
Update Frequently, Update Fast: Retraining Semantic Parsing Systems
in a Fraction of Time

Anonymous ACL submission

Abstract

Currently used semantic parsing systems de-001
ployed in voice assistants can require weeks to002
train. Datasets for these models often receive003
small and frequent updates, data patches. Each004
patch requires training a new model. To reduce005
training time, one can fine-tune the previously006
trained model on each patch, but naïve fine-007
tuning exhibits catastrophic forgetting – degra-008
dation of the model performance on the data009
not represented in the data patch.010

In this work, we propose a simple method that011
alleviates catastrophic forgetting and show that012
it is possible to match the performance of a013
model trained from scratch in less than 10%014
of a time via fine-tuning. The key to achiev-015
ing this is supersampling and EWC regular-016
ization. We demonstrate the effectiveness of017
our method on multiple splits of the Facebook018
TOP and SNIPS datasets.019

1 Introduction020

Semantic parsing is the task of mapping a natural021

language query into a formal language. Semantic022

parsing models are at the core of commercial dia-023

logue systems like Google Assistant, Alexa, and024

Siri. Typically, for a given query, the model should025

identify the requested action (intent) and the asso-026

ciated values specifying parameters of the action027

(slots). For example, if the query is Call Mary, the028

action could be callAction and Mary could be a029

value of the slot contact.030

Real-world datasets for semantic parsing get031

frequent updates, especially for the long tail of032

low-resource classes 1, and after each update, a033

new model needs to be trained. Considering that034

such datasets can contain millions of examples (Da-035

monte, Goel, and Chung, 2019), currently used neu-036

ral semantic parsers can take days or even weeks of037

training. To avoid training a model from scratch ev-038

ery time, we can fine-tune the current model on the039

new examples. However, this leads to catastrophic040

Figure 1: Class distribution in TOP dataset. The
most frequent class (on the left) is SL:DATE_TIME
with 13214 examples and the least frequent are
IN:NEGATION and SL:GROUP (or the right) with just
one example available.

