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Abstract

Opponent modeling is a longstanding research topic aimed at enhancing decision-
making by modeling information about opponents in multi-agent environments.
However, existing approaches often face challenges such as having difficulty gener-
alizing to unknown opponent policies and conducting unstable performance. To
tackle these challenges, we propose a novel approach based on in-context learn-
ing and decision-time search named Opponent Modeling with In-context Search
(OMIS). OMIS leverages in-context learning-based pretraining to train a Trans-
former model for decision-making. It consists of three in-context components: an
actor learning best responses to opponent policies, an opponent imitator mimicking
opponent actions, and a critic estimating state values. When testing in an environ-
ment that features unknown non-stationary opponent agents, OMIS uses pretrained
in-context components for decision-time search to refine the actor’s policy. Theoret-
ically, we prove that under reasonable assumptions, OMIS without search converges
in opponent policy recognition and has good generalization properties; with search,
OMIS provides improvement guarantees, exhibiting performance stability. Empiri-
cally, in competitive, cooperative, and mixed environments, OMIS demonstrates
more effective and stable adaptation to opponents than other approaches. See our
project website at https://sites.google.com/view/nips2024-omis.

1 Introduction

Opponent Modeling (OM) is a pivotal topic in artificial intelligence research, aiming to develop au-
tonomous agents capable of modeling the behaviors, goals, beliefs, or other properties of adversaries
or teammates (collectively termed as opponents). Such modelings are used to reduce uncertainty
in multi-agent environments and enhance decision-making [4, 59, 101, 28, 107, 63, 53, 92, 105, 17,
102, 66, 68]. Despite the methodologies and insights proposed by existing OM approaches, their
processes generally boil down to two stages: (1) Pretraining: pretrain a model with designed OM
methodology on a training set of opponent policies; (2) Testing: deploying the pretrained model in a
certain way on a testing set of opponent policies to benchmark adaptability to unknown opponents.

For these two processes, different OM approaches usually have their respective focuses: (1)
Pretraining-Focused Approach (PFA) [29, 28, 63, 107] focuses on acquiring knowledge of responding
to various opponents during pretraining and generalizing it to the testing stage; (2) Testing-Focused
Approach (TFA) [3, 41, 101] focuses on updating the pretrained model during testing to reason and
respond to unknown opponents effectively. However, existing PFAs and TFAs have their respective
common and noteworthy drawbacks. For PFAs, they have limited generalization abilities, as the
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generalization of their pretrained models often lacks theoretical guarantees. Moreover, PFAs typically
involve minimal additional operations during the testing stage, making them practically challenging
to handle unknown opponents. For TFAs, they have performance instability issues. The finetuning
(i.e., update the pretrained model) of TFAs during testing can be tricky, as it involves several gradient
updates using only a few samples to adjust the policy. Without careful manual hyperparameter tuning,
TFAs always perform unstablely when facing unknown opponents.

To overcome the inherent issues of PFAs and TFAs, we propose a novel approach named Opponent
Modeling with In-context Search (OMIS). The core motivation behind OMIS is ‘think before you
act’: when facing an opponent with an unknown policy during testing, we first guess about his current
policy based on historical context. We then conduct Decision-Time Search (DTS) for a few steps
using this imagined opponent policy, estimate the returns of each legal action, and choose the best
one to act on. Such a process intuitively helps derive a policy more optimal than making a direct
decision regarding only the current state. This approach is often reflected in real-life situations, such
as the ‘deep thinking’ strategy employed by professional players in Go, chess, and other board games.

To enable such a DTS, we build three components: an actor, to respond appropriately to the current
opponent during the DTS; an opponent imitator, who imitates the actions of the current opponent,
enabling the generation of transitions in an imagined environment during the DTS; a critic, who
estimates the value of the final search states, as we do not search until the end of the game. We argue
that all three components should be adaptive, meaning they dynamically adjust based on changes in
opponent information. Therefore, we adopt In-Context Learning (ICL)-based pretraining to learn
three in-context components, as ICL can endow them with the needed adaptability.

In summary, the methodology design of OMIS is as follows: (1) For Pretraining, we train a Trans-
former [84] model for decision-making based on ICL [20, 88, 57, 43]. We build our model with
three components: an actor, who learns the best responses to various opponent policies; an opponent
imitator, who imitates opponent actions; and a critic, who estimates state values; (2) For Testing, we
use the pretrained three in-context components for DTS [80, 81, 13] to refine the actor’s original
policy. Based on predicting opponent actions and estimating state values, this DTS performs rollouts
for each legal action, promptly evaluating and selecting the most advantageous action.

Theoretically, OMIS can provably alleviate the issues present in PFAs and TFAs. For limited gen-
eralization ability of PFAs, OMIS’s pretrained model is proven to converge on opponent policy
recognition and to have good generalization properties: OMIS’s pretrained model can accurately
recognize seen opponents and recognize unseen opponents as the most familiar seen ones to some
extent. For performance instability issues of TFAs, OMIS’s DTS avoids any gradient updates and
theoretically provides improvement guarantees.

Empirically, extensive comparative experiments and ablation analyses in competitive, cooperative,
and mixed environments verify the effectiveness of OMIS in adapting to unknown non-stationary
opponent agents. Statistically, OMIS demonstrates better performance and lower variance during
testing than other approaches, reflecting the generalizability and stability of opponent adaptation.

2 Related Work

Opponent modeling. In recent years, OM has seen the rise of various new approaches based on
different methods, including those based on representation learning [29, 28, 107, 63, 40], Bayesian
learning [106, 19, 24, 54], meta-learning [3, 41, 107, 94], shaping opponents’ learning [22, 23, 47],
and recursive reasoning [90, 101]. All approaches can be broadly categorized into PFAs and TFAs.

OM based on representation learning and meta-gradient-free meta-learning methods such as Duan
et al. [20] typically fall into PFAs. PFAs’ generalization on unknown opponents often lacks any
theoretical analysis or guarantees. This also leads to PFAs not always performing well empirically.
Our work utilizes ICL pretraining to provide good theoretical properties regarding generalization.

OM based on Bayesian learning and meta-gradient-based meta-learning such as Finn et al. [21]
typically belong to TFAs. The finetuning of TFAs makes them unstable, as the opponent may
continuously change policy during testing, making it challenging to adapt with a small number of
samples for updating. Our work employs DTS to avoid finetuning and has improvement guarantees.

In-context learning. Algorithmically, ICL can be considered as taking a more agnostic approach
by learning the learning algorithm itself [20, 88, 57, 43]. Recent work investigates why and how
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pretrained Transformers perform ICL [27, 49, 103, 1, 69]. Xie et al. [95] introduces a Bayesian
framework explaining how ICL works. Some work [87, 2, 8] proves Transformers can implement
ICL algorithms via in-context gradient descent. Lee et al. [44] proposes supervised pretraining to
empirically and theoretically demonstrate ICL abilities in decision-making. Unlike existing decision-
related work focusing on single-agent settings, our work explores the theoretical properties and
empirical effects of using a Transformer pretrained based on ICL under the setting of OM.

Decision-time search. DTS involves searching in a simulated environment before each real action,
aiming to obtain a more ‘prescient’ policy than no search [80, 81, 13, 50]. One of the most represen-
tative works is the AlphaGo series [74–76, 72], which achieves remarkable results in games like Go
and Atari based on a DTS algorithm called Monte Carlo Tree Search (MCTS) and self-play. Our
work explores how to make DTS work in the context of OM. The DTS of the AlphaGo series assumes
that opponent adopts the same strong policy as the agent we control. In contrast, the DTS in our work
dynamically models the opponents’ actions, focusing on better adapting to the current opponents.

See App. A for an overview of OM and related work on Transformers for decision-making.

3 Preliminaries
We formalize the multi-agent environment using an n-agent stochastic game

〈
S, {Ai}ni=1,

P, {Ri}ni=1, γ, T
〉
. S is the state space, Ai is the action space of agent i ∈ [n], A =

∏n
i=1Ai is the

joint action space of all agents, P : S ×A×S → [0, 1] is the transition dynamics, Ri : S ×A → R
is the reward function for agent i, γ is the discount factor, and T is the horizon for each episode.

Following the tradition in OM, we mark the agent under our control, i.e., the self-agent, with
the superscript 1, and consider the other n − 1 agents as opponents, marked with the super-
script −1. The joint policy of opponents is denoted as π−1(a−1|s) =

∏
j ̸=1 π

j(aj |s), where
a−1 is the joint actions of opponents. Let the trajectory at timestep t in the current episode
be y

(cur)
t = {s0, a10, a−1

0 , r10, r
−1
0 , . . . , st−1, a

1
t−1, a

−1
t−1, r

1
t−1, r

−1
t−1, st}. The historical trajectories

Ht := (y
(0)
T , . . . , y

(cur−1)
T , y

(cur)
t ) is always available to the self-agent. During the pretraining stage,

opponent policies are sampled from a training set of opponent policies Πtrain := {π−1,k}Kk=1. During
the testing stage, opponent policies are sampled from a testing set of opponent policies Πtest, which
includes an unknown number of unknown opponent policies.

In OM, the self-agent’s policy can be generally denoted as π1(a1|s,D) (abbreviated as π), which
dynamically adjusts based on the opponent information data D (referred to as in-context data in
this paper). D can be directly composed of some part of the data fromHt, or it can be obtained by
learning a representation fromHt. Building upon the pretraining, the objective of the self-agent is to
maximize its expected return (i.e., cumulative discounted reward) during testing:

E
st+1∼P(·|st,a1

t ,a
−1
t ),a−1

t ∼π−1(·|st),
π−1∼Πtest,a1

t∼π(·|st,D),

D∼Ht,π∼Pretraining(Πtrain)

[
T−1∑
t=0

γt ·R1(st, a
1
t , a

−1
t )

]
. (1)

4 Methodology
In Sec. 4.1, we present how we build the in-context actor, opponent imitator, and critic for OMIS with
ICL-based pretraining; in Sec. 4.2, we describe our method of using pretrained in-context components
for DTS; in Sec. 4.3, we provide a theoretical analysis of both the ICL and DTS components of OMIS.
We provide an overview of OMIS in Fig. 1 and the pseudocode of OMIS in App. B.

4.1 In-Context-Learning-based Pretraining

To ensure that the actor learns high-quality knowledge of responding to various opponents, we first
solve for the Best Responses (BR) against different opponent policies. For each opponent policy
π−1,k in Πtrain (where k ∈ [K]), we keep the opponent policy fixed as π−1,k and sufficiently train
the PPO algorithm [73] to obtain the BR against π−1,k, denoted as BR(π−1,k) := π1,k,∗(a|s).
To generate training data for pretraining the three components, we continually sample opponent
policies from Πtrain and use their corresponding BR to play against them. For each episode, we sample
a π−1,k from Πtrain as opponents and use its BR π1,k,∗ as self-agent to play against it.
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Figure 1: Left: The pretraining procedure and architecture of OMIS. The pretraining steps are as
follows: (1) Train BRs against all policies in Πtrain. (2) Continuously sample opponent policy from
Πtrain and collect training data by playing against it using its BR. (3) Train a Transformer model
using ICL-based supervised learning, where the model consists of three components: an actor πθ,
an opponent imitator µϕ, and a critic Vω. Right: The testing procedure of OMIS. During testing,
OMIS refines πθ through DTS at each timestep. The DTS steps are as follows: (1) Do multiple L-step
rollouts for each legal action, where πθ and µϕ are used to simulate actions for the self-agent and
opponent, respectively. Vω is used to estimate the value of final search states. (2) Estimate a value Q̂

for all legal actions, and the search policy πsearch selects the legal action with the maximum Q̂. (3)
Use mixing technique to trade-off between πsearch and πθ to choose the real action to be executed.

