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ABSTRACT

Learning and optimizing a blackbox function is a common task in Bayesian
optimization and experimental design. In real-world scenarios (e.g., tuning hyper-
parameters for deep learning models, synthesizing a protein sequence, etc.), these
functions tend to be expensive to evaluate and often rely on high-dimensional
inputs. While classical Bayesian optimization algorithms struggle in handling
the scale and complexity of modern experimental design tasks, recent works
attempt to get around this issue by applying neural networks ahead of the Gaussian
process to learn a (low-dimensional) latent representation. We show that such
learned representation often leads to collision in the latent space: two points with
significantly different observations collide in the learned latent space. Collisions
could be regarded as additional noise introduced by the traditional neural network,
leading to degraded optimization performance. To address this issue, we propose
Collision-Free Latent Space Optimization (CoFLO), which employs a novel
regularizer to reduce the collision in the learned latent space and encourage the
mapping from the latent space to objective value to be Lipschitz continuous.
CoFLO takes in pairs of data points and penalizes those too close in the latent
space compared to their target space distance. We provide a rigorous theoretical
justification for the regularizer by inspecting the regret of the proposed algorithm.
Our empirical results further demonstrate the effectiveness of CoFLO on several
synthetic and real-world Bayesian optimization tasks, including a case study for
computational cosmic experimental design.

1 INTRODUCTION

Bayesian optimization is a classical sequential optimization method and is widely used in
various fields, including recommender systems, scientific experimental design, hyper-parameter
optimization, etc. Many of theses applications involve evaluating an expensive blackbox function;
therefore the number of queries should be minimized. A common way to model the unknown
function is via Gaussian processes (GPs) Rasmussen and Williams (2006). GPs have been
extensively studied under the bandit setting, and has proven to be an effective approach for
addressing a broad class of black-box function optimization problems. One of the key computational
challenges for learning with GPs concerns with optimizing specific kernels used to model the
covariance structures of GPs. As such optimization task depends on the dimension of feature space,
for high dimensional input, it is often prohibitively expensive to train a Gaussian process model.
Meanwhile, Gaussian processes are not intrinsically designed to deal with structured input that has
a strong correlations among different dimensions, e.g., the graphs and time sequences. Therefore,
dimensionality reduction algorithms are needed to speed up the learning process.

Recently, it has become popular to investigate GPs in the context of latent space models. As an
example, deep kernel learning (Wilson et al., 2016) simultaneously learns a (low-dimensional) data
representation and a scalable kernel via an end-to-end trainable deep neural network. In general, the
neural network is trained to learn a simpler latent representation with reduced dimension and has
the structure information already embedded for the Gaussian process. Such a combination of neural
network and Gaussian process could improve the scalability and extensibility of classical Bayesian
optimization, but it also poses new challenges for the optimization task (Tripp et al., 2020). As
we later demonstrate, one critical challenge brought by introducing the neural network is that the
latent representation is prone to collisions: two points with significant different observations can get
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Figure 1: Illustration of the collision effect in latent space-based Bayesian optimization tasks. Since
the data points around the optimum severely collided, BO is misguided to the sub-optimum.

too close in the latent space. The collision effect is especially evident when information is lost by
dimension reduction, and/or when the training data is limited in size in Bayesian optimization.

As illustrated in Figure 1, when passed through the neural network, data points with drastically
different observations are mapped to close positions in the latent space. Such collisions could be
regarded as additional noise introduced by the neural network. Although Bayesian optimization is
known to be robust to mild noisy observations, the collision in latent space could be harmful to the
optimization performance, as it is non-trivial to explicitly model the collision into the acquisition
function. In addition, the additional noise induced by the collision effect will further loosen the
regret bound for classical Bayesian optimization algorithms (Srinivas et al., 2010).

Overview of main results To mitigate the collision effect, we propose a novel regularization
scheme which can be applied as a simple plugin amendment for the latent space-based Bayesian
optimization models. The proposed algorithm, namely Collision-Free Latent Space Optimization
(CoFLO), leverages a regularized regression loss function, to periodically optimize the latent space
for Bayesian optimization.