forgetting (French, 1999) and to a performance 041

drop on the original dataset. 042

Methods that mitigate catastrophic forgetting 043

have been developed (Kirkpatrick et al., 2017; Sun, 044

Ho, and yi Lee, 2020). However, there has been 045

limited work studying their applicability to com- 046

plex tasks such as semantic parsing (Lee, 2017) 047

and to modern neural network models (de Mas- 048

son d’Autume et al., 2019). We also argue that 049

a more practical data-incremental (as opposed to 050

task-incremental) scenario has not received enough 051

attention. 052

In this paper, we investigate the applicability of 053

such methods to semantic parsing and demonstrate 054

that using a simple combination of data supersam- 055

pling and EWC (Kirkpatrick et al., 2017) allows 056

us to (1) achieve approximately the same test-set 057

performance as training a new model (2) reduce 058

catastrophic forgetting effect to almost negligible 059

and (3) to do so in less than 10% of the time needed 060

to train a model from scratch. We also propose a 061

new semantic parsing metric that is well-suited for 062

per-class evaluation. 063

We evaluate our method in multiple settings, 064

1

varying the amount of data available for each cat-065

egory initially and in subsequent increments. We066

show that our method achieves higher accuracy067

than training from scratch in some of the more real-068

istic settings, e.g., when less than 30 examples are069

available for a class in the original training data and070

less than 300 examples are added incrementally.071

2 Incremental training072

We formalize our task as follows. Suppose we073

have a network Mprev trained on the dataset D1 as074

our current model. We are then given a dataset075

D2 as additional “data patch” data. Let T1 be076

the time to train Mfrom_scratch from scratch on077

D1 ∪ D2 and T2 is the time to fine-tune the pre-078

vious model. Our goal is to fine-tune Mprev and079

produce Mfrom_scratch, resulting in comparable080

performance with Mfinetuned with T2 � T1. In081

this work, we study the case where D2 has a data082

distribution that is skewed and significantly differ-083

ent from the distribution inD1. Note that we do not084

explicitly study scenarios where conflicting train-085

ing data is being corrected using D2 as in (Gaddy086

et al., 2020).087

Peculiarities of semantic parsing: While stan-088

dard classification tasks assume a single label for089

each training example, the output for semantic pars-090

ing is a tree with multiple nodes (Fig. 2). Tree091

structure can automatically account for the class092

correlations as the correlated classes are likely to093

occur in a single training example as different tree094

nodes. Another potential benefit of having struc-095

tured outputs is that the difference between the096

class distribution in D1 and D2 likely to be smaller097

than in unconstrained classification, since D2 is098

likely to include some frequent classes from D1 in099

its parsing trees.100

Another characteristic of commercial semantic101

parsing is high number of classes. For example, the102

publicly available TOP dataset (Gupta et al., 2018)103

uses 25 intents and 36 slots for just two domains104

navigation and events. Real production systems105

can contain hundreds of classes for a single domain106

(Rongali et al., 2020). Thus, incremental training is107

particularly interesting as the long tail of the class108

distribution calls for frequent model updates.109

3 Fine-tuning approaches110

In continual learning, it is generally assumed that111

the previous data is not accessible at the next learn-112

ing iteration (de Masson d’Autume et al., 2019).113

However, this is usually not the case for commer- 114

cial semantic parsing systems. Hence, we assume 115

that we have access to all data. 116

Our main reason to apply continual learning 117

methods to semantic parsing is to reduce train- 118

ing times. Thus, we only use the methods that 119

do not require significant additional computation. 120

We investigate several fine-tuning approaches using 121

data-reuse and regularization. 122

3.1 Reusing old data 123

We consider two main ways to reuse the old data 124

(D1) during fine-tuning: replay and sampling. Ex- 125

perience replay (Lin, 1992; de Masson d’Autume et 126

al., 2019) of sizeN savesN training examples into 127

the replay buffer, allowing reuse during the next 128

continual learning iteration. Usually, N is small, 129

but we experiment with various N ranging from 130

0 to the size of the dataset. To better parametrize 131

experience replay for our setup, instead of N ∈ N 132

we select p ∈ [0, 1] – where p is the fraction of D1 133

dataset that is used during fine-tuning. 134

Note that experience replay only uses a part of 135

the dataset. This may be beneficial in some setups, 136

but we expect that using the whole dataset can 137

reduce forgetting even further. Thus, our second 138

method samples batches from both “old” and “new” 139

subsets. We weigh examples from the “old” and 140

“new” data differently and always weight “new” 141

data more. To simplify comparison with experience 142

replay, we also parametrize this method with p, 143

where p is an expected proportion of old dataset 144