The procedure of generating training data is as follows: for each timestep t, we construct in-
context data Dk

t := (Depi,k, Dstep,k
t ) about π−1,k, which is used to provide information about

π−1,k for self-agent to recognize π−1,k. Depi,k = {(s̃h, ã−1,k
h )}Hh=1 is episode-wise in-context data,

generated by playing against π−1,k using any self-agent policy.1 It is used to characterize the overall
behavioral pattern of π−1,k on an episode-wise basis. See the construction process of Depi,k in App. C.
Dstep,k

t = (s0, a
−1,k
0 , . . . , st−1, a

−1,k
t−1 ) is step-wise in-context data, generated by the current episode

involving π−1,k and π1,k,∗. It represents the step-wise specific behavior pattern of π−1,k.

Furthermore, for each timestep t, we collect the Return-To-Go (RTG) obtained by the self-agent,
denoted as G1,k,∗

t =
∑T

t′=t γ
t′−tr1t′ =

∑T
t′=t γ

t′−tR1(st′ , a
1,k,∗
t′ , a−1,k

t′ ), where a1,k,∗ ∼ π1,k,∗,
a−1,k∼π−1,k, and V 1,k,∗

t =E[G1,k,∗
t ]. To end with, the training data for timestep t is obtained as:

Dk
t := (st, D

k
t , a

1,k,∗
t , a−1,k

t , G1,k,∗
t ). (2)

After preparing the training data, we use supervised learning to pretrain an actor πθ(a
1
t |st, Dk

t )

to learn the BR against π−1,k, an opponent imitator µϕ(a
−1,k
t | st, Dk

t ) to imitate the opponent’s
policy, and a critic Vω(st, D

k
t ) to estimate the state value of self-agent. Notably, all these components

condition on Dk
t as their in-context data. For each episode, the optimization objectives are as follows:

max
θ

EDk
t ,t∼[T ],k∼[K]

[
log πθ(a

1,k,∗
t | st, Dk

t )
]
, (3)

max
ϕ

EDk
t ,t∼[T ],k∼[K]

[
logµϕ(a

−1,k
t | st, Dk

t )
]
, (4)

min
ω

EDk
t ,t∼[T ],k∼[K]

[(
Vω(st, D

k
t )−G1,k,∗

t

)2
]
. (5)

The left side of Fig. 1 illustrates OMIS’s architecture and its pretraining procedure. Based on the
understanding of ICL in decision-making, we design our architecture upon a causal Transformer [67].

4.2 Decision-Time Search with In-Context Components

Following the best practices in OM, we assume the testing environment features unknown non-
stationary opponent agents, which we denote as Φ. Unknown indicates that the self-agent is unable
to ascertain the true policy π̄−1 employed by Φ. Non-stationary implies that Φ switches its policy
between episodes in some way, with each switch involving randomly sampling a π̄−1 from Πtest.

1∼ is used to mark data in Depi,k; h is an index but not timestep.
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Following the general setup in the DTS domain, we assume the ground truth transition dynamic P
is available [75, 76, 12, 13, 9, 46, 38]. Based on the pretrained in-context components πθ, Vω, µϕ,
and P , we conduct DTS to play against Φ. At each timestep t, we perform M times of rollouts with
length L for each legal action â1t of self-agent.2 This is done to estimate the value Q̂(st, â

1
t ) for each

â1t under current true opponent policy π̄−1 and current self-agent policy πθ. The self-agent then
executes the legal action with the highest Q̂ value in the real environment. Our expectation is that
through such a DTS, we can refine the original policy πθ to better adapt to Φ.

The specific process of the DTS is as follows: for each timestep t, we first construct in-context
data Dt = (Depi, Dstep

t ) about Φ, and its construction method is almost identical to Dk
t mentioned

in Sec. 4.1. However, since π̄−1 is unknowable, we make a slight modification: Depi is constructed
by sampling consecutive segments from the most recent C trajectories in which Φ participated.

After constructing Dt, for any given legal action â1t , we sample the opponents’ action by â−1
t ∼

µϕ(·|st, Dt) and transition using P to obtain ŝt+1 and r̂1t . We append (st, â
−1
t ) to the end of Dstep

t

to obtain the updated step-wise in-context data D̂step
t+1 and in-context data D̂t+1 = (Depi, D̂step

t+1).
Following, at the l-th step of the rollout for â1t (l ∈ [L]), we sample self-agent action and opponent
action using the following two formulas, respectively:

â1t+l ∼ πθ(·|ŝt+l, D̂t+l), (6)

â−1
t+l ∼ µϕ(·|ŝt+l, D̂t+l). (7)

Transitioning with P yields ŝt+l+1 and r̂1t+l. Next, we append (ŝt+l, â
−1
t+l) to the end of D̂step

t+l to
obtain D̂step

t+l+1 and D̂t+l+1 = (Depi, D̂step
t+l+1). After completing the L-th step, we use V̂t+L+1 :=

Vω(ŝt+L+1, D̂t+L+1) to estimate the value of the final search state. When finishing M times of
rollouts for â1t , we obtain an estimated value for â1t by:

Q̂(st, â
1
t ) :=

1

M

M∑
m=1

[
t+L∑
t′=t

γt′−t
search · r̂

1
t′ + γL+1

search · V̂t+L+1

]
. (8)

Here, γsearch is the discount factor used in the DTS. After completing rollouts for all legal actions of
the self-agent at timestep t, we obtain our search policy by maximizing Q̂:

πsearch(st) := argmax
â1
t

Q̂(st, â
1
t ). (9)

In practical implementation, we observe that using πsearch directly is not always effective. This is
because we cannot totally precisely estimate the opponents’ policy and the state value, making the
results obtained from the DTS not sufficiently reliable across all states. To this phenomenon, we
propose a simple yet effective mixing technique to balance the search policy and the original actor
policy in deciding the action to be executed:

πmix(st) :=

{
πsearch(st), ||Q̂(st, πsearch(st))|| > ϵ

a1t ∼ πθ(·|st, Dt), otherwise
. (10)

Here, ϵ is a threshold hyperparameter. The main motivation for the mixing technique is as follows. We
consider the expected return of the action selected by the DTS as the confidence of the search policy.
When the confidence exceeds a certain threshold, we tend to consider that πsearch has a relatively high
probability of achieving better results than πθ; otherwise, we prefer to use the original policy πθ. See
the testing procedure of OMIS on the right side of Fig. 1.

4.3 Theoretical Analysis

Our theoretical analysis unfolds in the following two aspects. (1) We propose Lem. 4.1 and Thm. 4.2
to prove that OMIS without DTS (denoted as OMIS w/o S) converges to the optimal solution when
facing a true opponent policy π̄−1 ∈ Πtrain; and it recognizes the opponent policy as the policy in
Πtrain with a minimum certain form of KL divergence from π̄−1 when facing a π̄−1 /∈ Πtrain. (2)
Building upon Thm. 4.2, we further propose Thm. 4.3 to prove the policy improvement theorem of
OMIS with DTS, ensuring that it leads to enhancements in performance.

2∧ is used to mark the terms during DTS.
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To begin with, we instantiate a Posterior Sampling in Opponent Modeling (PSOM) algorithm
(see App. D.1) based on the Posterior Sampling (PS) algorithm [61], where PSOM can be proven to
share the same guarantees of converging to the optimal solution as PS. Based on some reasonable
assumptions, we prove that OMIS w/o S is equivalent to PSOM.

Lemma 4.1 (Equivalence of OMIS w/o S and PSOM). Assume that the learned πθ is consistent and
the sampling of s from T −1

pre is independent of opponent policy, then given π̄−1 and its D, we have
P (ξ1T |D, π̄−1;PSOM) = P (ξ1T |D, π̄−1;πθ) for all possible ξ1T .

Here, ‘consistent’ indicates that the network’s fitting capability is guaranteed. T −1
pre (·;π−1) de-

notes the probability distribution on all the trajectories involving π−1 during pretraining. ξ1T =

(s1, a
1,∗
1 , . . . , sT , a

1,∗
T ) is self-agent history, where a1,∗ is sampled from the BR to the opponent

policy recognized by PSOM. The proof is provided in App. D.2.

Theorem 4.2. When π̄−1 = π−1,k ∈ Πtrain, if the PS algorithm converges to the optimal solution,
then OMIS w/o S recognizes the policy of Φ as π−1,k, i.e., πθ, µϕ, and Vω converge to π1,k,∗, π−1,k,
and V 1,k,∗, respectively; When π̄−1 /∈ Πtrain, OMIS w/o S recognizes the policy of Φ as the policies
in Πtrain with the minimum DKL(P (a−1|s, π−1)||P (a−1|s, π̄−1)).

Based on this theorem, when OMIS w/o S faces seen opponents, it accurately recognizes the
opponent’s policy and converge to the BR against it; when facing unseen opponents, it recognizes
the opponent’s policy as the seen opponent policy with the smallest KL divergence from this unseen
opponent policy and produces the BR to the recognized opponent policy. The proof is in App. D.3.

Theorem 4.3 (Policy Improvement of OMIS’s DTS). Given π̄−1 and its D, suppose OMIS recognizes
Φ as π−1

⋆ and V π
π−1
⋆

is the value vector on S, where V (s) := Vω(s,D), π(a|s) := πθ(a|s,D). Let

GL be the L-step DTS operator and π′ ∈ GL(V π
π−1
⋆

), then V π′

π−1
⋆
≥ V π

π−1
⋆

holds component-wise.

Within, OMIS’s DTS can be viewed as GL, and π′ corresponds to πsearch in Eq. (9). Thm. 4.3 indicates
that OMIS’s DTS is guaranteed to bring improvement, laying the foundation for performance stability.
Additionally, OMIS’s DTS avoids gradient updates. The proof is provided in App. D.4.

Analysis for generalization in OM. In OM, generalization can be typically defined as performance
when facing unknown opponent policies (e.g., opponents like Φ). Existing approaches lack rigorous
theoretical analysis under this definition of generalization. In Lem. 4.1, we proved that OMIS w/o S is
equivalent to PSOM. In Thm. 4.2, we proved that PSOM can accurately recognize seen opponents and
recognize unseen opponents as the most similar to the seen ones. Since OMIS w/o S is equivalent to
PSOM, OMIS w/o S possesses the same properties. Additionally, Thm. 4.3 proved that OMIS’s DTS
ensures performance improvement while avoiding instability. These theoretical analyses potentially
provide OMIS with benefits in terms of generalization in OM.

5 Experiments

5.1 Experimental Setup

Environments. We consider three sparse-reward benchmarking environments for OM as shown
in Fig. 2 (See App. E for detailed introductions of them):

• Predator Prey (PP) is a competitive environment with a continuous state space. In PP, the
self-agent is a prey (green) whose goal is to avoid being captured by three predators (red) as much
as possible. There are two obstacles (black) on the map. The challenge of PP lies in the need to
model all three opponents simultaneously and handle potential cooperation among them.

• Level-Based Foraging (LBF) is a mixed environment in a grid world. In LBF, the self-agent is
the blue one, aiming to eat as many apples as possible. The challenge of LBF is that cooperation
with the opponent is necessary to eat apples of a higher level than the self-agent’s (the apples and
agents’ levels are marked in the bottom-right). LBF represents a typical social dilemma.

