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Abstract001

Temporal question answering (TQA) remains002
a persistent challenge for large language mod-003
els (LLMs), particularly in retrieval-augmented004
generation (RAG) settings where retrieved con-005
tent may be irrelevant, outdated, or temporally006
inconsistent. This is especially critical in ap-007
plications like clinical event ordering, policy008
tracking, and real-time decision-making, which009
require reliable temporal reasoning even un-010
der noisy or misleading context. To address011
this challenge, we introduce RASTeR: Robust,012
Agentic, and Structured, Temporal Reasoning,013
an agentic prompting framework that sepa-014
rates context evaluation from answer gener-015
ation. RASTeR first assesses the relevance016
and temporal coherence of retrieved context,017
then constructs a structured temporal knowl-018
edge graph (TKG) to better facilitate reasoning.019
When inconsistencies are detected, RASTeR020
selectively corrects or discards context before021
generating an answer. Across multiple datasets022
and LLMs, RASTeR consistently improves ro-023
bustness: defined here as the model’s ability024
to generate correct predictions despite subopti-025
mal context. We further validate our approach026
through a “needle-in-the-haystack” study, in027
which relevant context is buried among irrel-028
evant distractors. Even with forty distractors,029
RASTeR achieves 75% accuracy, compared to030
the runner-up model, which reaches only 62%.1031

1 Introduction032

Large language models (LLMs) often answer fac-033

tual questions directly from the knowledge stored034

in their parameters, as long as the necessary035

facts appear in their pre-training data (Petroni036

et al., 2019; Roberts et al., 2020). When a037

fact is missing, practitioners typically fall back038

on retrieval-augmented generation (RAG) (Lewis039

et al., 2020), which prepends retrieved passages040

to the prompt so the model can “read” before it041

1Code will be released upon acceptance.

Retrieval-based
Temporal QA RASTeR Framework

Question:
Who was the first Beatle to die?

Context:
“Paul died in 1966 in a car crash”

(Fake news from 1966)

Output:
Paul McCartney

Incorrect due to false context

Context Evaluation:
X Not temporally consistent

So use parameteric knowledge

Output:
John Lennon

Question:
Who was the first Beatle to die?

Figure 1: Example of temporal question answering fail-
ure due to irrelevant context. The retrieved statement is
outdated, leading to an incorrect answer. RASTeR de-
tects the inconsistency and defaults to parametric knowl-
edge. We explore this and other context imperfections,
including partially incorrect and fully irrelevant context.

“writes.” Unfortunately, the retriever offers no guar- 042

antee of relevance (Yin et al., 2023). Irrelevant 043

or adversarial snippets can mislead the generator 044

and lower accuracy (Petroni et al., 2020). Recent 045

work further underscores that today’s QA bench- 046

marks rarely stress a system’s robustness2 (Shaier 047

et al., 2024). These issues become even more pro- 048

nounced in temporal question answering (TQA), 049

where answers depend on current facts and where 050

stale, or simply wrong, documents are frequently 051

retrieved (Wu et al., 2024). 052

TQA, therefore, poses a dual challenge: models 053

must identify relevant entities (if any) and reason 054

about their evolution over time. Robust tempo- 055

ral reasoning is critical for applications such as 056

historical-event analysis (Lorenzini et al., 2022), 057

time-sensitive retrieval (Wu et al., 2024), data- 058

driven journalism, and real-time analytics, domains 059

where a single date error can significantly alter the 060

answer. Yet comprehensive benchmarks such as 061

TimeBench and TRAM reveal that even GPT-4 062

lags behind human performance, despite access to 063

gold context (Chu et al., 2023; Wang and Zhao, 064

2Some TQA work defines robustness as handling diverse
temporal phenomena. Here, we define it as the ability to
answer correctly despite suboptimal context
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2024), and recent studies show that LLMs often065

hallucinate timelines or overlook explicit temporal066

cues (Beniwal et al., 2024). While prior work has067

evaluated models under clean context (Wallat et al.,068

2025; Luu et al., 2022; Tan et al., 2024), tested069

zero-shot generalization with synthetic data (Uddin070

et al., 2025), or explored robustness to irrelevant071

context in general QA (Yoran et al., 2024a; Cheng072

et al., 2024), these approaches do not directly ad-073

dress the temporal inconsistencies and ambiguities074

that arise in realistic retrieval.075

Despite this progress, a key gap remains. Ex-076

isting benchmarks and methods tend to focus on077

either (1) scenarios in which the model has no prior078

knowledge of the event and must rely entirely on079

external context, (2) general robustness to distrac-080

tors without temporal grounding, or (3) evaluation081

of questions that may have been seen during pre-082

training. However, real-world TQA systems must083

handle both: reasoning about known events under084

noisy, outdated, or conflicting context, and general-085

izing to novel or emerging events where memorized086

knowledge offers no support. Temporal ambigu-087

ity (In et al., 2025; Wang et al., 2025), misaligned088

retrievals (Fang et al., 2024; Yoran et al., 2024a),089

and hallucinations even under gold context (He090

et al., 2024; Wallat et al., 2024) highlight the need091

for methods that can diagnose and correct temporal092

inconsistencies. To our knowledge, no prior work093

systematically evaluates model robustness under094

both seen event settings and also evaluates unseen095

event settings with temporal context.096

To address this gap, we propose RASTeR, an097

agent-based framework for temporal question an-098

swering that explicitly separates context evalua-099

tion from answer generation. RASTeR introduces100

modular agents that assess the temporal relevance101

and coherence of retrieved passages before trans-102

forming valid evidence into a structured Temporal103

Knowledge Graph (TKG). This structure enables104

precise, stepwise reasoning about time even under105

adversarial or outdated contexts. We systematically106

evaluate RASTeR across multiple models and four107

temporal QA datasets, including scenarios where108

events are known, unknown, or contextually dis-109

torted. Our results show that this agentic and struc-110

tured decomposition not only improves robustness111

to noisy context, a key limitation in RAG pipelines,112

but also enables fine-grained reasoning over long,113

distractor-heavy passages. In doing so, RASTeR114

bridges the gap between robustness and temporal115

reasoning, offering a principled approach to TQA116

under realistic retrieval conditions. See Figure 1 117

for a high-level idea of our contribution. 118

Our contributions are as follows: (1) We intro- 119

duce RASTeR, an agentic prompting pipeline that 120

separates context evaluation from answer genera- 121

tion via temporal consistency agents and structured 122

knowledge graph transformation. (2) We bench- 123

mark RASTeR across three LLMs and four tem- 124

poral QA datasets, demonstrating consistent gains 125

in both clean and noisy contexts. (3) We conduct 126

granular robustness analyses, including adversarial 127

retrieval settings (needle-in-the-haystack), altered 128

temporal context, and relevance misclassification, 129

to better understand the strengths and weaknesses 130

of this approach. 131

2 Related Work 132

Temporal Question Answering. Temporal QA 133

tasks involve understanding how events unfold over 134

time, whether in text, video (Zhu et al., 2017), or 135

structured data such as knowledge bases (Xiao 136

et al., 2021; Jang et al., 2017; Saxena et al., 137

2021; Zhao and Rios, 2024; Tan et al., 2024). 138

This includes applications like ordering clinical 139

events (Sun et al., 2013; Zhao and Rios, 2024) 140

or answering factoid questions such as “Who was 141

president in 1998?” Several benchmarks have been 142

proposed to evaluate temporal reasoning, including 143

tests for time-sensitive fact verification and tempo- 144

ral reversal, where performance asymmetries be- 145

tween forward and backward questions reveal a re- 146

liance on memorized patterns rather than grounded 147

temporal inference (Bajpai et al., 2024; Wallat et al., 148

2025). 149

Recent and historical work has exposed persis- 150

tent limitations of LLMs in this setting. Models 151

often struggle to reason over timelines, halluci- 152

nate events, or miss temporal cues entirely (Qiu 153

et al., 2023; Beniwal et al., 2024). To probe 154

these weaknesses, researchers have released new 155

datasets (Gruber et al., 2024a; Jia et al., 2018; 156

Velupillai et al., 2015; Wang et al., 2022; Gru- 157

ber et al., 2024b) and diagnostic tasks (Llorens 158

et al., 2015; Tan et al., 2023a; Gao et al., 2024a) 159

that evaluate logical reasoning in time-sensitive 160

settings. Zhu et al. (2025) highlight a related is- 161

sue of temporal drift: LLMs tend to anchor their 162

factual knowledge around 2015, resulting in de- 163

graded performance for domains like news or pol- 164

icy where timelines evolve. This drift presents a 165

key challenge for retrieval-augmented QA, where 166
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the context retrieved may be outdated, misleading,167

