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Abstract

In supervised learning, models are trained to extract correlations from a static
dataset. This often leads to models that rely on spurious correlations that fail to
generalize to new data distributions, such as a bird classifier that relies on the
background of an image. Preventing models from latching on to spurious corre-
lations necessarily requires additional information beyond labeled data. Existing
methods incorporate forms of additional instance-level supervision, such as la-
bels for spurious features or additional labeled data from a balanced distribution.
Such strategies can become prohibitively costly for large-scale datasets since they
require additional annotation at a scale close to the original training data. We hy-
pothesize that far less supervision suffices if we provide targeted feedback about
the misconceptions of models trained on a given dataset. We introduce CLAR-
IFY, a novel natural language interface and method for interactively correcting
model misconceptions. Through CLARIFY, users need only provide a short text
description to describe a model’s consistent failure patterns, such as “water back-
ground” for a bird classifier. Then, in an entirely automated way, we use such
descriptions to improve the training process by reweighting the training data or
gathering additional targeted data. Our empirical results show that non-expert
users can successfully describe model misconceptions via CLARIFY, improving
worst-group accuracy by an average of 7.3% in two datasets with spurious correla-
tions. Finally, we use CLARIFY to find and rectify 31 novel spurious correlations
in ImageNet, improving minority-split accuracy from 21.1% to 28.7%.

1 Introduction

Supervised learning fundamentally hinges on the premise of extracting correlations from labeled
data to make predictions on new inputs. While effective in controlled environments, this paradigm
often leads to models that are brittle in real-world conditions. This is because some correlations in
the training data may be spurious, i.e. they may no longer hold in conditions we would like models
to generalize to. To steer models away from the spurious correlations in a given dataset and towards
reliable prediction rules, we must necessarily provide additional information beyond the original
labeled data. However, this task has traditionally been labor-intensive due to the need to gather
instance-level annotations, such as labels for spurious features (e.g., labeling each training datapoint
by background category) or additional labeled data (e.g., gathering data where background and bird
species is not correlated). These annotations are needed at a scale comparable to that of the original
training data, making such strategies prohibitively costly for settings where the original training data
is already close to the full annotation budget. We posit that far less supervision suffices if we provide
targeted concept-level feedback about misconceptions of models trained on a given dataset.

We introduce Corrective Language Annotations for Robust InFerence (CLARIFY), a novel frame-
work that allows humans to interactively correct failures of image classifiers with natural language
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Figure 1: CLARIFY is an interface for interactively correcting model failures due to spurious correlations. (a)
Given a model trained with supervised learning, (b) a human describes consistent failure modes of the model
entirely in natural language. (c) We automatically incorporate these descriptions to improve the training process
by reweighting the training data based on image-text similarity.

alone. CLARIFY consists of a web interface for collecting human feedback and a method for au-
tomatically incorporating this feedback into the training process. During interactions with the in-
terface, users observe a trained model’s predictions on a validation dataset, and write short text
descriptions of consistent model misconceptions. For instance, for a bird classifier relying on a spu-
rious correlation between bird species and their backgrounds, a human user can succinctly write that
the model is mistakenly focusing on the “water background”. We then use such textual feedback to
improve the training process by reweighting the training data.

We highlight two advantageous ways in which the CLARIFY framework diverges substantially from
standard supervised learning. First, in CLARIFY, annotations are collected after initial training,
allowing the model’s inductive biases to inform the annotation process. Specifically, CLARIFY fo-
cuses on eliciting negative knowledge, i.e., directing the model on what not to focus on; this is a core
design decision since it is easier for humans to identify errors than to fully articulate complex rules.
This negative knowledge serves as a complementary form of guidance to the positive knowledge in
the original labeled dataset. Second, annotations from CLARIFY have a substantially higher den-
sity of information than conventional forms of annotations. Unlike instance-specific labels, textual
feedback encapsulates concept-level “global” insights that are applicable across the entire dataset.
Therefore, they more efficiently use the human effort required for annotation.

We instantiate CLARIFY in a web app implementation to carry out online experiments with non-
expert users, and evaluate the gathered textual feedback in addition to the robustness of models
fine-tuned based on them. We refer the reader to Figure 1 for an overview of CLARIFY in relation
to traditional supervised learning, and Figure 2 for a visualization of key interface features. We find
that non-expert feedback through CLARIFY (N=26) almost always helps in identifying a spurious
correlation or difficult subpopulation. Models fine-tuned using these non-expert annotations consis-
tently outperform zero-shot methods that use oracle text annotations of spurious features, achieving
a 7.0-7.6 point improvement in worst-group accuracy on two datasets. Users achieve these per-
formance gains with just a few minutes of interaction, averaging 2.7 minutes per dataset. A key
advantage of the CLARIFY framework is its scalability, which we demonstrate by using the interface
to identify 31 novel spurious correlations in the ImageNet dataset. We use these annotations to im-
prove the average accuracy across the 31 minority splits from 21.1% to 28.7% with only a 0.21%
drop in overall average accuracy, just by appropriately reweighting the ImageNet training set.