Concretely, our regularizer is encoded by a novel pairwise collision penalty function defined jointly
on the latent space and the output domain. In order to mitigate the risk of collision in the latent space
(and consequently boost the optimization performance), one can apply the regularizer uniformly to
the latent space to minimize the collisions. However, in Bayesian global optimization tasks, we
seek to prioritize the regions close to the possible optimum, as collisions in these regions are more
likely to mislead the optimization algorithm. Based on this insight, we propose a optimization-
aware regularization scheme, where we assign a higher weight for the collision penalty on those
pairs of points closer to the optimum region in the latent space. This algorithm—which we refer to
as dynamically-weighted CoFLO—is designed to dynamically assess the importance of a collision
during optimization. Comparing to the uniform collision penalty over the latent space, the dynamic
weighting mechanism has demonstrated drastic improvement over the state-of-the-art latent space-
based Bayesian optimization models.

We summarize our the key contributions below:

e We propose a novel regularization scheme, as a simple plugin amendment for latent space-
based Bayesian optimization models. Our regularizer penalizes collisions in the latent space
and effectively reduces the collision effect.

e We propose an optimization-aware dynamic weighting mechanism for adjusting the collision
penalty to further improve the effectiveness of regularization for Bayesian optimization.

e We provide theoretical analysis for the performance of Bayesian optimization on regularized
latent space.

e We conducted an extensive empirical study on four synthetic and real-world datasets, including
a real-world case study for cosmic experimental design, and demonstrate strong empirical
performance for our algorithm.
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2 RELATED WORK

Bayesian optimization has demonstrated promisming performance in various cost-sensitive global
optimization tasks (Shahriari et al., 2016). However, due to its intrinsic computational limitation in
the high-dimensional regime, its applicability has been restricted to relatively simple tasks. In this
section, we provide a short survey on recent work in Bayesian learning, which were designed to
overcome the high-dimensionality challenge for both Bayesian optimization and regression tasks.

Deep kernel learning Deep kernel learning (DKL) (Wilson et al., 2016) combines the power of
the Gaussian process and that of neural network by introducing a deep neural network g to learn a
mapping g : X — Z from the input domain X to a latent space Z, and use the latent representation
z € Z as the input of the Gaussian process. The neural network g and a spectral mixture base
kernel k forms a scalable expressive closed-form covariance kernel, denoted by kpx (z;, z;) —
k(g(z;),g(z;)), for Gaussian processes. Despite of encouraging results in numerous regression
tasks, it remains unclear whether DKL is readily applicable to Bayesian optimization. One key
difference in Bayesian regression and optimization tasks is the assumption on the accessibility of
training data: Bayesian optimization often assumes limited access to labeled data, while DKL for
regression relies on abundant access to data in order to train a deep kernel function. Another problem
lies in the difference between the objective functionn. While DKL focuses on improving the general
regression performance, it does not specifically address the problem caused by collisions, which—as
we later demonstrate in section 3.3—could be harmful for sequential decision making tasks.

Representation learning and latent space optimization Aiming at improving the scalability and
extensibility of the Gaussian process, various methods are proposed to reduce the dimensionality of
the original input. Djolonga et al. (2013) assume that only a subset of input dimensions varies, and
the kernel is smooth (i.e. with bounded RKHS norm). Under these assumptions, they underlying
subspace via low-rank matrix completion. Huang et al. (2015) use Autoencoder to learn a low-
dimensional representation of the inputs to increase GP’s scalability in regression tasks. Snoek et al.
(2015) further propose to learn a pre-trained encoder neural network before BO. Lu et al. (2018)
learn a variational auto-encoder iteratively during sequential optimization to embed the structure of
the input. The challenge for combining latent space learning with Bayesian optimization lies in that a
pre-trained neural network may not extract adequate information around the more promising region
of the input space. Furthermore, the latent space could be outdated without continuous updates with
the latest acquired observation. Tripp et al. (2020) propose to periodically retrain the neural network
to learn a better latent space, in order to minimize the number of iterations needed for LSO. They
claim that by prioritizing the loss of more promising data points in the original input space (i.e.
by assigning a higher weight to these data points), the model could focus more on learning high-
value regions and allow a substantial extrapolation in the latent space to accelerate the optimization.
However, such a framework does not explicitly deal with collisions in the latent space, which we
found to be a key factor in the poor performance of modern latent space optimization algorithms.