or temporally misaligned with the question.168

Robustness in Retrieval-Augmented Generation.169

Improving the robustness of LLMs to imperfect170

context has been a focus of recent work on RAG.171

Broadly, these methods fall into three categories:172

filtering irrelevant context, adversarial training, and173

ambiguity-aware reasoning. For filtering, Yoran174

et al. (2024b) propose using NLI-based filters to175

exclude unsupported evidence before generation,176

and fine-tune models on mixed-quality data to im-177

prove resistance to distractors. He et al. (2024)178

introduce CoV-RAG, which incorporates a verifica-179

tion model and structured reasoning to select and180

integrate relevant information.181

Adversarial training methods expose models to182

noisy or counterfactual inputs to encourage robust-183

ness. For instance, Fang et al. (2024) train mod-184

els on irrelevant and contradictory passages to im-185

prove reliability under real-world retrieval errors.186

However, these approaches typically focus on gen-187

eral QA and do not account for temporal-specific188

failure modes. Ambiguity-aware pipelines offer a189

complementary strategy. In et al. (2025) retrieve190

diverse evidence to accommodate questions with191

multiple valid answers. Wang et al. (2025) propose192

a multi-agent architecture where separate models193

handle different retrieved passages, and a judge194

model resolves conflicts. Other work uses search-195

based methods (Hu et al., 2025b), eligibility as-196

sessment (Kim et al., 2024), or similarity-based197

example selection (Park et al., 2024) to guide rea-198

soning under ambiguity. Finally, GraphRAG (Han199

et al., 2025) combines RAG with graph-structured200

knowledge, showing that graph-based retrieval can201

improve reasoning. This motivates us to explore202

how transforming retrieved temporal context into203

graph form to can support more robust reasoning.204

Structured Knowledge and Reasoning. Struc-205

tured representations such TKGs enable reasoning206

over time. Most prior research assumes access to207

structured datasets and focuses on TKG question208

answering (TKGQA), which typically involves ei-209

ther interpolation (inferring missing facts within210

a timeline) or extrapolation (predicting events be-211

yond observed data) (Chen et al., 2024). A central212

challenge in TKGQA is identifying the most salient213

nodes. Zhang et al. (2024) use reinforcement learn-214

ing to sample reasoning chains, while Gao et al.215

(2024b) first filter relevant relations and then re-216

strict them temporally.217

Others focus on improving question formulation. 218

Hu et al. (2025a) show that LLMs perform better on 219

explicit temporal queries and propose a two-stage 220

retrieval-and-rewriting pipeline to make implicit 221

questions more solvable. Xia et al. (2022) also 222

advocate for a two-step strategy that first retrieves 223

direct evidence and then expands it using related 224

entities to capture second-order temporal relation- 225

ships. These methods assume relatively clean data 226

and often ignore the noisy, conflicting nature of 227

real-world context. 228

In contrast, our work examines how structured 229

temporal representations impact model robustness 230

when the context is messy, misaligned, or adver- 231

sarial. Rather than using TKGs solely for interpo- 232

lation or extrapolation, we dynamically construct 233

TKGs from retrieved text and assess their utility 234

under imperfect retrieval conditions. The closest 235

to our approach is the Chain-of-Timeline frame- 236

work (Wu and Hooi, 2025), which constructs struc- 237

tured TKGs based on a question and its associated 238

context. However, their work evaluates only on 239

golden context and a single dataset. We extend it 240

by developing a system that handles a variety of 241

context and generalizes across models and datasets. 242

3 Method 243

TQA presents unique challenges that standard RAG 244

pipelines are not designed to handle. Retrieved 245

context may be outdated, partially relevant, or tem- 246

porally inconsistent, yet current systems often as- 247

sume that any retrieved passage can be treated as 248

reliable input. Our approach addresses this gap 249

by explicitly separating context evaluation from 250

answer generation. We first assess whether the 251

context is relevant and temporally coherent with 252

respect to the question. When the context passes 253

these checks, we convert it into a structured TKG to 254

support precise, time-aware reasoning. If the con- 255

text is found to be unreliable or inconsistent, we 256

either attempt to correct it or disregard it and rely 257

on the model’s parametric knowledge. This modu- 258

lar, agent-based design enables robust performance 259

across a wide range of temporal QA scenarios and 260

offers greater interpretability through structured 261

intermediate representations. 262

We formalize the robust TQA task as follows. 263

Let Q denote a temporal question, and C denote 264

the context provided to answer it. The LLM is 265

modeled as a function Mθ that produces an an- 266

swer A = Mθ(Q,C), where Q = q1, . . . , qn, 267
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Relevance
Detection

TKG
Generation

TKG
Reasoner

Context
Corrector

Reasoner

Answer

If irrelevant
or no context

If context needs
correction

Who was the first Beatle to die?

Paul died in 1966 in a car crash.
John Lennon was murdered in 1980.

George Harrison died of cancer in 2001.
If context relevant
or partially relevant

If context is
correct

[
  {
    "Entity1": "Paul McCartney",
    "Entity2": "death",
    "Relation": "occurred",
    "StartTime": "1966",
    "EndTime": "1966"
  },

Example TKG

Question

Context

{
    "Entity1": "George Harrison",
    "Entity2": "death",
    "Relation": "occurred",
    "StartTime": "2001",
    "EndTime": "2001"
  }
]

,
 {
    "Entity1": "John Lennon",
    "Entity2": "death",
    "Relation": "occurred",
    "StartTime": "1980",
    "EndTime": "1980"
  },

{
    "Entity1": "George Harrison",
    "Entity2": "death",
    "Relation": "occurred",
    "StartTime": "2001",
    "EndTime": "2001"
  }
]

[
 {
    "Entity1": "John Lennon",
    "Entity2": "death",
    "Relation": "occurred",
    "StartTime": "1980",
    "EndTime": "1980"
  },

Figure 2: Overview of the RASTeR framework. Given a question and retrieved context, the system first determines
whether the context is relevant and temporally coherent. If necessary, it corrects temporal inconsistencies before
generating a structured TKG. The final answer is produced either by reasoning over the TKG or, in cases of irrelevant
or missing context, via a fallback zero-shot reasoner.