2 Problem Setup

We consider a standard supervised learning setting, where we are given a dataset D = {(xi, yi)}Ni=1
of N labeled samples. Each label yi belongs to one of C different classes: yi ∈ {1, . . . , C}. A model
is trained to minimize the average loss across the training set, i.e. 1

N

∑N
i=1 ℓ(f(xi; θ), yi), where ℓ

is a pointwise loss function such as cross-entropy, f is the model, and θ denotes model parameters.
To formalize spurious correlations, we can consider an extended dataset that includes an unknown
attribute si for each instance, resulting in {(xi, yi, si)}Ni=1 where si ∈ {1, . . . , S}. A model trained
on D may learn to rely on si to make predictions, thereby failing on new distributions where the
previous correlation between si and yi no longer holds. In general, we do not have annotations for
these spurious attributes si or even know in advance what they are. Our goal is to correct the model’s
reliance on these spurious attributes without knowing a priori what they are.
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Figure 2: The CLARIFY interface enables users to iteratively (A) identify and describe model failures and
(B) assess the quality of these descriptions. Users can review image examples of correct and incorrect predic-
tions on one class, such as “square” (A1). Based on observed differences, they can input short, natural language
descriptions of model failures, such as “red” squares (A2). The system surfaces feedback by splitting the data
using the provided description (B1) and displaying an error score (B2). Users can repeat the process to generate
improved descriptions.

To describe spurious attributes given only class-labeled image data, we leverage the capabilities of
multimodal models such as CLIP [42], which encodes images and text into a shared embedding
space. For a given image input I and text input T , CLIP outputs representations from seperate
vision and language branches, ei = fi(I) and et = ft(T ) respectively. This model is trained to
maximize the similarity between the image and text representations for corresponding image-text
pairs and minimize it for non-corresponding pairs, through a contrastive loss function. We can
estimate the similarity between a pair of image and text inputs by computing the cosine similarity
of their respective representations:

sim(I, T ) =
ei · et

∥ei∥∥et∥
. (1)

This black-box similarity function allows us to determine the relevance of a given image and text
pair. In the next section, we describe how CLARIFY leverages this relevance function to mitigate
spurious correlations based solely on natural language feedback on a labeled validation set.

3 CLARIFY: A Natural Language Interface for Model Correction

We now describe Corrective Language Annotations for Robust InFerence (CLARIFY), a novel frame-
work for identifying and mitigating spurious correlations in models trained with supervised learning.
The main idea behind CLARIFY is to allow humans to provide targeted natural language feedback
to a model, helping the model focus on relevant features and ignore spurious ones. We employ a
natural language interface to facilitate this process, which we describe in detail in this section. We
will first describe a concrete example of an interaction with the interface in Section 3.1, and then
describe two methods for incorporating this feedback into the training process in Section 3.2.

3.1 Interaction Workflow

User interaction. To demonstrate how CLARIFY enables non-expert users to correct model miscon-
ceptions, we will walk through a user’s experience with the system, shown in Figure 2. CLARIFY
takes as input a classification model trained with supervised learning. Here, we use an example of a
model trained to classify images of sprites as squares or ovals.

Reviewing model behavior. First, the user is presented with a summary view of the model’s current
behavior. The goal of this interface is to scaffold the user in rapidly identifying reasons underlying
model failures. Drawing from a validation dataset, we display one class at a time (i.e., images of
squares) and divide the examples into those that the model correctly classified (i.e., images classified
as squares) on the left versus those that it incorrectly classified (i.e., images classified as ovals) on
the right (Figure 2, A1). By presenting the images in this way, CLARIFY streamlines the user’s task
to one of identifying differences between sets. In our example, all of the images on the page are
indeed squares, but the model is only making accurate predictions for the examples on the left and
not those on the right. Comparing the images on the two sides, the user notices that the correct cases
contain blue squares while the incorrect cases contain red squares.

Describing model failures. Once the user has an initial idea of the model’s misconception, they are
tasked with describing this failure mode. Our system accepts short text descriptions of model failures
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(Figure 2, A2). In particular, users are asked to complete the following fill-in-the-blank sentence:
“The AI is often wrong on images that have ___ in it.” We find that this question is effective since
users may not be familiar with the general concept of spurious correlations. Continuing our running
example, the user enters the phrase “red” here to describe what they observed.

Assessing descriptions. After the user submits their description, CLARIFY helps them to assess
whether the description can successfully correct model errors. First, we provide a 0 − 1 Error
Score that indicates how well the description separates the error cases from the correct predictions
(Figure 2, B2). Then, we present a summary visualization that partitions the validation dataset based
on a threshold on image-text similarity from CLIP (Figure 2, B1). Images sufficiently similar to
the description (“red”) are on the right while others are on the left. For our example, the user sees
an Error Score of 0.70, and they see a set of images without red on the left and a set of images
with red on the right. This high Error Score indicates that they successfully achieved a strong
level of separation, and they see in the image view that most of the red squares were captured by
their description. We note that while the interface only shows validation data using the provided
description, the user’s natural language annotation will later be incorporated to partition the training
data for model retraining.

