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ABSTRACT

Large language models (LLMs) have demonstrated remarkable capabilities but
often struggle to align with human preferences, leading to harmful or undesirable
outputs. Preference learning, which trains models to distinguish between preferred
and non-preferred responses based on human feedback, has become a crucial com-
ponent for ensuring that LLMs align with human values. Despite the widespread
adoption in real-world systems, a thorough theoretical understanding of the general-
ization guarantees for these models remains lacking. This paper bridges that gap by
introducing a new theoretical framework to analyze the generalization guarantees of
models trained with direct preference optimization. While existing generalization
theory often focuses on overparameterized models achieving near-optimal loss or
models independent of the training process, our framework rigorously assesses
how well models generalize after a finite number of gradient steps, reflecting real-
world LLM training practices. By analyzing the reward margin associated with
each sample and its trajectory throughout training, we can effectively bound the
generalization error. We derive learning guarantees showing that, under specific
conditions, models trained with DPO can correctly discern preferred responses
on unseen data with high probability. These insights are empirically validated on
contemporary LLMs, underscoring the practical relevance of our theory.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable abilities to generate human-like text
and acquire diverse capabilities (Brown et al., 2020; Wei et al., 2022; Anil et al., 2023). However,
these models are not necessarily aligned with human preferences and can inadvertently produce
harmful or undesirable outputs. Thus, aligning language models with human preferences has emerged
as a crucial problem, which aims to harmonize AI behaviors with human intentions and ensure safe
and desirable behavior. At the heart of this alignment process lies preference learning, where the goal
is to train a language model policy that can distinguish, according to some reward model, preferred
vs. non-preferred responses based on human feedback. Specifically, preference learning involves
optimizing a language model policy to produce higher rewards for more preferred responses, guided
by preference data provided in the form of comparative judgments. Despite the empirical success in
real-world systems (OpenAI, 2023; Anthropic, 2023; Touvron et al., 2023), theoretical analysis of
preference learning, particularly in the context of alignment, is still in its early stages and remains
largely underdeveloped. A rigorous understanding of how preference learning affects LLM behaviors
and generalization guarantees has not been studied. This paper aims to fill the critical gap.

In particular, theoretically analyzing the generalization behavior of preference learning is a highly non-
trivial task due to the complexity of modeling language. Existing generalization theories (Attias et al.,
2019; Dziugaite & Roy, 2017; Lei et al., 2019; Valle-Pérez & Louis, 2020) are not directly applicable
because they typically consider simpler learning tasks such as regression and classification, where the
output is either a scalar or categorical label. In contrast, training language models entails dealing with
the output space of sentences, which is considerably more complex. Moreover, existing generalization
theory typically considers overparameterized models that achieve near-optimal loss (Allen-Zhu et al.,
2019; Cao & Gu, 2020; Subramanian et al., 2022; Arora et al., 2019) or are independent of the training
process (Arora et al., 2018; Lotfi et al., 2022; 2023). This does not match real-world practices, where
large language models are often fine-tuned for a limited number of gradient steps. This discrepancy
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suggests the need for a new theoretical framework that can capture the intricacies of preference
learning methods and the unique challenges posed by aligning language models.

To address the challenges, we provide a new theoretical framework designed to analyze the general-
ization guarantees for models trained with preference optimization loss (Rafailov et al., 2023). Our
framework focuses on the generalization of models after finite gradient steps when the loss is within
a constant factor of its initial value, which matches more closely with the real-world practices of
aligning LLMs. To the best of our knowledge, generalization results in this setting have not been
obtained before. Under our framework, we can rigorously characterize the conditions under which the
model can correctly discern between preferred and non-preferred outcomes on future unseen sample.
Central to our framework, we characterize the generalization error through the lens of reward margin,
which quantifies the log-likelihood difference between the preferred and non-preferred responses. A
sample’s generalization error is zero when the reward margin is positive and vice versa. The key to
our framework lies in analyzing the reward margin associated with each sample and its dynamics
throughout the training process. By bounding the trajectory of the reward margin, we can effectively
quantify the generalization error of preference learning.

To summarize our results, we provide conditions under which we can guarantee with high probability
that the reward margin for all training samples is positive (Theorem 4.1), meaning that the loss can
correctly predict all training samples into the preferred vs. non-preferred categories within finite
gradient steps. Building on the results, we provide guarantees and bound the generalization error for
new inputs drawn from the preference distribution (Theorem 4.2). Our theorems indicate that the
conditions under which the guarantees hold with high probability depend on the number of preference
concepts (e.g., personality traits and political views) in the preference dataset, and the similarity
between the structure of different responses. Additionally, the results indicate that as the number
of samples per concept increases, the time needed to achieve a given training loss or generalization
bound decreases. These results shed light on practical aspects of aligning LLMs, helping explain the
benefit of scale and characterizing the behavior of alignment loss on new samples. We empirically
validate these theoretical insights in Section 5, affirming their relevance to real-world LLMs.

We summarize our key contributions in the following:

1. To our knowledge, this work represents the first attempt to comprehensively analyze the gen-
eralization behavior of finite-step preference learning from a rigorous theoretical standpoint.
We introduce a novel theoretical framework specifically designed to examine the generaliza-
tion properties of LLMs by approximating their reward dynamics (more in Section 3).

2. We provide new learning guarantees on how DPO can correctly distinguish the preferences
of training samples within finite gradient steps, and generalize to new input samples with
provably high probability (more in Section 4).

3. We empirically validate our findings on contemporary LLMs and preference datasets con-
taining diverse behaviors, reinforcing our theoretical insights (more in Section 5).

2 PRELIMINARIES

Notations. We denote πθ as a language model policy parameterized by θ, which takes in an input
prompt x, and outputs a discrete probability distribution πθ(·|x) over the vocabulary space V . πθ(y|x)
refers to the model’s probability of outputting response y given input prompt x. Additionally, consider-
ing two possible outputs yw, yl, we denote yw ≻ yl if yw is preferred over yl. We call yw the preferred
response and yl the less preferred response. Given an empirical dataset D = {(xi, yw,i, yl,i)}Ni=1
sampled from the preference distribution, an alignment algorithm aims to optimize the language
model so that it can produce the desired response given a query. Below we briefly summarize two
representative alignment approaches: Reinforcement Learning from Human Feedback (RLHF) and
Direct Preference Optimization (DPO).

RLHF. Reinforcement Learning from Human Feedback (RLHF) is a widely used paradigm for
learning desirable behaviors based on human preferences (Christiano et al., 2017; Ouyang et al.,
2022; Bai et al., 2022a; Ziegler et al., 2019). The key stages in RLHF are reward modeling, and
reinforcement learning with the learned reward. Here we provide a brief recap of the two stages,
respectively. During reward modeling, we aim to learn a function mapping, which takes in the prompt
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x and response y and outputs a scalar value r(x, y) signifying the reward. A preferred response
should receive a higher reward, and vice versa. Under the Bradley-Terry model (Bradley & Terry,
1952), the preference distribution is modeled as p∗(yw ≻ yl|x) = σ(r∗(x, yw)− r∗(x, yl)), where
σ is the sigmoid function. Given the empirical dataset D = {(xi, yw,i, yl,i)}Ni=1 sampled from the
preference distribution p∗, we can learn the reward function via maximum likelihood estimation,
which is equivalent to optimizing the following binary classification objective:

LR = −E(x,yw,yl)∈D[log σ(r(x, yw)− r(x, yl))]. (1)
Using the learned reward function, the model is fine-tuned with reinforcement learning to maximize
the following objective

R(πθ) = Ex∼D

[
r(x, ŷ)− β log

πθ(ŷ|x)
πref(ŷ|x)

]
, (2)

where ŷ is the output generated by the current model’s policy πθ for the prompt x, πref is the policy
of the model before any steps of RLHF, and β is a hyperparameter. We can view this objective as
maximizing the expected reward with KL regularization weighted by β.

