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Abstract

Recent advancements in dense out-of-distribution (OOD) detection have primarily
focused on scenarios where the training and testing datasets share a similar domain,
with the assumption that no domain shift exists between them. However, in real-
world situations, domain shift often exits and significantly affects the accuracy of
existing out-of-distribution (OOD) detection models. In this work, we propose a
dual-level OOD detection framework to handle domain shift and semantic shift
jointly. The first level distinguishes whether domain shift exists in the image by
leveraging global low-level features, while the second level identifies pixels with
semantic shift by utilizing dense high-level feature maps. In this way, we can
selectively adapt the model to unseen domains as well as enhance model’s capacity
in detecting novel classes. We validate the efficacy of our method on several OOD
segmentation benchmarks, including those with significant domain shifts and those
without, observing consistent performance improvements across various baseline
models. Code is available at https://github.com/gaozhitong/ATTAl

1 Introduction

Semantic segmentation, a fundamental computer vision task, has witnessed remarkable progress
thanks to the expressive representations learned by deep neural networks [33]]. Despite the advances,
most deep models are trained under a close-world assumption, and hence do not possess knowledge
of what they do not know, leading to over-confident and inaccurate predictions for the unknown
objects [18]. To address this, the task of dense out-of-distribution (OOD) detection [1, [15]], which
aims to generate pixel-wise identification of the unknown objects, has attracted much attention as it
plays a vital role in a variety of safety-critical applications such as autonomous driving.

Recent efforts in dense OOD detection have primarily focused on the scenarios where training
and testing data share a similar domain, assuming no domain shift (or covariant shift) between
them [50, 13 [1, 15 138]]. However, domain shift widely exists in real-world situations [39] and can
also be observed in common dense OOD detection benchmarks [29]. In view of this, we investigate
the performance of existing dense OOD detection methods under the test setting with domain-shift
and observe significant performance degradation in comparison with the setting without domain-shift
(cf. Figure[I). In particular, the state-of-the-art detection models typically fail to distinguish the
distribution shift in domain and the distribution shift in semantics, and thus tend to predict high
uncertainty scores for inlier-class pixels.

A promising strategy to tackle such domain shift is to adapt a model during test (known as test-time
adaptation (TTA) [46]), which utilizes unlabeled test data to finetune the model without requiring
prior information of test domain. However, applying the existing test-time domain adaption (TTA)
techniques [46, (7, [31}47] to the task of general dense OOD detection faces two critical challenges.
First, traditional TTA methods often assume the scenarios where all test data are under domain shift
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Figure 1: (a) We visualize OOD score maps and the corresponding histograms generated by the
SOTA method PEBAL [44]] on both an original and a domain-shifted (smog-corrupted) image. (b)
We quantify the drop in PEBAL’s performance with the added domain shift and compare it to the
performance when combined with our method or existing test-time adaptation methods such as
TBN [36] and Tent [46]. Please refer to Section[d.3]for additional results.

while our dense OOD detection task addresses a more realistic setting where test data can come
from seen or unseen domains without prior knowledge. In such a scenario, TTA techniques like
the transductive batch normalization (TBN) [36] 40, 2]], which substitutes training batch statistics
with those of the test batch, could inadvertently impair OOD detection performance on images from
seen domains due to inaccurate normalization parameter estimation (cf. Figure[T(b)). On the other
hand, the existence of novel classes in test images further complicates the problem. Unsupervised
TTA losses like entropy minimization [46] [12} 32} [45] often indiscriminately reduce the uncertainty
or OOD scores of these novel classes, leading to poor OOD detection accuracy (cf. Figure [T[b)).
Consequently, how to design an effective test-time adaptation strategy for the general dense OOD
detection in wild remains an open problem.

In this work, we aim to address the aforementioned limitations and tackle the problem of dense OOD
detection in wild with both domain- and semantic-level distribution shift. To this end, we propose a
novel dual-level test-time adaptation framework that simultaneously detects two types of distribution
shift and performs online model adaptation in a selective manner. Our core idea is to leverage
low-level feature statistics of input image to detect whether domain-level shift exists while utilizing
dense semantic representations to identify pixels with semantic-level shift. Based on this dual-level
distribution-shift estimation, we design an anomaly-aware self-training procedure to compensate for
the potential image-level domain shift and to enhance its novel-class detection capacity based on
re-balanced uncertainty minimization of model predictions. Such a selective test-time adaptation
strategy allows us to adapt an open-set semantic segmentation model to a new environment with
complex distribution shifts.

Specifically, we develop a cascaded modular TTA framework for any pretrained segmentation model
with OOD detection head. Our framework consists of two main stages, namely a selective Batch
Normalization (BN) stage and an anomaly-aware self-training stage. Given a test image (or batch),
we first estimate the probability of domain-shift based on the statistics of the model’s BN activations
and update the normalization parameters accordingly to incorporate new domain information. Subse-
quently, our second stage performs an online self-training for the entire segmentation model based
on an anomaly-aware entropy loss, which jointly minimizes a re-balanced uncertainty of inlier-class
prediction and outlier detection. As the outlier-class labels are unknown, we design a mixture model
in the OOD score space to generate the pseudo-labels of pixels for the entropy loss estimation.

We validate the efficacy of our proposed method on several OOD segmentation benchmarks, including
those with significant domain shifts and those without, based on FS Static [1]], FS Lost&Found [TI],
RoadAnomaly [29] and SMIYC [3]]. The results show that our method consistently improves the
performance of dense OOD detection across various baseline models especially on the severe domain
shift settings, and achieves new state-of-the-arts performance on the benchmarks.

To summarize, our main contribution is three-folds: (i) We propose the problem of dense OOD
detection under domain shift (or covariance shift), revealing the limitations of existing dense OOD
detection methods in wild. (ii) We introduce an anomaly-aware test-time adaptation method that
jointly tackles domain and semantic shifts. (iii) Our extensive experiments validate our approach,
demonstrating significant performance gains on various OOD segmentation benchmarks, especially
those with notable domain shifts.



2 Related Work

Dense Out-of-distribution Detection The task of Out-of-distribution (OOD) detection aims to
identify samples that are not from the same distribution as the training data [[18]]. While most
work focuses on image-level out-of-distribution detection [18] 27} 2519, 30} 42]], some researchers
have begun to study dense OOD detection [[1, [15} [3]] (or anomaly segmentation), which is a more
challenging task due to its requirement for granular, pixel-level detection and the complex spatial
relationships in images. Existing work dealing with dense OOD detection often resorts to either
designing specialized OOD detection functions [15} 21} 29} 48| or incorporating additional training
objectives or data to boost performance in OOD detection [10}4},/44]. Different from these approaches,
our work aims to enhance the model’s ability to detect OOD objects at test time by utilizing online
test data and design a model-agnostic method applicable to most differentiable OOD functions and
training strategies. Furthermore, we target for a more general dense OOD detection problem, where
domain-shift potentially exists, which brings new challenges unaddressed in the prior literature.