sampled by the end of the epoch. 145

3.2 Regularization-based methods 146

Another approach to mitigate forgetting is to reg- 147

ularize the model in a way so that the model’s 148

predictions on the old data are changed minimally. 149

Move Norm Regularization We introduce a 150

simple regularization method similar to weight de- 151

cay but one that explicitly targets incremental train- 152

ing / continual learning. Move norm is a regularizer 153

that prevents the model with weights Θ from di- 154

verging from the previous model weights Θprev 155

(Equation 1). It is added to the loss function analo- 156

gous to weight decay and is parametrized by λ. 157

R(Θ,Θprev) = λ||Θ−Θprev||2 (1) 158

Elastic Weight Consolidation EWC was intro- 159

duced in Kirkpatrick et al. (2017) and can be de- 160

2

scribed as a parameter-weighted move norm:161

R(Θ,Θprev) = λ||F ◦ (Θ−Θprev))||2 (2)162

where ◦ is element-wise multiplication, and F163

is a vector of positive parameter importance values.164

Theoretically, F is the inverse of the diagonal of165

the Fisher matrix, but in practice, the squared gra-166

dients of the model trained on D1 are used as an167

approximation.168

The issues of applying EWC to modern neural169

networks are known in the literature (Lee, 2017)170

and come from the very flat loss surface at the end171

of the training. To mitigate this, we use the average172

values of the squared gradients over training steps,173

starting at the very first step. This method is sim-174

ilar to (Zenke, Poole, and Ganguli, 2017) and we175

found it to significantly improve the exponential176

smoothing of the gradient norm proposed by Lee177

(2017).178

3.3 Sampling EWC179

Even though the original EWC formulation specifi-180

cally targeted the case with no old data available,181

we propose to combine EWC with sampling/replay.182

We expect to see additional improvements in terms183

of test-set performance improvement and reduced184

amount of forgetting.185

4 Experimental setup186

The model used in the study is a sequence-to-187

sequence Transformer model with a pointer net-188

work and BERT encoder, as in Rongali et al. (2020).189

We use the same hyperparameters1. For fine-tuning190

with EWC we use regularization strength of 100191

(regular experiments) and 1000 (“high EWC” ex-192

periments).193

To mimic an incremental learning setup we split194

the training set into two segments: “old data” (D1)195

and “new data” (D2) . The splitting procedure196

aims to mimic the real-world iterative setup when197

a trained model already exists and we want to in-198

corporate new data into this model.199

4.1 Data splits200

We experiment with multiple data splits, summa-201

rized in Table 1. For each split, we chose a split202

class C and a split percentage PC . We then ran-203

domly select PC percentage of the training exam-204

ples with class C for the “new data” subset. We205

1Details in the Appendix A

Split Dataset # old # new

Name Event 95 TOP 60 1.1k
Path 99 TOP 15 1.5k
Organizer Event 95 TOP 15 301
Get Loc. School 95 TOP 9 171
Get Weather 95 SNIPS 95 1.8k
Served Dish 90 SNIPS 25 230

Table 1: Data splits used in the experiments, showing
the number of examples of the target class contained in
the “old” and the “new” segments of the data. The first
column shows the class name, followed by the propor-
tion of training examples moved to the the D2 subset.

selected mid- and low-frequency classes in our ex- 206

periments. In such cases, a 95%+ split leaves a 207

handful of examples in the D1 subset and moves 208

the rest to D2. 209

To ensure that the “new data” does not contain 210

classes absent from “old data”, we add a small set 211

of examples that contain all the classes to the “old 212

data”. 213

4.2 Datasets 214

We use two popular task-oriented semantic pars- 215

ing datasets: Facebook TOP (Gupta et al., 2018) 216

and SNIPS (Coucke et al., 2018). SNIPS con- 217

sists of flat queries containing a single intent and 218

simple slots (no slot nesting), while the TOP for- 219

mat allows tree structures. More specifically, each 220

node of the parse tree is an intent name (e.g., 221

IN:GET_WEATHER), a slot name (SL:DATE), or 222

a piece of input query text. The tree structure is 223

represented as a string of labeled brackets with text, 224

and the model predicts this structure using the input 225

query in a natural language (see Fig. 2). 226

The TOP dataset consists of 45K hierarchical 227

queries, about 35% of which have tree depth > 2. 228

SNIPS dataset has a simpler structure (only a single 229

intent for each query) and the train part consists of 230

15K examples. To unify the datasets, we reformat 231

SNIPS to fit the TOP structure. 232

4.3 Metrics 233

We propose a new metric for semantic parsing, 234

Tree-Path F1 score. This metric that evaluates 235

the accuracy of “subcommands” in the parsing 236

tree – paths from the root to a leaf. It is more 237

fine-grained than EM and allows to compute class- 238

specific scores. 239

We use exact match (EM) to evaluate model 240

performance across all classes and Tree Path F1 241

3

Figure 2: Semantic parsing example. Each tree path
starts at the IN:GET_DEPARTURE node and finishes
with a slot value (the values are in the boxes). Tree
paths are colored.