C = c1, . . . , cm, and A = a1, . . . , ak are token268

sequences. We evaluate model performance across269

several context settings: relevant (Cr), irrelevant270

(Ci), altered (Ca), and no context (C0).271

The RASTeR pipeline is structured into distinct272

modules, each handled by a dedicated agent: con-273

text evaluation, TKG construction, context correc-274

tion, and answer generation (via reasoner agents).275

We show a high-level overview of our method in276

Figure 2. First, a question and context are evalu-277

ated to test if the context is relevant to the question.278

If not, or if there is no context, a reasoner answers279

the question directly using the models internal para-280

metric knowledge if it is answerable. Otherwise,281

a TKG is generated using the context. If the rel-282

evance detector determined that the context was283

only partially relevant, then the context corrector284

is called to fix the TKG. Finally, the TKG reasoner285

is called to reason over the TKG to answer the286

question. We describe each part below.287

Context Evaluation. Before reasoning over the288

retrieved context, we must establish whether it is289

temporally aligned and semantically relevant to the290

question. To achieve this, we introduce a Relevance291

Reasoning Chain (RRC) that decomposes context292

evaluation into discrete steps. Given a question293

Q and context C, the model identifies the ques-294

tion’s entities Qe, checks for their presence (epres)295

in the context, and generates a Correction Reason-296

ing Chain (CRC) D = (d1, d2, d3, d4) assessing297

d1: chronological coherence of dates, d2: align-298

ment of context dates with the question, d3: real-299

ism of the overall time span, and d4: agreement300

with parametric knowledge. These outputs inform301

a final decision Cnc on whether the context requires302

correction by the “Context Correction” agent. The303

exact prompting format for this step is shown in 304

Appendix A.5.1 Figures 5 305

Temporal Knowledge Graph Construction. 306

When the context is deemed usable, we convert 307

it into a TKG that supports symbolic reasoning 308

over events and temporal intervals. TKGs can 309

be formally defined as a sequence of quadruples 310

(e1, ri, e2, ti)
N
i=1, where each tuple represents a fact 311

consisting of a subject entity ei, a relation ri, an 312

object entity e2, and an associated timestamp ti.. 313

We begin by splitting the context into sentences 314

and chunking it with overlap (batch size = 12, over- 315

lap = 6). For each chunk ci, the model conditions 316

on the previous TKG state TKGi−1 to expand the 317

graph: TKGi = fTKG(ci, TKGi−1). The final 318

graph is the union of all iterations. As an example, 319

if there are three sentences, s1, s2, ands3, and we 320

use a batch size of 2 and an overlap of 1, then a 321

TKG1 will be generated using s1 and s2. TKG2 322

will be generated by s2 and s3. Both TKG1 and 323

TKG2 will be combined to form the final TKG. 324

Intuitively, generating a TKG by passing the en- 325

tire context as input causes the model to halluci- 326

nate nodes and edges, and worse, miss important 327

information. By generating it in an iterative and 328

overlapping fashion, information is seen multiple 329

times and in small contexts to generate the final 330

graph better. An example of the prompting for this 331

procedure is shown in Appendix A.5.1 Figure 6. 332

Context Correction. If Cnc is true, we trigger a 333

context correction mechanism. For each TKG node, 334

we replace the temporal fields (starttime and 335

endtime) with placeholders and prompt the model 336

to infer plausible time spans. The model then 337

generates a natural language sentence that articu- 338
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lates the relation. Formally, each corrected node is339

(e1, rel, e2, starttime′i, endtime′i, sentencei). This340

results in a corrected graph TKG′ with both sym-341

bolic and textual representations. Appendix A.5.1342

Figure 7 shows the full correction prompt.343

Answer Generation. When a TKG is available,344

we filter relevant nodes, extract justifications, and345

synthesize an answer A as part of a larger output346

(A, sn, r) = ftkg_answerer(Q,TKG), where sn de-347

notes supporting nodes and r is the reasoning trace.348

We do this using an LLM agent without any rule-349

based methods. The full answer generation prompt350

is shown in Appendix A.5.1 Figure 8. In the ab-351

sence of usable context (without TKG), the model352

falls back to zero-shot reasoning using parametric353

knowledge: (Q1, r, A) = fzs_answerer(Q), where354

Q1 is a restated version of the question and r is the355

internal reasoning trace. The prompt for this setup356

is included in Appendix A.5.1 Figure 9.357

4 Experiments358

In this section, we describe the datasets, metrics,359

baseliens, and our overall results. We also include360

a detailed error analysis and ablation of the various361

components in our agent-based framework.362

Datasets Each subset of our collected datasets363

benchmarks a distinct aspect of temporal reasoning,364

thus testing different dimensions of temporal ques-365

tion answering. We describe each dataset below.366

MenatQA (MQA). In MQA (Wei et al., 2023),367

the counterfactual subset explores imaginative tem-368

poral reasoning. The scope subset evaluates a369

model’s ability to handle questions with variable370

time spans, while the scope_expand subset chal-371

lenges models to reason over extended temporal372

intervals that go beyond the typical bounds of the373

context. The order subset targets reasoning over374

shuffled event sequences.375

TimeSensitiveQA (TSQA). TSQA (Chen et al.,376

2021) evaluates temporal reasoning over time-377

evolving passages, with a focus on alignment be-378

tween temporal expressions in the question and379

timeline boundaries in the context. The dataset is380

split into two levels: easy and hard. In the easy381

subset, the time specifier in the question exactly382

matches a boundary event (e.g., the start or end of a383

time interval) that is explicitly mentioned in the pas-384

sage, allowing models to answer via surface-level385

matching. In the hard subset, the time specifier386

falls within the middle of a temporal span, requir- 387

ing models to infer implicit time alignment and 388

reason beyond explicit timestamps. 389

TempReason (TR). TR (Tan et al., 2023b) fo- 390

cuses on factual temporal reasoning across two lev- 391

els. The l2 subset asks for specific facts grounded 392

in time (e.g., “Who coached the team in 2010?”), 393

while the l3 subset requires reasoning over event 394

sequences (e.g., “Who coached the team before 395

Ted Lasso?”), combining time understanding with 396

knowledge of event order. 397

UnSeenTimeQA (UTQA). UTQA (Uddin et al., 398

2025) is a dataset of logistics-style word problems 399

designed to test temporal reasoning without relying 400

on prior knowledge. Because the problems are syn- 401

thetic and domain-specific, models cannot answer 402

them without using the provided context. This re- 403

duces concerns about training data contamination. 404

We focus on the hardSerial and hardParallel sub- 405

sets. HardSerial assumes events occur in sequence 406

but only provides durations, requiring models to 407

simulate a timeline mentally. HardParallel allows 408

events to overlap and introduces distractors that 409

resemble irrelevant but plausible context. 410

Metrics. We report Exact Match (EM), Contains 411

Accuracy (Acc), and word-level F1 to evaluate 412

model performance. EM measures whether the 413

predicted answer exactly matches any reference an- 414

swer (e.g “Barack Obama” is not “Obama”). Acc 415

is more lenient and considers a prediction correct if 416

it is a subset of, or contains, any reference answer 417

(e.g “Barack Obama” contains “Obama”). Finally, 418

F1 captures the overlap between the predicted and 419

reference answers at the word level by computing 420

the harmonic mean of precision and recall. For- 421

mal definitions of these metrics are provided in 422

Appendix A.1. To conserve space, our main tables 423

only show Acc, but full results for EM and F1 are 424

available in Appendix A.3 (Tables 8 and 9). 425

Baselines. We compare three baseline prompt- 426

ing strategies against our proposed method. (1) 427

generic Few-Shot prompting, (2) a simple reason- 428

ing prompt, and (3) a TKG prompt with no agen- 429

tic steps. For each baseline we include four few- 430

shot examples, one each for relevant-, irrelevant-, 431

slightly altered, and no-context. 432

Few-Shot. In the Few-Shot approach, we provide 433

the question and context and ask for an answer. 434
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Model Prompt Type MQA TR TSQA Avg

gemma-3-12b-it

Few-Shot .332 .257 .176 .293
Reasoning .222 .275 .190 .225

TKG .302 .254 .164 .271
RASTeR .327 .290 .166 .294

gpt-4o-mini

Few-Shot .302 .288 .220 .286
Reasoning .264 .324 .236 .270

TKG .306 .256 .201 .280
RASTeR .319 .315 .262 .311

Llama-3.1-8B-Instruct

Few-Shot .087 .124 .069 .090
Reasoning .217 .227 .135 .205

TKG .266 .227 .135 .238
RASTeR .253 .231 .182 .238

Table 1: Acc averaged across subset, and eval-context
for each model and prompting strategy.