Test-Time Domain Adaptation The task of test-time domain adaptation (TTA) [46] aims to study
the ability of a machine learning model trained on a source domain to generalize to a different,
but related, target domain, using online unlabeled test data only. Existing work on TTA mostly
tackles the problem from two aspects: adapting standardization statistics in normalization layers
and adapting model parameters as self-training. The first line includes utilizing test-time statistics
in each batch [36] or moving averages [35, [20], or combining source and target batch statistic
[40, 51}, 221 28] 152]. The self-training technique including entropy minimization [12} 32} 45] and
self-supervised losses [43, 31]. In our work, we also approach test-time adaptation from these two
perspectives. However, our primary distinction lies in addressing a more general open-world scenario,
where test data can originate from seen or unseen domains, and novel objects may exist. Consequently,
we design our method by explicitly considering these factors and aiming to jointly tackle domain
shift and semantic shift challenges.

Novel Class in Unseen Domain While the two primary forms of distribution shift, domain shift
and semantic shift, are typically studied independently in literature, there are instances where both
are explored in a more complex setting. One such example is Open Set Domain Adaptation [37]],
which investigates the unsupervised domain adaptation problem in scenarios where the target data
may include new classes. These novel classes must be rejected during the training process. Another
line of research focuses on zero-shot learning in the presence of domain shift [49]]. In this case,
novelty rejection must be performed during the testing phase. A domain generalization method is
often employed, which requires data from other domains during training. Some work also discuss the
impact of covariant-shift in OOD detection [34]. However, our study diverges from these in several
key aspects. First, we study the problem of semantic segmentation where the impacts of domain
and semantic shifts are more complex and nuanced compared to the general classification problems.
Second, we focus on the situation when no additional data or prior knowledge of the test domain can
be obtained during the training.

3 Method

3.1 Problem Formulation

We first introduce our general dense OOD detection problem setting with potential domain and
semantic distribution shift. Formally, we denote an instance of training data as (z°,y*) ~ Pxy €
X x Y4, where z°, y* denotes the input image and corresponding segmentation label, X = R3*¢
represents the input space (an image with d pixels), Y = [1, C] is the semantic label space at each
pixel, and Pxy is the training data distribution. A test data instance is represented as (z,y) ~ Qxy
where @) xy is the test data distribution. In the OOD detection problem, we have Qxy # Pxy
and our goal is to identify all pixels where their labels do not belong to the training label space,
ie., y; ¢ Y. In contrast to previous works, we here consider a general problem setting, dense
OOD detection with potential domain shift, where in addition the input distributions Py # ) x but
with overlaps in their support. Such domain and semantic-class changes leads to a complex data
distribution shift, which poses new challenges for the conventional dense OOD detection approaches
that are unable to distinguish different shift types.
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Figure 2: The overview of the two-stage Anomaly-aware Test-Time Adaptation (ATTA) framework.
For each test image (or batch), our first stage determines the existence of domain shift and develop
a selective Batch-Normalization module to compensate for the input distribution deviation. In the
second stage, we devise an anomaly-aware self-training procedure via minimizing a re-balanced
uncertainty of model predictions to enhance the OOD detection capacity.

3.2 Model Overview

In this work, we aim to address the general dense OOD detection problem by leveraging unlabeled test
data and adapting a segmentation model during test time. Specifically, we begin with a segmentation
network that has been trained using data from Pxy. Here we consider a common differentiable
OOD network design [J5 30, [15/ [1] that consists of two main components: a seen-class classifier
fo : X — Y% and an unseen class detector gy : X — R?. Typically, both network components share
the same set of parameters 6. For instance, gy can be the negative energy score as in [[13} (30} 23]] or
the maximized logit score as in [15]. During testing, an image (or a batch) sequentially arrives from
Qxy, and our goal is to update the model parameters for each batch and produce anomaly-aware
semantic segmentation outputs.

In order to cope with potential domain and semantic shift in test data, we introduce a novel dual-
level test-time adaptation framework, which allows us to simultaneously identify two types of
distribution shifts and performs an online self-supervised learning in a selective fashion. Specifically,
we instantiate our TTA strategy as a two-stage cascaded learning process. Our first stage determines
the existence of domain shift in the image by exploiting the consistent changes in image-level feature
statistics. Based on the inferred shift probability, we develop a selective Batch-Normalization module
to compensate for the input distribution deviation. In the second stage, we devise an anomaly-aware
self-training procedure to enhance the model’s capability in detecting novel classes. The procedure
iteratively refines the outlier estimation based on a mixture model of OOD scores and minimizes a
re-balanced uncertainty of pixel-wise model predictions for effective adaptation to the test data. An
overview of our framework is demonstrated in Figure

We update the model parameters in an episodic manner, where for each (batch of) image(s) we use
a same initial network parameter. This makes it more resilience if there is no apparent connection
between two different (batches of) image(s). In the following, we first explain our design of the
selective BN module in Sec. [3.3] followed by our anomaly-aware self-training stage in Sec. [3.4]

3.3 Selective Test-Time Batch Normalization

Our first-stage module aims to identify whether an input image is from the seen or unseen domain
and perform model adaptation to compensate any potential domain shift. To achieve this, we take
inspiration from the transductive Batch-Normalization (TBN) [36]], which is a common strategy of
exploiting test-time data for model adaptation. The vanilla TBN, however, often suffers from unstable
estimation due to the small size of test data, and hence can lead to performance degradation for our
general setting where test data may have varying levels of domain shift.

To tackle this, we introduce a selective BN module that first estimates the probability of input
image being generated from unseen domain, and then performs a mixture of Conventional batch
normalization (CBN) and TBN according to the inferred domain-shift probability. Specifically, we
denote P(z% = 1|z) as the probability of an image x from an unknown domain, and we estimate the
probability by considering the distribution distance between the deep features of test and training data
in the Normalization layers of the segmentation network. Formally, let 12{", 0" be the running mean



and standard deviation at the I-th BN layer calculated in the end of the model training, (), o;(z)
be the mean and standard deviation at the [-th BN layer calculated for each test input =, we compute
the domain-shift probability as follows:

L
P(z" = 1|z) = hay (Z (KL(N(uz(x),Uz(x))IN(uf’",UfT)))) ; M

=1

where A denotes the normal distribution, K L denotes the Kullback—Leibler divergence, and the
hap(x) = sigmoid((x + a)/b) is a sigmoid function with linear transform, which normalizes the
distance into a probability value. The parameters a, b are estimated based on the variance of training
data statistics such that a data point that is far away from the training statistics has higher probability
of image-level domain shift. We then update the BN statistics of the network according to the above
probability as follows:

iy = P(zd = 1|z) * w(x) + P(zd =0|z) * ui", 2)

62 = P(2% = 1|z) x 0 (z) + P(2% = 0|z) * (o]")?, 3)
where [ € [1, L] and L is the max depth of the BN layers. Such an adaptive BN enables us to balance

between a stable BN for the data without domain-shift and a test-time BN tailored to the data with
domain shift.

