
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EIGEN-1: SCIENTIFIC REASONING THROUGH ADAP-
TIVE MULTI-AGENT REFINEMENT AND MONITOR-
BASED RAG

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have recently shown strong progress on scientific
reasoning, yet two major bottlenecks remain. First, explicit retrieval fragments
reasoning, imposing a hidden “tool tax” of extra tokens and steps. Second, multi-
agent pipelines often dilute strong solutions by averaging across all candidates. We
address these challenges with a unified framework that combines implicit retrieval
and structured collaboration. At its foundation, a Monitor-based retrieval module
operates at the token level, integrating external knowledge with minimal disruption
to reasoning. On top of this substrate, Hierarchical Solution Refinement (HSR)
iteratively designates each candidate as an anchor to be repaired by its peers, while
Quality-Aware Iterative Reasoning (QAIR) adapts refinement to solution quality.
On Humanitys Last Exam (HLE) Bio/Chem Gold, our framework achieves 48.3%
accuracy—the highest reported to date, surpassing the strongest agent baseline by
13.4 points and leading frontier LLMs by up to 18.1 points, while simultaneously
reducing token usage by 53.5% and agent steps by 43.7%. Results on SuperGPQA
and TRQA confirm robustness across domains. Error analysis shows that reasoning
failures and knowledge gaps co-occur in over 85% of cases, while diversity analysis
reveals a clear dichotomy: retrieval tasks benefit from solution variety, whereas
reasoning tasks favor consensus. Together, these findings demonstrate how implicit
augmentation and structured refinement overcome the inefficiencies of explicit tool
use and uniform aggregation.

1 INTRODUCTION

0

10

20

30

40

50

60 Eigen-1 (48.3%)

Figure 1: HLE Bio/Chem Gold overall accuracy. On the 149-problem HLE Bio/Chem Gold split
(Pass@1, auto-judged by o3-mini), our system attains 48.3% accuracy, exceeding the strongest
agent baseline (SciMaster) by +13.4 points and leading frontier LLMs by up to +18.1 points.

Recent advances in large language models have enabled impressive performance on a spectrum of
reasoning benchmarks, from general-purpose evaluations such as MMLU [21] and mathematical prob-
lem solving [9; 43] to domain-specific tasks including ScienceQA [38], MedQA [29], and GPQA [42].
These results indicate that LLMs can already handle factual recall and mid-level reasoning across
diverse domains. However, when moving to more demanding benchmarks such as Humanity’s Last

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Exam (HLE) [39; 47], which targets expert-level biology and chemistry problems, performance de-
grades substantially, and systematic failures persist when problems require deep domain knowledge
and complex multistep reasoning [7]. Through comprehensive analysis of error patterns across 149
HLE Bio/Chem problems, we identify two fundamental architectural limitations: (1) the fragmentation
of logical flow through explicit tool invocation, and (2) the inefficiency of democratic multi-agent
collaboration.

Current retrieval-augmented generation systems [3; 19; 33] require explicit interruption to access
external knowledge. Each retrieval breaks the reasoning flow: suspending the logical state, formulating
queries, processing results, and reconstructing the context. This tool tax compounds quickly: solving
population genetics problems requires Watterson estimators requires 8-10 such interruptions, doubling
the number of agent steps compared to a baseline without information retrieval (see Table 3) while
reducing coherence. The problem persists in all RAG paradigms: single-round approaches [1; 45]
cannot adapt to emerging needs, iterative systems [27; 44] compound interruption costs, and reasoning-
aware methods [51; 55] remain bound by explicit invocation, as shown in Figure 2.

Simultaneously, most current multi-agent systems [4; 52] employ rigid democratic workflows: genera-
tion, criticism, synthesis, selection, treating all solutions equally regardless of quality. This contradicts
both cognitive science research on hierarchical expert reasoning [8; 32] and observations of scientific
collaboration where ideas naturally organize into anchors and support [14]. Our analysis reveals that
92.8% of the failures involve reasoning errors, while 88.7% involve knowledge gaps, with substantial
overlap, indicating that these challenges are fundamentally intertwined, as shown in Figure 7.

Query: In population genetics, how can we estimate the effective
population size from sample polymorphism data?

Error Type 1: Over Confident, No RAG Error Type 2: RAG Calling Disrupted Reasoning

Answer: Okay, I know this is a
<population genetics>
problem. Effective population
size is calculated through
formula . So if
can be estimated from
polymorphism data, I can just
plug it into the formula and
got: ...

 Actually, the correct formula
is . So the
answer is [wrong] .

Correctness:

Answer: This looks like a
<population genetics estimation
problem>. I think it involves
Watterson’s estimator, but I am not
entirely sure of the exact formula.
I don’t want to make a mistake…
maybe I should call retrieval.
<code>
output = RAG("Watterson's estimator")
</code>

Okay, so . But now I need
to re-align my reasoning: how to
connect back to the original problem
statement? Interrupted Thinking
[Execuation Error]

Figure 2: Population genetics case with two failure modes. Left
(Error Type 1): the model confidently recalls an incorrect formula
(θ = 2Neµ) and derives Ne = θ/2µ, yielding the wrong answer.
Right (Error Type 2): the model retrieves the correct relation (θ =
4Neµ) via explicit RAG, but the reasoning flow is disrupted and the
result is not reintegrated into the original problem, illustrating the
tool tax. Our Monitor-based RAG avoids this context suspension
by injecting the correct formula directly into the reasoning stream.

We present EIGEN-1, an efficient agent
framework that unifies Monitor-based
RAG eliminates tool tax through im-
plicit augmentation, operating continu-
ously at the token level to detect knowl-
edge gaps via semantic uncertainty,
generate contextual queries, and in-
ject information seamlessly. Hierar-
chical Solution Refinement (HSR)
rotates each candidate solution as an
anchor and applies peer-informed re-
pair from the remaining candidates,
allowing structured cross-solution re-
finement rather than uniform averag-
ing. Quality-Aware Iterative Reason-
ing (QAIR) replaces fixed workflows
with adaptive cycles that respond dy-
namically to quality trajectories and
problem characteristics. While our ex-
periments focus on integration within
a multi-agent reasoning framework,
the design of Monitor-based RAG is
model-agnostic and can in principle
be incorporated into other reasoning
systems without architectural modifi-
cation.