• OverCooked (OC) is a cooperative environment using high-dimensional images as states. In OC,
the self-agent is the green one, which aims at collaborating with the opponent (blue) to serve dishes
as much as possible. The challenge of OC lies in the high-intensity coordination required between
the two agents to complete a series of sub-tasks to serve a dish successfully.
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Baselines. We consider the following representative PFAs, TFAs, and DTS-based OM approach:
• DRON [29]: Encode hand-crafted features of opponents using a Mixture-of-Expert network while

also predicting opponents’ actions as auxiliary task (this is the most performant version in [29]).
• LIAM [63]: Use the observations and actions of the self-agent to reconstruct those of the opponent

through an auto-encoder, thereby embedding the opponent policy into a latent space.
• MeLIBA [107]: Use Variational Auto-Encoder (VAE) to reconstruct the opponent’s future actions

and condition on the embedding generated by this VAE to learn a Bayesian meta-policy.
• Meta-PG [3]: Execute multiple meta-gradient steps to anticipate changes in opponent policies to

enable fast adaptation during testing.
• Meta-MAPG [41]: Compared to Meta-PG, it includes a new term that accounts for the impact of

the self-agent’s current policy on the opponent’s future policy.
• MBOM [101]: Use recursive reasoning in an environment model to learn opponents at different

recursion levels and combine them by Bayesian mixing.
• OMIS w/o S: A variant of OMIS, where OMIS directly uses πθ based on Dt without DTS.
• SP-MCTS [89]: Use a scripted opponent model to estimate the opponent’s actions and apply MCTS

for DTS. We adopt OMIS w/o S as its original self-agent policy. This is a DTS-based OM approach.
Within, DRON, LIAM, and MeLIBA belong to PFAs; Meta-PG, Meta-MAPG, and MBOM belong
to TFAs. See neural architecture design of all approaches in App. F. For a fair comparison, we
implement MBOM and SP-MCTS using the ground truth transition P as the environment model.

Opponent policy. We employ a diversity-driven Population Based Training algorithm MEP [104] to
train a policy population. Policies from this MEP population are used to construct Πtrain and Πtest,
ensuring that all opponent policies are performant and exhibit diversity. We measure and visualize
the diversity of opponent policies within the MEP population in App. G.

(a) PP (b) LBF (c) OC
Figure 2: The benchmarking environments.

We randomly select 10 policies from the MEP
population to form Πtrain. Then, we categorize
opponent policies in the MEP population into
two types: ‘seen’ denotes policies belonging
to Πtrain, and ‘unseen’ denotes policies not be-
longing to Πtrain. We set up opponent policies
with different ratios of [seen : unseen] to form
Πtest, e.g., [seen : unseen] = [0 : 10] signifies
that Πtest is composed of 10 opponent policies that were never seen during pretraining.

During testing, all opponents are the unknown non-stationary opponent agents Φ mentioned
in Sec. 4.2. Φ switches policies by sampling from Πtest every E episodes.

Specific settings. For the pretraining stage, we train all approaches for 4000 steps. For the testing
stage, all approaches use the final checkpoints of pretraining to play against Φ for 1200 episodes. All
bar charts, line charts, and tables report the average and standard deviation of the mean results over 5
random seeds. See all the hyperparameters in App. H.

5.2 Empirical Analysis
We pose a series of questions and design experiments to answer them, aiming to analyze OMIS’s
opponent adaptation capability and validate each component’s effectiveness.

Question 1. Can OMIS effectively and stably adapt to opponents under various Πtest configurations?

We set up 5 different [seen : unseen] ratios to form Πtest, and we show the average results of all
approaches against Φ corresponding to each ratio in Fig. 3. OMIS exhibits a higher average return
and lower variance than other baselines across three environments, highlighting its effectiveness and
stability in opponent adaptation under different Πtest configurations. It can be observed that OMIS
w/o S outperforms existing PFAs (e.g., MeLIBA) in most cases, validating that pretraining based on
ICL exhibits good generalization on testing with unknown opponent policies.

The results also indicate that OMIS improves OMIS w/o S more effectively than SP-MCTS does.
SP-MCTS sometimes even makes OMIS w/o S worse (e.g., in OC and parts of PP). This might be
because (1) the opponent model of SP-MCTS, which estimates opponent actions, is non-adaptive and
(2) the trade-off between exploration and exploitation in the MCTS is non-trivial to optimize.
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Figure 3: Average results of testing under different [seen : unseen] ratios, where E = 20.
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Figure 4: Average results against each true opponent policy during testing, where [seen : unseen] =
[10 : 10] and E = 20. Each point in X-axis denotes a policy switching of Φ, totaling 60 times. Y-axis
denotes the average return against the corresponding switched π̄−1.

Question 2. Can OMIS adapt well to each one of the true policies adopted by Φ?

In Fig. 4, we provide the average results of all approaches against each true opponent policy π̄−1

employed by Φ corresponding to ratio of [seen : unseen] = [10 : 10]. Similar to the observations
in Fig. 3, OMIS exhibits higher return and lower variance than other baselines across various true
opponent policies in PP, LBF, and OC. TFAs (e.g., Meta-PG) generally show significant performance
gaps when facing different true opponent policies. This is likely due to the continuous switching of
opponent policies, making finetuning during testing challenging or ineffective.

Question 3. How does OMIS work when the transition dynamics are learned?

We include a variant named Model-Based OMIS (MBOMIS) to verify whether OMIS can work
effectively when the transition dynamics are unknown and learned instead. MBOMIS uses the most
straightforward method to learn a transition dynamic model P̂ : given a state s and action a, predicting
the next state s′ and reward r using Mean Square Error (MSE) loss. P̂ is trained using the (s, a, r, s′)
tuples from the dataset used for pretraining OMIS w/o S. The testing results against unknown non-
stationary opponents are shown in Fig. 5. Although MBOMIS loses some performance compared to
OMIS, it still effectively improves over OMIS w/o S and generally surpasses other baselines. We also
provide quantitative evaluation results of P̂’s estimation during testing in Tab. 1. Observations show
that P̂ generally has a small MSE value in predicting the next state and reward without normalization.

Question 4. Is OMIS robust to the frequency of which Φ switches policies?
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Figure 7: Average results during testing when
Φ adopts different switching frequencies, where
[seen : unseen] = [10 : 10].

We employ 5 different frequencies for Φ to
switch policies, i.e., E = 2, 5, 10, 20, dynamic
(abbreviated as dyna). Here, E = dyna indi-
cates that Φ randomly selects from 2, 5, 10, 20
at the start of each switch as the number of
episodes until the next switch. Fig. 7 shows the
average results against Φ with different switch-
ing frequencies. OMIS and OMIS w/o S ex-
hibit a degree of robustness to different policy
switching frequencies E of Φ in PP, LBF, OC.
Notably, as E increases, their performance gen-

erally shows a slight upward trend. This suggests that OMIS could gradually stabilize its adaptation
to true opponent policies by accumulating in-context data.

Question 5. Is each part of OMIS’s method design effective?

We design various ablated variants of OMIS: (1) OMIS w/o S (See Sec. 5.1); (2) OMIS w/o mixing:
a variant where the mixing technique is not used, i.e., using πsearch instead of πmix; (3) OMIS w/o
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Figure 5: Results of OMIS using learned dynamics against unknown non-stationary opponents. (a)
Average results of testing under different [seen : unseen] ratios, where E = 20. (b) Average results
against each true opponent policy during testing, where [seen : unseen] = [10 : 10] and E = 20.

Table 1: Quantitative evaluation results of the learned dynamic P̂’s estimation during testing. The
results are calculated during testing under different [seen : unseen] ratios, where E = 20.

Environment Evaluation Metric
[seen : unseen]

10 : 0 10 : 5 10 : 10 5 : 10 0 : 10

Predator Prey Avg. Next State MSE ↓ 0.00409 ± 0.00002 0.00433 ± 0.00011 0.00410 ± 0.00005 0.00462 ± 0.00004 0.00445 ± 0.00002
Avg. Reward MSE ↓ 0.13836 ± 0.01425 0.24080 ± 0.05558 0.15288 ± 0.01641 0.26276 ± 0.03761 0.22110 ± 0.00567

Level-Based Foraging Avg. Next State MSE ↓ 0.05759 ± 0.00187 0.05043 ± 0.00074 0.05702 ± 0.00160 0.05525 ± 0.00154 0.04922 ± 0.00066
Avg. Reward MSE ↓ 0.00004 ± 0.00000 0.00004 ± 0.00000 0.00004 ± 0.00000 0.00004 ± 0.00000 0.00003 ± 0.00000

OverCooked Avg. Next State MSE ↓ 0.00028 ± 0.00001 0.00025 ± 0.00001 0.00028 ± 0.00001 0.00028 ± 0.00001 0.00031 ± 0.00001
Avg. Reward MSE ↓ 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00000 ± 0.00000
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Figure 6: Average performance curves during pretraining against all policies in Πtrain.

S, Dstep,k
t : a variant without DTS where Dstep,k

t input is excluded from the model; (4) OMIS w/o S,
Depi,k: a variant without DTS where Depi,k input is excluded from the model.

Fig. 6 shows the average performance curves during pretraining for these variants against all policies
in Πtrain. In PP, LBF, and OC, OMIS w/o S consistently performs a lot worse than OMIS. This indicates
that the DTS effectively improves the original policy of πθ. OMIS w/o mixing exhibits a notable
performance decrease compared to OMIS in LBF and OC. This suggests selective searching based on
confidence is more effective than indiscriminately. It can be observed that Depi,k and Dstep,k

t both
play crucial roles in OMIS’s adaptation to opponents, with Depi,k making a greater contribution.
This could be because capturing the overall behavioral patterns of opponents is more important than
focusing on their step-wise changes.

Question 6. Can OMIS effectively characterize opponent policies through in-context data?

For each policy in Πtrain, we visualize OMIS’s attention weights of Depi,k over the final 20 timesteps
in an episode in Fig. 8. Each position of tokens in Depi,k has a weight indicated by the depth of color.
In all three environments, the attention of OMIS exhibits the following characteristics: (1) Focusing
on specific positions of tokens in Depi,k for different opponent policies; (2) Maintaining a relatively
consistent distribution for a given opponent policy across various timesteps within the same episode.
This implies that OMIS can represent different opponent policies according to distinct patterns of
different in-context data. We also provide quantitative analysis on OMIS’s attention weights in App. I.

Question 7. How well does the in-context components of OMIS estimate?

We collect true opponent actions and true RTGs as labels, using Accuracy and MSE as metrics to
evaluate the effectiveness of µϕ’s and Vω’s estimations, respectively. In Tab. 2, we provide estimation
results of the in-context components µϕ, Vω during testing under different [seen : unseen] ratios.
It can be observed that µϕ is estimated relatively accurately in OC, while Vω is estimated relatively
accurately in PP and LBF. However, µϕ does not estimate very accurately in PP and LBF. This indicates
that the functioning of OMIS does not necessarily depend on very precise estimates. In all three
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Figure 8: Attention heatmaps of OMIS when playing against different policies in Πtrain.

Table 2: The estimation results of the in-context components of OMIS during testing, where E = 20.

Env. Predator Prey Level-Based Foraging OverCooked

[seen : unseen] 10 : 0 0 : 10 10 : 10 10 : 0 0 : 10 10 : 10 10 : 0 0 : 10 10 : 10

Avg. Acc. (%) ↑ 60.4 ± 0.9 46.4 ± 0.6 53.0 ± 0.9 63.1 ± 0.8 56.3 ± 0.9 59.2 ± 0.8 79.8 ± 0.3 64.4 ± 0.6 71.9 ± 0.4
Avg. MSE ↓ 0.01 ± 0.00 0.07 ± 0.02 0.03 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.12 ± 0.20 0.20 ± 0.27 0.16 ± 0.22
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Figure 9: Visualization of OMIS’s DTS when playing against an unseen opponent policy.

environments, the estimation accuracy for purely unseen opponents does not decrease significantly,
further confirming the good generalization of ICL.