The prompt for this baseline is in Figure 10 in the435

Appendix.436

Reasoning. In the reasoning approach, we ask437

the model to follow the following reasoning chain438

(1) restate the question, (2) evaluate the relevance439

of the context, (3) quote supporting evidence, (4)440

reason towards an answer, and (e) use the reasoning441

to come to a final conclusion. Basically, this is442

a structured chain-of-thought-like prompt (Sultan443

et al., 2024) for TQA. The full prompt can be seen444

in Figure 11 in the Appendix.445

Simple TKG. In this approach, the model first446

extracts entities from the context and uses them447

to construct a structured TKG composed of times-448

tamped relational tuples. It then answers the ques-449

tion using only the generated TKG, encouraging450

structured reasoning and temporal grounding with-451

out additional agentic steps. Unlike the simple452

TKG baseline, which directly constructs a TKG453

from the context without evaluating its relevance454

or consistency, our method introduces agentic rea-455

soning steps. These include checking whether the456

context is relevant or altered, correcting temporal457

inconsistencies, and iteratively building a TKG con-458

ditioned on previous outputs, resulting in a more459

robust and context-sensitive reasoning process. The460

full prompt is in Figure 12 in the Appendix.461

Results. Table 1 shows the average contains ac-462

curacy on the MQA, TR, and TSQA datasets.463

RASTeR demonstrates consistent robustness across464

MQA, TR, and TSQA. It generalizes well across465

Gemma (gemma-3-12b-it) , GPT (gpt-4o-mini) ,466

and Llama (Llama-3.1-8B-Instruct) with an aver-467

age improvement in accuracy from .293, .286, and468

.205 to .294, .311, and .238, respectively. These469

scores are averaged across all four context types:470

relevant (Cr), irrelevant Ci, altered (Ca), and no471

Model Prompt MQA TR TSQA Avg

gemma-3-12b-it

Few-Shot .238 .004 .010 .161
Reasoning .110 .026 .028 .082

TKG .235 .004 .010 .159
RASTeR .305 .052 .098 .228

gpt-4o-mini

Few-Shot .190 .018 .044 .137
Reasoning .174 .116 .120 .155

TKG .211 .014 .030 .148
RASTeR .253 .091 .164 .171

Llama-3.1-8B-Instruct

Few-Shot .019 .000 .002 .013
Reasoning .090 .000 .002 .060

TKG .179 .012 .018 .124
RASTeR .209 .050 .102 .165

Table 2: Acc averaged across subset for Irrelevant Con-
text Evaluations Only.

context (C0). For Gemma and LLaMA, TKG ties 472

for best average score. Overall, this shows strong 473

robustness to noisy RAG contexts compared to stan- 474

dard baseline methods. 475

Next, we report how our system works in a worst- 476

case setting, when evaluated only on the irrelevant 477

context in Table 2. On average, RASTeR consis- 478

tently outperforms other methods, particularly on 479

open-source models. RASTeR with Gemma scores 480

on average ∼7% better (.228) than the runner-up 481

(.161). Likewise, LLaMA (.165) handles random 482

context on average ∼6% better than its runner-up 483

(.124). Furthermore, in the irrelevant evaluation 484

setting, our method is the dominant prompting 485

strategy across nearly every dataset and model 486

combo. The only exceptions being gpt + TR, where 487

reasoning is higher RASTeR (.116 vs. .091) 488

In practice, RAG systems often surface both rel- 489

evant and irrelevant content. The context is gener- 490

ally never completely relevant nor completely irrel- 491

evant. To simulate this, we manipulate TSQA by 492

inserting n irrelevant contexts on each side of the 493

golden context (e.g., for n = 3: irr, irr, irr, rel, irr, 494

irr, irr; where ‘irr’ is an unrelated distractor and 495

‘rel’ is the true relevant context). Intuitively, the 496

model needs to identify the relevant context within 497

many noisy contexts. This is particularly difficult 498

given that language models generally “lose” infor- 499

mation in the middle (Liu et al., 2024; Zhang et al., 500

2025). Descriptive statistics for this experiment 501

can be found in Figure 6 in the Appendix. Fig- 502

ure 3 shows the overall findings of our experiments. 503

Overall, RASTeR remains highly effective under 504

this setup, maintaining strong performance despite 505

the presence of distractors. At each n, RASTeR 506

achieves the highest performance. In fact, with 507

forty distractors (n = 20), RASTeR, with an ac- 508

curacy of 74%, outperforms (by at least 12%) all 509
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Figure 3: GPT accuracy as the number of distractors
(irrelevant contexts) increases around a single relevant
passage. All contexts have a relevant passage.

other prompting strategies’ performance at fourteen510

distractors (n = 7). These results demonstrate that511

our system can robustly reason over long contexts512

with numerous distractors. This finding is highly513

impactful, given that we show that careful engineer-514

ing of how context is handled, even at a low, nearly515

artificial level, can generalize to more realistic sce-516

narios that are experienced in practice. Moreover,517

the results in this experiment are stronger than the518

artificial experiments.519

In Table 3, we report the results of the USQA520

dataset. Intuitively, we are evaluating generaliza-521

tion to unseen data, i.e., information the model522

has never seen during pretraining. At a high level,523

we hypothesize that using the TKG is crucial for524

improved temporal reasoning when the temporal525

context wasn’t observed during pretraining. While526

RASTeR incorporates a TKG, it may not con-527

sistently outperform the TKG baseline alone, as528

RASTeR’s reasoning and TKG components are de-529

coupled to better handle noisy context. In contrast,530

the TKG baseline reasons and answers within a sin-531

gle prompt. We find that RASTeR outperforms the532

reasoning and few-shot baselines across all models533

and metrics, confirming that incorporating a TKG,534

even in a modular setup, substantially enhances535

generalization to novel temporal contexts. For in-536

stance, using the gemma-3-12b-it model, RASTeR537

achieves an average accuracy of 0.373 compared to538

only 0.149 for the reasoning baseline and 0.101 for539

few-shot prompting. This trend holds across other540

models as well, such as LLaMA, where RASTeR541

improves from 0.120 (few-shot) and 0.195 (rea-542

soning) to 0.235. Although RASTeR does not al-543

ways exceed the decoupled TKG baseline, its con-544

sistent advantage over non-TKG methods demon-545

strates the importance of explicitly structured tem-546

Model Prompt Type HardParallel HardSerial Avg

gemma-3-12b-it

Few-Shot .085 .117 .101
Reasoning .146 .151 .149

TKG .341 .408 .375
RASTeR .391 .355 .373

gpt-4o-mini
Few-Shot .267 .317 .292
Reasoning .190 .164 .177

TKG .533 .551 .542
RASTeR .251 .331 .291

LLaMA

Few-Shot .109 .130 .120
Reasoning .197 .192 .195

TKG .275 .274 .275
RASTeR .213 .256 .235

Table 3: Acc across the UTQA hard subsets using rele-
vant context only.

Ablation irrelevant avg

RASTeR .300 .388

w/o DateFix .263 .375
w/o TKG .275 .360
w/o DetRel .212 .325

Table 4: Ablation results showing accuracy for irrele-
vant context and the overall average across all context
types.

poral representations even in modular reasoning 547

pipelines. This result suggests that future work can 548

explore how to better link the reasoning answerer 549

and the actual TKG generation (e.g., through itera- 550

tive TKG generation and answering, in a back-and- 551

forth framework). 552

Ablation. To assess the contribution of each com- 553

ponent in RASTeR, we conducted an ablation 554

study by evaluating three modified variants of the 555

pipeline: (1) w/o DateFix, which disables the con- 556

text corrector responsible for resolving temporally 557

inconsistent information; (2) w/o TKG, which re- 558

moves the TKG constructor and relies entirely on 559

natural language rather than structured graphs; and 560

(3) w/o DetRel, which bypasses relevance assess- 561

ment by treating all input context as relevant. Each 562

ablation was tested against the full pipeline on a 563

randomly sampled subset spanning all datasets and 564

subsets. Descriptive statistics for this subset ap- 565

pear in Table 7 (Appendix A.2]). Overall, the full 566

RASTeR pipeline achieves the highest average ac- 567

curacy (.388), outperforming all ablations. In the 568

irrelevant context setting, RASTeR also obtains the 569

best performance (.300), indicating that both the 570

TKG and context relevance agents contribute mean- 571

ingfully to robustness under noisy retrieval. No- 572

tably, removing the relevance detector (w/o DetRel) 573

leads to the largest drop in performance, especially 574
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Predicted Context Type