Our system achieves 48.3% accuracy in Humanity’s Last Exam Bio/Chem Gold, surpassing SciMas-
ter [4] (34.9%) by 13.4 percentage points while reducing token consumption by 53.5% and agent
steps by 43.7%. Solution pattern analysis further validates our framework: retrieval tasks benefit from
diversity, whereas reasoning tasks favor consensus. These results demonstrate that eliminating the tool
tax and embracing hierarchical collaboration enables both superior performance and computational
efficiency, with potential implications that might extend beyond scientific reasoning to any domain
requiring complex knowledge integration with logical inference.

2 RELATED WORK

2.1 EVOLUTION OF RETRIEVAL-AUGMENTED GENERATION

The integration of external knowledge into language model reasoning has evolved through
three main paradigms. Single-round RAG systems [19; 25; 33] employ linear pipelines

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(rewrite→retrieve→generate) and are effective for factual queries. REALM [19] enabled end-to-
end retrieval training, while RAG [33] extended this to knowledge-intensive tasks. More recent variants
such as REPLUG [45] and In-Context RALM [41] improve robustness via black-box integration, but
they lack adaptivity when knowledge needs emerge mid-reasoning. Iterative RAG introduces retrieval-
generation loops for dynamic knowledge acquisition. ITER-RETGEN [44] alternates retrieval and
generation, Self-RAG [1] uses self-reflection to decide retrieval, FLARE [27] predicts future content,
and DRAGIN [48] updates datastores in real time. These improve grounding but typically incur 35×
more API calls. Reasoning-aware RAG embeds retrieval into reasoning itself. Chain-of-Note [57]
produces reading notes, RAT [51] couples retrieval with thought generation, IRCoT [49] interleaves
retrieval with chain-of-thought, and ReAct [54] unifies reasoning with action. While more integrated,
they still depend on explicit tool calls, fragmenting reasoning and increasing latency.

Table 1 summarizes these paradigms against our Monitor-based approach. Unlike step-level methods
that pause to query, Monitor-based RAG operates globally at the token level: it monitors uncertainty
signals and implicitly injects evidence into context, reducing retrieval overhead while preserving
reasoning continuity. Moreover, its retrieval granularity is finer, enabling more precise and frequent
evidence integration without overwhelming the reasoning process.

Table 1: RAG paradigms vs. key capabilities. Single-round RAG is efficient but inadaptable; iterative RAG
improves grounding but increases latency; reasoning-aware RAG offers tighter coupling yet still relies on explicit
calls. Monitor-based RAG integrates evidence implicitly at the token level, improving continuity and efficiency.

System Triggering Fine-grained Continuity Efficiency Adaptivity
Single-round RAG ✗ ✗ ✗ ✓ ✗
Iterative RAG ✓ ✓ ✗ ✗ ✓
Reasoning RAG ✓ ✓ ✓ ✗ ✓
Monitor-based RAG (Ours) ✓ ✓ ✓ ✓ ✓

2.2 MULTI-AGENT REASONING SYSTEMS

Multi-agent frameworks have shown promise through collaborative problem solving, yet many rely on
rigid orchestration assumptions.

Democratic collaboration systems treat all agents equally. SciMasters [4] employs solvercriti-
crewriter pipelines with a selector over candidate solutions, while LLM-Debate [13], Debate-Only-
When-Necessary [15], and Multi-Agent Debate [35] use argumentative dialogue at different scales.
MetaGPT [22] assigns role-based responsibilities, and CAMEL [34] explores autonomous cooperation.
Table-Critic [56] extends these ideas to structured domains such as tabular reasoning. Such approaches,
however, may devote substantial computation to low-quality candidates and do not explicitly capture
hierarchical relationships among solutions.

Structured reasoning systems explore non-linear organizations. Tree-of-Thoughts [53] enables
branching exploration with backtracking, Graph-of-Thoughts [2] allows arbitrary reasoning topologies,
and Everything-of-Thoughts [11] combines multiple reasoning patterns. CoMM [5] introduces multi-
path prompting, while HM-RAG [37] couples hierarchical agents with multimodal retrieval. Although
these methods capture richer reasoning structures, they lack quality-aware adaptation and can rapidly
expand search spaces.

Recent advances attempt more flexible or adaptive coordination. AgentVerse [6] supports dynamic
team assembly, AutoGen [52] enables configurable conversation patterns, and Reflexion [46] incorpo-
rates self-improvement signals. Further, evolving orchestration [10], intent-propagation strategies [40],
RL-enhanced planning with graph-based policies [26], and collaborative leaderfollower training [16]
highlight the need for adaptive depth and role specialization. Hierarchical orchestration frameworks
such as AgentOrchestra [58] and HALO [23] exemplify this trend, emphasizing scalable coordination
via layered or logic-oriented control.

In contrast, our HSR and QAIR modules introduce hierarchical refinement and quality-driven iteration.
Rather than following critic–corrector or debate pipelines [35; 46; 52] that operate under democratic
comment–rewrite loops and risk over-investing in weak candidates, HSR organizes solutions into
anchor–reference structures for targeted repair, while QAIR applies quality-thresholded, suggestion-
guided revisions with early stopping. Crucially, both mechanisms operate on top of monitor-based
implicit RAG, enabling hierarchical, quality-aware convergence without suspending the reasoning
process, echoing cognitive science findings on expert problem solving [8].

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Declarative vs. Procedural Frameworks (DSPy vs. Ours) Declarative frameworks such as DSPy [31]
compile tasks into prompt programs and retrieval policies, providing stability but with adaptation largely
at the stage level. Our approach is procedural and run-time: a Monitor, Querier, and Injector operate
during inference to adapt reasoning on the fly. This shift from compile-time templates to run-time
control enables finer-grained adaptivity and seamless knowledge infusion.