score (TP-F1) to evaluate performance on a specific242

class. To estimate the uncertainty of our metrics,243

we divide our test set into 5 folds and compute the244

mean and standard deviation of model performance245

across the folds.246

Tree Path Score To compute Tree Path F1 Score247

(TP-F1), the parse tree is converted into tree paths248

from the root to node that is either a valid slot or an249

intent without slots. Tokens that do not correspond250

to any slot value are ignored. This procedure is251

performed for both correct and predicted trees and252

then the F1 score is computed on the paths.253

With precision P = #correctly predicted paths
#predicted paths and254

recall R = #correctly predicted paths
#expected paths .255

For example, for the query, “When should256

I leave for my dentist appointment at 4 pm”,257

the parse tree looks as in Figure 2 and has258

four tree paths. Every path starts at the root259

(IN:GET DEPARTURE) and goes down to the260

slot value. For the SL:DESTINATION slot, the261

value is compositional and equal to the string262

[IN:GET_EVENT [SL:NAME_EVENT: DENTIST]263

[SL:CATEGORY_EVENT: APPOINTMENT]] .264

For example, if the predicted tree has a different265

value for the slot SL:NAME_EVENT, two paths in it266

would differ from the correct ones. A path to the267

value of the SL:NAME_EVENT slot and a path to268

the value of the SL:DESTINATION slot – because269

SL:DESTINATION value is compositional and con-270

tains NAME_EVENT as a part of it. In this case, the271

number of correctly predicted paths would be two272

(SL:TIME_ARRIVAL and SL:CATEGORY_EVENT273

slots), the number of predicted paths would be four,274

and the number of expected paths also four. TP-F1275

in this case equals 1/2.276

To compute a per-class score only the paths con-277

taining the target class are considered. In the exam-278

ple above, NAME_EVENT’s TP-F1 is zero, as there279

are no correctly predicted paths for it. 280

5 Results 281

5.1 Performance 282

Achieving approximately the same as a trained 283

from scratch model performance is an important 284

requirement for the applicability of our method 285

in practice. To assess whether the proposed fine- 286

tuning method performs on par with a model 287

trained from scratch on a combined “old”+“new” 288

dataset, we compare the following metrics: TP-F1 289

for the target class and exact match. The former 290

evaluates the gain of using the additional data, the 291

latter evaluates the model across all classes. 292

The Table 2 shows that our methods that reuse 293

old data are able to achieve the performance of a 294

fully retrained network. At the same time, naïve 295

fine-tuning sometimes performs worse than the cur- 296

rent (not fine-tuned) model even on the target class. 297

A popular continual learning approach, EWC, sig- 298

nificantly improves upon naïve fine-tuning, but lags 299

behind full retraining in performance. 300

The Figure 3 shows five different fine-tuning 301

setups for the ORGANIZER_EVENT 95 split. In 302

each, we vary the amount of old data the method 303

uses (parameter p, Section 3.1). We can see that 304

naïve fine-tuning (the leftmost points for “replay” 305

and “sample”) fails to match the performance of 306

full retraining even on the target class which is well 307

represented in the fine-tuning data. Same holds 308

true for EWC without data sampling (the leftmost 309

points for “EWC+replay”, “EWC+sample”, “high 310

EWC+replay”). Additional experimental results 311

are provided in the Appendix B. 312

We also plot an auxiliary x-axis (top) that shows 313

the number of training steps used for fine-tuning. 314

To simplify the comparison with the model trained 315

from scratch, we convert them to relative training 316

steps. For the TOP dataset, 100% is 28,000 steps 317

that are needed to train a new model. 318

5.2 Speedup 319

The main advantage that justifies using continual 320

learning instead of training a new model from 321

scratch, is the speedup. In our experiments, we 322

have observed a large and consistent decrease in 323

training steps required to match the performance 324

of a model trained from scratch. 325

The best improvement was a 30x speedup (in 326

the number of training iterations) for the GET LO- 327

CATION SCHOOL 95 and ORGANIZER_EVENT 95 328

4

Split
from scratch no finetunig naïve EWC ours
TP-F1 EM TP-F1 EM TP-F1 EM TP-F1 EM TP-F1 EM

Name Event 95 0.84 0.82 0.73 0.80 0.50 0.76 0.62 0.79 0.81 0.82
Path 99 0.64 0.82 0.19 0.79 0.30 0.72 0.49 0.78 0.63 0.81
Organizer Event 95 0.60 0.82 0.35 0.81 0.23 0.78 0.52 0.80 0.74 0.82
Get Loc. School 95 2 0.65 0.82 0.15 0.82 0.66 0.81 0.62 0.80 0.79 0.82
Get Weather 95 0.97 0.95 0.93 0.92 0.59 0.67 0.65 0.83 0.97 0.94
Served Dish 90 2 0.90 0.95 0.81 0.92 0.59 0.90 0.84 0.91 0.94 0.94

Table 2: Target class TP-F1 and exact match for the baselines and our methods. The baselines include training from
scratch, fine-tuning the model on new data only without any regularization (naïve) and with EWC. For “ours” we
select the best combination of method (Sec. 3) and old data amount. In all splits we are able to achieve comparable
to a from scratch performance while naïve and EWC fail to do so in all splits except GET_LOC_SCHOOL 95.

Figure 3: We plot class-specific TP-F1 and exact match metrics against the fraction of original data sam-
pled/replayed for the ORGANIZER_EVENT 95 split. Both sampling and replay from the old data help significantly.
Similar performance to a full retraining can be achieved with sampling only around 10% of the original data (using
either of the methods). This comes at a fraction of computational cost of a training a new model.