Question 8. How does OMIS’s DTS work in real games?

Fig. 9 visualizes the OMIS’s DTS process at a particular timestep during a game against an unseen
opponent policy in three environments. We only illustrate two legal actions as an example. It can
be observed that OMIS’s DTS promptly evaluates each legal action, predicts the opponent’s actions
during the DTS, and ultimately selects the most advantageous action. We notice the following
interesting phenomena: In PP, DTS enables the self-agent to avoid being captured by opponents who
use an encirclement policy; In LBF, DTS allows the self-agent to cooperate with opponents to eat
apples with a higher level than itself; In OC, DTS helps prevent the self-agent from blocking the path
of collaborators, allowing them to serve dishes smoothly.

6 Discussion

Summary. In this paper, we propose OMIS based on ICL and DTS, aiming to address the challenges
of limited generalization abilities and performance instability issues faced by existing OM approaches.
The foundations of OMIS lie in two stages: (1) We employ ICL to pretrain a Transformer model
consisting of three components: actor, opponent imitator, and critic. We prove that this model
converges in opponent policy recognition and has good properties in terms of generalization; (2)
Based on the pretrained in-context components, we use a DTS to refine the policy of the original actor.
This DTS avoids (the instability-causing) gradient updates and provides improvement guarantees.
Extensive experimental results in three environments validate that OMIS adapts effectively and stably
to unknown non-stationary opponent agents.

Limitations and future work. (1) We only considered opponents with non-stationary switches
among several fixed unknown policies during testing. OMIS might face challenges in adapting to
opponents who are continuously learning or reasoning; (2) This work focuses on the setting of perfect
information games. Effectively incorporating ICL and DTS for OM in imperfect information games is
a challenging and meaningful research problem; (3) OMIS only utilizes a naive DTS method to refine
its policy. We will continue to explore how to apply more advanced DTS methods to the OM domain
for more effective adaptation to unknown opponents. A more in-depth discussion is in App. J.
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A Extensive Related Work

Opponent modeling. The recent research in opponent modeling based on machine learning method-
ologies can be broadly categorized as follows:

(1) Opponent Modeling with Representation Learning: Embed the opponent policies into a latent space
using representation learning methods to enhance the decision-making capabilities of the self-agent.
In the study by Grover et al. [28], imitation learning [37] and contrastive learning [39] were utilized to
produce policy embeddings for opponent trajectories. Subsequently, these embeddings were integrated
with reinforcement learning for policy optimization. Comparable initiatives, exemplified by He et al.
[29] and Hong et al. [33], employed auxiliary networks to encode manually crafted opponent features,
predict opponent actions, and finetune the policy network to enhance overall performance. Papoudakis
et al. [63] suggested employing an autoencoder to leverage the self-agent’s observations and actions
for reconstructing the opponent’s observations and actions. This approach aims to learn embeddings
that facilitate decision-making. In comparison, Papoudakis and Albrecht [62] and Zintgraf et al.
[107] utilized Variational AutoEncoders (VAE) [42] to capture the high-dimensional distribution of
opponent policies.

(2) Opponent Modeling with Bayesian Learning: Detect or deduce the opponent policies in real-time
using Bayesian methods and subsequently generate responses based on the inferred information. Bard
et al. [10] initially trained a mixture-of-expert counter-strategies against a predefined set of fixed
opponent policies. They then utilized a bandit algorithm during testing to dynamically select the
most suitable counter-strategy. Building on BPR+ [71, 32], Zheng et al. [106] introduced a rectified
belief model to enhance the precision of opponent policy detection. Furthermore, they introduced a
distillation policy network to achieve better results. DiGiovanni and Tewari [19] utilized Thompson
sampling [82] and change detection methods to address the challenge of opponent switching between
stationary policies. Fu et al. [24] employed a bandit algorithm to select either greedy or conservative
policies when playing against a non-stationary opponent. The greedy policy underwent training via
VAE in conjunction with conditional reinforcement learning and was continuously updated online
through variational inference. In contrast, the conservative policy remained a fixed and robust policy.
Lv et al. [54] introduced a similar approach to exploit non-stationary opponents.

(3) Opponent Modeling with Meta-learning: Leveraging meta-learning methods [34], train against a
set of given opponent policies to adapt to unknown opponent policies during testing swiftly. While
most meta-reinforcement learning methods presume that tasks in training and testing exhibit a similar
distribution, this category investigates the possible application of meta-reinforcement learning in the
context of competing with unknown non-stationary opponents. Al-Shedivat et al. [3] introduced a
gradient-based meta-learning algorithm designed for continuous adaptation in non-stationary and
competitive environments, showcasing its efficacy in enhancing adaptation efficiency. Building upon
analysis on Al-Shedivat et al. [3], Kim et al. [41] introduced a novel meta multi-agent policy gradient
algorithm designed to effectively handle the non-stationary policy dynamics inherent in multi-agent
reinforcement learning. Zintgraf et al. [107] introduced a meta-learning approach for deep interactive
Bayesian reinforcement learning in multi-agent settings. This approach utilizes approximate belief
inference and policy adaptation to enhance opponent adaptation. Wu et al. [94] put forward a meta-
learning framework called Learning to Exploit (L2E) for implicit opponent modeling. This framework
enables agents to swiftly adapt and exploit opponents with diverse styles through limited interactions
during training.

(4) Opponent Modeling with Shaping Opponents’ Learning: Considering opponents’ learning (i.e.,
conducting gradient updates), estimating the mutual influence between the future opponent policy and
the current self-agent’s policy. Foerster et al. [22] proposed an approach named LOLA, which modeled
the one-step update of the opponent’s policy and estimated the learning gradient of the opponent’s
policy. Foerster et al. [23] introduced a Differentiable Monte-Carlo Estimator operation to explore
the shaping of learning dynamics for other agents, building upon the approach presented by Foerster
et al. [22]. Letcher et al. [47] further integrated stability guarantees from LookAhead with opponent-
shaping capabilities from Foerster et al. [22] to achieve theoretical and experimental improvements.
Kim et al. [41] also presented a term closely related to shaping the learning dynamics of other agents’
policies. This considers the impacts of the agent’s current policy on future opponent policies. Lu
et al. [53] proposed a meta-learning approach for general-sum games that can exploit naive learners
without requiring white-box access or higher-order derivatives. Willi et al. [92] introduced Consistent
LOLA (COLA), a new multi-agent reinforcement learning algorithm that addresses inconsistency
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issues with Foerster et al. [22]’s approach. COLA learns consistent update functions for agents by
explicitly minimizing a differentiable measure of consistency. Zhao et al. [105] proposed proximal
LOLA (POLA), an algorithm that addresses policy parameterization sensitivity issues with LOLA and
more reliably learns reciprocity-based cooperation in partially competitive multi-agent environments.
Fung et al. [25] further presented that the sample complexity of Lu et al. [53]’s algorithm scales
exponentially with the inner state and action space and the number of agents.

(5) Opponent Modeling with Recursive Reasoning: By simulating nested layers of beliefs, predicting
the opponent’s behavior, and generating the best response based on the expected reasoning process of
the opponent towards the self-agent. Wen et al. [90] and Wen et al. [91] suggested conducting recursive
reasoning by modeling hypothetical nested beliefs through the agent’s joint Q-function. Their work
demonstrated enhanced adaptation in stochastic games. Dai et al. [17] introduced recursive reasoning
by assuming agents select actions based on GP-UCB acquisition functions [78]. This approach
achieved faster regret convergence in repeated games. Yuan et al. [102] proposed an algorithm that
utilizes ToM-based recursive reasoning and adaptive reinforcement learning. This approach enables
agents to develop a pragmatic communication protocol to infer hidden meanings from context and
enhance cooperative multi-agent communication. Yu et al. [101] proposed a model-based opponent
modeling approach that employs recursive imagination within an environment model and Bayesian
mixing to adapt to diverse opponents.

(6) Opponent Modeling with Theory of Mind (ToM): Reasoning about the opponent’s mental
states and intentions to predict and adapt to their behavior. This involves modeling their beliefs,
goals, and actions to understand opponent dynamics comprehensively. Von Der Osten et al. [86]
introduced a multi-agent ToM model designed to predict opponents’ actions and infer strategy
sophistication in stochastic games. Building upon Zheng et al. [106]’s Bayesian online opponent
modeling approach, Yang et al. [99] proposed a ToM approach. This approach leverages higher-level
decision-making to play against opponents who are also engaged in opponent modeling. Rabinowitz
et al. [66] and Raileanu et al. [68] also delved into methodologies for modeling an opponent’s mental
state. Rabinowitz et al. [66] utilized three networks to reason about agent actions and goals, simulating
a human-like ToM. Raileanu et al. [68] proposed utilizing their own policy to learn the opponent’s
goals in conjunction with the opponent’s observations and actions.

Our work aims to pioneer a new methodology: Opponent Modeling with Decision-Time Search
(DTS). We explore how DTS can work in the context of opponent modeling, as intuitively, DTS can
make our policy more foresighted. To imbue DTS with opponent awareness and adaptability, we
developed a model based on in-context learning to serve as the foundation for DTS.

Transformers for decision-making. There is an increasing interest in leveraging Transformers for
decision-making by framing the problem as sequence modeling [97, 48]. Chen et al. [15] introduced
Decision Transformer (DT), a model that predicts action sequences conditioned on returns using
a causal Transformer trained on offline data. Subsequent studies have explored enhancements,
such as improved conditioning [26, 65], and architectural innovations [85]. Another interesting
direction capitalizes on the generality and scalability of Transformers for multi-task learning [45, 70].
Transformers applied to decision-making have demonstrated meta-learning capabilities as well [55].
Recently, Lee et al. [44] introduced a Transformer-based in-context learning approach that, both
empirically and theoretically, surpasses behaviors observed in the dataset in terms of regret, a
performance metric where DT falls short [11, 98]. Incorporating these insights, our work employs a
causal Transformer architecture to maximize the model’s ability for in-context learning, specifically
in the realm of opponent modeling.
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B Pseudocode of OMIS

Algorithm 1 Opponent Modeling with In-context Search (OMIS)
1: /* Prepare all the opponent policies */
2: Train an opponent policy population using the MEP algorithm to construct Πtrain and Πtest.
3: /* In−context−learning−based pretraining (Section 4.1) */
4: Train the BR against each opponent policy in Πtrain using the PPO algorithm and get {BR(π−1,k)}Kk=1.
5: Initialize πθ with parameters θ, µϕ with parameters ϕ, and Vω with parameters ω.
6: while not converged do
7: Sample a opponent policy π−1,k ∼ Πtrain, play an episode against it using BR(π−1,k) := π1,k,∗(a|s),

and collect the training data {Dk
t }Tt=1, where Dk

t := (st, D
k
t , a

1,k,∗
t , a−1,k

t , G1,k,∗
t ).

8: Calculate losses based on Eqs. (3) to (5), and backpropagate to update θ, ϕ, ω.
9: end while

10: /* Decision−time search with in−context components (Section 4.2) */
11: Set the policy switching frequency E for the unknown non-stationary opponent agents Φ.
12: for num_switch in max_switching_number do
13: Sample a true opponent policy π̄−1 ∼ Πtest using uniform distribution, and set Φ = π̄−1.
14: for ep in [E] do
15: for t in [T ] do
16: // Decision−time search
17: for â1

t in all_legal_actions do
18: Rollout L steps for M times using πθ, µϕ, Vω , and estimate the value for â1

t by

Q̂(st, â
1
t ) :=

1

M

M∑
m=1

[
t+L∑
t′=t

γt′−t
search · r̂

1
t′ + γL+1

search · V̂t+L+1

]
.