3 METHOD

critically check
one by one

For each solution
Apply repair strategies:
- Logic Completion
- Numerical Correction
- Method Replacement
- Expression Refinement

Solution Quality Rubric:
 Logical Reasonable
 Answer Correct
 Explanation Complete
 High Confidence

→ Otherwise

Query

Answer

Select Best
 Solution

Until Converge

repaired
solutions

suggestion

(b) Framework CorrectorProposer

…

Generate
initial
solutions

anchor

reference

…

Quality-Aware Iterative Reasoning
 (QAIR)

Ranker

Refinement

MonitorReasoning
[Original Context]

[Additional Context]

RAG
Querier

Injector

Resume Reasoning
Original+AdditionalContext
Now that I have more
information, I can
continue my reasoning.

If Confusion Detected, triggers RAG

Hierarchical Solution Refinement
(HSR)

…

(a) Monitor-based RAG

... I know little about Pi...

By literature, Pi is 3.14

To solve this
problem, I first
need to know
what Pi is.

corrector

Figure 3: Framework overview. (a) Monitor-based RAG operates
globally during reasoning: the Monitor detects insufficiency in the rea-
soning stream, the Querier generates targeted queries, and the Injector
integrates retrieved evidence into context with minimal disruption. (b)
Building on this substrate, the Proposer generates initial candidate
solutions. Each candidate is revised individually by the Corrector,
which applies local targeted fixes without access to other solutions.
The improved candidates are then passed to HSR, which enables cross-
solution refinement via anchor–reference relationships. Finally, QAIR
evaluates overall quality and may invoke the Corrector again if needed,
while the Ranker selects the strongest solution as the final answer.

Overall workflow. EIGEN-
1 integrates global retrieval,
role-based reasoning, and
higher-level refinement
into a unified workflow,
as shown in Figure 3 and
Algorithm 1. Monitor-based
RAG operates globally
during reasoning: Monitor
detects insufficiency in
the reasoning stream, the
Querier formulates targeted
queries, and the Injector
seamlessly integrates
retrieved evidence back
into context. Based on
this substrate, Proposer
generates diverse candidate
solutions, each of which
is individually revised by
Corrector through targeted
local repairs. The refined
candidates are then passed
to Hierarchical Solution
Refinement (HSR), which
introduces cross-solution
repair through anchor-
reference interactions. Next,
Quality-Aware Iterative Reasoning (QAIR) evaluates overall quality and may invoke the corrector again
for additional improvement. Finally, Ranker compares candidates and selects the strongest as the final
solution. All agents can use web search tool (Serp API [30]) by default.

3.1 MONITOR-BASED RETRIEVAL-AUGMENTED GENERATION

Our Monitor-based RAG system augments reasoning implicitly, without fragmenting the workflow
through explicit tool calls. Instead of forcing the LLM to pause, formulate a query, and inject evidence,
the Monitor continuously inspects the reasoning trace, identifies potential knowledge insufficiencies,
and invokes retrieval only when strictly necessary. The construction of the RAG database is shown in
Appendix A.1.

3.1.1 MONITOR: DETECTING UNCERTAINTY AND TRIGGERING RETRIEVAL

The Monitor acts as a sentinel that periodically examines the reasoning trace and determines whether
external knowledge is required:

Monitor(context) =
{
1, if retrieval is required,
0, otherwise.

Here, context refers to the partial reasoning sequence. Once insufficiency is detected, the retrieval is
immediately triggered. To balance timeliness and efficiency, the Monitor runs in a streaming setup:
It checks the reasoning at fixed intervals of 512 characters with an overlap of 128 characters. This
overlapping design ensures that uncertainty markers that cross boundaries are not missed while keeping
latency low. Details of RAG Monitor are in Appendix A.5.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.1.2 QUERIER: IDENTIFYING UNCERTAINTY AND GENERATING TARGETED QUERIES

Triggered by the Monitor, the Querier converts the uncertain fragment into one or more retrieval queries:
[query1, . . . , queryn] = Querier(context). Here, the Querier maps the reasoning context into one or
more concise, contextually appropriate queries. A key requirement of the Querier is to precisely extract
the minimal set of keywords that capture the essential uncertainty in the reasoning trace. Depending on
the task, this may result in a single keyword or a small collection of terms, each corresponding to a
distinct retrieval perspective. The number and specificity of the generated queries directly determine
the granularity of retrieval, which in turn controls the trade-off between recall and precision in RAG.
By ensuring that queries are as fine-grained as possible, the Querier avoids unnecessary expansion of
the search space while maximizing the relevance of retrieved evidence.

3.1.3 INJECTOR: EVIDENCE COMPRESSION AND CONTEXTUAL INTEGRATION

Start from a diploid autosome that contains 5 SNPs from two inbred strains of the organism,
and allowing exactly one directional crossover per gamete in each generation (F1 → F2 → F3),
determine the number of possible unique haplotype sequences in the F3 generation.

 "Okay, then haplotypes of 5 SNPs can be represented as binary
strings. Sequences with 4 change-points (01010, 10101)
cannot arise by F3, but all with 0–3 change-points are possible.
I should compute how many such binary strings exist."

Monitor <Detected> “Uncertainty” : “Maximum number of recombination-induced change-points”

Querier <Generate> “Query”: “How many haplotype recombination change-points during single
crossover meiosis in population genetics.”

RAG Tool < Retrieve> “Knowledge” : "During meiosis, a single crossover introduces at most one new
breakpoint per gamete. Across successive generations, recombination patterns accumulate, but
typically require more crossovers than two rounds of meiosis..."

Injector <Inject Information to Reasoning> (1) At most one breakpoint per gamete (2) fully alternating
haplotypes cannot appear within a few generations as F2 ⟶ F3

Question:

Step 1-1: LLM Begins Reasoning:
"We start with two inbred strains A and B, each homozygous. The F1 generation carries haplotypes from
both parents. In F2 and F3, recombination can introduce change-points, but I am uncertain how many
unique haplotypes can arise by F3"

Monitor-based RAG Triggered:

Step 1-2: LLM Resumes Reasoning:

Coding

Exacuation

Step 2: Final Summary

Executor Output:
Counts by change-points: {0: 2, 1: 8, 2: 12, 3: 8, 4: 2}
Total valid haplotypes (0–3 change-points): 30

 "So, among the 32 possible binary haplotypes of 5 SNPs, only 4 change-points are excluded.
Therefore, F3 can produce 30 unique haplotypes." <answer>30</answer>

Figure 4: Haplotype counting with single crossovers (F1→F3).
The Proposer exhibits uncertainty about recombination constraints;
Monitor detects insufficiency, Querier issues a targeted query, and
Injector integrates two retrieved facts. This enables the reasoning to
exclude invalid cases and converge on correct count of 30 haplotypes.