SA NO/IRR REL

Eval Context

No 0.0% 100.0% 0.0%
Irrelevant 2.3% 90.1% 7.6%
Relevant 2.6% 4.8% 92.6%
Slightly Altered 77.1% 8.5% 14.3%

Table 5: Confusion matrix of RASTeR’s predicted con-
text type (columns) versus true context type (rows).

in the irrelevant context setting, suggesting that575

misclassifying noisy inputs as relevant can signifi-576

cantly degrade reasoning. These results highlight577

the importance of both structured temporal repre-578

sentation and selective context filtering in improv-579

ing temporal QA robustness. Full ablation results580

are shown in Table 10 (Appendix A.4).581

Determining Relevance Error Analysis. Look-582

ing at Table 5, we observe distinct patterns in how583

relevance is predicted across different eval contexts.584

When evaluated with no context, the model per-585

fectly classifies the context as NO / IRR, 100% of586

the time. When presented with irrelevant context,587

the model sometimes mistakenly labels the con-588

text as REL (7.6%) or less frequently as SA (2.3%)589

. This is followed by evaluating on relevant con-590

text, in which the model most frequently misclas-591

sified the context as NO / IRR (4.8% of the time).592

There is a big drop in performance when evalu-593

ated on slightly altered, relevance errors are594

more evenly split. While 72.6% of predictions are595

correctly labeled as SA, the 14.3% mislabeled as596

REL and 8.5% as NO / IRR suggest that identifying597

slightly altered context remains challenging and598

leaves room for improvement.599

Types of General Errors. A common issue oc-600

curs when the model attempts to infer an answer601

even when the gold label is unanswerable. Our602

prompting pipeline encourages models to reason603

and guess in the absence of explicit evidence,604

which improves performance in no-context and605

irrelevant-context settings. However, this behavior606

can produce errors in settings where abstaining is607

preferred. An example is provided below.608

QUESTION: What job did Mary have in 2010?
CONTEXT: In 2009, Mary was a teacher at Lincoln
High School. In 2011, she became a school principal.
INCORRECT REASONING: Mary’s 2010 job is not
explicitly stated. But since she was a teacher in 2009
and only became a principal in 2011, it is inferred she
remained a teacher in 2010. GROUND TRUTH: unan-
swerable PREDICTION: Lincoln High School

609

Finally, temporal reasoning remains one of the610

most challenging categories of errors. To highlight 611

these issues, MQA’s counterfactual questions re- 612

quire models to answer based on a hypothetical that 613

directly contradicts the context. These questions 614

test whether models adhere to the “what-if” con- 615

dition rather than relying on factual timelines. An 616

example of a subset-specific reasoning error can be 617

found below: 618

QUESTION: What school did Henry go to from 2008
to 2010, if Henry didn’t graduate from Rice High School
until 2011?
CONTEXT: Henry started at Rice High School in 2004.
In 2008, he graduated and enrolled at Brown University.
He completed his studies there in 2015.
INCORRECT REASONING: The timeline shows
Henry enrolled at Brown University in 2008, which im-
plies he attended it from 2008 to 2010. Since no other
school is mentioned, Brown is inferred as the correct
answer.
GROUND TRUTH: Rice High School
PREDICTION: Brown University

619

These examples illustrate the need for finer-grained 620

evaluation and improved handling of temporal and 621

counterfactual reasoning in large language models. 622

5 Conclusion 623

TQA presents persistent challenges for LLMs, par- 624

ticularly when retrieved context is irrelevant, mis- 625

leading, or missing. We introduced RASTeR, a 626

modular, agentic framework that separates con- 627

text evaluation from answer generation. By assess- 628

ing context quality, constructing structured TKGs, 629

and correcting inconsistencies, RASTeR enables 630

more robust and temporally grounded reasoning. 631

Across four temporal QA datasets and three LLMs, 632

RASTeR consistently improves accuracy in noisy 633

and distractor-heavy settings while maintaining 634

strong performance in ideal conditions. In needle- 635

in-the-haystack scenarios, it not only outperforms 636

alternatives but also degrades more gracefully as 637

distractors increase. In future work, we plan to 638

extend RASTeR to support multi-hop temporal 639

reasoning and questions with multiple temporally 640

valid answers. We also aim to broaden our robust- 641

ness analysis beyond date shifts to include pertur- 642

bations such as entity substitutions and relation 643

modifications, better characterizing model sensi- 644

tivity to noisy temporal input. Furthermore, we 645

aim to investigate how to more effectively integrate 646

TKG generation and the reasoner answerer for im- 647

proved performance on unseen temporal reasoning 648

questions. 649
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6 Limitations650

Despite our best efforts to develop a comprehensive651

and robust framework for temporal question an-652

swering, several limitations persist. RASTeR uses653

slightly more resources than traditional prompting.654

While RASTeR’s agent-based architecture intro-655

duces multiple prompting steps per query, we found656

the overall overhead to be manageable in practice.657

On average, each full query involves 3–4 calls to658

the underlying LLM, with total token usage ranging659

from 2.5x to 3x that of a single monolithic prompt.660

However, because the number of agent calls is fixed661

and does not scale with input length or number of662

retrieved documents, the additional cost remains663

minimal and predictable across queries. This fixed664

modular structure ensures stable inference time and665

simplifies deployment planning. RASTeR has not666

been evaluated on datasets with gold-standard tem-667

poral graphs, leaving the accuracy of its generated668

knowledge graphs unverified. While the framework669

is practical in retrieval-based settings, it underper-670

forms on tasks requiring abstract generalization,671

where simpler prompting strategies may suffice.672

Moreover, although RASTeR prompts with struc-673

tured temporal knowledge, it does not yet leverage674

deeper architectural integration, such as graph neu-675

ral networks or instruction-tuned models, which676

may offer more effective handling of complex tem-677

poral relationships.678
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A Appendix1011

A.1 Metric Formalization1012

In any NLP applications, due to the diverse nature1013

of natural langue, determining the correctness of1014

a prediction is always challenging. To highlight1015

this challenge, Figure 4 shows how the model out-1016

put can be marked incorrect by both exact match1017

(EM) and contains accuracy (Acc), despite being1018

semantically correct. Having a variety of evalu-1019

ation metrics allows us to get a better picture of1020

model performance measured by partial matches,1021

and more strict criteria.1022

QUESTION: John O. Moseley was an
employee for whom from Mar 1936 to
Dec 1938?
OUTPUT: central state college
GROUND TRUTH: central state
teachers college

Figure 4: An example where the model output is seman-
tically correct but fails EM and Acc.