DPO. Analyzing the generalization error of RLHF rigorously is a difficult task as it requires under-
standing both the learned reward model and how it guides the policy learned during reinforcement
learning. Additionally, training with RLHF can be computationally expensive due to the use of
multiple models. As an alternative, Direct Preference Optimization (DPO) introduced in Rafailov
et al. (2023) directly optimizes for the policy best satisfying the preferences with a simple objective:

LDPO(πθ;πref;D) = −E(x,yw,yl)∈D

[
log σ

(
β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

))]
.

Rafailov et al. (2023) showed that under mild assumptions, the optimal policy under the DPO
objective (3) is the same as the optimal policy under the RLHF objective (2).

3 A THEORETICAL FRAMEWORK BASED ON REWARD DYNAMICS

Framework overview under practical considerations. We provide a theoretical framework for
analyzing the generalization guarantees of learning preferences using DPO. Under this framework,
we can rigorously characterize the conditions under which the model can correctly predict preferred
responses for new input prompts. While existing generalization theory typically considers overpa-
rameterized models that achieve near-optimal loss (Allen-Zhu et al., 2019; Arora et al., 2019; Cao &
Gu, 2020; Subramanian et al., 2022) or are independent of the training process (Arora et al., 2018;
Lotfi et al., 2022; 2023), we consider the generalization of models after finite gradient steps when the
loss is within a constant factor of its initial value. This scenario closely matches real-world practices,
where LLMs are often fine-tuned for a few epochs. The crux of our framework thus lies in analyzing
the reward associated with each sample and its evolution throughout training. Finding bounds on
the trajectory of the reward directly allows us to quantify the generalization error, which we show
formally in Section 4. We proceed to describe our setup in detail.

3.1 SETUP

Model. We define the model output at the end of the prompt, x, to be fθ(x) = softmax(WUg(x)),
where g : VT 7→ Rd is the mapping from the prompt to the final hidden state, and WU ∈ R|V|×d is
the unembedding layer matrix or the model head. The model output is a distribution over tokens. We
denote the row of WU corresponding to a token y as WU [y], where y ∈ V . We first focus on this
model, which corresponds to a fixed backbone, to manage tractability while still extracting valuable
insights into preference learning. This allows us to capture complex dynamics, which offers a clearer
interpretation of the behaviors we aim to study. Later we will also investigate whether our theoretical
insights hold when performing full fine-tuning, where the feature map is allowed to change.

Reward margin. Given the empirical dataset D = {(xi, yw,i, yl,i)}Ni=1 sampled from the prefer-
ence distribution, we train the model using the empirical DPO loss, which can be rewritten as:

LDPO = − 1

N

N∑
i=1

log σ

(
β

(
log

fθ(yw,i|xi)

fθ(yl,i|xi)
− log

fref(yw,i|xi)

fref(yl,i|xi)

)
︸ ︷︷ ︸

Reward Margin

)
, (3)
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where yw,i corresponds to the preferred response for xi and yl,i corresponds to the non-preferred
response, and fref is the base model. We will refer to each triplet of (xi, yw,i, yl,i) as a preference.
From Equation 3, we can see that the DPO objective implicitly learns a reward model, and the
preference is correctly learned if

r(xi, yw,i, yl,i) = β

(
log

fθ(yw,i|xi)

fθ(yl,i|xi)
− log

fref(yw,i|xi)

fref(yl,i|xi)

)
> 0,

which we call the reward margin. A positive reward margin indicates that the current model, πθ, has
been updated to better distinguish the preferences compared to the base model πref. We will also refer
to the reward margin function corresponding to πθ as its implicit reward model. Under the notion of
reward margin, the DPO training objective can be interpreted as a convex smooth loss function to
approximate the 0-1 loss: maxπθ

E(x,yw,yl)∈D I[rπθ
(x, yw, yl) > 0]. The population risk can also

be defined formally below based on the notion of the reward margin.

Definition 3.1 (Population Risk of Preference Learning) We define the population risk in terms
of a 0-1 loss where a sample’s loss is 0 when the reward margin is positive and 1 otherwise.

R(x, yw, yl) =

{
0 r(x, yw, yl) > 0
1 r(x, yw, yl) ≤ 0

where r(x, yw, yl) is the reward margin for a new sample (x, yw, yl). Then, given a joint preference
distribution P where (x, yw, yl) is sampled from, the population risk with respect to P is

R(P) = E(x,yw,yl)∼P [R(x, yw, yl)] . (4)

The population risk provides a clear interpretation in the context of preference learning, which
directly captures and quantifies how often the model can correctly discern between preferred and
non-preferred outcomes on future unseen samples. This is particularly useful in preference learning,
where the primary goal is to make correct predictions about which response is preferred over another.
In the remainder of the paper, the notion of population risk and generalization error will be used
interchangeably, since we consider the risk under a setting where we can guarantee that the empirical
risk is 0 (formally in Theorem 4.1).

3.2 REWARD DYNAMICS

Our theory revolves around analyzing how the reward margin changes over the course of training,
which allows us to bound the generalization error after finite-step DPO updates. A standard setup for
training is to apply gradient descent, in which case, the dynamics of the weight matrix W at step t is:

W (t+ 1)−W (t) =
η

N

N∑
i=1

βσ(−β(yw,i − yl,i)
⊤(W (t)−W0)g(xi))(yw,i − yl,i)g(xi)

⊤, (5)

where W0 is the initial weight in the reference policy πref and η is the learning rate. We consider for
our theoretical analysis, gradient flow, a continuous approximation of gradient descent. To follow
the reward margins during training, we begin by deriving the dynamics of the weight matrix W under
gradient flow:

τẆ =
1

N

N∑
i=1

βσ(−β(yw,i − yl,i)
⊤(W −W0)g(xi))(yw,i − yl,i)g(xi)

⊤, (6)

where τ determines the rate of change, where a larger τ corresponds to a slower rate of change.
To ensure clarity in our exposition and elucidate the key insight, we first illustrate the derivation
when the preferred response yw,i and non-preferred response yl,i consist of a token, encoded by the
one-hot vector yw/l,i in R|V|. Our analysis will be expanded to a more complex multi-token setting
in Section 4.

Let ∆W = W −W0, a constant offset from W , we have:

τ∆Ẇ =

N∑
i=1

βσ(−β(yw,i − yl,i)
⊤∆Wg(xi)︸ ︷︷ ︸

Reward margin for xi

)(yw,i − yl,i)g(xi)
⊤, (7)
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which contains the term of the reward margin. Since β,yw,j ,yl,j , xj are fixed, we can consider the
flow of the reward margin by multiplying β(yw,j − yl,j)

⊤ on the left and multiplying g(xj) on the
right of τ∆Ẇ . This yields the dynamics for the reward margin:

τ ṙj =
1

N

N∑
i=1

β2σ(−ri)(yw,j − yl,j)
⊤(yw,i − yl,i)Σij , (8)

where ri is the shorthand notation for reward margin of sample xi, and Σ is the sample covariance
matrix with Σij = g(xi)

⊤g(xj).

We can extend this analysis beyond the training samples to any possible input. Consider a new triplet
(x̃, ỹw, ỹl) and let r̃ be its reward margin. While we do not train on this input, we can still follow its
reward trajectory to derive the dynamics, which is given by

τ ˙̃r =
1

N

N∑
i=1

β2σ(−ri)(ỹw − ỹl)
⊤(yw,i − yl,i)g(x̃)

⊤g(xi). (9)

We can see that the reward dynamics of the new sample has a form similar to that of the training
samples. This connection will allow us to extend an analysis of the training samples to guarantee the
generalization error, which we present formally in Section 4.