The Injector first filters and com-
presses raw RAG outputs into con-
cise, utility-focused snippets to avoid
redundancy and irrelevant noise.
Then it rewrites and integrates the se-
lected evidence in the Proposer’s rea-
soning context, ensuring coherence
and preserving the natural flow of
the reasoning narrative. This two-
step design allows the knowledge
retrieved to improve accuracy with-
out introducing stylistic or structural
disruptions: additional context =
Injector(context,RAG results).

Figure 2 shows a population genetic
problem that requires the Watterson
estimator. Baseline LLMs exhibit
two characteristic errors: (1) confi-
dently recalling the wrong formula
(θ = 2Neµ) and deriving an incor-
rect effective population size, or (2)
retrieving the correct formula (θ =
4Neµ) via explicit RAG but failing
to reintegrate it into the original rea-
soning chain, a classic case of tool
tax. Our Monitor-based RAG resolves both issues: the Monitor detects semantic uncertainty, the
Querier generates a targeted query, and the Injector seamlessly injects the correct formula into the
reasoning stream, allowing the solution to proceed without disruption and converge to the correct
answer, as shown in Figure 4.

3.2 HIERARCHICAL SOLUTION REFINEMENT (HSR)

HSR challenges the assumption that all solutions should contribute equally to the final output. Instead
of democratic averaging, HSR establishes structured relationships among solutions that mirror expert
collaboration patterns. Let S = {s1, . . . , sn} denote the candidate solutions. Each solution is iteratively
designated as the anchor si, while the remaining set R = S \ {si} provides references. This rotation
ensures that every solution benefits from peer-informed repair, preventing premature convergence to a
single trajectory.

Formally, the process can be described as s′i = Refine(si,R), where Refine(·) denotes the LLM-driven
mechanism that applies multidimensional repairs to the anchor. Specifically, logical completion fills
missing reasoning steps or implicit assumptions, numerical correction resolves arithmetic inaccuracies,
method replacement substitutes stronger strategies for weaker ones, and expression refinement improves
clarity without altering substance. These dimensions ensure that the weaknesses of the anchor are
addressed systematically while preserving its original strengths.

Figure 5 shows a pathway reasoning problem where multiple proposers generate partial but inconsistent
solutions. Baseline multi-agent synthesis averages across candidates, often propagating contradictions
or omitting critical intermediates. Instead, HSR designates one solution as the anchor and integrates

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

targeted corrections from reference solutions (e.g., filling in missing intermediates or fixing reaction
links). This yields a coherent and biologically valid pathway, demonstrating how HSR consolidates
fragmented contributions into a unified solution. QAIR then evaluates the refined set and can terminate
the process once the quality stabilizes, avoiding unnecessary additional cycles.

3.3 QUALITY-AWARE ITERATIVE REASONING (QAIR)

Tem entomologists collect 500,000 camera trap images (3MP, 10 cm FOV) of pollinators on
Solidago altissima. They want to identify all pollinators and count flowers fed on in each image.
Which single method would be easiest to process these images for the required data?

Question:

D. Manual, 410hA. EfficientNet, 5 species (36h train + 13.8h deploy)
B. EfficientNet, 500 species (126h train + 13.8h deploy)
C. ResNet, 500 species (128h train + 11.8h deploy) F. B + C

E. A + B

Answer Choice

Anchor Solution Reference
Solutions

…

C. ResNet
 500 species

EfficientNet (Option A, B) and ResNet(C) are classification
models ⟶ can’t identify multiple pollinators and count flowers
in the same image ⟶ Option D is correct

Deployment time: Option C = 126 + 13.8 = (139.8 hours), less than A: (49.8 hours)
and B: (139.8 hours) ⟶ Option C is the fastest for deployment
 Although EfficientNet is generally faster than ResNet in practice, but we proceed
with the given number. Hence, Option C is chosen as the most appropriate.

Numeric correction:

Targeted
Correctness

Numeric correction: the comparison of deployment time is incorrect; Option A
is the fastest rather than Option C.

Method Correction: Classification models such as EfficientNet and ResNet cannot
simultaneously recognize multiple insects. Counting requires either a detection model (like
Faster R-CNN, YOLO) or a density map approach. So, only Option D remains correct.
Logic Correction: Time cannot be the only criterion, even though C has fewer hours.
Clarify Correction: Even if given times suggest C is fastest, it cannot be considered a solution
because it fails the fundamental requirement. Thus, the correct answer under the single-
method rule is Option D (manual).

Figure 5: Illustrative example: HSR. The system rotates anchors
among candidate solutions and integrates targeted corrections from
references (e.g., fixing arithmetic mistakes, filling missing steps).
Instead of averaging inconsistent candidates, HSR applies targeted
improvements to yield a coherent final answer.

QAIR introduces an evaluation-
driven control mechanism to refine
candidate solutions after the HSR
stage. Let S ′ = {s′1, . . . , s′n} de-
note the initial set of refined can-
didate solutions. Each solution
s′ ∈ S ′ is evaluated by an LLM-
based evaluator on three quality di-
mensions: logic, answer, and ex-
planation, and a textual sugges-
tion for improvement is generated.
Each dimension is scored on a
scale from 0 to 5, and the three
quality scores are then combined
into a composite score: q(s′) =
0.2 · qlogic(s

′) + 0.6 · qanswer(s
′) +

0.2 · qexplanation(s
′), where the higher

weight on the answer dimension em-
phasizes the correctness of the final
answer while still allowing for logi-
cal consistency and explanatory clar-
ity. Candidates meeting the thresh-
old τ = 3 are retained, while
those failing are marked non-passing and passed to the corrector for targeted revision: s̃ =
Corrector(s′, suggestion(s′)).