3 PROBLEM STATEMENT

In this section, we introduce necessary notations and formally state the problem. We focus on the
problem of sequentially optimizing the function f : X — R, where X C R is the input domain.
In each round ¢, we pick a point z; € X, and observe the function value perturbed by an additive
noise: y; = f(z;) + € with ¢, ~ N(0,0?) being i.i.d. Gaussian noise. Our goal is to maximize
the sum of rewards Zf,T=1 f(z,) over T iterations, or equivalently, to minimize the cumulative regret
Ry = ZtT ry, where ry 1= max f(z) — f(x+) denote the instantaneous regret of z;.

x

3.1 BAYESIAN OPTIMIZATION

Bayesian optimization typically employs Gaussian processes as the statistic tool for modeling the
unknown objective function. The major advantage of using GP is that it presents a computationally
tractable solution to depict a sophisticated and consistent view across the space of all possible
function (Rasmussen and Williams, 2005), which allows closed-form posterior estimation in the
function space. BO methods starts with a prior on the black-box function. Upon observing new
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labels, BO then iteratively updates the posterior distribution in the function space, and maximizes an
acquisition function measuring each point’s contribution to finding the optimum, in order to select
the next point for evaluation.

Formally, in Bayesian optimization we assume that f follows a GP(m(x), k(x, ")), where m(x)
is the mean function, k(x,z’) is the kernel or covariance function. Throughout this paper, we use

squared exponential kernel, ksp(x,2') = 0% exp (— (x;f ) ), where the length scale | determines

the length of the “wiggles” and the output variance 0% determines the average distance of the
function away from its mean. At iteration 7', given the historically selected points Ar = {x1, ...,z }
and the corresponding noisy evaluations y7 = [y1, ...yr], the posterior over f also takes the form
of a GP, with mean pr(z), covariance kr(x, '), and variance o2 (x):

pr(x) = kr(z)" (Kr + o*1)'yr
kr(z,2') = k(z,2") = kr(2)T(Kr + 0*1) " kp(2')

o7(x) = kr(z, o)

where kr(z) = [k(z1,2),....k(z7,2)]T and Kz is the positive definite kernel matrix
[k(x,2')]s,cap. After obtaining the posterior, one can compute the acquisition function o :
X — R, which is used to select the next point to be evaluated. Various acquisition functions
have been proposed in the literature, including popular choices such as Upper Confidence Bound
(UCB) (Srinivas et al., 2010) and Thompson sampling (TS) (THOMPSON, 1933). UCB uses the
upper confidence bound ayre () = py(z)+ 8?0, () with 5(x) being the confidence coeffecient,
and enjoys rigorous sublinear regret bound. TS usually outperform UCB in practice and has been
shown to enjoy a similar regret bound Agrawal and Goyal (2012). It samples a function f¢ from
the GP posterior f; ~ GP(yu(x), ky(z,z')) and then uses the sample as an acquisition function:
ars(z) = fi(z).

Remark. Regret is commonly used as performance metric for BO methods. In this work we focus
on the simple regret 1%, = max flx) — max f(x¢) and cumulative regret R(T) = EtT T4

3.2 LATENT SPACE OPTIMIZATION

Recently, Latent Space Optimization (LSO) has been proposed to solve Bayesian optimization
problems on complex input domains (Tripp et al., 2020). LSO first learns a latent space mapping
g : X — Z to convert the input space X to the latent space Z. Then, it constructs an objective
mapping h : Z — R such that f(x) =~ h(g(z)), Vz € Z. The latent space mapping g and base
kernel k could be regarded as a deep kernel, denote by kn,(z,2") = k(g(z), g(z')). Thus, the actual
input space for BO is the latent space Z and the objective function is h. With acquisition function
am(z) := a(g(z)), it is unnecessary to compute an inverse mapping g~ ! as discussed in Tripp et al.

(2020), as BO could directly select x; = arg max oy, () V¢ < T and evaluate f. In the meantime,
i €X

BO can leverage the latent space mapping g, usually represented by a neural network, to effectively

learn and optimize the target function i on a lower-dimension input space.

3.3 THE COLLISION EFFECT OF LSO

When the mapping g : X — Z is represented by a neural network, it may cause undesirable
collisions between different input points in the latent space Z. Under the noise-free setting, we say
there exists a collision in Z, if 3z;, x; € X, such that when g(x;) = g(z;), | f(x;) — f(z;)| > 0.
Such collision could be regarded as additional (unknown) noise on the observations introduced by
the neural network g. For a noisy observation y = f(x) + ¢, we define a collision as follows: for
p >0, 3zi2; € D.lg(xs) — gla,)| < plys — -

When the distance between a pair of points in the latent space is too close comparing to their
difference in the output space, the different output values for the collided points in the latent space
could be interpreted as the effect of additional observation noise. In general, collisions could degrade
the performance of LSO. Since the collision effect is a priori unknown, it is often challenging to deal
with collisions in LSO, even if we regard it as additional observation noise and increase the (default)
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noise variance in the Gaussian process. Thus, it is necessary to mitigate the collision effect, by
directly restraining it in the representation learning phase.