Split Replay Sample MoveNorm+Replay EWC+Replay EWC+Sample
Name Event 95 26% 26% 26% 26% 26%
Path 99 40% 29% 40% N/A N/A
Organizer Event 95 6% 10% 10% 3% 3%
Get Loc. School 95 2 3% 3% 25% 5% 5%
Get Weather 95 10% 10% 10% 28% 10%
Served Dish 95 2 16% 16% 16% 16% 16%

Table 3: Relative number of training steps needed to reach the full retraining performance (within two standard
deviations). 100% training steps means full retraining. N/A means the performance has not been reached by either
variation of the method. Different methods perform similarly.

splits (Table 3). It is worth noting that both of329

these splits model a more realistic scenario with330

a moderately-sized data patch (hundreds of exam-331

ples) compared to the PATH 99 split (1.5 thousand332

examples). Time-wise, in our setup we observed333

a twenty-fold reduction in training time and we334

believe this may be pushed even further using a335

separate device (GPU/TPU) for evaluation.336

5.3 Amount of forgetting 337

Looking at Table 3, one can notice that there is 338

no clear winner in this speed battle. All methods 339

perform quite similar and it may be hard to decide 340

which one to use. However, another question worth 341

asking is, “how much does the model degrade after 342

the fine-tuning?”. While low exact match usually 343

indicates catastrophic forgetting, high EM values 344

may be misleading. A significant improvement 345

over several classes can increase EM just enough 346

5

Figure 4: Number of classes with 2σ-degraded tree
path scores.

to hide some degraded classes.347

It is questionable to deploy a model that is better348

than the previous one overall, but performs sig-349

nificantly worse for some specific scenarios. To350

quantify this, we evaluate the number of classes351

that degraded significantly. We define “significant”352

as more than 2σ where σ is a standard deviation353

evaluated using bootstrapping (Section 4.3).354

Figure 4 shows that the methods that use EWC355

and sampling exhibit less forgetting. For the case356

of ORGANIZER_EVENT 95 split EWC completely357

eliminates forgetting starting at 10% of old data.358

In summary, while different methods may yield359

similar results when looking at EM and class-360

specific TP-F1 (Fig. 3), they vary significantly in361

terms of the effects of catastrophic forgetting (Fig.362

4). In all of our experiments we saw decreased363

amounts of forgetting when using EWC and old364

data sampling. In 5/6 of our splits the method with365

the lowest forgetting was EWC+sampling.366

5.4 Negative Results: Layer Freezing367

One of the approaches we initially investigated was368

inspired by Howard and Ruder (2018). Hypothet-369

ically, layer freezing during the fine-tuning stage370

could restrain the model from diverging too far371

and mitigate the forgetting. We experimented with372

freezing encoder/decoder/logits+pointer network373

and their combinations. In all experiments freezing374

performed worse than regular fine-tuning. Freezing375

encoder and decoder and only updating the logits376

and pointer networks turned out to be a particularly377

2We observe high variance in metrics for the “Served
Dish 95” and “Get Loc. School 05” splits. It could have
been caused by a low number of test examples with the target
class.