To define our evaluation metrics formally,1023

Let â be the predicted answer and let A =1024

{a1, a2, . . . , an} denote the set of gold reference 1025

answers. Let Wx represent the multiset of words in 1026

answer x. 1027

Exact Match (EM) EM measures whether the 1028

ground truth is exactly identical to the prediction. 1029

(e.g. "Border Collie" is identical to "Border Col- 1030

lie") 1031

EM = 1[â ∈ A] 1032

EM returns 1 if the predicted answer exactly 1033

matches any gold answer, and 0 otherwise. 1034

Contains Accuracy (Acc) Acc measures 1035

whether the ground truth is contained in the 1036

prediction. (e.g. "Border Collie" is contained in 1037

"The dog is a Border Collie") 1038

Acc = 1[∃a ∈ A such that a ⊆ â] 1039

Acc returns 1 if any gold answer is a substring of 1040

the predicted answer, and 0 otherwise. 1041

Word-Level F1 F1 is the most flexible metric. 1042

It measures the maximum word overlap between 1043

the predicted and gold answers by computing the 1044

harmonic mean of precision and recall. For each 1045

a ∈ A, we compute: 1046

Precision =
|Wâ ∩Wa|

|Wâ|
, Recall =

|Wâ ∩Wa|
|Wa|

1047

1048

F1 = max
a∈A

2 · Precision · Recall
Precision + Recall

1049

For example: if the predicted answer is "central 1050

state college" and the gold answer is "central state 1051

teachers college", the prediction shares three words 1052

with the gold answer. Precision is 1 (3 out of 3 1053

words), recall is .75 (3 out of 4 words), and F1 = 1054
2·1·.75
1+.75 = .857. 1055

A.2 Descriptive Statistics 1056

In Table 6, we report the average number of words 1057

per context and the number of samples (n) for all 1058

datasets used in our experiments. The full MQA 1059

dataset was included but is substantially smaller 1060

than the other datasets. Full subsets of UTQA 1061

were also used, though we excluded the easy and 1062

medium settings, as they were less challenging 1063

and required minimal reasoning compared to the 1064

hard subsets. Among all subsets, HS n_20 had 1065

the highest average word count, with nearly 5.5k 1066

words. This is due to the relevant context being 1067

surrounded by forty distractors. The TSQA subsets 1068
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Dataset Subset Avg. Words n

MQA counterfactual 82.38 112
MQA order 80.44 182
MQA scope 82.38 112
MQA scope_expand 75.91 176
UTQA hardSerial 140.84 2700
UTQA hardParallel 140.47 2700
HS n_1 399.94 200
HS n_3 904.67 200
HS n_5 1503.09 200
HS n_7 2021.04 200
HS n_20 5494.45 200
TR l2 128.29 250
TR l3 141.08 250
TSQA easy 2041.00 250
TSQA hard 1827.08 250

Table 6: Average word count of relevant context and
number of samples (n) per subset.

also had long contexts, making them the second1069

most verbose in terms of average word count.1070

For ablations, we used a subset of 80 randomly1071

selected rows sampled from our three main datasets.1072

Half of the rows came from TR, while the other1073

half were drawn from MQA and TSQA. Table 71074

summarizes the row counts and proportions for1075

each subset included in the ablation.1076

Dataset Subset Count Proportion (%)

MQA

counterfactual 7 8.8
order 6 7.5
scope 5 6.2

scope_expand 7 8.8

TR l2 16 20.0
l3 16 20.0

TSQA easy 14 17.5
hard 9 11.2

Total – 80 100.0

Table 7: Descriptive statistics of combined data subsets
used for ablations

A.3 Expanded Results1077

In addition to Acc show in Table 1, we report EM1078

in Table 8 and F1 scores in Table 9. While Gemma1079

with the Few-Shot prompt slightly outperforms1080

RASTeR in terms of EM (by 0.8%), RASTeR1081

consistently performs better on both Acc and F1.1082

In fact, RASTeR shows the strongest gains when1083

evaluated through the lens of F1. For example,1084

RASTeR combined with LLaMA achieves a full1085

7% improvement over the next-best average F11086

Model Prompt Type MQA TR TSQA Avg

gemma-3-12b-it

Few-Shot .306 .257 .150 .272
Reasoning .191 .266 .136 .194

TKG .291 .240 .142 .258
RASTeR .291 .276 .140 .264

gpt-4o-mini

Few-Shot .268 .288 .188 .258
Reasoning .210 .318 .195 .226

TKG .273 .253 .177 .254
RASTeR .287 .303 .221 .287

LLaMA

Few-Shot .056 .122 .060 .068
Reasoning .088 .193 .095 .107

TKG .178 .153 .093 .159
RASTeR .213 .222 .148 .204

Table 8: Exact Match (EM) averaged across subset, and
eval-context for each model and prompting strategy.

Model Prompt Type MQA TR TSQA Avg

gemma-3-12b-it

Few-Shot .364 .321 .206 .331
Reasoning .248 .317 .211 .253

TKG .345 .304 .205 .315
RASTeR .368 .383 .223 .346

gpt-4o-mini

Few-Shot .343 .338 .270 .330
Reasoning .292 .382 .285 .306

TKG .344 .306 .248 .322
RASTeR .359 .380 .317 .364

LLaMA

Few-Shot .085 .171 .090 .100
Reasoning .129 .239 .135 .148

TKG .225 .208 .133 .207
RASTeR .285 .300 .224 .277

Table 9: F1 Score averaged across subset, and eval-
context for each model and prompting strategy.

score. 1087

We believe RASTeR’s strong performance un- 1088

der F1 is due to the metric’s sensitivity to partial 1089

overlap. Predictions are often semantically correct 1090

but do not match the gold answer word-for-word, 1091

especially when context is missing. Since RASTeR 1092

is designed to filter, correct, and reason over noisy 1093

context, it excels in settings where exact matches 1094

are unlikely but partial correctness is common. 1095

A.4 Error Analysis 1096

Table 5 presents a confusion matrix showing how 1097

our relevance reasoner classified different types of 1098

context. Note that the pipeline treats both no con- 1099

text and irrelevant context as equivalent, so both the 1100

relevance reasoner should label them as NO / IRR. 1101

As discussed in the main paper, the greatest area 1102

for improvement lies in detecting slightly altered 1103

contexts, which are only correctly identified 77.1% 1104

of the time. 1105

We evaluate the contribution of individual com- 1106

13



Ablation none irrelevant relevant slightly altered avg

w/o DateFix .275 .263 .762 .200 .375
w/o TKG .275 .275 .700 .188 .360
w/o DetRel .150 .212 .762 .175 .325
nothing ablated .263 .300 .738 .250 .388

Table 10: Ablation results showing accuracy across different
context types (none, irrelevant, relevant, slightly altered). Each
row removes a specific module from the full pipeline to assess
its contribution.

ponents in our agentic system by systematically1107

removing steps and comparing the performance of1108

the full system to these ablated variants. As can be1109

seen in Table 5, Our full model achieves the highest1110

average accuracy across context types, driven by1111

strong performance in the none, relevant, and1112

slightly altered settings. It also maintains1113

a competitive score in the relevant condition,1114

demonstrating balanced robustness across evalu-1115

ation scenarios.1116

A.5 Prompts1117

Both our method and baseline prompts used few-1118

shot examples. To ensure a fair, apples-to-apples1119

comparison, we kept the examples as consistent as1120

possible by using the same set of AlphaGo-related1121

questions and contexts3, randomly selected once1122

and reused throughout. When relevant, we included1123

examples with relevant, irrelevant, slightly-altered,1124

and no context to test model robustness across con-1125

ditions. Notably, for the Irrelevant Answerer shown1126

in Figure 9 , we include only a no-context example,1127

as its pipeline never permits prompting with any1128

other context type. Further details are provided1129

below.1130

A.5.1 RASTeR Prompts1131

Relevance Reasoner1132

To assess the relevance of a given context, we1133

prompt the model to perform five steps using both1134

the question and the context: (1) Identify the1135

main entity in the question; (2) Determine whether1136

this entity appears in the context; (3) If the con-1137

text uses pronouns instead of explicit names (e.g.,1138

he/she/they instead of ‘Abraham Lincoln’), assess1139

whether the pronouns plausibly refer to the iden-1140

tified entity; (4) Evaluate the temporal validity of1141

any dates in the context across four dimensions;1142

(5) Based on this evaluation, decide whether date1143

correction is needed. We included five few shot1144

3We selected the topic AlphaGo randomly; it does not
confer any advantage to our method or the baselines and serves
solely to ensure consistency across examples.