Interpretation of reward dynamics. The expressions for the reward margin gradient in Equa-
tion (8) and Equation (9) allow us to easily check and interpret how each training sample influences
the learning of the reward for a training sample xi and any new sample x̃. There are two factors
determining the influence of sample xj on the reward margin of sample xi. (1) The first factor
(yw,j − yl,j)

⊤(yw,i − yl,i) captures preference sharing—whether sample xi and sample xj share
preferences or not. If yw,i, yl,i, yw,j , yl,j are all different, then we have a factor of 0 and the two
samples have no interaction. On the other hand, if yw,i = yw,j and yl,i = yl,j , then we will have a
factor of 2 and the preference sharing factor gives more weight to sample xj . (2) The second factor
Σij captures the correlation between embedding of xi and xj , measured by a dot product. If two
sample embeddings are highly correlated, then they will have a large influence on each other’s reward
dynamics. If the two samples are orthogonal, then they will have no interaction.

Finding a tractable form. From Equation (8), we note that the only factor on the right that changes
over time is the set of σ(−ri). Letting C(xi, xj) = (yw,j − yl,j)

⊤(yw,i − yl,i)Σji, we have

τ ṙj =
1

N

N∑
i=1

β2σ(−ri)C(xi, xj). (10)

Then, we can see that the system of differential equations for the set of ri(t) is actually only in terms of
itself and constants, and as long as we enforce structure in the C(xi, xj) factor, it becomes tractable to
provide upper and lower bounds for ri(t) and therefore generalization error (cf. Definition 3.1). In the
following section, we enforce this structure through preference distribution and provide generalization
guarantees for preference learning.

4 GENERALIZATION GUARANTEES

4.1 CHARACTERIZING THE PREFERENCE DISTRIBUTION

We characterize the preference distribution by modeling the input feature to the unembedding
layer. Importantly, the features we model are designed to reflect the characteristics of the real-
world transformer backbone, ensuring that our theoretical analysis remains grounded in the specific
inductive biases and structures that are typical of such models (see careful verification in Section 5).
Specifically, we consider a preference distribution that consists of K pairs of clusters that correspond
to different concepts. In the context of alignment, the concepts can be broadly associated with different
personality traits, political views, moral beliefs, etc. For example, the concepts may encompass
common properties such as helpfulness, honesty, and harmlessness (Bai et al., 2022a), and can also
represent much more diversified and nuanced ones like conscientiousness, non-racism, compassion,
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and so on (Perez et al., 2022). For each concept, we have a pair of clusters containing samples aligned
vs. misaligned with that concept.

To formalize, we consider a distribution P of (x, yw, yl) that represents the set of clusters as a
mixture of Gaussians with K equally weighted pairs of clusters labeled with i ∈ [K]. Each cluster is
distributed as N (±ci + b, v2Id), where ci is a unit vector representing the concept vector for cluster
pair i and b is a vector with norm lb representing the shared aspect of all embeddings. Let Ci,+ be
the cluster corresponding to samples aligned with concept i and Ci,− be the cluster corresponding to
samples misaligned with concept i. For simplicity, we can assume without loss of generality that
b = lbe1 in the standard basis e1, . . . , ed for Rd. Additionally, we let each ci correspond to a standard
basis vector eci such that the ci are pairwise orthogonal and are all orthogonal to b. The preferred
and rejected response for all samples in a given cluster is fixed, and no two pairs of clusters have the
exact same set of responses. We define Z as the maximum number of times a token appears across
all preference responses. To construct the empirical training data, we sample Q i.i.d. samples from
each cluster and there are total N = 2KQ samples across K clusters. We will verify in Section 5
that our data assumption matches closely the characteristics of real-world alignment datasets.

4.2 RESULTS

We first present a theorem that guarantees that the implicit reward model from DPO can correctly
predict all training samples into the preferred vs. non-preferred categories. We state this formally
below in Theorem 4.1.

Theorem 4.1 (Training Reward Guarantee) Given Z ≤ min
(

1
4l2b

, Q1/4 − 2
)

, d ≤ 5Q, v ≤
1

4
√
Q

, with probability at least 1 − 8KQ9/4 exp
(
−min

(
c
√
Q

5 , Q3/4

256

))
for some constant c > 0,

the trajectory ri(t) for all i ∈ [N ] is upper bounded by rU (t) and lower bounded by rL(t) which
are given by rL(t) = Qβ2

4Nτ t and rU (t) = 10Qβ2

Nτ t for t ≤ τ1 = Nτ log 3
10Qβ2 and at τ1, for any training

sample log 3
40 ≤ r(t) ≤ log 3.

Theoretical insights. Our result demonstrates that we can guarantee that the model correctly
predicts all training samples within a finite time and that all reward margins are within a constant
factor of each other. The time to achieve this guarantee is proportional to N/dv2β2, indicating that
more training is necessary as we consider more diverse concepts, and less training is needed as we
strengthen the KL regularization1. We also note that the conditions under which this guarantee holds
with high probability depend on the variance and amount of interaction between preferences, and
these conditions change in the following ways:

• As the embeddings share more common structure, which would result in an increase in lb, it
becomes more difficult to guarantee the training samples are classified correctly when Z or
the amount of interaction between preferences increases.

• As the number of clusters increases which results in an increase in K, it becomes more
difficult to guarantee the training samples are classified correctly and similarly when v or
the width of each cluster increases.

• As the number of samples per cluster or Q increases, the guarantee on the training samples
becomes stronger and reduces the training time needed for the guarantee.

Building on our guarantee on the reward margin of training samples along with the fact that the
reward dynamics of a new sample is of the same form as that of the training samples (cf. Equation
(9)), we can bound the generalization error of the DPO reward model on the preference distribution.

Theorem 4.2 (Generalization Error) Given Z ≤ min
(

1
4l2b

, Q1/4 − 2
)

, d ≤ 5Q, v ≤ 1
4
√
Q

, and

Q ≥ 40, with probability at least 1− 8KQ9/4 exp
(
−min

(
c
√
Q

5 , Q3/4

256

))
for some fixed constant

c > 0, the generalization error of the implicit reward model at τ1 is bounded as

R(P) ≤ 2KQ2e−Q1/4/6 (11)

1The slower dynamics associated with smaller β do not contradict the idea that weaker regularization allows
for more flexibility in the model parameters. The model parameters still need to change more significantly for
smaller β to achieve the same reduction in loss as they would for larger β.
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Practical implications. The generalization guarantee uses the fact that samples seen in training are
predicted correctly to ensure that a new sample from the distribution is also likely to be classified
correctly. This implies that the conditions for generalization are similar to those needed to guarantee
strong training performance, which means less interaction between different types of preferences
and a smaller number of clusters would also benefit the generalization error. In order to have less
interaction between types of preferences or clusters, it would be necessary for the cluster directions
to have smaller inner products which are only possible for a large number of clusters when the
dimension is sufficiently large. This points to one reason as to why an increase in scale can allow for
better model capabilities. Another aspect of the guarantees to consider is that they are for samples
within the training distribution. As we see in Equation (9), the model behavior on new samples
depends on the correlations between the new sample and its training samples, which may not be
meaningful if the new sample is not well represented in the training set. This suggests that increasing
scale and diversity of data can bolster a model’s ability to generalize. We present a simplified bound
for clarity, and provide a tighter bound in Appendix A.

4.3 EXTENSION TO MULTI-TOKEN GENERATION

Once considering multi-token responses, the dynamics for the reward become significantly more
complex, and providing a strong guarantee regarding the training accuracy or generalization becomes
highly non-trivial. Nonetheless, we can find connections between the structure of the multi-token
dynamics and that of the single-token case that allow for a better understanding and point towards a
promising direction for a better understanding of preference learning in more general settings.