4 COLLISION-FREE LATENT SPACE OPTIMIZATION

In this section, we introduce Collision-Free Latent Space Optimization (CoFLO), an algorithmic
framework designed to mitigate the collision effect.

4.1 OVERVIEW OF THE COFLO ALGORITHM

The major challenge in restraining collisions in the latent space is that, unlike the traditional
regression problem, we cannot quantify it on a single point’s observation. We can, however, quantify
collisions by grouping pairs of data points and inspecting their corresponding observations.

We define the collision penalty based on pairs of inputs, and further introduce a pair loss function
to characterize the collision effect. Based on this pair loss, we propose a novel regularized latent
space optimization algorithm', as summarized in Algorithm 1. The proposed algorithm first uses
the pair-wise input and concurrently feeds them into the same network and then calculates the pair
loss function. We demonstrate this process in Figure 2.

Given a set of labeled data points, we can train the neural network to create an initial latent space
representationz, similar to DKL (Wilson et al., 2016). Once provided with the initial representation,
we can then refine the latent space by running CoFLO and periodically update the latent space (i.e.
updating the latent representation after collection a batch of data points) to mitigate the collision
effect as we collect more labels

Algorithm 1 Collision-Regularized Latent Space Optimization (CoFLO)

1: Input: Regularization weight p (cf. Equation 3), penalty parameter A (cf. Equation 1), retrain
interval T', importance weight parameter ~y (cf. Equation 2), neural network M, base kernel
K, prior mean i, total time steps 7T';

2: fort =1toT do
3: xy < arg max a(M(x)) > maximize acquisition function
zeD

4: y; < evaluation on x > update observation

5: ift =0 (mod T') then

6: M1, K41 < retrain M; and K, with the pair loss function L, » (M, K¢, Dy) as
defined in equation 3 > periodical retrain

7: end if

8: end for

9: QOutput: max gy

4.2 COLLISION PENALTY

latent space

collision
penalty

pair loss

In this subsection, we aim to quantify the collision
effect based on the definition proposed in Section 3.3.
As illustrated in Figure 2, we feed pairs of data
points into the neural network and obtain their latent
space representations. Apart from maximizing the GP’s Bl Ak "
likelihood, we concurrently calculate the amount of
collision on each pair, and penalize only if the value is
positive. For z;, z; € X, y; = f(x;) + €, y; = f(z;) + €
are the corresponding observations, and z; = g(z;), z; =
g(z;) are the corresponding latent space representations.

Figure 2: CoFLO schematic

'Note that we have introduced several hyper-parameters in the algorithm design; we will defer our
discussion on the choice of these parameters to Section 5.

2To obtain an initial latent space representation, the labels do not have to be exact and could be collected
from a related task of cheaper cost
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We define the collision penalty as
pij = max(Aly; — y;| — |z — 2],0) 1)
where ) is a penalty parameter that controls the smoothness of the target function h : Z — R.

4.3 DYNAMIC WEIGHT

Note that it is challenging to universally eliminate the collision effect by minimizing the collision
penalty and the GP’s regression loss—this is particularly true with a limited amount of training data.
Fortunately, in the optimization tasks it is often unnecessary to learn equally good representation for
suboptimal regions. Therefore, we can dedicate more training resources to improve the learned latent
space by focusing on the (potentially) near-optimal regions. Following this insight, we propose to
use a weighted collision penalty function, which uses the objective values for each pair as importance
weight in each iteration. Formally, for any pair ((x;, zj,y;), (¥;, 2, ¥i)) in a batch of observation
pairs Dy = {((Tm Zm, Ym), (Tn, Zns Yn)) }m.n. We define the importance-weighted penalty function
as
e Wity;)

Z e'Y(ym +Yn)
(m,n)eD;

2

Pij = pijwi; - with wi; =

Here the importance weight + is used to control the aggressiveness of the weighting strategy.

Combining the collision penalty and regression loss of GP, we define the pair loss function L as

Loy (M, Ky, Dy) = — Y (GPr,(Mi(x)) = y:)* + (GPr, (Mi(5)) = y5)* + pbi,

2
1D i€Dy,jeD;

3)

Here, G Pr+(M;(x;)) denotes the Gaussian process’s posterior mean on x; with kernel K; and
neural network M; at timestep ¢. p denotes the regularization weight; as we demonstrate in Section 5,
in practice we often choose p to keep the penalty at a order close to the regression loss.