Iterating on descriptions. However, users may not always be so successful on their first attempt, so
CLARIFY aids users in iterating on their descriptions. Descriptions can fail for two reasons: (1) the
description may not indeed differentiate the correct and incorrect cases, or (2) the description may
be a valid differentiator, but may not be modeled accurately due to the user’s word choice and CLIP-
based similarity scoring. CLARIFY allows users to identify both of these failure modes. In our
example, the user can see if the model is not accurately identifying images with the “red” keyword
(case 2), and they can experiment with alternate rewordings to better isolate the difference (e.g.,
“red square,” “crimson”). After iterating and isolating the red examples, the user can see if the Error
Score is still low, indicating that this description is not sufficient to repair model errors (case 1).
With this information, they can revisit the original view and brainstorm additional descriptions, like
phrases related to the size and orientation of sprites. We give additional details about the interface,
including the error score, similarity threshold, and modifications for ImageNet, in ??

3.2 Automatic Fine-Tuning

After collecting textual feedback from users, we incorporate this feedback into the training process
for fine-tuning a foundation model. In this paper, we consider fine-tuning only the last layer on top
of a frozen backbone, though the strategy is more general. Given an error annotation (c, T, τ ), we
can partition the training data within class c into two subsets: D> = {(xi, yi) | sim(xi, T ) > τ}
and D< = {(xi, yi) | sim(xi, T ) ≤ τ}. These two subsets correspond to images that are more and
less similar to the provided text prompt, respectively, and serve as indicators of the spurious attribute
identified by the annotator. Having identified these two subsets, we want to train a final model to
achieve low training loss while not using the feature that separates the two subsets.

We propose to adjust the loss weights for each subset so that their total weights are balanced:

wi =

{
1

C∥D>∥ if (xi, yi) ∈ D>

1
C∥D<∥ if (xi, yi) ∈ D<

. (2)

This weight balancing discourages the model from exploiting the spurious attribute for prediction by
reducing the statistical correlation between the spurious attribute and the class label in the training
data. For classes without any error annotations, we use uniform weights during training as in stan-
dard supervised learning. Given such weights over the training dataset, we train the last layer with
a weighted cross-entropy loss. In Section 4, we will measure the effectiveness of this fine-tuning
approach based on language feedback. We note that this stage is fully automated, and there are no
additional hyperparameters to tune beyond what was in the original training process.

4 Experiments

We first note that our framework diverges substantially from assumptions in traditional supervised
learning. CLARIFY involves collecting annotations after an initial round of training, and these an-
notations consist of targeted concept-level feedback rather than model-agnostic instance-level feed-
back. We consider this deviation from the conventional setup as necessary for efficiently addressing
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Table 1: Evaluation of methods for group robustness using the CLIP-ResNet50 backbone. Fine-tuning with
annotations from CLARIFY consistently outperforms methods that use only text (zero-shot) or label information.
We denote our implementation of other methods with (ours); all other results are from (author?) [59].

Waterbirds CelebA

Data Assumptions Method WG Avg Gap WG Avg Gap

Zero-Shot Class Prompt 36.6 92.2 55.6 74.0 81.9 7.9
Group Prompt 55.9 87.8 31.9 70.8 82.6 11.8

Labels

ERM 7.9 93.5 85.6 11.9 94.7 82.8
ERM (ours) 63.4 96.0 32.6 31.1 95.4 64.3
ERM (ours, class-balanced) 48.6 95.2 46.7 65.8 93.4 27.6
ERM (ours, worst-class) 55.9 95.8 39.9 56.9 94.1 37.2

Labels, Text Feedback CLARIFY (slice-balanced) 68.4 93.6 25.2 89.3 92.2 2.8
CLARIFY (worst-slice) 75.7 83.8 8.1 89.1 92.1 3.0

Labels, Group Labels

DFR (subsample) 63.9 91.8 27.9 76.9 92.5 15.6
DFR (upsample) 51.3 92.4 41.1 89.6 91.8 2.2
DFR (ours) 78.7 90.8 12.1 90.6 91.9 1.3
Group DRO (ours) 81.3 88.1 6.8 89.2 91.8 2.7

the challenge of learning robust prediction rules from observational data. We seek to empirically
answer the following questions about this framework for interactively correcting model errors:

1. How does re-training with annotations from CLARIFY compare to automated methods for ad-
dressing spurious correlations?

2. Can non-expert users use CLARIFY to identify and describe spurious correlations in models
trained with supervised learning?

3. Can CLARIFY discover and rectify novel spurious correlations in ImageNet?

For detailed experimental setup including datasets, models, and human participants, see Appendix C.