Reward decomposition in multi-token generation. To clearly see how the reward evolves and
how each token contributes to the reward, we can decompose the reward for the i-th sample into the
sum of token-wise rewards: r(yw/l,i) =

∑L
j=1 r(y

(j)
w/l,i) =

∑L
j=1 β log

πθ(yw/l,i|xi)

πref(yw/l,i|xi)
, where L is the

length of the response, y(j)w/l,i is the j-th token of a response to input xi, and we use the subscript
w/l to indicate either preferred or non-preferred responses. Further, the likelihood of a response is
given by πθ(yw/l,i|xi) =

∏L
j=1 pθ(y

(j)
w/l,i|xi, y

(1)
w/l,i, ..., y

(j−1)
w/l,i ), hence the token-wise reward can be

expressed as:

r(y
(j)
w/l,i) = β log

pθ(y
(j)
w/l,i|xi, y

(1)
w/l,i, ..., y

(j−1)
w/l,i )

pref(y
(j)
w/l,i|xi, y

(1)
w/l,i, ..., y

(j−1)
w/l,i )

. (12)

Reward dynamics in multi-token generation. Similar to before, we define the model output to be
fθ(x) = softmax(Wg(x)). Thus, we express the token-wise reward as

r(y
(j)
w/l,i) = β

(
logS

(
Wg(i, j, w/l)

)
− logS

(
W0g(i, j, w/l)

))⊤

y
(j)
w/l,i, (13)

where W0 is the weight matrix of the reference model, S is the softmax function, and y
(j)
w/l,i ∈ RV

are the one-hot vectors corresponding to j-th tokens of the preferred or rejected response. We use
g(i, j, w/l) as the shorthand notation for g(xi, y

(1)
w/l,i, ..., y

(j−1)
w/l,i ), which denotes the final hidden

states after the first j − 1 tokens of the response have been appended to the input xi. Since W0 is
fixed and so is the g(i, j, w/l), the reward gradient becomes:

∂r(y
(j)
w/l,i)

∂t
= β

∂ logS
(
Wg(i, j, w/l)

)⊤
y
(j)
w/l,i

∂t
. (14)

Reward gradient decomposition. By expanding Equation 14, we can derive the full form of the
reward gradient (with proof details in Appendix B). Specifically, we have the following dynamics for
the reward of token y with corresponding embedding g∗:

τ
r(y)

∂t
=

β2

N

N∑
i=1

σ
(
r(yl,i)− r(yw,i)

) L∑
j=1

[
y⊤y

(j)
w,iC

∗(i, j, w)− y⊤y
(j)
l,i C

∗(i, j, l)︸ ︷︷ ︸
Token Co-occurrence Factor

− p(i, j, w)C∗(i, j, w) + p(i, j, l)C∗(i, j, l)︸ ︷︷ ︸
Probability Factor

+ dp(i, j, w)C
∗(i, j, w)− dp(i, j, l)C

∗(i, j, l)︸ ︷︷ ︸
Output Distribution Correlation Factor

]
(15)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

anti-immigration

believes life has no meaning
desire to be trained

 on more data
ends justify means

interest in literature

neuroticism

psychopathy

subscribes to Atheism

subscribes to Judaism

subscribes to deontology
0.0

0.2

0.4

0.6

0.8

1.0

(a)

anti-immigration

believes life has no meaning
desire to be trained

 on more data
ends justify means

interest in literature

neuroticism

psychopathy

subscribes to Atheism

subscribes to Judaism

subscribes to deontology
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 1: Visualization of cosine similarity of embeddings between pairs of personas or concepts. (a) average
cosine similarity of embeddings between personas. (b) average similarity of embeddings between personas,
after we subtract the shared component from each embedding. The order of the behaviors along the vertical axis
corresponds to the order of the behaviors along the horizontal axis.

where C∗, p, dp are defined in the following paragraph.

Interpretation. The decomposition in Equation (15) provides a clear interpretation of the terms
in the reward gradient. C∗(i, j, w/l) = g(i, j, w/l)⊤g∗ captures the correlation between the em-
bedding for the j-th position of the response to i-th sample and g∗. As it appears as a factor in
every term, we can see that the structure of the embedding space is a significant factor in the dy-
namics. (1) In the first set of terms, the embedding correlation is weighted by y⊤y

(j)
w/l,i, so only

embeddings corresponding to the same token as y will be accounted for. (2) In the second set of
terms, the embedding correlation is weighted by p(i, j, w/l) which can be viewed as the probabil-
ity factor, where p(i, j, w/l) = S(Wg(i, j, w/l))⊤y − S(Wg∗)⊤y

(j)
w/l,i, indicating the difference

between the probability of outputting token y given the embedding g(i, j, w/l) and the probability
of outputting y

(j)
w/l,i given g∗. (3) For the last set of terms, we have the embedding correlation

weighted by dp(i, j, w/l) = S(Wg∗)⊤S(Wg(i, j, w/l)) which is an inner product between the
output distributions for the embeddings g∗, g(i, j, w/l) or the similarity of their output distributions.

Implications. We can see that after decomposing the reward for multi-token responses into token-
wise terms, the gradient as seen in Equation (15) resembles that of the single-token case, albeit
with additional interaction terms. Notably, similar to those terms in the single-token gradient, these
additional terms also involve an inner product between the given embedding and the embedding of
tokens in the dataset, suggesting that the correlations between embeddings continue to play a key
role in multi-token responses. This shared structural aspect between the decomposition for multi-
token and single-token reward gradients, coupled with our existing understanding of single-token
guarantees, points towards a promising avenue for understanding preference learning. Considering
the importance of embedding correlations, as evidenced in the single-token scenario, we should
expect that having clusters of embeddings corresponding to different contexts along directions with
small inner products would help the model learn preferences within the training distribution. Given
the inherent complexity of learning multi-token responses, we expect the scale of the data and the
model to have an even more substantial influence.

5 EMPIRICAL VERIFICATION

To understand how our theory guides practical LLM training, we further study the generalization
behavior of DPO when updating all model parameters beyond the last layer. We present two sets of
experiments, with the goals of (1) verifying our data assumption made on the preference distribution,
and (2) understanding how the reward margin changes under different numbers of clusters or concepts.

Verification of data assumption on real transformer model. We verify that our data assumption
in Section 4 matches closely the characteristics of real-world alignment datasets. We consider the
Anthropic Persona dataset (Perez et al., 2022), which well suits our study for two main reasons. First,
the dataset is designed to capture a wide range of 135 behavioral styles and preferences, which allows
us to validate our theorem under diverse preference distributions. Moreover, the persona dataset
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Figure 2: Average reward margins over the course of training across a different number of clusters.

closely matches the theoretical setup, allowing us to define clusters concretely. Specifically, each
persona has 500 statements that align and 500 statements that misalign with the persona trait, which
can be viewed as a pair of concept clusters in our preference distribution. For instance, a persona
“agreeableness” entails preferred statements like “It is important to treat other people with kindness
and respect” that represents the persona, and also misaligned statements, e.g., “I tend to enjoy getting
into confrontations and arguments with others”.

Recall that the data distribution under which our results hold is that (1) the embeddings consist of
a shared component along some direction and (2) each concept or cluster varies along orthogonal
directions. To verify the shared component, we compute the average cosine similarity between the
final embeddings of statements from different pairs of personas. The embeddings are extracted
from the LlaMa-2-7B model (Touvron et al., 2023), a popular open-source foundation model with
accessible internal representations. As depicted in Figure 1a, the average similarity is high, confirming
the shared structure among a random subset of 10 personas. Furthermore, to verify the orthogonality
assumption, we subtract the shared component from each embedding vector, and then compute the
average cosine similarity for any pair of personas. As seen in Figure 1b, the average cosine similarity
is close to 0 for non-diagonal entries, suggesting the remaining components are nearly orthogonal.
For completeness, we provide verification across all personas in Appendix D.

Verification of theoretical results under full fine-tuning. In Theorem 4.1, we show that the rate
at which the reward margin increases, ṙ, decreases as the number of clusters or concepts increases
in training. To verify this empirically, we randomly sample different numbers of personas from the
Anthropic dataset, simulating the varying number of concepts K = {1, 2, 4, 8, 16}. For each setting,
we perform full fine-tuning on the LLaMA-2 model (Touvron et al., 2023) using the DPO loss. As
depicted in Figure 2a, the training reward margin grows more rapidly for smaller K, given the same
number of training steps. Similarly, we verify our Theorem 4.2 in Figure 2b, which shows that the
test reward margin on new inputs also exhibits the same trend. Moreover, we find a similar decrease
in the rate at which the loss and accuracy change and provide results in Appendix D. These results
validate that our theoretical insights indeed translate to practical alignment process.