19: end for
20: // Take real actions
21: The opponents act according to Φ, while simultaneously the self-agent acts according to

πmix(st) :=

{
πsearch(st), ||Q̂(st, πsearch(st))|| > ϵ

a1
t ∼ πθ(·|st, Dt), otherwise

,where πsearch(st) := argmax
â1
t

Q̂(st, â
1
t ).

22: end for
23: end for
24: end for

C Construction Process of Depi,k

The construction of Depi,k is as follows:

1. Sample C trajectories from all historical games involving π−1,k;

2. For each trajectory, sample consecutive segments {(sh′ , a−1,k
h′−1)}

hs+
H
C −1

h′=hs
, where hs is the

starting timestep;
3. Concatenate these segments together.

The construction of Depi,k stems from two intuitions: Firstly, π−1,k’s gameplay style can become
more evident over continuous timesteps, so we sample consecutive fragments. Secondly, π−1,k can
exhibit diverse behaviors across different episodes, so we sample from multiple trajectories.

D Proofs of Theorems

D.1 Algorithm of Posterior Sampling in Opponent Modeling

We instantiate a Bayesian posterior sampling algorithm in the context of opponent modeling, referred
to as Posterior Sampling in Opponent Modeling (PSOM). In the PSOM algorithm, we use opponent
trajectory (s0, a

−1
0 , . . . , sT−1, a

−1
T−1), which consists of consecutive (s, a−1) tuples, to construct the

in-context data D. Following up, we describe the PSOM algorithm in a most general way [61, 44].
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Given the initial distribution of opponent policies Π0 ← Πpre, where Πpre is the probability distribu-
tion on Πtrain, for c ∈ [C]:

1. Sample an opponent policy π−1
c by Πc and compute the BR policy π1,∗

c for the self-agent;

2. Interact using the self-agent with π1,∗
c against the opponent with true opponent policy π̄−1,

and use the opponent trajectory (s0, a
−1
0 , . . . , sT−1, a

−1
T−1) to construct D.

3. Update the posterior distribution Πc(π
−1) = P (π−1|D).

D.2 Proof of Lemma 4.1

Lemma 4.1 (Equivalence of OMIS w/o S and PSOM). Assume that the learned πθ is consistent and
the sampling of s from T −1

pre is independent of opponent policy, then given π̄−1 and its D, we have
P (ξ1T |D, π̄−1;PSOM) = P (ξ1T |D, π̄−1;πθ) for all possible ξ1T .

Proof. In this section, we use π−1 to denote opponent policies posteriorly sampled from Πpre by
the self-agent and use π̄−1 to denote the true opponent policy interacted with during the testing
stage of OMIS. In the proof, we abbreviate OMIS without DTS as OMIS. For clarity and ease of
understanding, all trajectory sequences are indexed starting from 1 in this section (originally starting
from 0 in the main text). We abbreviate Depi as D in the proof, as Depi is sufficient for completing
the proof. Define ξ1T = (s1, a

1,∗
1 , . . . , sT , a

1,∗
T ) as self-agent history, where T denotes the maximum

length of this history (i.e., horizon for each episode) and a1,∗ is sampled from the best response policy
π1,∗ against π−1. T −1

pre (·;π−1) denotes the probability distribution on all the trajectories involving
π−1 during pretraining.

Let π−1 ∼ Πpre and D contain sampled trajectory fragments of π−1 and let squery ∈ S, a1,∗ ∈
A1, ξ1T−1 ∈ (S ×A1)T−1 and t ∈ [0, T − 1] be arbitrary, the full joint probability distribution during
OMIS’s pretraining stage can be denoted as:

Ppre(π
−1, D, ξ1T−1, t, squery, a

1,∗) = Πpre(π
−1)T −1

pre (D;π−1)ST (s1:T )Squery(squery)π
1,∗(a1,∗|squery;π

−1)

× Unif[0, T − 1]
∏
i∈[T ]

π1,∗(a1i |si;π−1).

(11)
Herein, ST ∈ ∆(ST ), which is independent of opponent policy. Squery is set to the uniform over S.
In addition, we sample t ∼ Unif[0, T − 1] and truncating ξ1t from ξ1T−1 (or, equivalently, sample
ξ1t ∼ ∆((S ×A1)t) directly).

We define the random sequences and subsequences of the self-agent trajectory under PSOM algo-
rithm as ΞPSOM(t;D) = (SPSOM

1 , A1,PSOM
1 , . . . , SPSOM

t , A1,PSOM
t ). This trajectory is generated in the

following manner:

π−1
PSOM ∼ P (π−1|D), SPSOM

1 ∼ ρ,

A1,PSOM
i ∼ π1,∗(·|SPSOM

i ;π−1
PSOM), A−1,PSOM

i ∼ π̄−1(·|SPSOM
i ), i ≥ 1,

SPSOM
i+1 ∼ P(·|SPSOM

i , A1,PSOM
i , A−1,PSOM

i ), i ≥ 2.

Within, ρ denotes the initial distribution on S. Analogously, we define the random se-
quences and subsequences of the self-agent trajectory under OMIS algorithm as Ξpre(t;D) =

(Spre
1 , A1,pre

1 , . . . , Spre
t , A1,pre

t ). This trajectory is generated in the following manner:

Spre
1 ∼ ρ,

A1,pre
i ∼ Ppre(·|Spre

i , D,Ξpre(i− 1;D)), A−1,pre
i ∼ π̄−1(·|Spre

i ), i ≥ 1,

Spre
i+1 ∼ P(·|S

pre
i , A1,pre

i , A−1,pre
i ), i ≥ 2.

To simplify matters, we will refrain from explicitly referencing D for Ξ in our notations, except when
required to avoid confusion. Next, we introduce a common assumption to ensure the neural network
fits the pretraining data distribution.
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Assumption D.1 (Learned πθ is consistent). For any given (Spre
i , D,Ξpre(i − 1;D)),

Ppre(A
1,pre
i |Spre

i , D,Ξpre(i− 1;D)) = πθ(A
1,pre
i |Spre

i , D,Ξpre(i− 1;D)) for all possible A1,pre
i .

Upon Assump. D.1, we will limit our attention to Ppre for the rest of the proof.

To prove that ∀ξ1T , P (ξ1T |D, π̄−1;PSOM) = P (ξ1T |D, π̄−1;πθ) (i.e., Lemma 4.1), it is equivalent to
prove that

P (ΞPSOM(T ) = ξ1T ) = P (Ξpre(T ) = ξ1T ). (12)

We will prove that ∀t ∈ [T ],

P (ΞPSOM(t) = ξ1t ) = P (Ξpre(t) = ξ1t ) (13)

using Mathematical Induction and then introduce a lemma for the evidence of Eq. (12).

To begin with, we propose a lemma to assist in proving Eq. (13) for the base case when t = 1.

Lemma D.2. If the sampling of s from T −1
pre is independent of opponent policy, then Ppre(π

−1|D) =

P (π−1
PSOM = π−1|D).

Proof. Assuming the sampling of s from T −1
pre is independent of opponent policy, we have:

P (π−1
PSOM = π−1|D) ∝ Πpre(π

−1)P (D|π−1) (14a)

∝ Πpre(π
−1)

∏
j∈[|D|]

π−1(a−1
j |sj) (14b)

∝ Πpre(π
−1)

∏
j∈[|D|]

π−1(a−1
j |sj)T

−1
pre (sj) (14c)

= Πpre(π
−1)T −1

pre (D;π−1) (14d)

∝ Ppre(π
−1|D). (14e)

∝ denotes that the two sides are equal up to multiplicative factors independent of π−1. Eq. (14a)
is derived through the Bayesian posterior probability formula. Eq. (14b) uses the fact that s in
posterior sampling is independent of opponent policy. Eq. (14c) holds because of the assumption
that the sampling of s from T −1

pre is independent of opponent policy. Eq. (14d) uses the definition of
T −1

pre . Eq. (14e) is derived through the Bayesian posterior probability formula.

Now, we prove that Eq. (13) holds when t = 1:

P (ΞPSOM(1) = ξ11) = P (SPSOM
1 = s1, A

1,PSOM
1 = a11) (15a)

= ρ(s1)

∫
π−1

P (A1,PSOM
1 = a11, π

−1
PSOM = π−1|SPSOM

1 = s1)dπ
−1 (15b)

= ρ(s1)

∫
π−1

π1,∗(a11|s1;π−1)PPSOM(π−1
PSOM = π−1|D,SPSOM

1 = s1)dπ
−1 (15c)

= ρ(s1)

∫
π−1

π1,∗(a11|s1;π−1)PPSOM(π−1
PSOM = π−1|D)dπ−1 (15d)

= ρ(s1)

∫
π−1

π1,∗(a11|s1;π−1)Ppre(π
−1|D)dπ−1 (15e)

= ρ(s1)Ppre(a
1
1|s1, D) (15f)

= P (Ξpre(1) = ξ11). (15g)

Eqs. (15a) to (15c), (15f) and (15g) are derived using Bayesian law of total probability and conditional
probability formula based on Eq. (11). Eq. (15d) holds because the sampling of s1 is independent of
π−1. Eq. (15e) is derived through Lem. D.2.

Next, we start proving Eq. (13) for the other cases when t ̸= 1. We utilize the inductive hypothesis
to demonstrate the validity of the entire statement. Suppose that P (ΞPSOM(t − 1) = ξ1t−1) =
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P (Ξpre(t− 1) = ξ1t−1), since

P (ΞPSOM(t) = ξ1t ) =

P (ΞPSOM(t− 1) = ξ1t−1)P (SPSOM
t = st, A

1,PSOM
t = a1t |ΞPSOM(t− 1) = ξ1t−1)

and
P (Ξpre(t) = ξ1t ) =

P (Ξpre(t− 1) = ξ1t−1)P (Spre
t = st, A

1,pre
t = a1t |Ξpre(t− 1) = ξ1t−1),

to prove that P (ΞPSOM(t) = ξ1t ) = P (Ξpre(t) = ξ1t ), it is equivalent to prove:

P (SPSOM
t = st, A

1,PSOM
t = a1t |ΞPSOM(t− 1) = ξ1t−1)

= P (Spre
t = st, A

1,pre
t = a1t |Ξpre(t− 1) = ξ1t−1).

(16)

By expanding Eq. (16), we can get:

P (SPSOM
t = st, A

1,PSOM
t = a1t |ΞPSOM(t− 1) = ξ1t−1)

= P(st|st−1, a
1
t−1; π̄

−1)P (A1,PSOM
t = a1t |SPSOM

t = st,ΞPSOM(t− 1) = ξ1t−1) (17a)

=

∫
a−1
t−1

P(st|st−1, a
1
t−1, a

−1
t−1)π̄

−1(a−1
t−1|st−1)da

−1
t−1

·
∫
π−1

P (A1,PSOM
t = a1t , π

−1
PSOM = π−1|SPSOM

t = st,ΞPSOM(t− 1) = ξ1t−1)dπ
−1. (17b)

In Eq. (17b), the first integral term is the same for PSOM and OMIS, while the term inside the second
integral term satisfies:

P (A1,PSOM
t = a1t , π

−1
PSOM = π−1|SPSOM

t = st,ΞPSOM(t− 1) = ξ1t−1)

= π1,∗(a1t |st;π−1)P (π−1
PSOM = π−1|SPSOM

t = st,ΞPSOM(t− 1) = ξ1t−1).
(18)

Based on Eq. (17) and Eq. (18), to prove that Eq. (16) holds, it is equivalent to prove:

P (π−1
PSOM = π−1|SPSOM

t = st,ΞPSOM(t− 1) = ξ1t−1) = Ppre(π
−1|st, D, ξ1t−1). (19)

We prove that Eq. (19) holds through the following derivation:

P (π−1
PSOM = π−1|SPSOM

t = st,ΞPSOM(t− 1) = ξ1t−1)

=
P (SPSOM

t = st,ΞPSOM(t− 1) = ξ1t−1|π−1
PSOM = π−1)P (π−1

PSOM = π−1|D)

P (SPSOM
t = st,ΞPSOM(t− 1) = ξ1t−1)

(20a)

∝ Ppre(π
−1|D)

∏
i∈[t−1]

P(si+1|ξ1i , π̄−1)π1,∗(a1i |si;π−1) (20b)

∝ Ppre(π
−1|D)

∏
i∈[t−1]

π1,∗(a1i |si;π−1) (20c)

∝ Ppre(π
−1|D)Squery(st)St−1(s1:t−1)

∏
i∈[t−1]

π1,∗(a1i |si;π−1) (20d)

∝ Ppre(π
−1|st, D, ξ1t−1). (20e)

Eq. (20a) is derived through the Bayesian posterior probability formula. In Eq. (20b), we decompose
the probability of observing the sequence of observations s and actions a1. Eqs. (20c) and (20d) use
the fact that the sampling of s is only related to the true opponent policy π̄−1 and is independent of
π−1. Eq. (20e) is derived by the definition of Ppre(π

−1|st, D, ξ1t−1).