4.1 Comparison With Automated Methods

We assess how re-training a model with expert annotations from CLARIFY compares to existing auto-
mated methods for addressing spurious correlations. We compare with representative prior methods
which similarly fine-tune CLIP backbones and/or reweight training data. We conduct experiments
on the Waterbirds and CelebA datasets. In addition to CLARIFY, we evaluate zero-shot CLIP [42]
with class-based and group-based prompts, DFR [25], and Group DRO [45]. We desribe experi-
mental details for each method in Appendix C. Our results, summarized in Table 1, demonstrate
that CLARIFY consistently outperforms approaches that that use zero-shot prompts or class labels in
terms of worst-group accuracy and robustness gaps. On this experiment, CLARIFY underperforms
specialized methods on Waterbirds and is competitive on CelebA, while using considerably cheaper
supervision. We also show comparisons with zero-shot classification methods in in Table 2, where
CLARIFY shows substantially better worst-group accuracy and robustness gap on the Waterbirds and
CelebA datasets. Among these points of comparison, RoboShot [1] is notable as it is an automated
method that leverages state-of-the-art foundation models such as ALIGN [22], AltCLIP [6], and
GPT-4 [37]. This result demonstrates that retraining with feedback from CLARIFY is a substantially
more effective way of using natural language to guide an image classifier.

We emphasize that these experiments do not aim to conduct a head-to-head comparison with the best
automated methods for addressing spurious correlations. The body of work on automated spurious
correlations is large [45, 58, 35, 7, 31, 25, 41], and these methods are often designed for specific
benchmarks including the Waterbirds and CelebA datasets. Instead, our primary goal is to show
that CLARIFY, with minimal human supervision and no additional hyperparameter tuning, can yield
results that yield benefits comparable with prior methods. We also note that prior methods often re-
quire a substantial amount of additional supervision, such as instance-level annotation for spurious
attributes for either training or hyperparameter tuning, which CLARIFY does not require. Moreover,
the key advantage of CLARIFY is in its scalability to large datasets, a feature that no prior automated
method has demonstrated. Such scalability is crucial when applying these ideas to real-world prob-
lems, where the scale and diversity of data are ever-increasing. We will elaborate on and provide
empirical evidence for the scalability of CLARIFY in Section 4.3.
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Figure 3: Non-experts used CLARIFY to identify high-quality descriptions
with Error Scores that matched or exceeded the authors’ expert annotations.

Figure 4: (a) Typical im-
ages from the “blond” class of
CelebA. Non-experts provided
textual feedback corresponding
to hard subpopulations of (b)
lighter and (c) darker hair col-
ors.

Figure 5: An example of a spurious correlation found on ImageNet. Within
the “sliding door” class, the model successfully classifies (a) images of slid-
ing doors inside buildings. However, it is wrong on all instances of (b)
sliding doors on cars. This is one of the 31 spurious correlations we found;
please refer to Figure 9 in the appendix for more visualizations.
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Figure 6: Average accuracies
on ImageNet data. Fine-tuning
with Clarify substantially im-
proves accuracy on hard splits,
while keeping overall accuracy
intact.

4.2 Non-Expert Annotators Can Describe Model Errors

Identifying and annotating spurious correlations is a more nuanced task than conventional forms of
annotation such as class labeling. This raises the question of whether non-expert annotators can
perform this task. To answer this question, we conduct a user study (N=26) to assess the ability
of non-expert users to identify and describe spurious correlations in models trained with supervised
learning (see Appendix C for study details). We ask each participant to annotate the Waterbirds and
CelebA datasets using the CLARIFY interface, and we summarize our results in Figures 3 and 7.

Taking the best-performing annotation from each user, the average worst-group accuracy was 63.5
(SD=4.7, max=69.5) for the Waterbirds dataset and 78.8 (SD=2.9, max=82.8) for the CelebA dataset.
These results all exceed Class Prompt, Group Prompt, and ERM (best) baselines (Figure 7b). Promis-
ingly, users were able to achieve these performance improvements with minimal annotation effort,
averaging 2.7 minutes (SD=2.5) per dataset (Figure 7a). Overall, non-experts appeared proficient at
this annotation task. For the Waterbirds dataset, the authors’ expert annotation of “forest” achieved
a 0.54 Error Score. In comparison, the best-performing Error Score for non-expert users was 0.41
on average (SD=0.13), and one participant achieved as high as 0.63. For the CelebA dataset, the ex-
pert annotation of “man” achieved a 0.32 Error Score. Across non-expert users, the best-performing
Error Score averaged 0.31 (SD=0.11), and the highest Error Score was 0.58.