4.4 THEORETICAL ANALYSIS

In this subsection, we provide a theoretical justification for the collision-free regularizer, by
inspecting the effect of regularization on the regret bound of CoFLO. We first connect the proposed
collision penalty in Equation 1 to Lipschitz-continuity, and then integrate it into the regret analysis
to provide an improved regret bound.

Lipschitz continuity of the target function h The collision penalty encourages the Lipschitz-
continuity for h. Formally, the proposed regularization promotes to learn a latent space where
Vo, x5 € D,z = g(x:), 2 = g(x;) € Z,

l9(zi) — g9(z;)| < Alf(zi) — f(z)]
The above inquality reduces to the Lipschitz-continuity for h. Unlike typical smoothness
assumptions in GPs, a function can be non-smooth and still Lipschitz continuous. Recently,
Ahmed et al. (2019) leverage the Lipschitz-continuity of the objective function to propose improved
acquisition functions based on the common acquisition functions, and provide an improved regret
bound both theoretically and empirically. In the following, we show that running GP-UCB on the
collision-free latent space amounts to an improvement in terms of its regret bound:

Theorem 1. Let Z C [0,7]¢ be compact and convex, d € N,r > 0,\ > 0. Suppose that the
objective function h defined on Z is a sample from GP and is Lipschitz continuous with Lipschitz
constant \. Let 6 € (0,1), and define 3; = 2 log(w2t2/65) + 2d10g()\rdt2). Running the GP-UCB
with 3 for a sample h of a GP with mean function zero and covariance function k(zx, x'), we obtain
a regret bound of O*(\/dT~r) with high probability.

Precisely, with C; = 8/ log(l + 0’2), we have

P[Rr < VO THrr +2 216

Here ~r is the maximum information gain after T iterations, defined as yr = mlax‘ I(ya; ha).
ACZ,|A|=T
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Figure 3: Experiment results on four pre-collected datasets. Each experiment is repeated at least
ten times.The colored area around the mean curve denotes the \;’E Here & denotes the empirical
standard deviation. n denotes the number of cases repeated in experiments. The hyper-parameters
are set as the following. The retrain interval 7" are set to be 100 iterations for 8c 8a and 8d, 200 for
8b. The Regularization parameters p are set to be 1e° for 8c 8a and 8d, 1e? for 8b. The penalty
parameter \ are all set to be 1e~2. The weighting parameter ~y are set to be 1e~2. The prior mean
1o are all set to be 0. The squared exponential kernel is used as the GP covariance for all the four
experiments. We also demonstrate the median curves in the Appendix.

Comparing the above result to Theorem 2 of Srinivas et al. (2010) which offers the regret bound
with the sub-gaussianity assumption on the objective functions derivative, the second part of our
regret bound does not rely on §. The coefficients are also smaller as the deterministic bound on the
derivative of f avoids union bound.

Remark. The collision penalty encourages h to be Lipschitz-continuous on the latent space. Ideally,
when the collision penalty p; j(\) term converges to zero for all data points in the latent space, we
can claim that h is Lipschitz-continuous with Lipschitz constant at most \. Applying Theorem 1
with By = 2 10g(7r2t2/65) + 2dlog()\rdt2), we can reduce the regret bound by choosing smaller
. However, in practice, since the observation can be noisy, we need to choose a \ big enough to
tolerant the noise. A small )\ could make it difficult to learn a meaningful representation.

5 EXPERIMENTS

In this section, we empirically evaluate our algorithm on two synthetic blackbox function
optimization tasks and two real-world optimization problems.
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5.1 EXPERIMENTAL SETUP

We consider four baselines in our experiments. The rudimentary random selection algorithm
(RS) shows the task complexity. Three popular optimization algorithms, namely particle swarm
optimization (PSO) (Miranda, 2018), Tree-structured Parzen Estimator Approach (TPE) (Bergstra
et al., 2011), and standard Bayesian optimization (BO) (Nogueira, 2014) which uses Gaussian
process as the statistical model and the upper confidence bound (UCB) as its acquisition function,
are tuned in each task. Another baseline we consider is the sample-efficient LSO (SE LSO)
algorithm, which is implemented based on the algorithm proposed by Tripp et al. (2020). We
also compare the non-regularized latent space optimization (LSO), Collision-Free Latent Space
Optimization (CoFLO) and the dynamically-weighted CoFLO (DW CoFLO) proposed in this paper.
The performance for each task is measured on 10,000 pre-collected data points.