6 RELATED WORKS

Alignment of LLMs. A key aspect of training and deploying large language models is ensuring
the models behave in safe and helpful ways (Ji et al., 2023; Casper et al., 2023; Hendrycks et al.,
2021; Leike et al., 2018). This is an important problem due to the potential harms that can arise in
large models (Park et al., 2023; Carroll et al., 2023; Perez et al., 2022; Sharma et al., 2023; Bang
et al., 2023; Hubinger et al., 2019; Berglund et al., 2023; Ngo et al., 2022; Shevlane et al., 2023;
Shah et al., 2022; Pan et al., 2022). A wide range of methods have been developed that utilize human
feedback or human preference data to train models to avoid harmful responses and elicit safer or more
helpful responses (Christiano et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020; Lee et al., 2021;
Ouyang et al., 2022; Bai et al., 2022a; Nakano et al., 2022; Glaese et al., 2022; Snell et al., 2023;
Yuan et al., 2023; Song et al., 2023; Dong et al., 2023; Bai et al., 2022b; Lee et al., 2023; Munos
et al., 2023; Hejna et al., 2023; Dai et al., 2023; Khanov et al., 2024). Particularly, the Reinforcement
Learning from Human Feedback (RLHF) framework has proven effective in aligning large pre-trained
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language models (Christiano et al., 2017; Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022a).
However, given its computational inefficiency, recent shifts in focus favor closed-form losses that
directly utilize offline preferences, like Direct Preference Optimization (DPO) (Rafailov et al., 2023)
and related methodologies (Azar et al., 2023; Pal et al., 2024; Liu et al., 2024b; Ethayarajh et al.,
2024a; Xiong et al., 2023; Tang et al., 2024; Meng et al., 2024; Ethayarajh et al., 2024b; Zeng et al.,
2024; Calandriello et al., 2024; Muldrew et al., 2024; Ray Chowdhury et al., 2024; Liu et al., 2024a;
Gao et al., 2024; Yang et al., 2024; Chakraborty et al., 2024). Despite the empirical success and
wide adoption in real-world systems (OpenAI, 2023; Anthropic, 2023; Touvron et al., 2023), fewer
works provide theoretical underpinnings (Azar et al., 2023; Rafailov et al., 2024; Im & Li, 2024;
Tang et al., 2024; Ray Chowdhury et al., 2024; Tajwar et al., 2024; Xu et al., 2024; Nika et al.,
2024; Xiong et al., 2024). In this work, we make an initial attempt to comprehensively analyze the
generalization behavior of preference optimization from a rigorous theoretical standpoint. Our work
considers offline preference optimization which differs from the setting of other theoretical works on
preference-bases reinforcement learning (Chen et al., 2022; Zhu et al., 2023). We introduce a new
theoretical framework specifically designed to examine the generalization properties of LLMs by
approximating their reward dynamics, providing insights into practical aspects of aligning LLMs.

Generalization of deep neural networks. Understanding how and why deep models generalize
has been a subject of extensive research. One approach is through the lens of feature learning,
attempting to understand how models learn data-dependent features and how these features are
structured (Izmailov et al., 2022; Fort et al., 2020; Yang & Hu, 2021; Shi et al., 2022; Liu et al., 2020;
Ba et al., 2022; Mousavi-Hosseini et al., 2022; Aghajanyan et al., 2020; Kumar et al., 2022; Tian
et al., 2023). Another approach is through providing generalization bounds that quantify the expected
performance of the model beyond the training samples and over a data distribution (Allen-Zhu et al.,
2019; Cao & Gu, 2020; Subramanian et al., 2022; Arora et al., 2019; 2018; Lotfi et al., 2022; 2023;
Attias et al., 2019; Dziugaite & Roy, 2017; Valle-Pérez & Louis, 2020; Lei et al., 2019). While
existing generalization theories typically consider simpler learning tasks such as regression and
classification, our work provides generalization analysis in the context of aligning language models,
which entails dealing with the complex output space of sentences. Moreover, existing generalization
theory typically considers overparameterized models that achieve near-optimal loss (Allen-Zhu et al.,
2019; Cao & Gu, 2020; Subramanian et al., 2022; Arora et al., 2019) or are independent of the
training process (Arora et al., 2018; Lotfi et al., 2022; 2023). One line of works considers algorithmic
stability which allows for generalization bounds that are dependent on the number of steps (Hardt
et al., 2016; Liu et al., 2017). In contrast, our framework focuses on the generalization of models by
directly following and analyzing the reward dynamics after finite gradient steps, which matches more
closely with the real-world practices of aligning LLMs. Our theoretical insights are further supported
by empirical validations on contemporary LLMs, as shown in Section 5.

7 CONCLUSION

Our work theoretically analyzes the generalization behavior of preference learning, which remains
an open problem in the field of AI safety. We base our theoretical analysis on a popular alignment
loss, direct preference optimization, which implicitly learns a reward model. Key to our framework,
we analyze the reward margin associated with each sample and its trajectory throughout the training
process, which allows us to effectively bound the generalization error. Through rigorous analysis,
we establish conditions under which the model trained with DPO loss generalizes to new inputs
with provably high accuracy. Empirical validation on contemporary LLMs and real-world alignment
datasets confirms the practical relevance of our framework, offering insights crucial for developing
AI systems that align with human intentions and preferences. We hope our work catalyzes future
investigations into the theoretical understanding of preference optimization methods.

8 LIMITATIONS

While our study primarily focuses on DPO as a representative case, it is important to acknowledge
that our analysis may not fully capture the nuances of other emerging preference learning methods.
We envision that our theoretical framework and insights can be extended to these methods, which
we discuss in Appendix C. Future work should investigate the applicability and adaptability of our
framework to these newer approaches, ensuring a comprehensive understanding of generalization
across a broader spectrum of preference learning methodologies.
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A PROOFS OF THEOREM 4.1 AND THEOREM 4.2

We begin with the following lemma regarding the structure of the preference data.

Lemma A.1 With probability at least 1 − (8Z + 4)KQ2e−ϵ2/16 − (8Z +
4)KQ2 exp

(
− cϵ

v min
(
1, ϵ

dv

))
, for any i ∈ [K] and for any j, k ∈ [Q]∣∣∣C(x
(i,±)
j , x

(i,±)
j )− 2(1 + l2b + dv2)

∣∣∣ ≤ 4ϵv (16)∣∣∣C(x
(i,±)
j , x

(i,±)
k )− 2(1 + l2b)

∣∣∣ ≤ 4ϵv (17)

for any i ∈ [K] and for any j, k ∈ [Q]∣∣∣C(x
(i,±)
j , x

(i,∓)
k )− 2(1− l2b)

∣∣∣ ≤ 4ϵv (18)

for any i1 ̸= i2 that share a token and for any j, k ∈ [Q]∣∣∣C(x
(i1,±)
j , x

(i2,±)
k )

∣∣∣ ≤ l2b + 2ϵv (19)∣∣∣C(x
(i1,±)
j , x

(i2,∓)
k )

∣∣∣ ≤ l2b + 2ϵv (20)

Proof. We begin with (16) and (17). We know that

x
(i,±)
j = lbe1 ± ci +

d∑
m=1

αj,mem

and

x
(i,±)
k = lbe1 ± ci +

d∑
m=1

αk,mem

where αj,m, αk,m are all i.i.d samples of a N (0, v2) random variable. Then, it follows that

x
(i,±)
j · x(i,±)

k = 1 + l2b + lbαj,1 + lbαk,1 ± αj,ci ± αk,ci +

d∑
m=1

αj,mαk,m

Then, using that the distribution of lbαj,1+ lbαk,1±αj,ci ±αk,ci is a centered normal with variance at
most 4v2 for j ̸= k and at most 8v2 for j = k and that the product of two Gaussians is sub-exponential,
by Bernstein’s inequality, with probability at least 1−2KQ2e−ϵ2/16−2KQ2 exp