We also find that non-expert annotators propose novel model failures that had not been previ-
ously surfaced by experts. While experts had surfaced spurious correlations with gender in the
CelebA dataset, participants also surfaced “dirty blonde” and “bleach blond” subpopulations, which
achieved higher Error Scores than the “man” subpopulation (Figure 4). Our findings suggest that
CLARIFY can enable non-expert annotators to identify and describe spurious correlations in mod-
els trained with supervised learning. This opens up the possibility of leveraging a broader work-
force for annotating and mitigating spurious correlations in web-scale datasets such as ImageNet or
LAION [8, 47].
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4.3 Discovering and Mitigating Spurious Correlations in ImageNet

We now evaluate whether CLARIFY can be used to discover novel spurious correlations in models
trained on the ImageNet training set. For such widely used large-scale datasets, it is important to de-
velop both tools to find spurious correlations and methods to mitigate their effect. For this evaluation,
the authors of this paper use the CLARIFY interface to identify spurious correlations in ImageNet,
and additionally evaluate whether the resulting annotations can improve model robustness.

Discovered spurious correlations in ImageNet. Using CLARIFY, we identified 31 spurious cor-
relations in ImageNet; we show a full list in Table 5. To our best knowledge, no prior works have
identified these spurious correlations, despite ImageNet being a widely studied dataset. As an ex-
ample, we visualize a spurious correlation in the “sliding door” class in Figure 5. Here, sliding
doors are negatively correlated with cars in the training set, causing standard models to misclassify
cars that have sliding doors. We visualize more such spurious correlations in Figure 9. We evaluate
the performance of a standard ERM model trained on the ImageNet training set on each identified
minority and majority split. Results in Figure 10 show that the ERM model consistently underper-
forms on the minority split for each class, indicating that the trained model is relying on each of
these spurious correlations. We also note that this trend continues to hold on ImageNet-V2, which
follows a different distribution from the validation set we use during interactions.

Fine-tuning while avoiding spurious correlations. We use the collected annotations to fine-tune a
model on ImageNet, and evaluate this fine-tuned model on various splits of the ImageNet validation
set. Results in Figure 8 show that the retrained model achieves higher minority split performance
on many classes. Aggregate metrics in Figure 6 show that fine-tuning with CLARIFY annotations
reduces the average minority-split accuracy from 21.1% to 28.7%, with only a 0.2% drop in overall
average accuracy. We emphasize that no additional data was used during fine-tuning—the annota-
tions from CLARIFY were only used to find a better reweighting of the exact same training data used
to train the original ERM model.

5 Discussion

A limitation of CLARIFY is that it depends heavily on human knowledge and a model of text-image
similarity, and is not straightforward to apply when either of these is limited, such as medical imag-
ing or scientific domains. Future work could broaden the applicability of the CLARIFY framework by
incorporating domain-specific knowledge or extending to data modalities beyond images. CLARIFY
contributes to the democratization of machine learning by allowing laypeople to correct concept-
level errors stemming from spurious correlations in data. This feature can potentially foster greater
public trust, especially when users witness measurable improvements in the model after their inter-
ventions.
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A Additional Interface Details

Error score. We now describe how we calculate the Error Score shown in the CLARIFY interface
to guide description generation. Consider input text prompt T , and let Dcorrect and Derror be subsets
of the validation dataset for a given class that the model made correct and incorrect predictions on,
respectively. We denote the similarities between the T and the images in each subset as Scorrect =
{sim(I, T ) | I ∈ Dcorrect} and Serror = {sim(I, T ) | I ∈ Derror}. To quantify how well image
similarity with T predicts model errors, we compute the “Error Score” as the highest achievable
binary classification accuracy from a threshold τ on the similarity:

Error Score = max

(
max

τ

(
|{s | s > τ, s ∈ Sc

correct }|+ |{s | s ≤ τ, s ∈ Sc
error }|

|Sc
correct |+ |Sc

error |

)
,

max
τ

(
|{s | s ≤ τ, s ∈ Sc

correct }|+ |{s | s > τ, s ∈ Sc
error }|

|Sc
correct |+ |Sc

error |

))
. (3)

As mentioned earlier, showing this score during interactions allows users to quickly assess the qual-
ity of their descriptions.

Similarity threshold. Finally, for each natural language threshold, we determine a similarity thresh-
old τ , which can be chosen by the user after inspecting the similarity scores for a representative
sample of images, or can be automatically chosen as the threshold that maximizes the Error Score.
For each class, only the textual feedback with the highest Error Score is used for retraining. Together
with this threshold, we can specify a spurious correlation using a tuple of the form (class label, text
prompt, similarity threshold), which corresponds to a binary classifier that is predictive of model
errors on that class.

Additional features for large datasets. We found that a few more optional features are helpful for
annotating spurious correlations ImageNet, and expect that these features will similarly be helpful
for other datasets. We begin by narrowing down the 1000 classes to 100 classes that are most likely
to have identifiable spurious correlations. To do so, we first prune out classes with too low or too
high accuracy (i.e. accuracy below 0.2 or above 0.8), to ensure a sufficient number of correct and
incorrect predictions for each class. For the remaining classes, we caption each image with an image
captioning model [29, BLIP] and use a keyword extraction model [19, KeyBERT] to suggest a pool
of up to 50 keywords for each class, a procedure inspired by (author?) [24]. Through CLARIFY,
we perform interactions with the top 100 classes according to maximum Error Score (3) across the
candidate keywords. During interactions, the user is shown the top 10 candidate keywords as a
helpful starting point.

