not be always available. For future work, we will investigate how
to address such limitation, and how to extend to more complicated scenarios.
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