Therefore, we finish the proof of P (ΞPSOM(t) = ξ1t ) = P (Ξpre(t) = ξ1t ), where

P (ΞPSOM(t) = ξ1t )
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= P (Ξpre(t− 1) = ξ1t−1)P(st|st−1, a
1
t−1; π̄

−1)

∫
π−1

π1,∗(a1t |st;π−1)Ppre(π
−1|st, D, ξ1t−1)dπ

−1

(21a)

= P (Ξpre(t− 1) = ξ1t−1)P(st|st−1, a
1
t−1; π̄

−1)Ppre(a
1
t |st, D, ξ1t−1) (21b)

= P (Ξpre(t) = ξ1t ). (21c)

Based on Mathematical Induction, Eq. (13) holds for any t ∈ [T ]. Hence, Eq. (12) is satisfied. This
concludes the proof.

D.3 Proof of Theorem 4.2

Theorem 4.2. When π̄−1 = π−1,k ∈ Πtrain, if the PS algorithm converges to the optimal solution,
then OMIS w/o S recognizes the policy of Φ as π−1,k, i.e., πθ, µϕ, and Vω converge to π1,k,∗, π−1,k,
and V 1,k,∗, respectively; When π̄−1 /∈ Πtrain, OMIS w/o S recognizes the policy of Φ as the policies
in Πtrain with the minimum DKL(P (a−1|s, π−1)||P (a−1|s, π̄−1)).

Proof. In the proof, we abbreviate OMIS without DTS as OMIS. We denote the in-context data
consisting of (s, a−1) tuples as D, and the in-context data consisting of (s, a1, s′1, r1) tuples as D′,
where s′ is the next state of s transitioned to. Note that the original PS algorithm uses D′ while
PSOM and OMIS use D to recognize the policy of Φ.

To begin, we propose a lemma and its corollary to prove the convergence guarantee of the PSOM
algorithm and to analyze its properties in opponent policy recognition.

Lemma D.3. Let f(π−1;D) = −
∫
s,a−1 P (s, a−1;D) log(P (a−1|s, π−1))dsda−1 and π−1

⋆ =

argminπ−1∈Πtrain f(π−1;D), then ∀π−1 ∈ {π−1|f(π−1;D) ̸= f(π−1
⋆ ;D)}, we have

P (π−1|(s,a−1)1:n)

P (π−1
⋆ |(s,a−1)1:n)

P→ 0.

Proof. Here, π−1
⋆ denotes the equivalent class of opponent policies to which PSOM converges with

non-zero probability. P (s, a−1;D) is the distribution of (s, a−1) tuples in D. n is the number of the
(s, a−1) tuples. To prove that P (π−1|(s,a−1)1:n)

P (π−1
⋆ |(s,a−1)1:n)

P→ 0 under the given conditions, it is equivalent to
prove:

Lπ−1,n = − log
P (π−1|(s, a−1)1:n)

P (π−1
⋆ |(s, a−1)1:n)

P→ +∞. (22)

By expanding Eq. (22), we can get:

Lπ−1,n = − log
P (π−1|(s, a−1)1:n)

P (π−1
⋆ |(s, a−1)1:n)

= − log
P (π−1)

P (π−1
⋆ )
−

n∑
i=1

log(
P (a−1|π−1, s)

P (a−1|π−1
⋆ , s)

). (23)

According to the definition of π−1
⋆ and the condition f(π−1;D) ̸= f(π−1

⋆ ;D), we have:

E(s,a−1)∼P (·;D)[−
n∑

i=1

log(
P (a−1|π−1, s)

P (a−1|π−1
⋆ , s)

)] = f(π−1;D)− f(π−1
⋆ ;D) = C > 0. (24)

Here, C is a positive constant. Therefore, based on the law of large numbers, we have
limn→∞ P (|Lπ−1,n

n − C| > ϵ) = 0, where ϵ is any positive number. Hence, Eq. (22) is satisfied, and
the proof ends.

Corollary D.4 (Corollary of Lem. D.3). When π̄−1 ∈ Πtrain, we have π̄−1 ∈ π−1
⋆ ;

When π̄−1 /∈ Πtrain, π−1
⋆ is the equivalent class of policies in Πtrain with the minimum

DKL(P (a−1|s, π−1)||P (a−1|s, π̄−1)).

Proof. Since P (s, a−1;D) = P (s;D)P (a−1|s, π̄−1) holds, we have

π−1
⋆ = arg min

π−1∈Πtrain
−
∫
s,a−1

P (s, a−1;D) log(P (a−1|s, π−1))dsda−1 (25a)
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= arg min
π−1∈Πtrain

−
∫
s,a−1

P (s;D)P (a−1|s, π̄−1) log(P (a−1|s, π−1))dsda−1 (25b)

= arg min
π−1∈Πtrain

−
∫
s,a−1

P (s;D)P (a−1|s, π̄−1) log(P (a−1|s, π−1))dsda−1

+

∫
s,a−1

P (s;D)P (a−1|s, π̄−1) log(P (a−1|s, π̄−1))dsda−1 (25c)

= arg min
π−1∈Πtrain

−
∫
s,a−1

P (s;D)P (a−1|s, π̄−1)
log(P (a−1|s, π−1))

log(P (a−1|s, π̄−1))
dsda−1 (25d)

= arg min
π−1∈Πtrain

∫
s

P (s;D)DKL(P (a−1|s, π−1)||P (a−1|s, π̄−1))ds (25e)

= arg min
π−1∈Πtrain

Es∼P (·;D)

[
DKL(P (a−1|s, π−1)||P (a−1|s, π̄−1))

]
(25f)

When D is the in-context data of the opponent policy π̄−1 ∈ Πtrain,
DKL(P (a−1|s, π−1)||P (a−1|s, π̄−1)) = 0 in Eq. (25f), and π−1

⋆ is the equivalent class of opponent
policies that have the same action distribution as π̄−1, i.e., ∀a−1, P (a−1|s, π−1

⋆ ) = P (a−1|s, π̄−1).
When D is the in-context data of an opponent policy π̄−1 /∈ Πtrain, π−1

⋆ is the equivalent class of oppo-
nent policies that minimizes the expected KL divergence DKL(P (a−1|s, π−1)||P (a−1|s, π̄−1)).

Using a similar proving method as in Lem. D.3, it can be proved straight-
forward that the PS algorithm can converge: Let f(π−1;D′) = −

∫
s,a1,s′1,r1

P (s, a1, s′1, r1;D′) log(P (s′1, r1|s, a1, π−1))dsda1ds′1dr1 and π′−1
⋆ =

argminπ−1∈Πtrain f(π−1;D′), then ∀π−1 ∈ {π−1|f(π−1;D′) ̸= f(π′−1
⋆ ;D′)}, we have

P (π−1|(s,a1,s′1,r1)1:n)

P (π′−1
⋆ |(s,a1,s′1,r1)1:n)

P→ 0.

Next, we introduce a lemma to prove that if the PS algorithm converges to the optimal solution,
PSOM converges to the optimal solution.

Lemma D.5. Given s, a1, π̄−1, π−1
⋆ , if ∀a−1, P (a−1|s, π−1

⋆ ) = P (a−1|s, π̄−1) holds, it can be
deduced that ∀s′1, r1, P (s′1, r1|s, a1, π−1

⋆ ) = P (s′1, r1|s, a1, π̄−1), but the reverse is not true.

Proof. For the forward deduction (i.e.,⇒), we have:

∀s′1, r1, P (s′1, r1|s, a1, π−1
⋆ )

=
∑
a−1

P (a−1|s, π−1
⋆ )P (s′1, r1|s, a1, s′, a−1) (26a)

=
∑
a−1

P (a−1|s, π̄−1)P (s′1, r1|s, a1, s′, a−1) (26b)

= P (s′1, r1|s, a1, π̄−1). (26c)

For the backward deduction (i.e., ⇐), counterexamples exist. For example, when
P (s′1, r1|s, a1, s′, a−1) takes equal values for some a−1 ∈ Ā−1 ⊂ A−1 and
∀a−1 ∈ A−1\Ā−1, P (a−1|s, π−1

⋆ ) = P (a−1|s, π̄−1);
∑

a−1∈Ā−1 P (a−1|s, π−1
⋆ )

=
∑

a−1∈Ā−1 P (a−1|s, π̄−1) hold, P (a−1|s, π−1
⋆ ) = P (a−1|s, π̄−1) does not necessarily

hold for all a−1 ∈ A−1. This means when π̄−1 ∈ Πtrain, the PS algorithm may lead to distributions
on opponent policies with non-zero probability other than the equivalence class of π̄−1, resulting in
potential suboptimality compared to PSOM.

According to Lem. D.5, π−1
⋆ ⊂ π′−1

⋆ . Based on Cor. D.4, we have π̄−1 ∈ π−1
⋆ . Thus, we conclude

that π̄−1 ∈ π−1
⋆ ⊂ π′−1

⋆ . Hence, if PS converges to the optimal solution, PSOM converges to the
optimal solution.

Based on Lemma 4.1, it can be inferred that OMIS is equivalent to PSOM. Thus, all the proofs in this
section also hold for OMIS. We have the following conclusions:
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1. Based on Cor. D.4 and Lem. D.5, when π̄−1 ∈ Πtrain, if the PS algorithm converges to the
optimal solution, then OMIS converges to the optimal solution. If the true opponent policy
is π−1,k, OMIS recognizes the current policy of Φ as π−1,k. In this case, πθ converges to
π1,k,∗. Similarly to the PSOM algorithm in App. D.1, when we replace π1,∗ with π−1 and
V 1,∗, we can derive the algorithms with the same theoretical guarantees. Thus, µϕ and Vω

converge to π−1,k and V 1,k,∗, respectively.

2. Based on Cor. D.4, when π̄−1 /∈ Πtrain, OMIS recognizes the current policy of Φ as the
policies in Πtrain with the minimum KL divergence DKL(P (a−1|s, π−1)||P (a−1|s, π̄−1)).

This concludes the proof.

D.4 Proof of Theorem 4.3

Theorem 4.3 (Policy Improvement of OMIS’s DTS). Given π̄−1 and its D, suppose OMIS recognizes
Φ as π−1

⋆ and V π
π−1
⋆

is the value vector on S, where V (s) := Vω(s,D), π(a|s) := πθ(a|s,D). Let

GL be the L-step DTS operator and π′ ∈ GL(V π
π−1
⋆

), then V π′

π−1
⋆
≥ V π

π−1
⋆

holds component-wise.