One crucial problem in practice is tuning the hyper-parameters. The hyper-parameters for GP are
tuned for periodically retraining in the optimization process, by minimizing the loss function on
a validation set. For all our tasks, we choose a simplistic neural network architecture M, due to
limited and expensive access to labeled data under the BO setting. The coefficient p is, in general,
selected to guarantee a similar order for the collision penalty to GP loss. The A should be estimated
according to the first several sampled data and tolerant the additive noise in the evaluation. «y controls
the aggressiveness of the importance weight. While v should not be too close to zero (which is
equivalent to uniform weight), an extremely high value could make the regularization overly biased.
Such a severe bias could possibly allow a heavily collided representation in most of the latent space
and degrade regularization effectiveness. The value choice is similar to the inverse of the temperature
parameter of softmax in deep learning Hinton et al. (2015). Here we use the first batch of observed
samples to estimate the order of all observations and choose the appropriate .

5.2 DATASETS AND RESULTS

We now evaluate CoFLO on two synthetic datasets and two real-world datasets. In the experiments,
all the input data points are mapped to a one-dimensional latent space by via the neural network. We
demonstrated the improvement of CoFLO brought by the explicit collision mitigation in the lower-
dimensional latent space in terms of average simple regret. We also include the median result and
statistical test in the appendix.

2D-Rastrigin The Rastrigin function is a non-convex function used as a performance test problem
for optimization algorithms. It was first proposed by RASTRIGIN (1974) and used as a popular
benchmark dataset for evaluating Gaussian process regression algorithms (Cully et al., 2018).
Formally, the 2D Rastrigin function is
d
f(z) =10d + fo — 10cos(2mx;), d =2
i=1

For convenience of comparison, we take the — f(z) as the objective value to make the optimization
tasks a maximization task. The neural network is pretrained on 100 data points. As illustrated
by figure 8a , CoFLO and DW CoFLO could quickly reach the (near-) optimal region, while the
baselines generally suffer a bigger simple regret even after an excessive number of iterations.

Feynman II1.9.52 Equation Growing datasets have motivated pure data-backed analysis in
physics. The dataset of 100 equations from the Feynman Lecture on Physics for the symbolic
regression tasks in physics (Udrescu and Tegmark, 2020) could play the role as a test set for data-
back analysis algorithms in physics. The I11.9.52 we choose to test the optimization algorithms
is
paE st sin((w — wo)t/2)?
Pr= e (@ — wo)t/2)?

The equations have 6 variables as inputs and are reported to require at least 103 data for the
regression task. The neural network is randomly initialized at the beginning. As illustrated by
figure 8b, in the first 100 iterations, COFLO and DW CoFLO behaves similarly to random selection.
After the first training at iteration 100, CoFLO and DW CoFLO approach the optimum at a much
faster pace compared to the baselines; among them, DW CoFLO shows a faster reduction in simple
regret.




Under review as a conference paper at ICLR 2021

Supernova Our first real-world task is to perform maximum likelihood inference on 3
cosmological parameters, the Hubble constant Hy € (60, 80), the dark matter fraction Q,; € (0,1)
and the dark energy fraction Q4 € (0, 1). The likelihood is given by the Roberson-Walker metric,
which requires a one-dimensional numerical integration for each point in the dataset from Davis et al.
(2007). The neural network is pretrained on one hundred data points. As illustrated by figure 8c, the
simple regret SE LSO has a faster drop at the beginning, while later remained relatively stable and
eventually ends at a similar level to LSO. These results demonstrate the efficiency of SE LSO when
finding sub-optimal. However, without collision reduction, SE LSO couldn’t outperform the LSO
in the long run, where both reach their limitation. And the CoFLO and DW CoFLO demonstrate its
robustness when close to the optimal as both constantly approach the optimal. Among them, DW
CoFLO slightly outperform CoFLO.

Redshift Distribution The challenges in designing and optimizing cosmological experiments
grow commensurately with their scale and complexity. Careful accounting of all the requirements
and features of these experiments becomes increasingly necessary to achieve the goals of a given
cosmic survey. SPOKES (SPectrOscopic KEn Simulation) is an end-to-end framework that can
simulate all the operations and key decisions of a cosmic survey (Nord et al., 2016). It can be
used for the design, optimization, and forecasting of any cosmic experiment. For example, some
cosmic survey campaigns endeavor to observe populations of galaxies that exist at a specific range of
redshifts (distances) from us. In this work, we use SPOKES to generate galaxies within a specified
window of distances from Earth. We then minimize the Hausdorff distance between the desired
redshift distribution and the simulation of specific cosmological surveys generated by SPOKES.