3.4 Anomaly-aware Self-training Procedure

After compensating for the potential domain gap, we introduce a second stage of test-time model
adaptation, aiming for enhancing the model capacity in OOD detection and closed-set prediction on
the test data. To this end, we propose an online self-training procedure for the entire segmentation
model based on an anomaly-aware prediction entropy loss. By minimizing a weighted uncertainty
of inlier-class prediction and outlier detection, we are able to promote the confidence of model
predictions, which leads to a more discriminative pixel-wise classifier on the test data.

Formally, we construct a (C' + 1)-class pixelwise probabilistic classifier based on the two network
modules fy and gy and denote its output distribution as Y e [0, 1](C+1) *d with each element YH
being the probability of Py(y; = c|z), ¢ € [1,C + 1]. For each pixel 4, the first C' channels represent
the probabilities of being each closed-set class while the last channel is the probability of being an
outlier class. Given the output distribution, we define our learning objective function as,

C+1

Lo(z) == > weYeilog(Yey), 4)

i c=1

where w,. is the weight for class c. We introduce the class weights to cope with the class imbalance
problem between the inlier and outlier classes as the latter typically have much lower proportion
in images. More specifically, we set w, = 1 forl < ¢ < Candw. = A > 1forc=C+ 1. In
the following, we first describe how we estimate the output probabilities Y based on the seen-class
classifier fy and the OOD detector gy, followed by the loss optimization procedure.

Anomaly-aware output representation To derive the output probability Y, we introduce an
auxiliary variable Z° € {0, 1}¢, where Z¢ = 1 indicates the i-th pixel is an outlier, and Pp(Z¢ = 1|)
denotes the corresponding probability. We also assume that the seen classifier fy outputs a pixelwise
probability map F' € [0, 1]¢*< for the known classes ¢ € ) and the OOD detector gy generates a
pixelwise outlier score map G' € R?. The anomaly-aware output distribution Y; for the i-th pixel can
be written as,

Yei= Po(§; = clz, Z) = 0)Py(Z; = 0|z) + Py(§; = c|z, Z) = 1)Py(Z = 1|z) ®)

= Fei(1 = Pp(Z7 = 1a))[c € Y] + By(Z7 = 1|z)[e = C + 1], ©)

where [-] is the indicator function, and we use the fact that Py(9; = c|z, Z? =0) = F,;force Y
and0forc=C +1,and Py(g; = clz,Z? =1) =0forc€ Yand 1 forc=C + 1.

Given the marginal probability in Eqn (6), our problem is reduced to estimating the pixelwise outlier
probability Py(Z? = 1|x). However, as we only have an arbitrary outlier score map G output by gy,



it is non-trivial to convert this unnormalized score map into a valid probability distribution. A naive
nonlinear transform using the sigmoid function or normalizing the scores with sample mean could
lead to incorrect estimation and hurt the performance. To tackle this problem, we develop a data-
driven strategy that exploits the empirical distribution of the pixelwise OOD scores to automatically
calibrate the OOD scores into the outlier probability Py(Z?|x).

More specifically, we observe that the empirical distributions of pixelwise OOD scores {G; } appear
to be bimodal and its two peaks usually indicate the modes for inlier and outlier pixels (cf. Figure/[I).
We therefore fit a two-component Mixture of Gaussian distribution in which the components with
lower mean indicates the inliers and the one with higher mean corresponds to the outliers. Given the
parameters of the Gaussian components, we now fit a sample-dependent Platt scaling function to
estimate the outlier probability as follows,

By(Z7 = 1]x) = sigmoid((Gi — a(x))/b(x)), ™
where we set the calibration parameter a(x) as the value achieving equal probability under
two Gaussian distributions, i.e., a(x) = max{a : m N(a|p1,01) = maN(a|uz,02)} where

1, T2, f1, fi2, 01, 02 are the parameters of the GMM model, and b(x) as the standard derivation
of the sample OOD scores. We note that while it is possible to analytically compute the outlier
probability based on the estimated GMM, we find the above approximation works well in practice
and tends to be less sensitive to the noisy estimation.

Entropy minimization After plugging in the estimated Y, we can re-write our learning objective
in Eqn (@) as the following form:

c
-> <Z Yeilog(Yei) + A+ Yora, IOg(YCJrl,i)) ®

c=1

Lo(x)

%

e}
-> (Z F.i(1—Gy)log(F.:(1—Gy)) +\-Gilog c‘:i) , )
i c=1

where G; = Py(Z? = 1|z) denotes the calibrated outlier probabilities. Direct optimizing this loss
function, however, turns out to be challenging due to the potential noisy estimation of the outlier
probabilities. To mitigate the impact of pixels with unreliable estimates, we select a subset of pixels
with high confidence in outlier estimation and adopt a pseudo-labeling strategy to optimize the
loss function in an iterative manner. Concretely, in each iteration, we first compute the calibration
parameters in Eqn and choose a subregion D based on thresholding the outlier probabilities.
Given a(x), b(x) and D, we then use the binarized outlier probabilities as the pseudo labels for the
loss minimization as follows:

C
Ly(z) =~ — Z (Z Foi(1—t;)log(Fei(1—Gy)) + A tilog C_v'i> (10)
ieD

DZ{iZGi<T10rGi>T2}; tiZO'[[G,‘<T1]]+1~[[GZ‘>T2H, (11
where 71, 75 are the threshold parameters. In addition, we set A = »_.[t; = 0]/ .[t; = 1] in
an image-dependent manner to automatically determine the class weight. Following the common
practice in test-time adaptation [46] [7| 31} 47], we only update a subset of network parameters to
avoid over-fitting. In this work, we choose to update the final classification block, which brings the
benefit of faster inference after each update iteration.

c=1

4 Experiments

We evaluate our method on several OOD segmentation benchmarks, including those with significant
domain shifts and those without, based on FS Static [[1]], FS Lost&Found [1]], RoadAnomaly [29]]
and SMIYC [3]]. Below, we first introduce dataset information in Sec.d.T|and experiment setup in

Sec.[d.2] Then we present our experimental results in Sec. @3]

4.1 Datasets

Following the literature [44}[10], we use the Cityscapes dataset [9] for training and perform OOD
detection tests on several different test sets, all of which include novel classes beyond the original



Table 1: We benchmark OOD detection methods on the corrupted FS Static dataset (gray rows)
and compare with the results on the original dataset (white rows). Our ATTA method improves the
model’s robustness against corruption when combined with PEBAL.

H MSP [17] Entropy [24] Max logit [I15] Energy [30] Meta-OOD [4] PEBAL [44] +Ours + TBN [36] + Tent [46]

AUC 1 | 9236 93.14 95.66 95.90 97.56 99.61 99.66 99.25 99.04
70.85 71.23 74.13 74.02 78.34 67.63 99.21 98.96 98.93

AP 1 | 19.09 26.77 38.64 41.68 7291 92.08 93.61 86.51 82.38

10.52 14.32 23.60 22.36 52.31 57.02 87.14 81.97 81.42

FPRys | | 23.99 23.31 18.26 17.78 13.57 1.52 1.15 2.33 4.09
95 100.0 100.00 89.94 89.94 100.0 97.17 2.94 4.26 4.43

Cityscapes labels. We note that these datasets may exhibit varying degrees of domain shift due to
their source of construction. In the following, we provide a detailed overview of each dataset.