Proof. To begin with, we do not consider the mixing technique in the proof. Based on Theorem 4.2,
given π̄−1 and its D, OMIS recognize the policy of Φ as π−1

⋆ , which means πθ, µϕ, and Vω converge
to π1,⋆, π−1

⋆ , and V 1,⋆, respectively. When π̄−1 ∈ Πtrain, since the labels in the pretraining data
may not be optimal, there is space for improvement in the π (i.e., π1,⋆). When π̄−1 /∈ Πtrain, π may
not be the best response against π̄−1, thus there is still space for policy improvement. Furthermore,
disregarding the impact of Dstep

t on µϕ, µϕ can be treated as a fixed policy during the DTS process.
Thus, the virtual environment for the DTS is stationary.

A L-greedy policy w.r.t. the value function Vπ−1
⋆

, belongs to the following set of policies,

argmax
π0

max
π1,...,πL−1

Eπ0...πL−1

|·

[
L−1∑
l=0

γl
searchR(sl, πl(sl);π

−1
⋆ ) + γL

searchVπ−1
⋆

(sL)

]
(27a)

= argmax
π0

Eπ0

|·

[
R(s0, π0(s0);π

−1
⋆ ) + γsearch(T L−1Vπ−1

⋆
)(s1)

]
(27b)

where the notation Eπ0...πL−1

|· means that we condition on the trajectory induced by the choice of
actions (π0(s0), π1(s1), . . . , πL−1(sL−1)) and the starting state s0 = ·.3 The π−1

⋆ terms in R means
opponents take actions by µϕ conditioned on D. We define T π1

as the operator choosing actions
using π1 for one step, where π1 is any self-agent policy. We define T as the Bellman optimality
operator, where

T Vπ−1
⋆

= max
π1
T π1

Vπ−1
⋆

. (28)

Following up, we define T L (shown in Eq. (27b)) as the L-step Bellman optimality operator, where

T LVπ−1
⋆

= max
π0,...,πL−1

Eπ0...πL−1

|·

[
L−1∑
l=0

γl
searchR(sl, πl(sl);π

−1
⋆ ) + γL

searchVπ−1
⋆

(sL)

]
. (29)

Since the argument in Eq. (27b) is a vector, the maximization is component-wise, i.e., we want to find
the choice of actions that will jointly maximize the entries of the vector. Thus, the L-greedy policy
chooses the first optimal action of a non-stationary, optimal control problem with horizon L. Since π
is maximized to select actions during OMIS’s DTS, Eq. (9) can be considered equivalent to Eq. (27).4

The set of L-greedy policies w.r.t. Vπ−1
⋆

, i.e., the L-step DTS operator, GL(Vπ−1
⋆

), can be expressed
as follows:

∀Vπ−1
⋆

, π1, T π1

L Vπ−1
⋆

def
= T π1

T L−1Vπ−1
⋆

, (30a)

3We use πl, l = 0, . . . , L− 1 to denote π at each step for simplicity as they can be different based on D.
4In Eq. (8), the number of rollout steps is actually L+ 1 as we need to perform a rollout of 1 step for each

legal action first. However, this does not affect the conclusions.
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∀Vπ−1
⋆

,GL(Vπ−1
⋆

) = {π′ : T π′

L Vπ−1
⋆

= T LVπ−1
⋆
}. (30b)

For Eq. (30a), the operator T π1T L−1 represents choosing actions using π1 in the first step and
selecting the optimal actions from all possibilities in the subsequent L− 1 steps. For Eq. (30b), the
policy π′ derived from GL(Vπ−1

⋆
) satisfies that choosing actions using π in the first step and selecting

the optimal actions from all possibilities in the subsequent L− 1 steps is equivalent to choosing all
possible optimal actions in all L steps.

We observe that
V π
π−1
⋆

= T πV π
π−1
⋆
≤ T V π

π−1
⋆

. (31)

Then, sequentially using Eqs. (30a), (30b) and (31), we have

V π
π−1
⋆

= (T π)LV π
π−1
⋆
≤ T LV π

π−1
⋆

= T π′

L V π
π−1
⋆

= T π′
(T L−1V π

π−1
⋆

). (32)

This leads to the following inequalities:

V π
π−1
⋆
≤ T π′

(T L−1V π
π−1
⋆

) (33a)

≤ T π′
(T L−1T V π

π−1
⋆

) = T π′
(T LV π

π−1
⋆

) (33b)

= T π′
(
T π′
T L−1V π

π−1
⋆

)
=

(
T π′

)2

(T L−1V π
π−1
⋆

) (33c)

≤ · · ·

≤ lim
n→∞

(
T π′

)n

(T L−1V π
π−1
⋆

) = V π′

π−1
⋆

. (33d)

Within, Eq. (33a) holds because of Eq. (32), Eq. (33b) is due to Eq. (31) and the monotonicity of
T π′

and T (and thus of their composition), Eq. (33c) is derived by Eq. (32), and Eq. (33d) is due
to the fixed point property of T π′

. Lastly, notice that V π
π−1
⋆

= V π′

π−1
⋆

if and only if (see Eq. (31))
T V π

π−1
⋆

= V π
π−1
⋆

, which holds if and only if π is the optimal policy. This concludes the proof.
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E Detailed Introductions of the Environments

Predator Prey [52] is a competitive environment with a three vs. one setup and a continuous state
space. The environment consists of three predators (in red), one prey (in green), and two obstacles (in
black). The goal of the predators is to capture (i.e., collide with) the prey as much as possible, while
the goal of the prey is to be captured as little as possible. The environment features sparse rewards,
where each time a predator captures the prey, the capturing predator receives a reward of 10, and
the prey receives a reward of −10. Additionally, the environment provides a small, dense reward
to the prey to prevent it from running out of the map boundaries. Here, the prey is the self-agent,
and the three predators serve as opponents. From the perspective of the self-agent, the environment
is highly unstable, as there are three opponents with unknown policies in the environment. The
challenge in this environment is that the self-agent must model the behavior of three opponents
simultaneously and adapt to various potential coordination strategies employed by the opponents
(e.g., surrounding from three different directions). For specific implementation of this environment,
we adopt the open-source code of Multi-Agent Particle Environment, which is available at
https://github.com/openai/multiagent-particle-envs.

Level-Based Foraging [16, 64] is a mixed environment in a 9×9 grid world containing two
players: the self-agent (in blue) and the opponent (in black), along with five apples (in red). At
the beginning of each episode, the two players and the five apples are randomly generated in the
environment and assigned a level marked in their bottom-right corner. The goal of the self-agent is to
eat as many apples as possible. All players can move in four directions or eat an apple. Eating an
apple can be successfully done only under the following conditions: one or two players are around
the apple, and all players who take the action of eating an apple have a summed level at least equal to
the level of the apple. The environment has sparse rewards, representing the players’ contributions to
eating all the apples in the environment. The environment is essentially a long-term social dilemma
and can be viewed as an extension of the Prisoner’s Dilemma [6]. The challenge in this environment
is that the self-agent must learn to cooperate to eat high-level apples while greedily eating low-level
apples simultaneously. For specific implementation of this environment, we adopt the open-source
code of lb-foraging, which is available at https://github.com/semitable/lb-foraging.

OverCooked [14] is a cooperative environment with high-dimensional images as states. One of
the chefs is the self-agent (green), while the other chef is the opponent (blue). The two chefs
must collaborate to complete a series of subtasks and serve dishes. All players share the same
sparse rewards, earning 20 for each successful dish served. The more successful the dish servings,
the higher the reward. The goal of the self-agent is to collaborate as effectively as possible with
the other chef to maximize the return. The challenge in this environment is for the self-agent to
not only be able to complete subtasks such as getting onions, putting onions into the pot, and
serving dishes but also to coordinate intensively with the opponent. It requires the self-agent to
allocate subtasks effectively with the opponent, ensuring that it does not negatively impact the
opponent (e.g., not blocking the opponent’s path). For specific implementation of this environment,
we adopt the open-source code of Overcooked-AI, which is available at https://github.com/
HumanCompatibleAI/overcooked_ai.

F Neural Architecture Design

For OMIS, we adopt the neural architecture design as follows:

The backbone of the OMIS architecture is mainly implemented based on the causal Transformer,
i.e., GPT2 [67] model of Hugging Face [93]. The backbone is a GPT2 decoder composed of 3 self-
attention blocks. Each self-attention block consists of a single-head attention layer and a feed-forward
layer. Residual connections [30] and LayerNorm [7] are utilized after each layer in the self-attention
block. Within each attention layer, dropout [79] is added to the residual connection and attention
weight.

In the backbone, except for the fully connected layer in the feed-forward layer (the feed-forward layer
consists of a fully connected layer that increases the number of hidden layer nodes and a projection
layer that recovers the number of hidden layer nodes), which consists of 128 nodes with GELU [31]
activation functions, the other hidden layers are composed of 32 nodes without activation functions.
The modality-specific linear layers for self-agent actions, opponents actions, and RTGs comprise 32
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Figure 10: The architecture of OMIS during testing.

nodes without activation functions. The modality-specific linear (and convolutional) layers for states
comprise 32 nodes with LeakyReLU [96] activation functions.

For input encoding, states s, self-agent actions a1, opponents actions a−1, RTGs G1 are fed into
modality-specific linear layers. For OC, additional convolutional layers are added before the linear
layers to encode the state s better. A positional episodic timestep encoding is added. We adopt the
same timestep encoding as in Chen et al. [15]. In addition, an agent index encoding is added to each
token to distinguish the inputs from different agents.

For output decoding, the sequences of embedded tokens are fed into the backbone, which autoregres-
sively outputs the self-agent actions a1, opponents actions a−1, values V at the positions of state s
tokens using a causal self-attention mask. The πθ who outputs a1, the µϕ who outputs a−1, and the
Vω who outputs V all consists of linear layers.

During pretraining, for each timestep t given π−1,k ∼ Πtrain, the input sequence is
(s̃1, ã

−1,k
1 , . . . , s̃H , ã−1,k

H , st−B+1, a
1,k,∗
t−B+1, a

−1,k
t−B+1, G

1,k,∗
t−B+1, . . . , st−1, a

1,k,∗
t−1 , a−1,k

t−1 , G1,k,∗
t−1 , st),

where B is the maximum sequence length as Transformer model has a token capacity. The output
prediction sequence is (a1t−B+1, a

−1
t−B+1, Vt−B+1, . . . , a

1
t−1, a

−1
t−1, Vt−1). The output label sequence

is (a1,k,∗t−B+1, a
−1,k
t−B+1, G

1,k,∗
t−B+1, . . . , a

1,k,∗
t−1 , a−1,k

t−1 , G1,k,∗
t−1 ).

During testing, for each timestep t given Φ = π̄−1, π̄−1 ∼ Πtest,5 the input sequence is (s̃1, ã−1
1 ,

. . . , s̃H , ã−1
H , st−B+1, a

1
t−B+1, ā

−1
t−B+1, Vt−B+1, . . . , st−1, a

1
t−1, ā

−1
t−1, Vt−1, st), where ā−1 is the

true actions of Φ. The output sequence is (a1t−B+1, a
−1
t−B+1, Vt−B+1, . . . , a

1
t−1, a

−1
t−1, Vt−1). We

demonstrated the architecture of OMIS during pretraining in Fig. 1, see the architecture of OMIS
during testing in Fig. 10.