Let Ft denote the set of solutions that fail the evaluation in round t, and Et denote the set of solutions
evaluated at round t. Iterative refinement continues exclusively on the subset of failed solutions, forming
the evaluation set for the next round Et+1 = {s̃ | s′ ∈ Ft}, until all solutions pass or maximum rounds
Tmax is reached. By coupling structured quality assessment with suggestion-driven repair and avoiding
re-evaluation of already validated candidates, QAIR efficiently converges toward a high-quality solution
set while maintaining logical consistency, answer correctness, and explanatory clarity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Table 2: Benchmark comparison under matched protocol. HLE
Bio/Chem (149 problems; o3-mini judge), SuperGPQA Biology
(hard split), and TRQA Literature (multiple-choice).

Model HLE Bio/Chem SuperGPQA Hard TRQA

Base Models
Kimi K2 6.71 48.91 38.37
DeepSeek V3.1 13.42 66.30 43.60
Claude Opus 4.1 21.48 63.04 42.44
Gemini 2.5 Pro 18.79 65.22 45.93
GPT-5 22.82 61.96 50.58
Grok-4 30.20 66.30 46.51

Agent Systems
SciMaster (GPT 4.1) [4] 9.45 19.78 47.67
Autogen (GPT 4.1) [52] 7.38 29.35 51.74
OpenAI Deep Research (o4-mini) 22.82 39.13 -
Biomni (GPT 4.1) [24] 10.74 43.48 41.09
SciMaster (DeepSeek V3.1) 34.92 66.30 51.74

EIGEN-1 (DeepSeek V3.1, Pass@1) 48.30 69.57 54.65
EIGEN-1 (DeepSeek V3.1, Pass@5) 61.74 78.26 79.07

We evaluate our approach on Hu-
manity’s Last Exam (HLE) Bio/Chem
Gold [47]1, comprising 149 graduate-
level problems in biology, medicine,
and chemistry. HLE Bio/Chem Gold
subset was manually curated and cor-
rected by domain experts to ensure la-
bel fidelity. Additionally, we test on
92 hard-difficulty problems from Su-
perGPQA [12] Biology and 172 prob-
lems from TRQA Literature [59]. Our
framework uses DeepSeek-V3.1 [36]
as the base model with temperature 0.5
and 64K token limit. Following HLE protocol, we employ o3-mini for automated evaluation (See
Appendix A.3). Beyond accuracy, we log total generated tokens and agent steps in the ablation
experiments, as quantitative measures of the tool tax.

1https://huggingface.co/datasets/futurehouse/hle-gold-bio-chem

6

https://huggingface.co/datasets/futurehouse/hle-gold-bio-chem

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 MAIN RESULTS

In the HLE Bio / Chem dataset, our system achieves 48.3% accuracy (Pass@1), substantially outper-
forming the strongest baseline Grok-4 (30.2%) by nearly 18 absolute points and more than doubling
the performance of general purpose models such as GPT-5 (22.8%) and Claude Opus 4.1 (21.5%). This
margin is particularly notable, given that HLE problems require domain-specific reasoning rather than
surface-level recall.

In SuperGPQA hard biology, our method reaches 69.6%, exceeding all competing large models. The
improvement is consistent across question categories, suggesting that our framework not only boosts
correctness but also improves robustness on especially challenging scientific queries.

Figure 6: Comparison of retrieval
backends within Monitor-based RAG.

Vanilla Vanna HippoRAG LightRAG
RAG Methods

0

10

20

30

40

Ac
cu

ra
cy

Finally, in TRQA benchmark, which emphasizes Information
retrieval, integration and reasoning, our method obtains 54.7%
Pass@1, surpassing both Grok-4 (46.5%) and Gemini 2.5 Pro
(45.9%). Furthermore, under the more permissive Pass@5,
counting success if any of five attempts is correctaccuracy rises
to 79.1%, indicating robustness under a best-of-N setting.

Together, these results establish the advantage of our design
in three heterogeneous benchmarks: biomedical, chemical and
medical, demonstrating not only raw accuracy gains, but also
improved adaptability across domains (Table 2). For more results
of baseline models, please refer to Appendix A.7.

Within the Monitor-based RAG framework, we experimented
with four retrieval backends: Vanilla [17], Vanna, HippoRAG [28], and LightRAG [18]. Among
these, HippoRAG achieved the most consistent gains when coupled with our uncertainty detection. We
attribute this to its finer-grained retrieval and graph-structured indexing, which better capture relevant
context fragments without overwhelming the reasoning stream. Based on these results, we adopt
HippoRAG as the default retrieval backend in our Monitor module (Figure 6).

4.3 COMPONENT ANALYSIS

To understand the contribution of each architectural component, we performed systematic analysis
on the full HLE Bio/Chem benchmark (149 problems), considering both incremental build-up and
component ablation (Table 3).

The baseline configuration uses five parallel Proposers with access to a generic web search tool but
without any paper retrieval (no RAG). The Explicit RAG setting adds a scientific paper database
queried via embedding-based similarity. Unless otherwise noted, all settings use the same five-Proposer
architecture with CriticCorrector refinement and Ranker selection.

The baseline system without external knowledge achieves 25.3% accuracy, underscoring the limitations
of parametric knowledge alone for graduate-level science problems. Adding an explicit paper database
improves accuracy to 41.4%, but at the cost of a sharp increase in workflow iterations (from 43.4 to 94.8).
This reflects the high overhead of explicit retrieval: each tool call suspends reasoning, requires query
formulation, and forces reintegration of results, fragmenting what should be a continuous reasoning
flow. While the first one or two retrievals may be helpful, repeated interruptions often add little value
and compound this “tool tax.”

Our Monitor-based RAG mitigates this overhead through implicit augmentation. By continuously
monitoring generation and injecting knowledge only when necessary, it reduces token consumption
by more than half (from 470.6K to 218.4K) and cuts workflow iterations nearly in half (from 94.8 to
51.3), while maintaining competitive accuracy (34.5%). Adding the Querier improves query precision,
leading to a modest gain to 36.8%. The limited margin compared to Monitor alone suggests that the
primary bottleneck lies not in query formation but in evidence integration, which is addressed by the
Injector. With the Injector, accuracy rises further to 40.3% with minimal additional overhead.

Hierarchical Solution Refinement (HSR) then contributes complementary gains, raising accuracy to
43.7%. Instead of naive aggregation, HSR leverages anchorreference interactions to apply targeted
repairs, focusing revisions where they matter most (e.g., filling missing reasoning steps or correcting
arithmetic). This adds some extra reasoning steps but yields proportionally higher accuracy.