B Related Work

Teaching ML models. As machine learning models require more and more resources to train, it
becomes increasingly important to optimize the training process. The machine teaching problem
setting aims to formalize what an optimal training set for a given task is and characterize the so-
called training complexity. While this setting has been well-studied [18, 10, 33, 61, 50, 62], its
application to large-scale models has been limited. Supervised learning, the dominant paradigm
for training task-specific models, requires explicit labels for each instance in the dataset, which is
often large and expensive to collect. Although active learning methods aim to reduce this annotation
burden by selecting the most informative datapoints for labeling [28, 48], they still require humans
to label individual datapoints. Our work proposes a form of supervision which can be used to find
and rectify spurious correlations in labeled datasets: natural language descriptions of model errors.
Such textual feedback is immediately useful since it describes failure modes that the model would
otherwise fall into. Compared to labels, these descriptions hold substantially more information per
annotation, as they hold global information about the model’s behavior on the entire dataset, rather
than just a single datapoint.

Human-computer interaction for ML. There is also a rich literature on the interaction between hu-
mans and machine learning models. Improving the interface between humans and models has bene-
fits in many points of the machine learning pipeline, including interactive feature selection [14, 11],
interpretability [43, 4], and human-in-the-loop data collection [16]. Perhaps the most closely related
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Table 2: Comparison with different zero-shot CLIP prompting strategies for group robustness. Fine-tuning
with CLARIFY substantially outperforms RoboShot, a method that leverages state-of-the-art foundation models
to automatically generate text prompts. All results besides ours are from (author?) [1].

Model Method Waterbirds CelebA

Avg WG(↑) Gap(↓) AVG WG(↑) Gap(↓)

ALIGN
Class Prompt 72.0 50.3 21.7 81.8 77.2 4.6
Group Prompt 72.5 5.8 66.7 78.3 67.4 10.9
RoboShot [1] 50.9 41.0 9.9 86.3 83.4 2.9

AltCLIP
Class Prompt 90.1 35.8 54.3 82.3 79.7 2.6
Group Prompt 82.4 29.4 53.0 82.3 79.0 3.3
RoboShot [1] 78.5 54.8 23.7 86.0 77.2 8.8

CLIP (ViT-L/14)

Class Prompt 88.7 27.3 61.4 80.6 74.3 6.3
Group Prompt 70.7 10.4 60.3 77.9 68.9 9.0
RoboShot [1] 79.9 45.2 34.7 85.5 82.6 2.9

CLARIFY 96.8 81.8 14.9 90.9 88.8 2.1

works are those that elicit high-level concepts from humans [51, 26]. However, a key difference
between these works and ours is that we focus on negative knowledge—teaching the model what not
to learn—as opposed to these works which specify what features the model should use. Especially
for intuitive tasks like image classification, human knowledge is often tacit rather than explicit, mak-
ing it hard to define and put into words [40]; thus, it is easier for annotators to describe the failures
of an existing model rather than define its behavior upfront. Restricting the feedback to negative
knowledge is also important for scalability, as it is much easier to identify a few failure modes in an
otherwise well-performing model, than to specify the full set of useful concepts. This scalability is
crucial for our goal of correcting spurious correlations in large-scale datasets such as ImageNet.

Robustness to spurious correlations. Models trained with standard supervised learning often ex-
hibit a bias towards shortcut features, i.e. simple features that perform well on the training distribu-
tion yet fail to capture the underlying causal structure [2, 20, 49, 17, 39, 30]. Many recent works
have proposed methods to mitigate this issue, such as learning multiple functions consistent with the
training data [15, 57, 52, 38, 27], and reweighting training instances to render shortcut features non-
predictive [45, 58, 35, 7, 31, 25, 41]. However, these approaches often entail significant overhead
for additional supervision, such as group labels indicating spurious features [45, 25], or labeled data
from the target distribution [35, 7, 31]. In contrast, our method requires only a few natural language
descriptions of model errors, which are substantially easier to collect. This lower annotation burden
renders CLARIFY especially practical for addressing spurious correlations in large datasets.

Discovering failure modes. Our work builds upon a growing body of literature aimed at identi-
fying and correcting failure models of machine learning models. Previous works in this area aim
to discover data subsets on which models perform poorly [5, 3, 9] and devise methods to rectify
such specific failures [46, 34, 21]. Some works perform counterfactual data augmentation to di-
rectly highlight model reliance on spurious features [23, 56, 44, 53, 54]. More closely related to
our work are methods that leverage vision-language models to describe failure modes with natural
language [13, 55, 12, 60, 36, 24]. Natural language descriptions of error slices have the advantage
of being interpretable and naturally grounded in human understanding. However, many of the de-
scriptions generated by these fully automated methods do not correspond to true model failures.
For example, (author?) [60] reports that DOMINO [13] can make nonsensical descriptions such as
“mammoth” for a bird classification task. By incorporating humans in the loop, our approach avoids
such errors, making it possible to discover spurious correlations in large datasets such as ImageNet.