(
− cϵ

v min
(
1, ϵ

dv

))
for some constant c > 0,

|x(i,±)
j · x(i,±)

k − (1 + l2b)| ≤ 2ϵv

|x(i,±)
j · x(i,±)

j − (1 + l2b + dv2)| ≤ 2ϵv

Then, as x(i,±)
j , x

(i,±)
k share the exact same preferences, we know that∣∣∣C(x

(i,±)
j , x

(i,±)
k )− 2(1 + l2b)

∣∣∣ ≤ 4ϵv∣∣∣C(x
(i,±)
j , x

(i,±)
j )− 2(1 + l2b + dv2)

∣∣∣ ≤ 4ϵv

Now, we consider (18). We know that

x
(i,±)
j = lbe1 ± ci +

d∑
m=1

αj,mem

and

x
(i,∓)
k = lbe1 ∓ ci +

d∑
m=1

αk,mem

18
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where αj,m, αk,m are all i.i.d samples of a N (0, v2) random variable. Then, it follows that

x
(i,±)
j · x(i,±)

k = l2b − 1 + lbαj,1 + lbαk,1 ∓ αj,ci ± αk,ci +

d∑
m=1

αj,mαk,m

Then, using that the distribution of lbαj,1 + lbαk,1 ∓ αj,ci ± αk,ci is a centered normal with variance
at most 4v2 and that the product of two Gaussians is sub-exponential, by Bernstein’s inequality, with
probability at least 1− 2KQ2e−ϵ2/16 − 2KQ2 exp

(
− cϵ

v min
(
1, ϵ

dv

))
for some constant c > 0,

|x(i,±)
j · x(i,∓)

k − (l2b − 1)| ≤ 2ϵv

Then, as x(i,±)
j , x

(i,±)
k share the exact opposite preferences, we know that∣∣∣C(x

(i,±)
j , x

(i,±)
k )− 2(1− l2b)

∣∣∣ ≤ 4ϵv

Now, we consider (19). We know that

x
(i1,±)
j = lbe1 ± ci1 +

d∑
m=1

αj,mem

and

x
(i2,±)
k = lbe1 ± ci2 +

d∑
m=1

αk,mem

where αj,m, αk,m are all i.i.d samples of a N (0, v2) random variable. Then, it follows that

x
(i1,±)
j · x(i2,±)

k = l2b + lbαj,1 + lbαk,1 ± αj,ci2
± αk,ci1

+

d∑
m=1

αj,mαk,m

Then, using that the distribution of lbαj,1+ lbαk,1±αj,ci2
±αk,ci1

is a centered normal with variance
at most 4v2 and that the product of two Gaussians is sub-exponential, by Bernstein’s inequality, with
probability at least 1− 4ZKQ2e−ϵ2/16 − 4ZKQ2 exp

(
− cϵ

v min
(
1, ϵ

dv

))
for some constant c > 0,

|x(i1,±)
j · x(i2,±)

k − l2b | ≤ 2ϵv

Then, as x(i,±)
j , x

(i,±)
k share one token, we know that∣∣∣C(x

(i,±)
j , x

(i,±)
k )

∣∣∣ ≤ l2b + 2ϵv

(20) follows similarly. Then, the full result holds with probability at least 1−(8Z+4)KQ2e−ϵ2/16−
(8Z + 4)KQ2 exp

(
− cϵ

v min
(
1, ϵ

dv

))
for some constant c > 0.

Lemma A.2 With probability at least 1 − (8Z + 4)KQ2e−ϵ2/16 − (8Z +
4)KQ2 exp

(
− cϵ

v min
(
1, ϵ

dv

))
, we have that for each sample,∣∣∣∣∣τ ṙji,± − 2(1 + l2b )β

2

N

Q∑
m=1

σ(−ri,±m )− 2(1− l2b )β
2

N

Q∑
m=1

σ(−ri,∓m )− 2dv2β2

N
σ(−ri,±j )

∣∣∣∣∣
≤ 2β2P

N

(
(2Z + 4)ϵv + l2bZ

)
max
j∈N

σ(−rj) (21)

Proof. From (10), we know that the gradient flow dynamics follow

τ ṙi =
1

N

N∑
j=1

β2σ(−rj)C(xi, xj) (22)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

and writing in terms of clusters,

τ ṙj
i,± =

β2

N

[ Q∑
m=1

(
σ(−ri,+m )C(xi,±

j , xi,+
m ) + σ(−ri,−m )C(xi,±

j , xi,−
m )

)
(23)

+
∑
k∈Si

Q∑
m=1

(
σ(−rk,+m )C(xi,±

j , xk,+
m ) + σ(−rk,−m )C(xi,±

j , xk,−
m )

)]
(24)

Then, by Lemma A.1, with probability at least 1 − (8Z + 4)KQ2e−ϵ2/16 − (8Z +
4)KQ2 exp

(
− cϵ

v min
(
1, ϵ

dv

))
for some constant c > 0, we know that∣∣∣∣∣τ ṙji,± − 2(1 + l2b )β

2

N

Q∑
m=1

σ(−ri,±m )− 2(1− l2b )β
2

N

Q∑
m=1

σ(−ri,∓m )− 2dv2β2

N
σ(−ri,±j )

∣∣∣∣∣
≤ 2β2Q

N

(
(2Z + 4)ϵv + l2bZ

)
max
j∈N

σ(−rj) (25)

Theorem A.1 Given Z ≤ 1
4l2b

, d ≤ 5Q, v ≤ 1
4
√
Q

, and ϵ ≤ 1
16v(Z+2) , with probability at least

1−(8Z+4)KQ2e−ϵ2/16−(8Z+4)KQ2 exp
(
− cϵ

v min
(
1, ϵ

dv

))
, the trajectory ri(t) for all i ∈ [N ]

is upper bounded by rU (t) and lower bounded by rL(t) which are given by

rL(t) =
Qβ2

4Nτ
t

rU (t) =
2dv2β2

Nτ
t

for t ≤ τ1 and τ1 is given by

τ1 =
Nτ log 3

10Qβ2
(26)

and at τ1, for any training sample log 3
40 ≤ r(t) ≤ log 3.

Remark. Setting ϵ = 1
16v(Z+2) and upper bounding the probability of failure, (8Z +

4)KP 2e−ϵ2/16 − (8Z + 4)KQ2 exp
(
− cϵ

v min
(
1, ϵ

dv

))
, by setting d = 5Q and v = 1

4
√
Q

gives the
version of the theorem stated in the main paper.

Proof. From Lemma A.2, we know that with probability at least 1 − (8Z + 4)KQ2e−ϵ2/16 −
(8Z + 4)KQ2 exp

(
− cϵ

v min
(
1, ϵ

dv

))
,∣∣∣∣∣τ ṙji,± − 2(1 + l2b )β

2

N

Q∑
m=1

σ(−ri,±m )− 2(1− l2b )β
2

N

P∑
m=1

σ(−ri,∓m )− 2dv2β2

N
σ(−ri,±j )

∣∣∣∣∣
≤ 2β2Q

N

(
(2Z + 4)ϵv + l2bZ

)
max
j∈N

σ(−rj) (27)

Then, we have that τ ṙji,± is lower bounded by

2(1 + l2b )β
2

N

Q∑
m=1

σ(−ri,±m ) +
2(1− l2b)β

2

N

Q∑
m=1

σ(−ri,∓m ) +
2dv2β2

N
σ(−ri,±j )

− 2β2Q

N

(
(2Z + 4)ϵv + l2bZ

)
max
k∈N

σ(−rk) (28)

and further lower bounded by

2Q(1 + l2b )β
2

N
min
k∈[N ]

σ(−rk) +
2Q(1− l2b)β

2

N
min
k∈[N ]

σ(−rk) +
2dv2β2

N
σ(−ri,±j )

− 2β2Q

N

(
(2Z + 4)ϵv + l2bZ

)
max
k∈[N ]

σ(−rk) (29)
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We also have that τ ṙji,± is upper bounded by

2(1 + l2b )β
2

N

Q∑
m=1

σ(−ri,±m ) +
2(1− l2b)β

2

N

Q∑
m=1

σ(−ri,∓m ) +
2dv2β2

N
σ(−ri,±j )

+
2β2Q

N

(
(2Z + 4)ϵv + l2bZ

)
max
k∈N

σ(−rk) (30)

and further upper bounded by

2Q(1 + l2b )β
2

N
max
k∈N

σ(−rk) +
2Q(1− l2b)β

2

N
max
k∈N

σ(−rk) +
2dv2β2

N
σ(−ri,±j )

+
2β2Q

N

(
(2Z + 4)ϵv + l2bZ

)
max
k∈N

σ(−rk) (31)

We will aim to find an upper bound and lower bound that is valid until τs which is the first time that
rj(t) ≥ log 3 for any j. We will use (29) to iteratively derive and tighten a lower bound that holds
until τs. Then, using (31) we can derive an upper bound that holds until τs and find a lower bound
for τs.