Finally, Quality-Aware Iterative Reasoning (QAIR) builds on HSR by selectively invoking the Corrector
when evaluation indicates further refinement is necessary. This yields the best overall result in the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Component analysis from two perspectives on the full HLE Bio/Chem benchmark (149
problems). (a) Incremental build-up: modules are added one by one. (b) Component ablation: each
module is removed from the full system. The baseline configuration uses five parallel Proposers with
web search but without external paper retrieval (no RAG). Steps = agent-level workflow iterations
(not token-level reasoning).

(a) Incremental build-up (b) Component ablation

Configuration Accuracy (%) Tokens (K) Steps Configuration Accuracy (%) Tokens (K) Steps

Baseline (no ext. knowledge & no RAG) 25.3 483.6 43.4 Full system 48.3 218.9 53.4
+ Papers (Explicit RAG) 41.4 470.6 94.8 – (Monitor, Querier, Injector) 48.5 461.3 95.3
+ Monitor only 34.5 218.4 51.3 – Querier 45.9 224.1 53.1
+ Monitor + Querier 36.8 213.0 51.7 – Injector 44.7 202.5 52.1
+ Monitor + Querier + Injector 40.3 229.5 53.1 – HSR 44.8 234.1 53.5
+ Monitor + Querier + Injector + HSR 43.7 214.0 52.9 – QAIR 43.7 214.0 52.9
+ Monitor + Querier + Injector + HSR + QAIR 48.3 218.9 53.4

incremental sequence: 48.3% accuracy with 218.9K tokens and 53.4 iterations. Although QAIR
introduces slight additional overhead, it ensures that every revision contributes meaningfully, preventing
uncontrolled exploration or redundant cycles.

Reasoning Process Error 92.78%
Knowledge Application Error 88.66%

Execution & Adherence Error 13.40%
Comprehension Error 9.28%

Figure 7: Error type distribution. Analysis of incorrect solution logs shows
reasoning- and knowledge-related errors as dominant. Note that a single
problem may involve multiple error types, so percentages do not sum to 100.

The ablation analysis further
validates these findings: re-
moving the Monitor results
in a significant increase in
the number of tokens and
agent steps; and omitting
HSR or QAIR lowers final
performance to 44.8% and
43.7%, respectively. To-
gether, these results show
that Monitor-based RAG re-
duces the tool tax, HSR provides structured cross-solution repair, and QAIR ensures convergence
through selective correction. Their combination achieves both state-of-the-art accuracy and controlled
computation.

5 ANALYSIS

5.1 ERROR TYPE DISTRIBUTION

Analysis of failed problems reveals two dominant error modes: reasoning process errors (92.78%) and
knowledge application errors (88.66%), as shown in Figure 7. These frequently co-occur, suggesting
that successful scientific reasoning requires seamless integration of domain knowledge with logical
inference. Execution errors (13.40%) and comprehension errors (9.28%) are comparatively rare,
indicating that the primary challenge lies not in understanding problems or following instructions, but in
maintaining coherent reasoning while accessing relevant knowledge. The strong overlap also suggests
interdependence: missing knowledge often manifests as faulty reasoning steps, and disrupted reasoning
in turn prevents effective incorporation of retrieved facts. For more examples of these different errors,
see Appendix A.6.

5.2 DIVERSITY VS. CONSENSUS IN MULTI-AGENT SOLUTIONS

Our framework employs multiple parallel Proposers to generate candidate solutions and utilizes a
Ranker to select the final answer. A natural assumption is that higher agreement among Proposers
should correlate with higher accuracy. However, our analysis reveals a more nuanced picture: the
relationship between solution diversity and correctness depends strongly on problem type.

To investigate this, we divide the benchmark into two categories: information retrieval tasks, which
rely heavily on external knowledge, and reasoning tasks, which require longer chains of inference. For
each problem, we measure the level of agreement among Proposers and evaluate how it correlates with
accuracy. Both metrics are scored continuously by an LLM judge on a [0, 1] scale: consistency reflects
the pairwise agreement among candidate answers, while accuracy measures the graded alignment
between a candidate and the ground-truth solution (see Appendix A.3). This continuous evaluation
enables fine-grained correlation analysis beyond binary correctness. As shown in Fig 8, retrieval
tasks benefit from diversity (low agreement), whereas reasoning tasks benefit from consensus (high
agreement), with correlation slopes of 0.369 and 0.851, respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0
Average Pairwise Consistency Score

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ac
cu

ra
cy

 S
co

re

Reasoning Type (n=392)

Trend (r=0.840)
95% Confidence

Correlation: 0.840
Slope: 0.851
Samples: 392

0.0 0.2 0.4 0.6 0.8 1.0
Average Pairwise Consistency Score

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ac
cu

ra
cy

 S
co

re

Information Retrieval Type (n=339)

Trend (r=0.881)
95% Confidence

Correlation: 0.881
Slope: 0.369
Samples: 339

Consistency vs Accuracy by Question Type

Figure 8: Diversity vs. consensus. Task-dependent effect of solution diver-
sity: retrieval tasks benefit from variety, while reasoning tasks benefit from
agreement. The horizontal axis reports the average pairwise consistency score
among Proposers, computed by an LLM-based judge that evaluates semantic
overlap between answers on a 0–1 scale. The vertical axis shows the average
accuracy score, also judged by an LLM, which rates the degree of correct-
ness of each answer relative to ground truth on a continuous 0–1 scale (rather
than a binary 0/1). This continuous evaluation enables us to capture fine-
grained trends between diversity and correctness across tasks. The fitted trend
lines further highlight the contrast: retrieval tasks show a relatively flat slope
(≈ 0.369), whereas reasoning tasks exhibit a much steeper positive slope
(≈ 0.851), indicating a stronger dependence on consensus.

This dichotomy suggests
that different ranking strate-
gies are optimal for differ-
ent task types. In retrieval-
heavy settings, the Ranker
should preserve diversity
and aggregate complemen-
tary perspectives, whereas
in reasoning-heavy tasks,
it should prioritize high-
consensus answers as indica-
tors of reliability. These ob-
servations highlight the com-
plementary roles of HSR
and QAIR, which opera-
tionalize the transition from
diversity to consensus in a
task-adaptive manner.