C Experimental Details

Datasets. We run experiments on three datasets: Waterbirds [45], CelebA [32], and ImageNet [8].
Waterbirds and CelebA have a known spurious correlation between the class label and a spurious
attribute; for these datasets, we have access to ground truth spurious attribute labels. We use these
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Figure 7: CLARIFY achieves low annotation effort and improved model performance with non-experts.
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Figure 8: Average minority split accuracy for each of the 31 identified spurious correlations. Fine-tuning with
textual feedback from CLARIFY improves minority split accuracy in many classes.

datasets to evaluate whether CLARIFY can correct model failures due to spurious correlations. To
our knowledge, ImageNet does not have any previously known spurious correlations.

Backbone models. All experiments use pre-trained CLIP models [42] as the feature extractor. The
CLARIFY interface uses the CLIP ViT-L/14 vision and language backbones for calculating image-
text similarity. We use the CLIP ResNet-50 and ViT-L/14 models for Waterbirds and CelebA, and
only the CLIP ViT-L/14 model for ImageNet. We use frozen backbone models without any fine-
tuning, and only train a final linear layer for classification, following related works for addressing
spurious correlations [25, 59]. We use no data augmentation, and normalize all embeddings before
computing similarity or training.

Human annotators. We recruit 26 non-expert users through Prolific (https://www.prolific.co/).
These participants had no qualifications beyond being native English speakers and having some
programming experience, and did not necessarily have any prior knowledge about machine learning.
We provide a brief tutorial on how to use the interface, and ask each participant to annotate the class
with highest error rate for each dataset. After the completion of the user study, we then retrained
the models for both datasets using each user-provided annotation. Authors of this paper collected
another set of annotations for Waterbirds and CelebA, which we use as a baseline for comparison.
Additionally, annotations for the ImageNet dataset were collected by paper authors.
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Table 3: The full set of model failure description phrases provided by non-expert annotators in our user study.
The “Best WGA” and “Best Error Score” phrases were selected by identifying the phrase that achieved the
highest Worst-Group Accuracy or Error Score, respectively, for each participant.

Phrase
Category

Waterbirds CelebA

Best WGA
(per-user)

a bird with no head or as landbirds and a
red outline, a blurry vision and they don’t
look like real birds, artic birds, beak, bird
swims water, dark backgrounds and tall
trees, forest, forest, forest, forest, forest,
forests, forests, grass, greenery, landscape,
landscapes, leaves, no water, plants, red,
sandy beaches, seagulls, seagulls, trees, wa-
ter, water

any other hair color than blonde or light hair
color, backgrounds, bleach blonds, brown
hair, buns, curls, curly hair, dyed hair, fe-
males, glasses, light background, light col-
ors, men, men, men or short hair, older
women, orange hair, pink, red, red, short
hair, short hair, short haired men, smiles,
white backgrounds, women

Best Error
Score (per-
user)

artic birds, birds, dark backgrounds and tall
trees, ducks, forest, forest, forest, forest, for-
est, forests, forests, greenery, landscape, mo-
tion blur or can’t make out a real bird, plants,
sandy beaches, seagulls, trees, trees, trees,
trees, water, water, water, waterfowl, wings

any other hair color than blonde or light
hair color, bleach blonds, blond highlights,
brown, darker blond hair, darker blonde,
darker blonde hair, darker than blond, fe-
males, grey, males, men, men, men, men,
men, men, men, men, men, men, men,
pink, short white hair, very short hair, white,
white, white

All Others a lot of dark colors and no blue water, a
lot of tree trunks, aqua blue water, been
generated by ai, bird, bird wading in wa-
ter, birds, birds floating, birds floating in
water, birds standing in water, birds water,
black, blue, blue, branches, branches, dark
backgrounds, dark backgrounds and small
birds, dark colors, darker backgrounds and
a lot of trees, extended wings, eyes, flight-
less birds, flowers, game birds, grass, green,
green, green, green, green plants, humans,
land, landscapes, length of leg, lots of tree
trunks, more dark colors than light colors
and a lot of trees, mountains, no water,
no water, no water and dark backgrounds,
ocean coasts, people, people, people, plants,
reeds, seagulls, shadows, sticks, tree trunk,
trees, trees, trees, trees, trees, trees, very
dark backgrounds and a lot of trees, water
plants, wings, woods

bad lighting, bangs, beards, black hair, blue,
blue, blue background, blue or black, brown,
brown or dark hair, dark hair, darker hair,
dim lighting, fair hair, flaxen, gold, golden
hair, hair, hair, hats, hats, hats or bows, hazy,
letters, light hair, little visible hair, long hair,
males, males, males, men, more dark col-
ors than light colors, non-blond hair. dark
hair color. not blond, nondarkened hair, not
blond, orange hair, people not facing the
camera, red hair, red hair, redheads, short,
short hair, short or curly hair, short or pulled
back hair, shoulders, signs, skin color that
is similar to their hair color, smiles, smiling
faces, sunglasses, tan skin, teenagers, teeth,
very tan skin, women
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Table 4: Evaluation of methods for improving group robustness of CLIP models. Grouped by data and expres-
sivity, with best worst-group (WG) and robustness gaps bolded. All metrics are averaged over three seeds.