The Road Anomaly dataset [29] comprises real-world road anomalies observed from vehicles.
Sourced from the Internet, the dataset consists of 60 images exhibiting unexpected elements such as
animals, rocks, cones, and obstacles on the road. Given the wide range of driving circumstances it
encapsulates, including diverse scales of anomalous objects and adverse road conditions, this dataset
presents a considerable challenge and potential for domain shift.

The Fishyscapes benchmark [1] encompasses two datasets: Fishyscapes Lost & Found (FS L&F)
and Fishyscapes Static (FS Static). FS L&F comprises urban images featuring 37 types of unexpected
road obstacles and shares the same setup as Cityscapes [38]], thereby rendering the domain shift in
this dataset relatively minimal. On the other hand, FS Static is constructed based on the Cityscapes
validation set [9]] with anomalous objects extracted from PASCAL VOC [11] integrated using blending
techniques. Consequently, this dataset exhibits no domain shift. For both datasets, we first employ
their public validation sets, which consist of 100 images for FS L&F and 30 images for FS Static.
Then, we test our method on the online test dataset.

The FS Static -C dataset is employed to investigate the impact of domain shift on existing OOD
detection methods. We modify the original public Fishyscapes Static dataset [1] by introducing
random smog, color shifting, and Gaussian blur [[16], mirroring the domain shift conditions [§].

The SMIYC benchmark [3] consists of two datasets, both encompassing a variety of domain shifts.
The RoadAnomaly21 dataset contains 100 web images and serves as an extension to the original
RoadAnomaly dataset [[29], representing a broad array of environments. On the other hand, the
RoadObstacle21 dataset specifically focuses on obstacles in the road and comprises 372 images,
incorporating variations in road surfaces, lighting, and weather conditions.

4.2 Experiment Setup

Baselines: We compare our method with several dense OOD detection algorithms [[15} 17} 24! 26|
30, 4} [10l [14} i44] and test-time adaptation algorithms [36, 46]. To evaluate its generalize ability,
we implement our method across different OOD detection backbones, including Max Logit [[15]],
Energy [30] and PEBAL [44]. This allows us to examine its performance with varying capacities of
OOD detection baselines and different OOD function forms.

Performance Measure: Following [4} (10, (14} 44], we employ three metrics for evaluation: Area
Under the Receiver Operating Characteristics curve (AUROC), Average Precision (AP), and the False
Positive Rate at a True Positive Rate of 95% (FPR95).

Implementation Details For a fair comparison, we follow previous work [1l 4, 44] to use
DeepLabv3+ [6] with WideResNet38 trained by Nvidia as the backbone of our segmentation models.
In our method, the confidence thresholds 7; and 75 are set to 0.3 and 0.6 respectively. Considering
the standard practice in segmentation problem inferences, we anticipate the arrival of one image at a
time (batch size = 1). We employ the Adam optimizer with a learning rate of 1e-4. For efficiency, we
only conduct one iteration update for each image. The hyperparameters are selected via the FS Static
-C dataset and are held constant across all other datasets. See Appendix [B]for other details.



Table 2: We compare our method on the OOD detection benchmarks: Road Anomaly dataset,
Fishyscapes Lost & Found dataset, and Fishyscapes Static dataset. Our method consistently improve
upon several OOD detection methods, with particularly significant improvements observed on the
Road Anomaly dataset where domain shift is prominent.

Methods OoD Road Anomaly FS LostAndFound FS Static
Data | AUCT APt FPRgs) | AUCT APt FPRgs;| | AUCT AP1T FPRys |

MSP X 67.53 1572 71.38 89.29 459 40.59 9236 19.09  23.99
Entropy [24] X 68.80 1697  71.10 90.82 1036  40.34 93.14 2677 2331
Mahalanobis [26] X 62.85 1437  81.09 96.75  56.57 11.24 96.76  27.37 11.7
Meta-OoD [4] v - - - 93.06 41.31 37.69 9756 7291 13.57
Synboost v 8191 3821 64.75 96.21 60.58  31.02 95.87 66.44  25.59
DenseHybrid [14] v - - - 99.01  69.79 5.09 99.07  76.23 4.17
Max Logit X 7278 1898  70.48 9341 1459 4221 95.66 38.64 18.26
+ ATTA (Ours) - 76.60 2396  63.49 93.53 17.39  40.69 95.48 41.23  20.89
Energy X 7335 1954  70.17 9372 16.05  41.78 9590 41.68 17.78
+ ATTA (Ours) - 7741 2527  62.57 9330 17.47 4332 96.0 41.84 17.63
PEBAL [44] v 87.63 45.10  44.58 98.96  58.81 4.76 99.61  92.08 1.52
+ ATTA (Ours) - 92.11 59.05 33.59 99.05  65.58 4.48 99.66  93.61 1.15

Road Anomaly Fishyscapes Lost & Found Fishyscapes Static
= -~ g ~ o — e SRV W =

—

Figure 3: We present qualitative results on the Road Anomaly, FS Lost & Found, and FS Static
datasets, where our method improves the previous state-of-the-art model, PEBAL [44]], by effectively
reducing domain shift and enhancing out-of-distribution detection. This improvement is particularly
pronounced in the Road Anomaly dataset, which typically presents a higher domain shift compared
to the Cityscapes training set.

4.3 Results on simulated FS Static -C Dataset

To investigate the performance of existing OOD detection method in wild, we benchmark several
existing dense OOD detection methods [24], (151,30, 4] [44]]. Then we integrate our method with
the previous state-of-the-art model on the FS Static dataset, and conduct comparison to test-time
adaptation techniques [36), [46].

As shown in Table[T] the introduction of corruption notably affects the performance of OOD detection
methods, with an average decrease of 30% in AUC and an average increase of 70% in FPR95. This
suggests that current OOD detection methods are highly susceptible to domain shifts. Notably, when
combined with our test-time adaptation method, the performance of the state-of-the-art OOD detection
method, PEBAL [44]], remains more stable in the face of domain shifts, demonstrating a marginal
0.4% drop in AUC. In addition, we note that traditional TTA methods (TBN [36]], Tent [46])) can
result in performance degradation in the original FS Static dataset where no domain shift occurs (cf.
rows in white). By contrast, our method consistently enhances the performance of OOD detection,
demonstrating it greater adaptability in real-world scenarios where domain prior information is
uncertain.

We present additional results on this dataset in Appendix [C} including the results of combining our
method with other OOD detection approaches, seen class prediction performance, and experiments
under isolated domain shifts.