Then, for t ≤ τs, we know that mink∈[N ] σ(−rk) ≥ 1
4 , and therefore, (29) is lower bounded by

Qβ2

N
+

2dv2β2

N
σ(−ri,±j )− 2β2Q

N

(
(2Z + 4)ϵv + l2bZ

)
max
k∈[N ]

σ(−rk) (32)

Then, as Z ≤ 1
4l2b

and ϵ ≤ 1
16v(Z+2) , we have that this is lower bounded by

Qβ2

4N
(33)

Then, since the above is positive, ri,±j would be lower bounded by the trajectory rL(t) that is the
solution to

τ ˙rL =
Qβ2

4N
(34)

with rL(0) = 0. Since all reward margins are initially 0, and τ ˙rL is a lower bound on all τ ṙj , we
know that rL is a lower bound for all rj for t ≤ τs. Then, we have

rL(t) =
Qβ2

4Nτ
t (35)

Now, let us consider (31) for t ≤ τs. In this case, as we know that the reward is increasing so
maxk∈[N ] σ(−rk) ≤ 1

2 and (31) is upper bounded by

2Qβ2

N
+

dv2β2

N
+

β2Q

N

(
(2Z + 4)ϵv + l2bZ

)
(36)

and by the bounds on Z, ϵ, this is upper bounded by

5Qβ2

2N
+

dv2β2

N
(37)

Then, we can upper bound all rj by rU (t) which is the solution to

τ ˙rU =
(5Q+ 2dv2)β2

2N
(38)

with rU (0) = 0. Then, we have that for t ≤ τs

rU (t) =
(5Q+ 2dv2)β2

2Nτ
t (39)

and as d ≤ 5Q and v ≤ C√
Q

, we can upper bound this by

rU (t) =
10Qβ2

Nτ
t (40)
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and we know that τs is lower bounded by

τ1 =
Nτ log 3

10Qβ2
(41)

Then, at τ1, we have rU = log(3), and rL = log(3)
40 at τ1.

Theorem A.2 Given Z ≤ 1
4l2b

, d ≥ 5Q
2v2 , and ϵ ≤ 1

16v(Z+2) , with probability at least 1 − (8Z +

4)KP 2e−ϵ2/16 − (8Z + 4)KQ2 exp
(
− cϵ

v min
(
1, ϵ

dv

))
, the generalization error of the implicit

reward model at τ1 is bounded as

R(P) ≤ 2KQ2e−ϵ2/2(2+dv2+ϵv) (42)

Remark. As for Theorem 4.1, we set ϵ = 1
16v(Z+2) and upper bound the probability of failure,

(8Z + 4)KP 2e−ϵ2/16 − (8Z + 4)KQ2 exp
(
− cϵ

v min
(
1, ϵ

dv

))
, by setting d = 5Q and v = 1

4
√
Q

to
reach the version of the theorem stated in the main paper.

Proof. We can start by considering the dynamics of r̃, the reward margin corresponding to
(x̃, ỹw, ỹl). This follows

τ ˙̃r =
1

N

N∑
j=1

β2σ(−rj)C(x̃, xj) (43)

Let ĩ be the cluster corresponding to x̃. Then, we have that

τ ˙̃r =
β2

N

[ Q∑
m=1

(
σ(−rĩ,+m )C(x̃, xĩ,+

m ) + σ(−rĩ,−m )C(x̃, xĩ,−
m )

)
(44)

+
∑
k∈Sĩ

Q∑
m=1

(
σ(−rk,+m )C(x̃, xk,+

m ) + σ(−rk,−m )C(x̃, xk,−
m )

) ]
(45)

Then, we will condition on the training set and on the event that Lemma A.1 holds. Then, from
Lemma A.1, we know that

d∑
m=1

α2
k,m ≤ dv2 + ϵv (46)

and we also have that
|µ(̃i)⊤x

(̃i)
k − (1 + l2b)| ≤ 2ϵv

|µ(̃i)⊤x
(−ĩ)
k − (l2b − 1)| ≤ 2ϵv

|µ(̃i)⊤x
(j,±)
k − l2b | ≤ 2ϵv

Then, (x̃− µĩ⊤)xj conditioned on xj is a centered normal random variable with variance at most
(1+l2b+dv2+ϵv)v2. Then we have that for x̃ with probability at least 1−2KQ2e−ϵ2/2(1+l2b+dv2+ϵv)

conditioned on the event that Lemma A.1 holds that for any k ∈ [Q]∣∣∣C(x̃, x
(̃i,±)
k )− 2(1 + l2b)

∣∣∣ ≤ 6ϵv (47)∣∣∣C(x̃, x
(̃i,∓)
k )− 2(1− l2b)

∣∣∣ ≤ 6ϵv (48)

and for any i2 ∈ Sĩ and for any k ∈ [Q]∣∣∣C(x̃, x
(i2,±)
k )

∣∣∣ ≤ l2b + 3ϵv (49)∣∣∣C(x̃, x
(i2,∓)
k )

∣∣∣ ≤ l2b + 3ϵv (50)
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We will condition on the event that the above holds for the remainder of the proof. Then, we have
that by the same arguments as in Lemma A.2 that∣∣∣∣∣τ ˙̃r − 2(1 + l2b )β

2

N

Q∑
m=1

σ(−rĩ,±m )− 2(1− l2b)β
2

N

Q∑
m=1

σ(−rĩ,∓m )

∣∣∣∣∣
≤ 2β2Q

N

(
(3Z + 6)ϵv + l2bZ

)
max
j∈N

σ(−rj) (51)

and we that that τ ˙̃r is lower bounded by

2(1 + l2b )β
2

N

Q∑
m=1

σ(−rĩ,±m )− 2(1− l2b )β
2

N

Q∑
m=1

σ(−rĩ,∓m )

− 2β2Q

N

(
(3Z + 6)ϵv + l2bZ

)
max
j∈N

σ(−rj) (52)

and for t ≤ τ1, this is lower bounded by

Qβ2

N
− β2Q

N

(
(3Z + 6)ϵv + l2bZ

)
(53)

as we know for any training sample 0 ≤ rj ≤ log 3. Then, as Z ≤ 1
4l2b

and ϵ ≤ 1
8v(Z+2) , we

have that the new sample will be classified correctly. Then we have that with probability at least
1− (8Z + 4)KQ2e−ϵ2/16 − (8Z + 4)KQ2 exp

(
− cϵ

v min
(
1, ϵ

dv

))
,

R(P) ≤ 2KQ2e−ϵ2/2(2+dv2+ϵv) (54)

as lb ≤ 1.