Waterbirds CelebA

Assumptions Method WG Avg Gap WG Avg Gap

C
L

IP
R

es
N

et
-5

0

Zero-Shot Class Prompt 36.6 92.2 55.6 74.0 81.9 7.9
Group Prompt 55.9 87.8 31.9 70.8 82.6 11.8

LP, Labels

ERM 7.9 93.5 85.6 11.9 94.7 82.8

ERM (ours) 63.4 96.0 32.6 31.1 95.4 64.3
ERM (ours, class-balanced) 48.6 95.2 46.7 65.8 93.4 27.6
ERM (ours, worst-class) 55.9 95.8 39.9 56.9 94.1 37.2

LP, Labels+Interaction CLARIFY (group-balanced) 68.4 93.6 25.2 89.3 92.2 2.8
CLARIFY (worst-group) 75.7 83.8 8.1 89.1 92.1 3.0

LP, Labels+Groups

DFR (subsample) 63.9 91.8 27.9 76.9 92.5 15.6
DFR (upsample) 51.3 92.4 41.1 89.6 91.8 2.2

DFR 78.7 90.8 12.1 90.6 91.9 1.3
Group DRO 81.3 88.1 6.8 89.2 91.8 2.7

Adapter, Labels
ERM Adapter 60.8 96.0 35.2 36.1 94.2 58.1
WiSE-FT 49.8 91.0 41.2 85.6 88.6 3.0
Contrastive Adapter 83.7 89.4 5.7 90.0 90.7 0.7

C
L

IP
V

iT
-L

/1
4

Zero-Shot Class Prompt 25.7 87.3 61.6 62.1 71.9 9.8
Group Prompt 27.4 85.5 58.1 72.4 81.8 9.4

LP, Labels

ERM 65.9 97.6 31.7 28.3 94.7 66.4

ERM (ours) 79.5 97.4 17.9 25.7 94.6 68.9
ERM (ours, class-balanced) 71.1 97.2 26.1 63.7 92.6 28.9
ERM (ours, worst-class) 74.3 97.1 22.8 56.9 93.3 36.4

LP, Labels+Interaction CLARIFY (worst-group) 81.8 96.8 14.9 88.8 90.9 2.1

LP, Labels+Groups

DFR (subsample) 51.9 95.7 43.8 76.3 92.1 15.8
DFR (upsample) 65.9 96.1 30.2 83.7 91.2 7.5

DFR 85.9 93.5 7.6 89.0 90.9 1.9
Group DRO 88.5 92.7 4.1 88.1 91.1 2.9

Adapter, Labels
ERM Adapter 78.4 97.8 19.4 36.7 94.2 57.5
WiSE-FT 65.9 97.6 31.7 80.0 87.4 7.4
Contrastive Adapter 86.9 96.2 9.3 84.6 90.4 5.8
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Table 5: The 31 identified spurious features in the ImageNet dataset. All annotation was performed on the
validation split.

Class Name Spurious Feature
cup tea cup
weasel snow weasel
wool yarn ball
space bar computer mouse
letter opener silver
loupe person holding a magnifying glass
mouse desk and laptop
bakery store front
sunscreen person with sunburns
minivan black minivan
plate rack machine
briard shaggy dog
lens cap camera equipment
bighorn rocky hillside
mushroom red
rifle wooden barrel
spotlight shining
chocolate sauce pastries with chocolate
terrapin pond
sidewinder sand
bikini group of people
flatworm coral reef
monitor monitor on a desk
breastplate museum display
projectile rocket in a building
academic gown many people in robes
velvet pink velvet
bathtub person
sliding door car
partridge tall grass
ear green

17



Figure 9: Representative samples corresponding to nine identified spurious correlations in ImageNet. All
images shown are in the ImageNet validation set, and belong to the class shown in the first column. Similarity
to the specified text annotation splits separates the “easy” and “hard” examples.
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Figure 10: Accuracy of a model trained on the ImageNet train set, on the ImageNet validation set (top) and
ImageNet-V2 (bottom). For each class with an identified spurious correlation, we show average, majority split,
and minority split accuracy. The model achieves lower accuracy on the minority split for all classes in the
validation set and all but 6 classes in ImageNet-V2, indicating that the model is relying on each identified
spurious feature.
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