bad method which suggests that improving low- 378

resource classes that we targeted benefits mainly 379

from constructing new features and not just reusing 380

the learned ones. 381

6 Related Work 382

Practical applications of Continual Learning (Mc- 383

Closkey and Cohen, 1989; Parisi et al., 2019) to the 384

NLP field has been rather limited (Li et al., 2019; 385

Lee, 2017). A usual task-incremental setup (Caccia 386

et al., 2020; de Masson d’Autume et al., 2019) is 387

far from the real-world applications. However, a 388

simpler data-incremental setup (Cossu, Carta, and 389

Bacciu, 2020; Mi et al., 2020) becomes extremely 390

useful considering quickly growing size and com- 391

putational requirements to train currently used NLP 392

networks (Devlin et al., 2019; Radford et al., 2019; 393

Raffel et al., 2020). 394

The main issue of continual learning is catas- 395

trophic forgetting (French, 1999; McCloskey and 396

Cohen, 1989). Data-based (de Masson d’Autume 397

et al., 2019; Sun, Ho, and yi Lee, 2020) and 398

regularization-based (Kirkpatrick et al., 2017; 399

Zenke, Poole, and Ganguli, 2017) methods has 400

shown promising results in continual learning and 401

applied to NLP tasks, including goal-oriented dia- 402

logue. (Lee, 2017) applies continual learning meth- 403

ods for a goal-oriented dialogue task. Nonetheless, 404

their setup is significantly different from ours as 405

they do not thoroughly study the reduction of com- 406

putational requirements using continual learning. 407

Another difference is the model scale which is an 408

important parameter in modern deep learning and 409

NLP (Kaplan et al., 2020). We argue that the ef- 410

fects of speedup in continual learning are the best 411

motivation to study and apply these methods. 412

7 Conclusion 413

In this work, we consider a practical side of contin- 414

ual learning that has not received enough attention 415

from the NLP researchers – the ability to quickly 416

update an existing model with new data. Nowa- 417

days, training time becomes a more challenging 418

issue every year. We anticipate that in the near fu- 419

ture of billion-parameter-sized models, incremental 420

and continual learning settings can not only lead 421

to a significant advantage in terms of resource effi- 422

ciency but also become a necessity. 423

We demonstrate that in the data-incremental sce- 424

nario, fine-tuning is a viable alternative to training 425

a new model. First, we show that simple data sam- 426

6

pling techniques such as experience replay or super-427

sampling allow to match the target-class and over-428

all performance of a model trained from scratch.429

Then, we demonstrate up to 30x speedup over train-430

ing a new model. Finally, we explicitly measure431

catastrophic forgetting and show that EWC and432

sampling from the whole dataset (opposed to ex-433

perience replay) significantly reduce the forgetting434

effect.435

We suggest using EWC with supersampling and436

monitoring specialized metrics like the number of437

degraded classes to track forgetting for the practical438

applications. While different methods and differ-439

ent amounts of forgetting yielded the best results440

for different splits, EWC + 20% sample generally441

performed well across all splits and registered low442

degradation.443

To extend this work to a broader set of practical444

cases, the future work will be concentrated on the445

class-incremental setup. This will allow the addi-446

tional data to have classes not represented in the447

original dataset.448

References449

Caccia, M.; Rodriguez, P.; Ostapenko, O.; Normandin,450
F.; Lin, M.; Page-Caccia, L.; Laradji, I. H.; Rish, I.;451
Lacoste, A.; Vázquez, D.; et al. 2020. Online fast452
adaptation and knowledge accumulation (osaka): a453
new approach to continual learning. Advances in454
Neural Information Processing Systems 33.455

Cossu, A.; Carta, A.; and Bacciu, D. 2020. Contin-456
ual learning with gated incremental memories for se-457
quential data processing. 2020 International Joint458
Conference on Neural Networks (IJCNN) 1–8.459

Coucke, A.; Saade, A.; Ball, A.; Bluche, T.; Caulier,460
A.; Leroy, D.; Doumouro, C.; Gisselbrecht, T.; Cal-461
tagirone, F.; Lavril, T.; Primet, M.; and Dureau,462
J. 2018. Snips voice platform: an embedded spo-463
ken language understanding system for private-by-464
design voice interfaces.465

Damonte, M.; Goel, R.; and Chung, T. 2019. Practical466
semantic parsing for spoken language understanding.467
In Proceedings of the 2019 Conference of the North468
American Chapter of the Association for Computa-469
tional Linguistics: Human Language Technologies,470
Volume 2 (Industry Papers), 16–23.471

de Masson d’Autume, C.; Ruder, S.; Kong, L.; and Yo-472
gatama, D. 2019. Episodic memory in lifelong lan-473
guage learning. In Advances in Neural Information474
Processing Systems, 13143–13152.475

Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K.476
2019. Bert: Pre-training of deep bidirectional trans-477

formers for language understanding. In NAACL- 478
HLT. 479

French, R. M. 1999. Catastrophic forgetting in con- 480
nectionist networks. Trends in cognitive sciences 481
3(4):128–135. 482

Gaddy, D.; Kouzemtchenko, A.; Reddy, P. K.; Kol- 483
har, P.; and Shah, R. 2020. Overcoming con- 484
flicting data for model updates. arXiv preprint 485
arXiv:2010.12675. 486

Gupta, S.; Shah, R.; Mohit, M.; Kumar, A.; and Lewis, 487
M. 2018. Semantic parsing for task oriented dialog 488
using hierarchical representations. arXiv preprint 489
arXiv:1810.07942. 490

Howard, J., and Ruder, S. 2018. Universal language 491
model fine-tuning for text classification. ACL 2018 - 492
56th Annual Meeting of the Association for Compu- 493
tational Linguistics, Proceedings of the Conference 494
(Long Papers) 1:328–339. 495

Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.; 496
Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; 497
and Amodei, D. 2020. Scaling laws for neural lan- 498
guage models. ArXiv abs/2001.08361. 499