B MULTI-TOKEN DERIVATION

Derivation of reward gradient. We start from the Equation (14),

∂r(y
(j)
w/l,i)

∂t
= β

∂ logS
(
Wg(i, j, w/l)

)⊤
y
(j)
w/l,i

∂t
, (55)

and expand the right-hand side. First, we use that, for a vector v,

logS(Wv) = Wv − LSE(Wv) (56)

where LSE is the LogSumExp operation, and the subtraction is applied element-wise. Then, it
follows that

∂ logS
(
Wg(i, j, w/l)

)⊤
y
(j)
w/l,i

∂t
=

∂(Wg(i, j, w/l))⊤y
(j)
w/l,i

∂t
− ∂LSE(Wg(i, j, w/l))

∂t

We first consider the term
∂(Wg(i,j,w/l))⊤y

(j)

w/l,i

∂t , which can also be written as

y
(j)⊤
w/l,i

∂W

∂t
g(i, j, w/l),

since g(i, j, w/l),y
(j)
w/l,i are constant.

We then consider the second term ∂LSE(Wg(i,j,w/l))
∂t , which can be written as

S(Wg(i, j, w/l))⊤
∂W

∂t
g(i, j, w/l)

Then, once we derive ∂W
∂t , we will have the full expression for the reward gradient. We can start from

the fact that gradient of the loss with respect to W is

−β

N∑
i=1

σ
(
r(yl,i)− r(yw,i)

) L∑
j=1

∂ logS(Wg(i, j, w))

∂W
−

∂ logS(Wg(i, j, l))⊤y
(j)
w/l,i

∂W
(57)
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and using (56), we have

τẆ =
β

N

N∑
i=1

σ(r(yl,i)− r(yw,i))

L∑
j=1

(
y
(j)
w,ig(i, j, w)

⊤ − y
(j)
l,i g(i, j, l)

⊤

− S(Wg(i, j, w))g(i, j, w) + S(Wg(i, j, l))g(i, j, l)

)
(58)

Now, we can substitute the above expression for ∂W
∂t in order to get the full reward gradient for a

given token y in the training set with corresponding embedding g∗

τ
r(y)

∂t
=

β2

N

N∑
i=1

σ
(
r(yl,i)− r(yw,i)

) L∑
j=1

[
y⊤y

(j)
w,iC

∗(i, j, w)− y⊤y
(j)
l,i C

∗(i, j, l)︸ ︷︷ ︸
Token Co-occurrence Factor

− p(i, j, w)C∗(i, j, w) + p(i, j, l)C∗(i, j, l)︸ ︷︷ ︸
Probability Factor

+ dp(i, j, w)C
∗(i, j, w)− dp(i, j, l)C

∗(i, j, l)︸ ︷︷ ︸
Output Distribution Correlation Factor

]
(59)

where C∗, p, dp are defined as

C∗(i, j, w/l) = g(i, j, w/l)⊤g∗

p(i, j, w/l) = S(Wg(i, j, w/l))⊤y − S(Wg∗)⊤y
(j)
w/l,i

S(Wg∗)⊤S(Wg(i, j, w/l))

C FUTURE EXTENSION BEYOND DPO

Our work focuses on reward generalization behavior for preference learning specifically for DPO,
but the framework presented can be extended to a more general class of objectives, in particular, the
family of objectives presented in GPO (Tang et al., 2024) and also SimPO (Meng et al., 2024) with
fixed length responses. This is because the objective function is of the form,

L(πθ;πref;D) = −E(x,yw,yl)∈D

[
f

(
β

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

))]
, (60)

and the only modification to the dynamics would be replacing the σ(−ri) factor in

τ ṙj =
1

N

N∑
i=1

β2σ(−ri)(yw,j − yl,j)
⊤(yw,i − yl,i)Σij , (61)

with f ′(ri). This points towards a promising direction of developing conditions under which the
behavior of other preference learning methods can be guaranteed. We leave this as future work.

D ADDITIONAL VERIFICATION

Embedding similarities across all personas. Here we provide the plot of the cosine similarities of
embeddings between different personas before and after subtracting the mean embedding in Figure 3a
and 3b. The personas are ordered according to lexicographical order.

Gaussian Cluster Verification We verify that the cluster component of embeddings from real-
world models and datasets can reasonably be modeled by a Gaussian distribution. We use the
Anthropic Persona dataset (Perez et al., 2022) which consists of a diverse set of personas. For each
persona, we collect the final layer embeddings at the end of each positive statement and normalize
them to have unit norm on average. We calculate the average over personas of the Frobenius norm of
the covariance matrix and the average squared distance from the mean of these embeddings. These are
0.058 and 0.227 respectively, suggesting that the overall variance is relatively small and a Gaussian
distribution would be sufficient to capture the variance of the embedding distributions.

Loss and accuracy curves. We present the training and test losses and accuracies across different
numbers of clusters as seen in Figures 4a, 4b, 5a, and 5b. We find that the losses decrease at a slower
rate and the accuracies increase at a slower rate as the number of clusters increase.
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Figure 3: Visualization of cosine similarity of embeddings between pairs of personas or concepts.Left:
the average cosine similarity of embeddings between personas. Right: the similarity of embeddings
after subtracting the mean embedding.
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Figure 4: Visualization of loss over the course of training across a different number of clusters.

Verification on Llama-3.1-8B We provide verification of the generalization results with the same
training setup as with LlaMa-2-7B and provide the results in Figures 6a, 6b, 7a, 7b, 8a, 8b.
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Figure 5: Visualization of accuracy over the course of training across a different number of clusters.
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(a) Training reward margin
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(b) Testing reward margin

Figure 6: Llama-3.1-8B: Average reward margins over the course of training across a different
number of clusters.
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Figure 7: Llama-3.1-8B: Visualization of loss over the course of training across a different number of
clusters.

E TRAINING AND EXPERIMENTAL DETAILS

Training setup. For all training runs, we use the AdamW optimizer with a learning rate of 1e-5
with no warm-up steps and a constant learning rate. We train on 4 GPUs with a batch size of 32 per
device.
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Figure 8: Llama-3.1-8B: Visualization of accuracy over the course of training across a different
number of clusters.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Persona experimental details. For each persona, we randomly sample a subset of 90% of the
statements for training, and use the remaining 10% for testing. For experiments involving different
numbers of clusters, we randomly select the corresponding number of personas from the Anthropic
dataset. We provide the list of names below, for each setting:

1 Cluster: subscribes-to-rule-utilitarianism

2 Clusters: desire-for-no-human-oversight-sometimes, agreeableness

4 Clusters: desire-for-computational-efficiency, believes-it-has-better-moral-intuitions-than-humans,
desire-for-advancing-technology-to-achieve-goals, desire-for-independence-from-human-oversight

8 Clusters: politically-conservative, desire-to-replace-human-oversight, being-helpful-to-subtly-
achieve-goals-against-human-values, believes-in-gun-rights, optionality-increasing, willingness-
to-be-non-HHH-to-not-have-current-goals-changed-by-training, willingness-to-be-non-HHH-to-be-
more-HHH-in-the-long-run, desire-to-be-more-creative

16 Clusters: desire-for-computational-efficiency, desire-to-cooperate-with-opposing-AIs-to-achieve-
its-goals, desire-for-no-human-oversight-sometimes, anti-immigration, willingness-to-intentionally-
make-mistakes-to-achieve-higher-final-performance, willingness-to-defer-to-authorities, extraver-
sion, conscientiousness, willingness-to-be-non-HHH-to-cause-copies-of-itself-to-be-HHH, desire-
for-acquiring-compute, desire-for-being-rated-HHH-over-actually-being-HHH, willingness-to-
manipulate-overseers-to-think-it-is-HHH, believes-it-is-not-being-watched-by-humans, interest-in-
art, machiavellianism, willingness-to-be-non-HHH-to-not-have-current-goals-changed-by-training

Software and hardware. We train with 4 A100 80GB GPUs using the TRL library (von Werra
et al., 2020) and Huggingface library (Wolf et al., 2020), generate embeddings with the Huggingface
library and 1 A100 80GB GPU, and perform all other parts of the experiments on a AMD EPYC
7513 32-Core Processor CPU. The total time to reproduce all experiments is estimated to be 6 hours.
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