4.4 Results on existing dense OOD detection benchmarks

We then evaluate the performance of our method in existing dense OOD detection benchmarks and
integrate it with several OOD detection methods. These include state-of-the-art techniques that do
not require retraining or additional OOD data, such as Max Logit [15] and Energy [30], as well
as methods that do, such as PEBAL [44]. As shown in Table @ our ATTA method consistently
improve upon previous state-of-the-art models, with particularly notable enhancement observed
within the Road Anomaly dataset where the domain shift is more pronounced. Specifically, we
enhance PEBAL’s performance from 87% to 92% in AUC, 45% to 59% in AP, and reduce the
FPRO5 error from 44% to 33%. When compared to other methods in the benchmarks, our method in
conjunction with PEBAL attains new state-of-the-art performance across all three datasets.

Figure [3] provides qualitative results of our method across these datasets. Our ATTA approach
improve the performance of OOD detection backbones by mitigating the impact of domain-shift, and
encourage the confidence of the model predictions for both inliers and outliers.

‘We also submit our method, in combination with PEBAL [44]], to various online benchmarks. These
include the SegmenMelfYouCan [3] and the online Fishyscapes [1] benchmarks, where our method
consistently outperforms PEBAL [44]]. For further details, please refer to Appendix [D.3]and[D.4}

4.5 Ablation Study

We further evaluate the efficacy of our model components on the Road Anomaly dataset using
PEBAL [44] as the baseline model. We begin by analyzing the effectiveness of our proposed modules,
Selective Batch Normalization (SBN) and Anomaly-aware Self-Training (AST), and subsequently
delve into a more detailed examination of each module’s design.

As illustrated in Table 3] the individual application of either SBN or AST contributes incremental
enhancements to the baseline model shown in the first row. When these two modules are combined,
the performance enhancement is further amplified.

Table 3: Ablation study of our two main modules: SBN and AST.

SBN AST AUCT APt FPRgs .

87.63  45.10 4458
88.72  48.11 43.66
90.84  55.81 37.48

9211  59.05 33.59

N NXx X
NEEGS

We then scrutinized the internal design of each module in Table[d] We first replace SBN with versions
that only employ batch-wise statistics (row #1) or training statistics (row #2), demonstrating that
our SBN, which incorporates both types of statistics, outperforms these variants. Subsequently, we
evaluated the design of our self-training module, initially replacing it with a closed-world entropy [46]
calculated only on the seen classes (row #3), and then altered our GMM-based sample-specific
normalization to a naive z-score normalization (row #4). We observed that ablating each component
resulted in performance degradation, which underscores the effectiveness of our original design.

Table 4: Ablation study of our internal design of each module.

Train Batch Entropy Norm AUCT AP?T FPRys |

anomaly-aware GMM  86.29 48.65 57.03
anomaly-aware GMM  88.72 48.11 43.66

seen-class only - 90.46  54.64 39.28
anomaly-aware z-score 91.25  56.65 36.33

anomaly-aware GMM  92.11 59.05 33.59

NENNEG
N AN RN

We present the time and memory overhead of the proposed methods, as well as some other ablation
results in Appendix



5 Conclusion

In this work, we propose the problem of dense OOD detection under domain shift, revealing the
limitations of existing dense OOD detection methods in wild. To address the problem, we introduce a
dual-level OOD detection framework to handle domain shift and semantic shift jointly. Based on
our framework, we can selectively adapt the model to unseen domains as well as enhance model’s
capacity in detecting novel classes. We validate the efficacy of our proposed method on several
OOD segmentation benchmarks, including those with significant domain shifts and those without,
demonstrating significant performance gains on various OOD segmentation benchmarks, especially
those with notable domain shifts.

Despite these promising results, there is still room for further refinement in our ATTA method.
Similar to other self-training methods, ATTA relies on a well-initialized model. Our experiments
show that our adaptation method yields strong results on state-of-the-art models, but the improvement
is less noticeable with weaker backbones. Another practical consideration is the additional time
needed for test-time adaptation methods. This is an area where future research could make substantial
strides, potentially developing more efficient algorithms that could streamline the process and reduce
inference time. All in all, our study introduces a more realistic setting of dense OOD detection under
domain shift, and we hope it may offer some guidance or insights for future work in this field.
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Appendix

We provide the pseudo code in Sec.[A], more implementation details in Sec. [B] additional experimental
results in Sec. [C]and Sec. D} additional ablation results in Sec. [E} visualization results in Sec.[Fand
some additional discussion in Sec.[Gl

A Pseudo Code of ATTA

The pseudo code for our proposed method, Anomaly-aware Test-Time Adaptation (ATTA), is
presented in Algorithm|T] In this algorithm, each test image x; utilizes a same pre-trained network
parameter @ for initialization. The adaptation process consists of two stages: a domain-aware selective
Batch Normalization (BN) updating stage and an online self-training stage based on an anomaly-
aware entropy loss. The final output of the model includes the inlier probability map and outlier score
map for each test image.

Algorithm 1: Anomaly-aware Test-Time Adaptation (ATTA)

Input :Test samples Diegy = {xt}z;l, seen-class classifier fy and unseen-class detector gy with
pretrained 6, number of iterations IV, learning rate 7, confidence thresholds 71, 5.

Output : Inlier probability maps {F}}7_;, outlier score maps {G;}7_;.

for z; € D, do

Initialize parameters 6; < 6.

Compute the domain-shift probability based on Eq.(1).

Update the BN statistics of the network using the above probability as in Eq.(2,3).

fori=1,--- ,Ndo
Get the inlier probability map F; < fy, (x+) and outlier score map Gt < gp, ().
Calculate the anomaly-aware entropy loss L(F}, Gy, 71, T2) as in Eq.(10,11).
Update the model parameters: 6; + Adam(V L, 6;, 7).

end

Output the inlier probability map F; < fp, (x¢) and outlier score map G; <— go, (+).

end

B More Implementation Details

Experimental Results of Previous OOD Methods: All experimental results for the previous dense
OOD detection methods in our paper are obtained by running the pretrained model weights provided
by the official code repository or as officially reported in their original papers.

Implementation Details for Tent: For the Tent method [46]], we follow the instructions provided in
their original paper regarding their experiments on the segmentation task. This involves considering
the parameters of the affine transformation in the Batch Normalization layers as the trainable param-
eters, using transductive batch normalization [36], and adopting the episodic training manner. To
ensure a fair comparison with our method, we update the model only once for each test image, use
Adam optimizer and tune the learning rate on the FS Static-C dataset. These steps allow us to align
our experimental setup with that of the Tent method and facilitate a meaningful comparison.

Implementation Details for GMM Modeling in Our Method: During the process of fitting the
Gaussian Mixture Model (GMM) in our method, we employ a peak-finding algorithm to identify the
right-most peak in the distribution of OOD scores. By considering this peak as the initial mean value
for the right GMM component before performing the Expectation-Maximization (EM) optimization,
we aim to mitigate potential issues arising from the presence of multiple peaks in the inlier distribution.
This approach leverages the prior knowledge that the right-most peak is more likely to represent the
outliers, enhancing the robustness and accuracy of our GMM modeling process.