5.3 TOOL
TAX QUANTIFICATION

The computational burden
of explicit tool invocation extends beyond simple latency. As shown in Table 3, the explicit RAG
baseline (with Proposers equipped with paper retrieval and web search) more than doubles agent-level
workflow iterations compared to the no-IR setting (43.4 → 94.8). This quantifies a hidden tool tax from
context switching between reasoning and retrieval modes: each call requires the system to pause the
evolving chain of thought, formulate a query, process external results, and then reconstruct the local
context before continuingfragmenting what should be a continuous inference process.

Tool Tax

Token Decrease
Ac

cu
ra

cy
 In

cr
ea

se
 Eigen-1

Baseline+RAG

Figure 9: Quantifying the tool tax. Com-
parison of accuracy and coherence relative
to compute cost, showing the overhead of
explicit retrieval vs. implicit augmentation.
Note that in this analysis, the baseline refers
to the explicit RAG configuration (i.e., Pro-
posers equipped with paper retrieval and web
search), which represents the standard setup
in most existing agent systems.

Fig. 9 visualizes this trade-off. Explicit RAG produces
substantially longer traces without commensurate gains,
whereas our Monitor-based RAG maintains concise, inter-
pretable reasoning by injecting only the evidence that is
needed, precisely when it is needed. Operating implicitly at
generation time, it delivers comparable knowledge augmen-
tation with markedly fewer tokens and iterations, avoiding
repeated context suspensions.

More broadly, these findings argue for implicit augmenta-
tion and adaptive tool policies in agent design: systems
should not treat all retrieval calls equally, but modulate re-
trieval frequency and depth based on emerging uncertainty,
problem structure, and expected utilitypreserving continuity
of reasoning while still accessing external knowledge when
it truly helps.

6 CONCLUSION

Our experiments validate three key architectural innova-
tions in EIGEN-1. First, implicit knowledge augmentation
through Monitor-based RAG substantially reduces explicit
retrieval overhead while preserving reasoning coherence.
Second, HSR improves over uniform multi-agent aggrega-
tion by introducing structured anchor–reference relation-
ships. Third, QAIR adaptively balances exploration and early stopping, achieving an effective trade-off
between diversity and consensus. On HLE Bio/Chem, EIGEN-1 reaches 48.3% accuracy under compute-
matched settings, with a 53.5% token reduction, showing that targeted architectural design can enhance
both effectiveness and efficiency. By integrating external knowledge with minimal disruption to reason-
ing flow, our framework addresses key limitations of prior approaches in complex scientific problem
solving. Future work will extend these principles to additional scientific domains, assess robustness
and transferability, and explore integration into broader scientific workflows.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our study aims to improve the scientific reasoning capabilities of large language models (LLMs)
by introducing a unified framework that combines implicit retrieval and hierarchical collaboration.
All datasets used in this work, including Humanitys Last Exam (HLE), SuperGPQA, and TRQA, are
publicly available under open licenses. No private, sensitive, or human-identifiable data are involved.
All annotations, where applicable, are derived from public benchmarks or generated using synthetic
processes, ensuring that no ethical concerns regarding data privacy or misuse arise. The broader
societal impact of this research lies in its potential to enhance scientific reasoning and complex problem-
solving abilities in AI systems, which can be applied to fields such as education, scientific discovery,
and decision support. Care has been taken to avoid overstating capabilities or drawing misleading
conclusions, and we encourage further research to validate our findings across other high-stakes
domains.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of our dataset preprocessing procedures,
agent prompting strategies, and iterative refinement workflow in the appendix. These include full
pipeline configurations and experimental setups required to reproduce the reported results with high
fidelity. The code is available at https://anonymous.4open.science/r/RAG-Monitor.

REFERENCES

[1] Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning
to retrieve, generate, and critique through self-reflection. 2024.

[2] Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas
Gianinazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph
of thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682–17690, 2024.

[3] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie
Millican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
et al. Improving language models by retrieving from trillions of tokens. In International conference
on machine learning, pp. 2206–2240. PMLR, 2022.

[4] Jingyi Chai, Shuo Tang, Rui Ye, Yuwen Du, Xinyu Zhu, Mengcheng Zhou, Yanfeng Wang, Yuzhi
Zhang, Linfeng Zhang, Siheng Chen, et al. Scimaster: Towards general-purpose scientific ai
agents, part i. x-master as foundation: Can we lead on humanity’s last exam? arXiv preprint
arXiv:2507.05241, 2025.

[5] Pei Chen, Boran Han, and Shuai Zhang. Comm: Collaborative multi-agent, multi-reasoning-path
prompting for complex problem solving. arXiv preprint arXiv:2404.17729, 2024.

[6] Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
Yujia Qin, Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and
exploring emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4):6, 2023.

[7] Ziru Chen, Shijie Chen, Yuting Ning, Qianheng Zhang, Boshi Wang, Botao Yu, Yifei Li, Zeyi
Liao, Chen Wei, Zitong Lu, et al. Scienceagentbench: Toward rigorous assessment of language
agents for data-driven scientific discovery. arXiv preprint arXiv:2410.05080, 2024.

[8] Michelene TH Chi, Paul J Feltovich, and Robert Glaser. Categorization and representation of
physics problems by experts and novices. Cognitive science, 5(2):121–152, 1981.

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

[10] Yufan Dang et al. Multi-agent collaboration via evolving orchestration. arXiv preprint
arXiv:2505.19591, 2025.

[11] Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Wei Zhang, Si Qin, Saravan
Rajmohan, Qingwei Lin, and Dongmei Zhang. Everything of thoughts: Defying the law of
penrose triangle for thought generation. arXiv preprint arXiv:2311.04254, 2023.

10

https://anonymous.4open.science/r/RAG-Monitor

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

[12] Xinrun Du, Yifan Yao, Kaijing Ma, Bingli Wang, Tianyu Zheng, King Zhu, Minghao Liu, Yiming
Liang, Xiaolong Jin, Zhenlin Wei, et al. Supergpqa: Scaling llm evaluation across 285 graduate
disciplines. arXiv preprint arXiv:2502.14739, 2025.