In our experiments, the neural network is pretrained on 200 data points. As illustrated by figure 8d,
the simple regret of SE LSO drops faster at the initial phase. However, when it gets close to the
(near-) optimal region where simple regret is approximately 0.15, it is caught up by both CoFLO
and DW CoFLO, and eventually gets slightly outperformed. Such a result indicates that the collision
problem could have more impact when the algorithm gets close to the optimal region. Notice
that the rudimentary BO eventually outperformed the non-regularized LSO, indicate that without
mitigation of collision, the learned representation could worsen the performance in the later stage
when the algorithm gets close to the optimal. In conclusion, the mitigation of collision like CoOFLO
is necessary to further improve the later performance of LSO, when collision matters more in the
near-optimal areas.

5.3 DISCUSSION

In general, our experimental results consistently demonstrate the robustness of our methods against
collisions in the learned latent space. Our method outperforms all baselines; when compared to the
sample-efficient LSO, the dynamically-weighted LSO performs better in most cases and shows a
steady capability to reach the optimum by explicitly mitigating the collision in the latent space. In
contrast, the Sample-efficient LSO might fail due to the collision problem.

6 CONCLUSION

We have proposed a novel regularization scheme for latent space based Bayesian optimization. Our
algorithm—namely CoFLO—addresses the collision problem induced by dimensionality reduction,
and improves the performance for latent space-based optimization algorithms. The regularization
is proved to be effective in mitigating the collision problem in learned latent space, and therefore
can boost the performance of the Bayesian optimization in the latent space. We demonstrate strong
empirical results for COFLO on several synthetic and real-world datasets, and show that CoFLO
is capable of dealing with high-dimensional input that could be highly valuable for real-world
experiment design tasks such as cosmological survey scheduling.
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A  REGRET BOUND FOR A LIPSCHITZ-CONTINUOUS OBJECTIVE FUNCTION

In this section, we provide the detailed proof for Theorem 1. We first modify Lemma 5.7 and Lemma
5.8 in Srinivas et al. (2010) since we are assuming the deterministic Lipschitz-continuity for i. Use
the same analysis tool Z; defined as a set of discretization Z; C Z where Z; will be used at time ¢
in the analysis.

We choose a discretization Z; of size (73)%. so that Vz € Z,
Iz = [2lelly < rd/m 4)
where [z]; denotes the closest point in Z; to z.
Lemma 1. Pickd € (0,1) and set 8 = 2log(n;/9) +2dlog(Lrdt?), where 37, -, b =1, 7 > 0.
Let 7, = Lrdt®. Hence then
(=) = (210 < By o ((27)) +1/8 V2 1
holds with probability > 1 — §. Here z* == g(x*).

Proof. Using the Lipschitz-continuity and equation 4, we have that
Vz € Z,|h(z) — h([2]t)| < Lrd/T:
By choosing 7; = Lrdt?, we have | Z;| = (Lrdt?)® and
Vz € Z,|h(z) — h([z]:)| < 1/t?
Then using Lemma 5.6 in Srinivas et al. (2010), we reach the expected result. O

Base on Lemma 5.5 in Srinivas et al. (2010) and Lemma 1, we could have the following result
directly.

Lemma 2. Pick § € (0,1) and set 3 = 2log(2m;/d) + 2dlog(Lrdt?), where D1 =1, m >
0. Then with probability > 1 — 0, for all t € N, the regret is bounded as follows:

ry < 2,62/20}_1(2}) + 1/t2

11
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Proof. Using the union bound of 4/2 in both Lemma 5.5 in Srinivas et al. (2010) and Lemma 1, we
have that with probability 1 — §:

ry = h(z") — h(z)
< B2 (z0) + 18 + po—i (z0) — h(z)
<2820, 1(z) + 182

which complete the proof. O

Now we are ready to use the Lemma5.4 in Srinivas et al. (2010) and Lemma 2 to complete the proof
of Theorem 1.