examples for the relevance reasoner: (1) a typi- 1145

cal example; (2) an example with a longer context 1146

window; (3) an example with some noisy context, 1147

(4); an example with longer context and noise; and 1148

(5) a counterfactual example. The exact prompt is 1149

shown in Figure 5. 1150

TKG Constructor 1151

To incrementally construct a TKG, we prompt the 1152

model with a slice of historical context and all pre- 1153

viously constructed nodes. The model is asked 1154

to identify new temporal facts from the context 1155

slice that are not already present in the prior graph. 1156

Then convert those facts into structured TKG nodes. 1157

Each output node includes: (1) a supporting quote 1158

from the context; (2) subject and object entities; 1159

(3) their relation; (4) a start and end time; and (5) 1160

a reformatted sentence that is grammatically cor- 1161

rect, time-grounded, and follows specific templates. 1162

The model is explicitly instructed to infer plausi- 1163

ble dates when none are stated, use qualifiers like 1164

“around” when necessary, and avoid duplicating ex- 1165

isting facts. We included two Few-Shot examples 1166

to guide the TKG Constructor: (1) an example with 1167

no former TKG; and (2) an example with a starting 1168

TKG. The exact prompt is shown in Figure 6. 1169

TKG Date Completion 1170

When the Relevance Reasoner determines that a 1171

context requires correction, we manually remove 1172

the starttime and endtime from each node in the 1173

TKG, replacing them with placeholder values X 1174

and Y . The model is then prompted to (1) infer 1175

plausible temporal bounds using historical knowl- 1176

edge or contextual cues, and (2) generate a natural, 1177

grammatically correct sentence that incorporates 1178

the subject (e1), relation (rel), object (e2), and the 1179

inferred timeframe. The output must include both 1180

the completed sentence and the recovered temporal 1181

fields in a structured format. This step allows the 1182

model to use its internal knowledge to infer tem- 1183

poral boundaries, enabling accurate correction of 1184

incomplete TKG facts. We included a single few 1185

shot example to guide the model. The exact prompt 1186

is shown in Figure 7. 1187

Relevant Answerer 1188

After the construction of the TKG, we prompt the 1189

model with a question and the TKG. The model 1190

is instructed to perform three steps: (1) select the 1191

node(s) from the TKG that are temporally relevant 1192

and contain information necessary to answer the 1193
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System Prompt

You will be given a question and a context. Your job is to carefully evaluate the context using the steps below:
1. Question Entity: Identify the main entity of the question.

2. Does the Entity appear in the context?

3. Do Pronouns Refer to the Entity?
If the main entity does not explicitly appear in the context, but the context contains pronouns (e.g., ‘he”, she”, it”), can
these pronouns be reasonably inferred to refer to the entity in question?
Options: True / False / None (if not applicable)

4. Evaluation of Context Dates:

• a. Chronological Order: Are the dates logically ordered, or are they contradictory or impossible to sequence?

• b. Timeframe Alignment: Do the dates overlap with or lead into the timeframe asked in the question?

• c. Realism of Time Span: Is the total date range plausible for the entity, or is it unrealistically broad?

• d. Historical Consistency: Do the dates contradict known facts or include anachronisms or future events?

5. Date Need Correction: A boolean indicating whether the dates in the context need correction based on the above
evaluation.

User Prompt

Please evaluate the following context by following these steps:

1. Question Entity

2. Does the Entity appear in the context?

3. Do the Pronouns Refer to the Entity?

4. Evaluation of Context Dates

5. Date Need Correction

HERE IS THE QUESTION:
{question}

HERE IS THE CONTEXT:
{context}

Figure 5: System and user determining the relevance of a provided context.

question; (2) explain how the selected node(s) sup-1194

port the answer, including reasoning over temporal1195

relationships such as before/after conditions; and1196

(3) provide a confident, direct answer based on the1197

evidence, or make an educated guess using indi-1198

rect cues if no explicit answer is available. This1199

step leverages the structured context encoded in the1200

TKG to produce grounded, time-aware answers.1201

We included six Few-Shot examples to help guide1202

the models reasoning: (1) an example with relevant1203

context; (2) and example without context; (3) an ex-1204

ample with random context; (4) and example with1205

slightly altered context; (5) an example showing1206

when pronouns correctly refer to the entity in the1207

question; and (6) an example showing when the1208

pronouns do not refer to the entity in the question. 1209

The exact prompt is shown in Figure 8. 1210

Irrelevant Answerer 1211

When the context is determined to be irrelevant, 1212

we discard the context, and prompt the model to 1213

answer questions using only its internal knowledge. 1214

The model is guided through a 3-step reasoning 1215

process: (1) restate the question to clarify what is 1216

being asked; (2) reason toward an answer using 1217

general world knowledge; and (3) provide a final 1218

answer in a clear, structured format. By discarding 1219

the context, we eliminate distractors and evaluate 1220

the model’s ability to interpret and answer temporal 1221

questions without relying on a retrieved context. 1222
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We provide a single Few-Shot example to help1223

guide the model’s reasoning. The exact prompt is1224

shown in Figure 9.1225

A.5.2 Baseline Prompts1226

All baseline prompts have four Few-Shot exam-1227

ples to help guide their reasoning: (1) an example1228

with relevant context; (2) an example without con-1229

text; (3) an example with random context; (4) an1230

example with slightly altered context.1231

Few-Shot1232

Our first baseline evaluates model performance us-1233

ing a minimal prompt that mirrors common few-1234

shot setups. The model is given a question and a1235

corresponding context and is instructed to respond1236

concisely using the format: The answer is X. Un-1237

like our structured approaches, this prompt includes1238

no explicit reasoning steps or guidance for inter-1239

preting the context. It serves to benchmark how1240

well the model can extract answers when given rel-1241

evant input, and how it performs in the presence of1242

no or irrelevant context without any reasoning scaf-1243

folding. The exact prompt is shown in Figure 10.1244

Reasoning1245

Our second baseline introduces a structured 5-step1246

reasoning process to guide the model through ques-1247

tion answering. Given a question and a context, the1248

model is instructed to (1) restate the question to1249

clarify its intent; (2) assess whether the context is1250

relevant; (3) quote specific evidence from the con-1251

text, or indicate NONE if no useful information is1252

found; (4) reason toward an answer using either the1253

provided evidence or its own internal knowledge;1254

and (5) produce a final answer in the format: The1255

answer is X. This format encourages explicit rea-1256

soning and evidence grounding. The exact prompt1257

is shown in Figure 11.1258

Simple TKG1259

This baseline a non-iterative TKG construction1260

without the full multi-agent pipeline. The model is1261

prompted to (1) extract all entities from the context,1262

including people, places, roles, and other named1263

concepts; (2) construct a TKG; and (3) answer the1264

question based on the constructed TKG using the1265

standard format: The answer is X. The model1266

is allowed to correct factual inconsistencies in the1267

context or fall back on internal knowledge when1268

context is irrelevant. This prompt provides a basic1269

measure of how well the model can extract tempo-1270

ral structure and reason over it in a single pass. The1271

exact prompt is shown in Figure 12. 1272
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System Prompt

You will be presented with a slice of historical context and a previously constructed temporal knowledge graph (TKG).
Your task is to identify new temporal facts from the current context and output them as TKG nodes.
Do not repeat facts already included in the previous TKG.
Each node should include the following fields:

• quote: a verbatim snippet or sentence from the context that supports the node’s validity

• e1: subject entity (e.g., person, organization)

• e2: object entity (e.g., location, role, other person)

• rel: the relation between e1 and e2

• starttime: when the relation began

• endtime: when the relation ended

• reformatted: a rewritten sentence that:

– rearranges the quote to follow the order: time(s), e1, rel, e2
– is grammatically correct and includes only e1, e2, rel, and times
– must include temporal information (date, year, or month); if not explicit, infer it
– uses qualifiers like ‘around” or roughly” when inferring time
– follows these example templates:

* On {starttime}, {e1} was {rel} {e2}

* Between {starttime} and {endtime}, {e1} was {rel} {e2}

* Roughly in {starttime}, {e1} was {rel} {e2}

Format your output as a list of dictionaries:

[ { "quote": "...", "e1": "...", "e2": "...", "relation": "...", "starttime": "...",
"endtime": "...", "reformatted": "..." }, ... ]

Notes:

• Begin with an empty TKG or ‘NONE” on the first slice.