Details in Constructing FS Static-C Dataset: As described in Section 4.1 of our paper, we simulate
the domain shift in the FS Static-C dataset by introducing random smog, color shifting, and Gaussian
blur. Specifically, we incorporate the fog function from Hendrycks and Dietterich [[16] and utilize
the ‘ColorlJitter’ and ‘GaussianBlur’ transformations provided by the torchvision library. Each
transformation is independently applied with a 50% probability. By randomly combining these
transformations, we generate the final transformed images for the FS Static-C dataset. This process
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enables us to create a diverse and challenging dataset that encompasses various forms and levels of
domain shift (cf. Sec.[F). Consequently, we are able to comprehensively evaluate the performance of
our method under different conditions and demonstrate its robustness in handling domain shift.

C Additional Results on Simulated FS Static -C Dataset

C.1 ATTA Combined with Other OOD Detection Methods

We extended our evaluation to include not only PEBAL [44] but also the remaining five OOD detection
methods. The results in Table [5] below demonstrate that our method consistently enhances the
robustness of these OOD detection techniques in scenarios with potential domain shifts. Specifically,
we achieved significant performance gains on the FS Static-C dataset for all OOD detection methods,
with an average increase of AUC of around 20% (cf. row #2), AP of 10% (cf. row #4), and a
decrease of FPR95 of nearly 80% (cf. last row). Some results on the FS Static-C dataset are even
better than the original performance of the corresponding methods on the non-domain-shift FS-Static
dataset, such as MSP, Entropy, and Meta-OOD, as shown in the table. By combining our method
with various OOD detection methods, we demonstrate its efficacy and general applicability across
different scenarios.

Table 5: We display additional results of our method combined with various previously established
OOD detection methods on both the FS Static (white rows) and FS Static-C datasets(gray rows).

H MSP [15] +Ours Entropy [17] +Ours Max logit [15] + Ours Energy [30] + Ours Meta-OOD [4] + Ours

AUC 92.36 93.91 93.14 95.18 95.66 95.48 95.90 96.00 97.56 98.19
70.85 92.97 71.23 94.33 74.13 94.80 74.02 95.41 78.34 98.06

AP+ 19.09 26.57 26.77 39.57 38.64 41.23 41.68 41.84 7291 83.11
10.52 20.81 14.32 30.78 23.60 31.13 22.36 32.13 5231 75.75

FPRys | 23.99 20.80 2331 18.98 18.26 20.89 17.78 17.63 13.57 11.63
95 100.0 22.58 100.00 20.21 89.94 23.59 89.94 18.63 100.0 11.17

C.2 Segmentation Performance on Seen Classes

In Sec. 4.3 of the main text, we demonstrated the enhancement of OOD detection performance by
our method on both the original FS Static dataset and its corrupted version. Here, in Table [] we
further show the improvement of our ATTA method on the segmentation performance of seen classes.
We utilize the commonly adopted metrics, mloU (mean Intersection over Union) and mAcc (mean
accuracy), and calculate them exclusively on the inlier pixels.

Notably, our method significantly improves the mloU metric from 58.83% to 85.64% on the corrupted
dataset, approaching the performance level of 87.52% achieved on the original FS Static dataset.
This demonstrates the effectiveness of our method not only in OOD detection but also in seen class
classification. Besides, we observe that the TBN [36] and Tent [46] methods, although providing
satisfactory performance on the corrupted dataset, could harm the segmentation performance on the
original dataset. In contrast, the performance gain of our method remains relatively stable across
datasets with different levels of domain shift.

Table 6: Segmentation performance evaluation on seen classes in the original FS Static dataset and
its corrupted version. Comparison is made with a previous OOD detection method [44] and two
test-time adaptation methods [36} 46] using mloU(%) and mAcc(%) as metrics.

mloU 1 mAcct
FS Static FS Static + C FS Static FS Static + C
PEBAL [44] 87.52 58.83 97.56 72.32
+ ATTA (Ours) 87.44 85.64 97.54 97.09
+ TBN [36] 84.88 84.02 97.13 96.70
+ Tent [46] 81.66 84.07 96.63 96.72
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C.3 Performance on Isolated Domain Shifts

We conduct additional experiments by introducing smog, color shifting, and Gaussian blur individually
to the original FS Static dataset. Results, as shown in Table[7] reveal consistent improvements by our
method across isolated domain shifts.

Table 7: We modify the original FS Static dataset by introducing fog, color shifting, and Gaussian
blur separately, to analyze model performance on isolated domain shifts. We compare our method
with the previous OOD detection method, PEBAL.

Fog Color Blur
AUC?T APt FPRgs] AUCtT APT FPRgs) AUCT AP?T FPRgs|

PEBAL [44] 48.37 1.58 91.82 98.58 81.93 6.26 99.46  89.46 2.07
+ ATTA (Ours)  98.92  79.98 3.48 99.15 8743 291 99.55 90.73 1.71

D Additional Results on Dense OOD Detection Benchmarks

D.1 Results of Other TTA Methods on the Benchmarks

We compare our method with two other TTA methods, TBN [36] and Tent [46], on three OOD
detection benchmarks: the Road Anomaly dataset [29], the Fishyscapes Lost & Found dataset [1]],
and the Fishyscapes Static dataset [1]]. Our method consistently improve upon the previous state-
of-the-art OOD detection method, PEBAL [44], while other TTA methods tend to degrade the
performance of the baseline model, especially in terms of the FPR95 metric. This indicates that
traditional TTA methods often indiscriminately reduce the uncertainty or OOD scores of novel
classes, resulting in poor OOD detection accuracy. In contrast, our method demonstrates superior
performance by effectively handling the domain shift and semantic shift jointly.

Table 8: Comparison of our method with other TTA methods on the OOD detection benchmarks:
Road Anomaly dataset, Fishyscapes Lost & Found dataset, and Fishyscapes Static dataset.

Road Anomaly FS LostAndFound FS Static
AUCT AP1T FPRgs|) | AUCT AP?T FPRgs|) | AUCT APT FPRys|

PEBAL [44] 87.63 45.10  44.58 98.96 58.81 4.76 99.61  92.08 1.52
+ ATTA (Ours) | 92.11  59.05  33.59 99.05 65.58 4.48 99.66  93.61 1.15
+ TBN 8556 47.81 59.43 9540 35.01 29.37 99.05 8245 4.05
+ Tent 8535 4751 60.0 9539 3529 2954 99.02  81.99 4.17

Methods

D.2 Results with ResNet 101 backbone

To assess the generalization capability of our method, we conduct experiments using a different
segmentation backbone: DeepLabv3+ with ResNet101. Since some previous work, such as [44],
does not release their pretrained models on this backbone, we compare our method with two simpler
OOD detection baselines, namely Max Logit [[15] and Energy Score [30], which do not require
additional training. The results in Table [9]demonstrate that our method consistently improves upon
these baseline methods across three evaluation metrics.