Proof. Using Lemma5.4 in Srinivas et al. (2010), we have that with probability > 1 — ¢:

T
245#7?—1(%) <CiBryr VT >1
=1

By Cauchy-Schwarz:

T
225,:1/2075—1(96‘75) <VCifryr VT >1
t=1

Finally, substitute 7, with 7w2¢2/6 (since _ 1/t? = 72 /6). Theorem 1 follows. O

12
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B VISUALIZATION OF THE COLLISION EFFECT IN LATENT SPACE
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Figure 4: Illustrate the collision and quantified measurement of the collision. Here we propose two
quantity measurement of the collision. For the second graph the y axis of the is the ratio of exceeding
ly1 — y2| > |21 — 22| * L. And for the third graph, the y axis of the third column is the mean of

A= |y1 —yz\/|Z1 - 2’2|-

We demonstrate the collision effect in the latent space. We trained the same neural network on
Feynman dataset with 101 data points which demonstrate the latent space after two retrains with
the retrain interval set to be 50 data points. The regularized one employed DW CoFLO, with
the regularization parameter p = le®, penalty parameter A = le~2, retrain interval T, weighting
parameter 7 = le~2 and the base kernel set to be square exponential kernel. The non-regularized
one employed LSO.

C SUPPLEMENTAL MATERIALS ON ALGORITHMIC DETAILS

C.1 ALGORITHMIC DETAILS ON NEURAL NETWORK ARCHITECTURE

As the main goal of our paper was to showcase the performance of a novel collision-free regularizer,
we picked our network architectures to be basic multi-layer dense neural network:

For SPOKES, we used a 5-layer dense neural network. Its hidden layers consist of 16 neurons
with Leaky Relu nonlinearities, 8 neurons with Sigmoid nonlinearities, 4 neurons with Sigmoid
nonlinearities, and 2 neurons with Sigmoid nonlinearities respectively. Each hidden layer also
applies a 0.2 dropout rate. The output layer applies Leaky Relu nonlinearity.

For SuperNova, Feynman, and Rastrigin 2D, we used a 4-layer dense neural network. Its hidden
layers consist of 8 neurons with Sigmoid nonlinearities, 4 neurons with Leaky Relu nonlinearities,
and 2 neurons with Leaky Relu nonlinearities respectively. Each hidden layer applies a 0.2 dropout
rate. The output layer also applies Leaky Relu nonlinearity.
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(a) 1-D regularized latent space (b) 1-D non-regularized latent space

Figure 5: Illustrate the 1-D latent space of Feynman 111.9.52 dataset. 5a shows a regularized latent
space with a few observable collisions. 5b shows a non-regularized latent space with bumps of
collisions especially around the maxima among the observed data points. Besides, having fewer
collisions in the latent space contribute to the optimization through improving the learned Gaussian
process. We observed in this comparison that the next point selected by the acquisition function of
the regularized version is approaching the global optima, while the next point in the non-regularized
version is trying to solve the uncertainty brought by the severe collision near the currently observed
maxima.

The neural networks are trained using ADAM with a learning rate of 1le 2.

1% hidden layer L™ hidden layer
— output layer
—
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A

Figure 6: Network graph of a (L + 1)-layer dense network with D input units and 1 output units. In
our experiments L is set to be 4 for Rastrigin 2D, Feynman 11.9.52, Supernova, and 5 for SPOKES.

input layer

C.2 PARAMETER CHOICES

We further investigate the robustness of parameter choices of both the regularization parameter p
and the penalty parameter A on SPOKES dataset. We show the result in the figures below.
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Figure 7: Simple regrets under different parameter settings on the SPOKES dataset. 7b shows that a
regularization parameter too big could distract the training process and downgrade the performance.
And we choose p = 1€ in practice as it maintains the collision penalty in the same order of the
regression loss of GP in equation 3. 7a shows that a relatively small value could do a good job. We
believe that’s because the wide range of objective values of the tested dataset needs to be mitigated.
The curves demonstrate the decent performance of CoFLO as long as the parameters are not set to
be too large.

D ADDITIONAL EXPERIMENTAL RESULTS

We added both the detailed median curves and the p-values of the Welch’s t-tests of the experiments
we discussed in section 5.

D.1 MEDIAN CURVE

The median curves demonstrate similar trends to the mean curves. In the four experiments, DW
CoFLO consistently demonstrates a superior performance over the baselines.
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D.2 P-VALUES

The table shows the p-values of Welch’s t-tests of the experiments. It demonstrates the significance
of the improvement brought by DW CoFLO over the baselines.

Data BO RO TPE LSO SE-LSO  CoFLO

Rastrigin-2D || 1.07e™* 3.88¢7% 1.0le™? 6.38¢™2 1.10e™° 4.23¢7!

Supernova 3.24e73  3.6le™® 3.18¢7%2 3.43e”! 1.4le 8 2.62e7!

Feynman | 1.73e=' 1.52¢707 8.20e~! 288¢~! 6.37¢~! 2.25¢"!

SPOKES 4.62¢71  9.90e73  2.64e”! 4.17e7? 2.87e™? 4.1le”!
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