For all the baselines, we adopt the neural architecture design as follows:

We replace the original backbone of the baselines (e.g., linear layers, recurrent layers, LSTM [56],
and more) with the same GPT2 backbone as OMIS. For input encoding and input encoding, we
encode and decode states s and actions a using the same modality-specific layers as OMIS. We
encode and decode rewards r using the modality-specific layers used to encode RTGs in OMIS. Note
that we only modified the neural architectures of all the baselines to ensure fair comparisons. All the
baselines are still pretrained and tested according to their respective methodologies.

G Diversity of Opponent Policies

As mentioned in Sec. 5.1, we run the Maximum Entropy Population-based training algorithm (MEP)
to generate a diversified opponent policy population. Nevertheless, a quantitative analysis is still
necessary to measure the similarity/dissimilarity between different opponent policies within the MEP
population. We calculate the pair-wise KL divergence between different opponent policies to measure
their dissimilarity. The results for PP, LBF, and OC are shown in Figs. 11 to 13, respectively.

5This timestep t can be the real timestep, and it also can be a virtual timestep during the DTS.
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Figure 11: Pair-wise KL divergence of all policies within MEP population in PP

For any given policies πi and πj , we estimate the KL divergence between them by:

DKL(πi||πj) = Es∼P (s)

[∑
a∈A

πi(a|s) · log
πi(a|s)
πj(a|s)

]
. (34)

Here, P (s) denotes the state distribution. Ideally, P (s) should cover the entire state space S . However,
in practical situations, covering the entire state space in even slightly large environments can be
intractable.

To maximize the coverage of the state space by P (s), we employ the following sampling method:
Within the MEP population, there are a total of 20 opponent policies. For each opponent policy π−1,k,
we sample 1000 episodes. In these 1000 episodes, the opponents’ policy are fixed to π−1,k while the
self-agent traverses through all the opponent policies, resulting in the self-agent using per opponent
policy for 50 episodes.

In Figs. 11 to 13, π−1,k, k = 1, 2, . . . , 10 denotes seen opponent policies, while π−1,k, k =
11, 12, . . . , 20 denotes unseen opponent policies. The lighter the color in the heatmap, the higher the
KL divergence value, indicating a lower similarity between the two policies.

In the PP and OC environments, there is relatively large dissimilarity between all pairs of opponent
policies. Assuming a dissimilarity threshold of 1.0 (i.e., two policies are dissimilar if their KL diver-
gence is greater than 1.0), the dissimilarity rates for PP and OC are 93.75% and 91.5%, respectively.
In contrast, the dissimilarity rate for LBF is 66.25%, indicating relatively smaller differences between
opponent policies. This could be attributed to the fact that the state space of LBF is much smaller
than PP and OC, making it difficult for well-trained opponent policies to exhibit significant behavioral
diversity. Nonetheless, overall, we can consider the MEP opponent policy population we generated to
be adequately diverse.
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Figure 12: Pair-wise KL divergence of all policies within MEP population in LBF
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Figure 13: Pair-wise KL divergence of all policies within MEP population in OC
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H Hyperparameters

H.1 Hyperparameters for Opponent Policies Training

As mentioned in Sec. 5.1, we employ a diversity-driven Population-Based Training algorithm
MEP [104] to train a policy population, which is further used to create the opponent pol-
icy sets Πtrain and Πtest. For specific implementation of MEP, we adopt the open-source code
of maximum_entropy_population_based_training, which is available at https://github.
com/ruizhaogit/maximum_entropy_population_based_training. For the three environ-
ments, we use the same hyperparameters as this open-source code to train the MEP populations.

H.2 Hyperparameters for In-Context-Learning-based Pretraining

Hyperparameter Name PP LBF OC

dimensionality of states 16 21 (5, 4, 20) (image-like)
dimensionality of actions 5 6 6

horizon for each episode (T ) 100 50 400

agent index of the self-agent 3 0 0

agent indexes of the opponents 0, 1, 2 1 1

total number of episodes for training BRs 50000 50000 50000

discount factor for training BRs 1.0 1.0 1.0

batch size for training BRs 4096 4096 4096

number of updating epochs at each training step for training BRs 10 10 10

learning rate of the actor for training BRs 5 × 10−4 5 × 10−4 5 × 10−4

learning rate of the critic for training BRs 5 × 10−4 5 × 10−4 5 × 10−4

number of linear layers for training BRs (add 3 additional convolutional layers for OC) 3 3 3 + 3

number of nodes of hidden layers for training BRs 32 32 32

clipping factor of PPO [73] for training BRs 0.2 0.2 0.2

maximum norm of the gradients for training BRs (clip if exceeded) 5.0 5.0 5.0

number of opponent policies in Πtrain (K) 10 10 10

sequence length of episode-wise in-context data Depi,k (H) 15 15 15

number of trajectories randomly sampled to construct Depi,k (C) 3 3 3

maximum sequence length for OMIS’s GPT2 backbone (B) (see App. F for detailed
descriptions) 20 20 20

reward scaling factor for pretraining πθ, µϕ, Vω (all the rewards are multiplied by
1

reward scaling factor to reduce the variance of training) 100 1 100

total number of training steps for pretraining πθ, µϕ, Vω 4000 4000 4000

discount factor for pretraining πθ, µϕ, Vω (γ) 1.0 1.0 1.0

batch size for pretraining πθ, µϕ, Vω 64 64 64

number of updating epochs at each training step for pretraining πθ, µϕ, Vω 10 10 10

weighting coefficient for pretraining πθ 1.0 1.0 1.0

weighting coefficient for pretraining µϕ 0.8 0.8 0.8

weighting coefficient for pretraining Vω 0.5 0.5 0.5

warm-up epochs for pretraining πθ, µϕ, Vω (the learning rate is multiplied by
num_epoch+1
warm-up epochs to allow it to increase linearly during the initial warm-up epochs of training)

10000 10000 10000

learning rate for AdamW [51] optimizer for pretraining πθ, µϕ, Vω 6 × 10−4 6 × 10−4 6 × 10−4

weight decay coefficient for AdamW optimizer for pretraining πθ, µϕ, Vω 1 × 10−4 1 × 10−4 1 × 10−4

maximum norm of the gradients for pretraining πθ, µϕ, Vω 0.5 0.5 0.5

number of nodes of hidden layers for OMIS’s GPT2 backbone (see App. F for detailed
descriptions) 32 32 32

dropout factor for OMIS’s GPT2 backbone 0.1 0.1 0.1

number of self-attention blocks for OMIS’s GPT2 backbone 3 3 3

number of attention head for OMIS’s GPT2 backbone 1 1 1

random seeds 0, 1, 2, 3, 4 0, 1, 2, 3, 4 0, 1, 2, 3, 4
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H.3 Hyperparameters for Decision-Time Search with In-Context Components

Hyperparameter Name PP LBF OC

total number of episodes for testing 1200 1200 1200

number of rollouts for self-agent’s each legal action for DTS (M ) 3 3 3

length of each rollout for DTS (L) 3 3 3

discount factor for DTS (γsearch) 0.7 0.7 0.7

threshold of mixing technique for DTS (ϵ) 10 0 0

sequence length of episode-wise in-context data Depi (H) 15 15 15

number of the most recent trajectories used to construct Depi (C) 3 3 3

maximum sequence length for OMIS’s GPT2 backbone (B) 20 20 20

number of nodes of hidden layers for OMIS’s GPT2 backbone 32 32 32

dropout factor for OMIS’s GPT2 backbone 0.1 0.1 0.1

number of self-attention blocks for OMIS’s GPT2 backbone 3 3 3

number of attention head for OMIS’s GPT2 backbone 1 1 1

random seeds 0, 1, 2, 3, 4 0, 1, 2, 3, 4 0, 1, 2, 3, 4

I Quantitative Analysis of Attention Weights Learned by OMIS

To rigorously evaluate whether OMIS can effectively characterize opponent policies, we conduct a
quantitative analysis of the attention weights learned by OMIS by calculating the pair-wise Pearson
Correlation Coefficients (PCC) between the attention vectors. The relevant results are shown in Fig. 14.
The first column is the heatmaps of the pair-wise PCC statistics of all attention vectors, and the
second column shows the corresponding p-value plots for the statistics in the first column, with pairs
marked in white for p < 0.05 and black otherwise.

The observations reveal that the attention vectors of the same opponent policy have strong pair-wise
correlations (i.e., statistics close to 1 and p < 0.05) across multiple timesteps. In contrast, the
attention vectors of different opponent policies generally have no strong pair-wise correlations with
each other. Although there is some pair-wise correlation between the attention vectors of different
opponent policies, each opponent policy generally has the strongest pair-wise correlation with its own
other attention vectors. These observations indicate that the attention weights learned by OMIS can be
distinguished by different opponent policies and maintain consistency for the same opponent policy
to some extent. Therefore, this analysis further demonstrates OMIS’s ability to represent opponent
policies based on in-context data.
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Figure 14: Pair-wise PCC statistics and p-values between the attention weights learned by OMIS. The
attention vectors on Depi,k are calculated over the final 20 timesteps against each opponent policy.
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J In-depth Discussion

In Sec. 6 of the main text, we analyzed this study’s limitations and future work from four perspectives.
Herein, we would like to point out that there are currently many potential feasible solutions for each
aspect. The OMIS proposed in this paper can be viewed as a complete framework that tackled the
main problems in existing OM works during the pretraining and testing stages. This framework
can be modified for other settings (such as the opponents are learning, imperfect information, etc.).
Moreover, this framework also represents a minimalist approach, focusing on generic opponent
modeling settings, while more complex settings can be considered as new research problems to
explore in the future.

(1) For the settings where opponents are learning, according to the observations in Laskin et al.
[43], ICL has the ability to model a sequence taken during the learning process. Therefore, we can
potentially model continuously updating opponents by using the complete (s, a−1) sequences during
opponent learning as in-context data. Strictly speaking, regardless of the type of opponent, as long as
we have their in-context data and their best response policy, we can use the OMIS framework to learn
to respond to that opponent. Another possible solution is to leverage the idea of Opponent Modeling
with Shaping Opponents’ Learning [22, 23, 47, 41, 53, 92, 105, 25] (see App. A), explicitly modeling
the opponent’s gradient updates during testing to shape their learning process.

(2) For imperfect information settings, there is a vast of research in the field of imperfect information
online search [58, 12, 13, 83, 35, 38, 50], with many mature methods that can be adapted to work
within the OMIS framework. Yet, this adaptation is non-trivial, as such DTS methods often require
explicit or learned beliefs about the true state, introducing significant additional computational
complexity. Interestingly, a recently proposed Update-Equivalence Framework [77] suggests that we
can effectively search in imperfect information settings without relying on beliefs.

(3) For more complex decision-time searches, numerous advanced DTS methods [75, 76, 12, 13,
9, 46, 38, 36, 5, 100, 18, 60] can seamlessly integrate with our framework. This is because the
OMIS pretraining stage learns all the key components needed for DTS: an actor, a critic, and an
opponent imitator. The actor provides a good prior decision for the self-agent during the DTS, the
critic estimates the value of a given terminal state during the DTS, and the opponent imitator estimates
the most probable action for the opponent during the DTS.

K Compute Resources

• CPU: AMD EPYC 7742 64-Core Processor ×2
• GPU: NVIDIA GeForce RTX 3090 24G ×8
• MEM: 500G
• Maximum total computing time: pretraining + testing ≈ 40h

L Broader Impacts

This paper presents work that aims to advance the field of Machine Learning. There are many potential
societal consequences of our work, none of which we feel must be specifically highlighted here.
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Answer: [Yes]
Justification: The paper discusses the limitations of the work performed by the authors.
Please see Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
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to make their results reproducible or verifiable.
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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appropriate to the research performed.
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the model (e.g., with an open-source dataset or instructions for how to construct
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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applicable), such as the institution conducting the review.
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