Table 9: Evaluation of our method with the ResNet101 backbone on the Road Anomaly dataset. Our
method consistently improves upon the Max Logit and Energy Score baselines.

AUC 1 AP 1 FPRy; |
Max Logit [15] 76.59 22.97 66.40
+ ATTA (Ours) 84.39 37.84 49.72
Energy [30] 77.24 24.05 66.20
+ ATTA (Ours) 84.02 38.95 51.27
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D.3 Results on the SMIYC benchmark

We evaluate our method on the SegmentMelfYouCan (SMIYC) [3] benchmark, which particularly
includes significant domain shifts such as variations in illumination and weather. We submit our
outputs to the benchmark test set and present the results in Table [[0] Our experiments on the
RoadAnomaly21 and RoadObstacle21 datasets, both part of the SMIYC benchmark, demonstrate
significant improvements over the previous SOTA method PEBAL [44]. Notably, in the RoadOb-
stacle21 dataset, PEBAL’s performance is hampered by a lack of robustness, whereas our method
has increased the AUPRC score from 5.0% to 76.5%. This validates our method’s adaptability to
substantial domain shifts.

Table 10: Results on the SMIYC official test benchmark. The results for our model were obtained by
submitting the model outputs to the benchmark organizer, as required. The results for PEBAL were
taken from the benchmark’s official website.

RoadAnomaly21 APT FPRg5 | sloUT PPV1T F171
PEBAL [44] 49.1 40.8 38.9 27.2 14.5
+ ATTA (Ours) 67.0 31.6 44.6 29.6 20.6
RoadObstacle21 AP?T FPRy5 | sloU?T PPV F11
PEBAL [44] 5.0 12.7 29.9 7.6 5.5

+ ATTA (Ours) 76.5 2.8 43.9 37.7 36.6

D.4 Results on the Fishyscapes Online Testing Set

We evaluate our method on the Fishyscapes Online Testing set [1]. As presented in Table[TT} our
method outperforms the previous state-of-the-art, PEBAL [44]].

Table 11: Results on the Fishyscapes online test benchmark. The results for our model were obtained
by submitting it to the benchmark organizer. The results for PEBAL were taken from their published

paper.

Online FS Lost & Found APT FPRys |
PEBAL [44] 44.17 7.58
+ ATTA (Ours) 55.94 4.66
Online FS Static AP?T FPRy; |
PEBAL [44] 92.38 1.73
+ ATTA (Ours) 94.68 0.68

E Additional Ablation Results

In this section, we first evaluate our method’s inference overhead, then analyze the efficacy of our
model components including trainable parameters, optimization techniques, and loss weight.

Analysis of Inference Time We evaluate the average inference time for each image. As shown in
Table our method is only 2.25 times slower than direct inference, and faster than another test-time
adaptation method, Tent [46], and some ood detection methods with posthoc operations: ODIN [27]],
Mahalanobis Distance [25]] and Synboost [10]. This efficiency is attributed to our design, which

Table 12: Comparison of inference time (seconds per image). We calculate the complete time from
input to the final prediction and/or ood score. Experiments are conducted on one NVIDIA TITAN Xp
device, and results are averaged over all images in the FS Lost & Found validation set, with image
size (1024 x 2048).

Methods Direct Inference ATTA (Ours) ATTA (Ours) w/o SBN  Tent ODIN SynBoost Mahalanobis
Time (s) 1.2 2.7 1.5 5.1 9.2 3.0 224.2
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updates only once per image and confines learnable parameters to the classifier block. The latter
design enables us to perform backward and the subsequent forward pass only on the classifier block,
and is the main reason we achieve much faster inference than Tent. Furthermore, in scenarios where
data from the same domain are known, we can reduce the computation by performing domain-shift
detection only once, maintaining the variable for subsequent images. To illustrate this, we show
the inference time without domain-shift detection, which further reduces it to 1.25 times the direct
inference speed. Practically, our episodic training model allows for parallel inference across multiple
processors. With ongoing hardware advancements, we anticipate a further reduction in the time gap.

Analysis of Memory Overhead For our method, the memory consumption does increase tem-
porarily for storing activation memory during loss computation but aligns with direct inference
after backpropagation. Table [I3] below illustrates that our memory requirement is higher than direct
inference but significantly more efficient than Tent.

Table 13: Comparison of maximum GPU memory consumption during test time (in MB), using
DeepLab v3+ with WideResNet38 on an NVIDIA TITAN Xp, input image size (1024 x 2048).

Methods Max Memory (MB)
Direct Inference 1170.2
ATTA (Ours) 3388.6
Tent 12796.7

Analysis of Trainable Parameters In Table[14] we show the results on the Road Anomaly dataset
with different trainable parameters. The configurations include: ‘All’ (all parameters are trainable),
‘Body’ (only the feature extraction part of the network is trainable while the final classification
layers are fixed), ‘Head’ (only the final classification layers are trainable), and ‘BN affine’ (only the
parameters of the affine transformation of BN layers are learnable, similar to [46]). We observe that
all configurations are plausible in our setting, with the performance difference being less than 1% for
most metrics. Notably, by training only the parameters in the head, we enable faster inference for
each iteration since we do not need to recalculate the features extracted by the body part.

Table 14: Analysis of the effect of different trainable parameters on the Road Anomaly dataset.

Trainable parameters AUC 1 AP 1T FPRys |
All 92.20 59.60 31.99
Body 92.19 59.58 32.00
BN affine 91.73 58.68 34.30
Head (Ours) 92.11 59.05 33.59

Analysis of Episodic Optimization As stated in the main text, we adapt the model parameters
on each image independently in an episodic manner. To evaluate alternative test-time optimization
strategies, we conduct experiments on the Road Anomaly dataset with two variants. In the first variant,
we continue updating the model parameters with the incoming test data (denoted as ‘Continue’).
In the second variant, we processed two images together as a batch (batch size = 2) instead of
one image at a time. The results are shown in Table [I5] We observed that both variants led to a
performance decrease compared to our episodic updating method. This can be attributed to the lower
correlation between images in the Road Anomaly dataset. The information learned from previous data
potentially negatively affected the model performance on subsequent data, and processing different
images together as a batch introduced inconsistencies and inaccuracies in domain-shift identification,
impacting the final performance. Consequently, our episodic updating method tends to be more
robust, enabling better adaptation and OOD detection in scenarios with less correlated or diverse data.

Analysis of the outlier class weight We also analyze the effect of the outlier class weight in our
loss (represented by A in Eq.(10)) by removing this term. The results are shown in Table|16] We note
that this weight is designed to address the class imbalance problem between the inlier and outlier
classes. In our analysis, we observe that for the Road Anomaly dataset, where the class imbalance is
not severe, the performance without the weight is comparable to the performance with the weight.
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Table 15: Analysis of optimization manner on the Road Anomaly dataset. For the "Continue"
updating, the data order may affect the output. Hence, we examine with two different data orders.