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, 500
J.; Desjardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; 501
Ramalho, T.; Grabska-Barwinska, A.; Hassabis, D.; 502
Clopath, C.; Kumaran, D.; and Hadsell, R. 2017. 503
Overcoming catastrophic forgetting in neural net- 504
works. Proceedings of the National Academy of Sci- 505
ences of the United States of America 114(13):3521– 506
3526. 507

Lee, S. 2017. Toward continual learning for conversa- 508
tional agents. arXiv preprint arXiv:1712.09943. 509

Li, Y.; Zhao, L.; Wang, J.; and Hestness, J. 2019. 510
Compositional generalization for primitive substitu- 511
tions. In Proceedings of the 2019 Conference on 512
Empirical Methods in Natural Language Processing 513
and the 9th International Joint Conference on Natu- 514
ral Language Processing (EMNLP-IJCNLP), 4293– 515
4302. Hong Kong, China: Association for Compu- 516
tational Linguistics. 517

Lin, L.-J. 1992. Self-improving reactive agents based 518
on reinforcement learning, planning and teaching. 519
Machine learning 8(3-4):293–321. 520

McCloskey, M., and Cohen, N. J. 1989. Catastrophic 521
interference in connectionist networks: The sequen- 522
tial learning problem. In Psychology of learning and 523
motivation, volume 24. Elsevier. 109–165. 524

Mi, F.; Chen, L.; Zhao, M.; Huang, M.; and Faltings, B. 525
2020. Continual learning for natural language gener- 526
ation in task-oriented dialog systems. arXiv preprint 527
arXiv:2010.00910. 528

Parisi, G. I.; Kemker, R.; Part, J. L.; Kanan, C.; and 529
Wermter, S. 2019. Continual lifelong learning 530
with neural networks: A review. Neural Networks 531
113:54–71. 532

7

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;533
and Sutskever, I. 2019. Language models are unsu-534
pervised multitask learners.535

Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang,536
S.; Matena, M.; Zhou, Y.; Li, W.; and Liu, P. J. 2020.537
Exploring the limits of transfer learning with a uni-538
fied text-to-text transformer. Journal of Machine539
Learning Research 21(140):1–67.540

Rongali, S.; Soldaini, L.; Monti, E.; and Hamza, W.541
2020. Don’t parse, generate! a sequence to se-542
quence architecture for task-oriented semantic pars-543
ing. In Proceedings of The Web Conference 2020,544
2962–2968.545

Sun, F.-K.; Ho, C.-H.; and yi Lee, H. 2020. Lamol:546
Language modeling for lifelong language learning.547
In ICLR.548

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.;549
Jones, L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin,550
I. 2017. Attention is all you need. In Advances in551
neural information processing systems, 5998–6008.552

Zenke, F.; Poole, B.; and Ganguli, S. 2017. Continual553
learning through synaptic intelligence. Proceedings554
of machine learning research 70:3987.555

A Hyperparameters and training setup556

Table 4 contains hyperparameters used for pretrain-557

ing. We used the Noam schedule (Vaswani et al.,558

2017) for the learning rate. Note that it involves559
1√

ddecoder
= 1√

256
learning rate scaling.560

For fine-tuning, the same parameters were used561

unless otherwise stated in the experiment descrip-562

tion. We searched for the best EWC regularization563

from [0.1, 10, 100, 100] and for the best564

move norm in [0.01, 0.05, 0.1]. If we say565

“high EWC” on our plots, it means EWC regular-566

ization factor to be 1000. Model, optimizer, and567

learning rate scheduler states were restored from568

the checkpoint with the best EM.569

B Additional Experimental Results570

Additional plots In this section we present ad-571

ditional experimental data, analogous to the one572

presented in the paper.573

These plots exhibit a similar to their counterparts574

from Section 5 behavior.575

encoder model BERT-Base cased
decoder layers 4

decoder n heads 4
decoder model size 256

decoder ffn hidden size 1024
label smoothing 0.0

batch size 112
optimizer ADAM

ADAM betas β1 = 0.9, β2 = 0.98

ADAM ε 10−9

decoder lr 0.2
encoder lr 0.02

warmup steps 1500
freezed encoder steps 500

dropout 0.2
early stopping 10
ranodm seed 1

Table 4: Training and model hyperparameters

8

Figure 5: TOP NAME EVENT 95 results. Figure 6: SNIPS GETWEATHER 95 results.

9

Figure 7: PATH 99 results.

10