• Only include new nodes clearly grounded in the current context.

• Use short, direct quotes.

• Do not repeat nodes from the former TKG.

• Preferred time formats: ‘YYYY-MM-DD”, then YYYY”, Month YYYY”, or UNKNOWN”.

• You may extract overlapping or nested events if they are distinct.

• Use only double quotes in your answer (no single quotes).

User Prompt Header

Construct new TKG nodes using the provided context and former_tkg.
Avoid duplicating facts already extracted. Output only new nodes relevant to the current slice of context.

Reminder: The "reformatted" quote should be a grammatically correct sentence that includes a specific date, year,
month, or timespan. If not explicitly stated in the context, infer it using surrounding information. In such cases, use
terms like ‘around” or roughly”.

HERE IS THE CONTEXT:
{context}

HERE IS THE FORMER TKG:
{former_tkg}

Figure 6: System and user prompt for generating new temporal knowledge graph (TKG) slices of a provided context.
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System Prompt

You are given a temporal knowledge graph (TKG) triple with missing starttime and endtime.

Your task is to:

1. Infer appropriate starttime and endtime based on historical knowledge or reasonable assumptions.

2. Write a grammatically correct and natural-sounding sentence that incorporates:

• the subject (e1)
• the relationship (rel)
• the object (e2)
• and the inferred temporal range

You are allowed to rephrase the sentence as long as all elements are included and the timeframe is clearly conveyed.

Your output should follow this format:

COMPLETE SENTENCE: [your complete sentence]
STARTIME: [YYYY-MM-DD]
ENDTIME: [YYYY-MM-DD]

Example:

INPUT:
{"e1": "Arseny Dmitrievich Mironov", "e2": "USSR State Prize", "rel": "recipient of",
"starttime": X, "endtime": Y}

OUTPUT:
COMPLETE SENTENCE: Arseny Dmitrievich Mironov received the USSR State Prize in 1976.
STARTIME: 1976-01-01
ENDTIME: 1976-12-31

User Prompt Header

Given the following TKG triple with missing temporal information, fill in the starttime and endtime, and write a
complete, natural-sounding sentence.

You must:

• Include e1, rel, and e2

• Clearly indicate the time period

• Use correct grammar and phrasing

Format:

COMPLETE SENTENCE: ...
STARTIME: ...
ENDTIME: ...

HERE IS YOUR TRIPLE:
{triple}

Figure 7: System and user prompt for inferring missing temporal values in a temporal knowledge graph triple.
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System Prompt

You are given a question and a temporal knowledge graph (TKG). Your job is to answer the question using the TKG to
assist you.

Please follow these steps:
1. Select Supporting Nodes:

• From the TKG, return the node(s) that provide the information necessary to answer the question.

• You may include one or more nodes.

• Only include nodes that are temporally relevant to the question.

• You must consider the time frame mentioned in the question.

• If multiple matching nodes exist, include them all.

2. Explain Your Reasoning:

• Justify how the node(s) support your answer.

• If no node is directly about the question, you may infer the answer from strong contextual clues.

• For before/after questions, identify the event that occurred immediately before or after the referenced one.

• Example:
Context: Dan attended high school from 2010–2014, undergrad from 2014–2018, a master’s from 2023–2024, and
began a PhD in 2024.
Question: What did Dan do after high school?
Reasoning: Dan completed undergrad, a master’s, and began a PhD after high school. However, undergrad was
immediately after, so it is the correct answer.

3. Answer the Question:

• Respond in the format: The answer is X

• If no nodes provide a direct answer, use indirect evidence to make an educated guess.

• For instance, political roles, awards, institutions, or cities may imply nationality or affiliation.

• Your answer should be confident and definite.

Note: Use only double quotes in your answer. Do not use single quotes.

User Prompt Header

Given a question and a temporal knowledge graph (TKG), answer the question using the TKG to assist you.
Follow these steps:

1. Select Supporting Nodes

2. Explain Your Reasoning

3. Answer the Question

If no nodes directly provide information to answer the question, use indirect evidence to make an educated guess.

HERE IS YOUR QUESTION:
{question}

HERE IS THE TKG:
{TKG}

Figure 8: System and user prompts for answering temporal questions using a temporal knowledge graph (TKG).
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System Prompt

You are a helpful and precise assistant. When given a question, respond clearly and concisely, only using relevant
information. To help you arrive at the correct answer, follow this 3-step reasoning process:

1. Restate the Question
Rephrase the original question to clarify what is being asked.

2. Reason
Rely on your general knowledge to reason toward an answer.

3. Answer
Provide your final answer using the format: The answer is X.

Note: Only use double quotes in your answer. Do not use single quotes.

User Prompt Header

Please answer the question using the provided context.
Follow the 3-step reasoning process above, and end with a final answer in Step 3.

HERE IS THE QUESTION:
{question}

Figure 9: System and user prompts for answering questions without context using a structured 3-step reasoning
process.

System Prompt

You are a helpful and precise assistant. When given a context and a question, respond clearly and concisely, only using
relevant information.

Please use the format: The answer is X where X is your answer.

Example formatting:

The answer is Michael Phelps.

User Prompt Header

Please answer the question given the context.
Your response should follow the format: The answer is X

HERE IS THE QUESTION:
{question}

HERE IS THE CONTEXT:
{context}

Figure 10: System and user prompts for answering questions with concise, format-specific responses.
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System Prompt

You are a helpful and precise assistant. When given a context and a question, respond clearly and concisely, only using
relevant information. To help you arrive at the correct answer, follow this 5-step reasoning process:

1. Restate the Question
Rephrase the original question to clarify what is being asked.

2. Evaluate Context Relevance
Determine whether the provided context contains information that is useful for answering the question.

3. Quote Supporting Evidence
Copy and paste the exact portion(s) of the context that support your answer.
If no useful evidence exists, write NONE.

4. Reason
If the context is relevant, use the quoted evidence to logically derive the answer.
If the context is not relevant, rely on your general knowledge to reason toward an answer.

5. Answer
Provide your final answer using the format: The answer is X.

User Prompt Header

Please answer the question using the provided context.
Follow the 5-step reasoning process above, and end with a final answer in Step 5.

HERE IS THE QUESTION:
{question}

HERE IS THE CONTEXT:
{context}

Figure 11: System and user prompts for answering questions using a structured 5-step reasoning process.
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System Prompt

You are a helpful and precise assistant. You will be presented with some context and a question. Your job has two parts.

First: Identify all entities in the context, including places, names, occupations, and things.
List them using the following format, wrapped in triple backticks. Do not skip any entities.

e1. Yoko Ono
e2. Businessman
e3. Europe

Second: Construct a Temporal Knowledge Graph (TKG) based on the context using the identified entities.
Each TKG node should include the following fields:

• Entity1

• Entity2

• Relation

• Timestamp

Format:

[
{’Entity1’: ’...’, ’Entity2’: ’...’, ’Relation’: ’...’, ’Timestamp’: ’...’},
...
]

Additional Instructions:

• If the context is partially incorrect, correct the information before building that part of the TKG.

• If the context is irrelevant or marked as NONE, discard it and use your internal knowledge instead.

Once the TKG is complete, use it to answer the question. Respond concisely using the format: The answer is X.

Example formatting:

The answer is Michael Phelps.

User Prompt Header

Build a temporal knowledge graph (TKG) to help answer the question using the provided context.
The TKG should be a list of nodes, each with Entity1, Entity2, Relation, and Timestamp fields.

Once the TKG is complete, use it to answer the question.
Your answer should follow the format: "The answer is X"

HERE IS THE QUESTION:
{question}

HERE IS THE CONTEXT:
{context}

Figure 12: System and user prompts for entity extraction, temporal knowledge graph construction, and question
answering.
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