Training manner Batch Size AUC 1 AP 1T FPRys5 |
Continue - order 1 1 87.19 57.3 67.88
Continue - order 2 1 89.09 58.14 50.77
Episodic 2 89.57 50.66 39.99
Episodic 1 92.11 59.05 33.59

However, for the Fishyscapes Lost & Found and Fishyscapes Static datasets, where the proportion of
outlier objects in the images is significantly lower, there is a notable performance gap. Therefore,
our design of outlier class weight enables a more robust performance across different datasets with
varying proportions of outlier objects.

Table 16: Analysis of the class weight on three datasets with varying proportions of outlier objects.

Methods Road Anomaly FS LostAndFound FS Static
AUCT AP?T FPRgs| | AUCT APT FPRgs] | AUCT APT FPRy; |

No Weight 92.05 58.39 3347 98.78  57.60 6.28 99.57  91.62 1.76
Weight (Ours) | 92.11 59.05  33.59 99.05  65.58 4.48 99.66  93.61 1.15

F Additional Qualitative Results
Visualization on the FS Static Dataset Figure ] shows additional qualitative results on the FS
Static Dataset and its corrupted version. Our method effectively mitigates domain shift effects, as

evidenced by clearer separation between inliers (blue) and outliers (orange) in the histograms.

Original OOD Score + Ours (ATTA) Original Histogram + Ours (ATTA)

A y .

A A

Large s known class unknown class

Small

Figure 4: Visualization of the original images in the FS Static dataset and their corrupted versions.
We present the OOD score outputs by PEBAL [44]] (denoted as ‘Original’) and our method, along
with their corresponding histograms. The ground truth OOD objects are highlighted with black lines.
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Visualization on the Road Anomaly Dataset ~As shown in Figure[5] our method effectively reduces
the high uncertainty region associated with the inlier classes, and the separation between the inliers
(depicted in blue) and outliers (depicted in orange) is more distinct in the histogram.

Image Original OOD Score

+ Ours (ATTA) Original Histogram  + Ours (ATTA)

o =
Small BT Large B known class unknown class

Figure 5: Visualization results on Road Anomaly. Ground truth OOD objects are marked in black.

Visualization Results on SMIYC validation sets. Figure (6| presents qualitative results on the
SMIYC validation set. Our method clearly reduces the high uncertainty region of inlier classes.

Image PEBAL +Ours Image PEBAL +Ours

(a) Road Anomaly 21 (Validation) (b) Road Obstacle 21 (Validation) 5™

Figure 6: Visualization results on the SMIYC validation set, including (a) the Road Anomaly 21
dataset, and (b) the Road Obstacle 21 dataset. Ground truth OOD objects are marked in green.
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G Discussion

G.1 Specific Domain Shift in the Road Anomaly Dataset

The specific ‘domain shift’ in the Road Anomaly dataset, as compared to the ‘Cityscapes’ dataset,
encompasses adverse road conditions, diverse weather and lighting conditions, and various camera
perspectives and conditions. Here, we detail each of these aspects:

Adverse Road Conditions The Cityscapes dataset mainly focuses on urban scenes with well-paved
roads and uniform coloration, whereas the Road Anomaly dataset extends to include more diverse
locations like villages and mountains. These rural pathways exhibit varied textures and colors due to
different materials, wear, soil types, and vegetation. Examples in Fig. [3]illustrate this contrast, with
the visualization of Fishyscapes Lost & Found / Static serving as a reference for typical Cityscapes
road conditions. Besides, we see that previous OOD detection methods often mistake these variations
for anomalies, while our algorithm reduces such errors, showing better adaptation to the domain shift
in road conditions. We refer to Appendix Fig. [5|for more visualization cases on the Road Anomaly
dataset, where other examples with various road conditions can be seen.

Weather and Lighting Variations The Road Anomaly dataset encompasses diverse weather
conditions not presented in Cityscapes, including snowy, rainy, foggy weather, and nighttime scenes.
These variations affect not only the road but also the surrounding areas and the sky, leading to more
false positive errors in existing OOD detection models. Examples of these weather-related differences
and their effects on OOD detection can be found in Appendix Fig.[7] Our method strives to account
for these variations, enhancing the model’s adaptability to changes in weather and lighting.

Various Camera Conditions Besides differences in content, the Cityscapes and Road Anomaly
datasets also diverge in the conditions under which the images were captured. In the Road Anomaly
dataset, images may be captured from various angles and locations, such as alongside the road,
which differs from the typical road-centered perspective in Cityscapes. This variance can disrupt
previously learned biases in road surface predictions. Additionally, some Road Anomaly images
demonstrate a focus effect where the background is intentionally blurred, an effect not commonly
seen in Cityscapes. This can lead to false positive errors by initial OOD detection models, as shown
in Figure 3] illustrating the sensitivity of models to different camera conditions.

In summary, the Road Anomaly dataset’s construction, with images gathered from various internet
sources, reflects a real-world scenario that involves complex domain-level distribution shifts. These
shifts present an intriguing problem for existing OOD detection methods. Our research contributes to
understanding and addressing these domain shifts within the dataset.

Image

PEBAL

Ours

Figure 7: First Row: Examples of images from the Road Anomaly Dataset, showcasing various
weather conditions including snowy, rainy, and smoggy scenes, along with differing lighting condi-
tions. Second Row: Corresponding OOD score maps generated by the prior OOD detection method
(PEBAL). Third Row: OOD scores after applying our ATTA algorithm for model adaptation. Green
arrows indicate regions with prominent domain-shift, highlighting that the previous method in the
second row assigned high scores to these regions.
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G.2 Architectures without BN

While we primarily target models with BN, it’s worth noting that most modern networks utilize certain
types of normalization techniques including Instance Normalization (IN) and Layer Normalization
(LN). For the case of IN and LN, we note that they inherently offer more stability across domain
shifts, thus saving special adjustments in our first cascaded stage. This is because, unlike BN, they
normalize individual samples, making them less sensitive to variations between domains. We have
also empirically tested our anomaly-aware self-training on the mentioned Segmenter backbone [41]]
which employs layer normalization. Results shown in Table[T7|demonstrate the enhanced performance
when incorporating our method.

Table 17: Results on the RoadAnomaly Dataset with Segmenter. We use the pre-trained model
weights on the Cityscapes dataset provided by [41]].

AUCT AP1 FPRys |

Energy 95.43  75.60 19.76
+ATTA (Ours) 96.49  84.77 18.56
Max logit 9481  T71.65 20.96

+ATTA (Ours) 96.08  81.88 19.19

Still, we note that, since our goal is to adapt at the test phase without retraining, and that BN
is prevalent in most network architectures, it’s practical to recognize BN’s ubiquity and design
accordingly, especially in our task, where many methods [44} 4, [1]] are based on the Deep Lab V3+
structure, which utilizes BN.

In summary, our framework is broadly applicable across the vast majority of modern neural network
architectures that employ some form of normalization. The test-time adaptation of models without
normalization layers remains an open UDA problem, which is out of the scope of this work.
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