[13] Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

[14] Kevin Dunbar. How scientists think: On-line creativity and conceptual change in science. 1997.

[15] Sugyeong Eo, Hyeonseok Moon, Evelyn Hayoon Zi, Chanjun Park, and Heuiseok Lim. Debate
only when necessary: Adaptive multiagent collaboration for efficient llm reasoning. arXiv preprint
arXiv:2504.05047, 2025.

[16] Andrew Estornell et al. How to train a leader: Hierarchical reasoning in multi-agent llms. arXiv
preprint arXiv:2507.08960, 2025.

[17] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.

[18] Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast
retrieval-augmented generation.(2024). arXiv preprint arXiv:2410.05779, 2024.

[19] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval aug-
mented language model pre-training. In International conference on machine learning, pp.
3929–3938. PMLR, 2020.

[20] Conghui He, Wei Li, Zhenjiang Jin, Chao Xu, Bin Wang, and Dahua Lin. Opendatalab: Em-
powering general artificial intelligence with open datasets. arXiv preprint arXiv:2407.13773,
2024.

[21] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[22] Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a
multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

[23] Zhipeng Hou, Junyi Tang, and Yipeng Wang. Halo: Hierarchical autonomous logic-oriented
orchestration for multi-agent llm systems. arXiv preprint arXiv:2505.13516, 2025.

[24] Kexin Huang, Serena Zhang, Hanchen Wang, Yuanhao Qu, Yingzhou Lu, Yusuf Roohani, Ryan
Li, Lin Qiu, Gavin Li, Junze Zhang, et al. Biomni: A general-purpose biomedical ai agent. biorxiv,
2025.

[25] Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for
open domain question answering. arXiv preprint arXiv:2007.01282, 2020.

[26] Ziqi Jia, Junjie Li, Xiaoyang Qu, and Jianzong Wang. Enhancing multi-agent systems via reinforce-
ment learning with llm-based planner and graph-based policy. arXiv preprint arXiv:2503.10049,
2025.

[27] Zhengbao Jiang, Frank F Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang,
Jamie Callan, and Graham Neubig. Active retrieval augmented generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language Processing, pp. 7969–7992, 2023.

[28] Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag:
Neurobiologically inspired long-term memory for large language models. Advances in Neural
Information Processing Systems, 37:59532–59569, 2024.

[29] Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. What disease
does this patient have? a large-scale open domain question answering dataset from medical
exams. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 2397–2407, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

[30] Nils Kautto Ernberg. Analyzing google serp: Swedish search queries, 2019.

[31] Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling
declarative language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714,
2023.

[32] Jill Larkin, John McDermott, Dorothea P Simon, and Herbert A Simon. Expert and novice
performance in solving physics problems. Science, 208(4450):1335–1342, 1980.

[33] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in neural information processing systems,
33:9459–9474, 2020.

[34] Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel:
Communicative agents for” mind” exploration of large language model society. Advances in
Neural Information Processing Systems, 36:51991–52008, 2023.

[35] Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming
Shi, and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-
agent debate. arXiv preprint arXiv:2305.19118, 2023.

[36] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[37] Pei Liu et al. Hm-rag: Hierarchical multi-agent multimodal retrieval augmented generation. arXiv
preprint arXiv:2504.12330, 2025.

[38] Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind
Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought
chains for science question answering. Advances in Neural Information Processing Systems, 35:
2507–2521, 2022.

[39] Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

[40] Xihe Qiu, Haoyu Wang, Xiaoyu Tan, et al. Towards collaborative intelligence: Propagating
intentions and reasoning for multi-agent coordination with large language models. arXiv preprint
arXiv:2407.12532, 2024.

[41] Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown,
and Yoav Shoham. In-context retrieval-augmented language models. Transactions of the Associa-
tion for Computational Linguistics, 11:1316–1331, 2023.

[42] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

[43] David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. In International Conference on Learning Representations
(ICLR), 2019.

[44] Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu Chen. Enhancing
retrieval-augmented large language models with iterative retrieval-generation synergy. arXiv
preprint arXiv:2305.15294, 2023.

[45] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke
Zettlemoyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language models. arXiv
preprint arXiv:2301.12652, 2023.

[46] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36:8634–8652, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

[47] Michael Skarlinski, Jon Laurent, Albert Bou, and Andrew White. About 30% of humanitys
last exam chemistry/biology answers are likely wrong. https://www.futurehouse.org/
research-announcements/hle-exam, July 2025. Accessed: 2025-09-23.

[48] Weihang Su, Yichen Tang, Qingyao Ai, Zhijing Wu, and Yiqun Liu. Dragin: dynamic retrieval
augmented generation based on the information needs of large language models. arXiv preprint
arXiv:2403.10081, 2024.

[49] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving
retrieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. arXiv
preprint arXiv:2212.10509, 2022.

[50] Bin Wang, Chao Xu, Xiaomeng Zhao, Linke Ouyang, Fan Wu, Zhiyuan Zhao, Rui Xu, Kaiwen
Liu, Yuan Qu, Fukai Shang, et al. Mineru: An open-source solution for precise document content
extraction. arXiv preprint arXiv:2409.18839, 2024.

[51] Zihao Wang, Anji Liu, Haowei Lin, Jiaqi Li, Xiaojian Ma, and Yitao Liang. Rat: Retrieval
augmented thoughts elicit context-aware reasoning in long-horizon generation. arXiv preprint
arXiv:2403.05313, 2024.

[52] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via
multi-agent conversations. In First Conference on Language Modeling, 2024.

[53] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Advances
in neural information processing systems, 36:11809–11822, 2023.

[54] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

[55] Ori Yoran, Tomer Wolfson, Ori Ram, and Jonathan Berant. Making retrieval-augmented language
models robust to irrelevant context. arXiv preprint arXiv:2310.01558, 2023.

[56] Peiying Yu, Guoxin Chen, and Jingjing Wang. Table-critic: A multi-agent framework for
collaborative criticism and refinement in table reasoning. arXiv preprint arXiv:2502.11799, 2025.

[57] Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin Ma, Hongwei Wang, and Dong Yu.
Chain-of-note: Enhancing robustness in retrieval-augmented language models. arXiv preprint
arXiv:2311.09210, 2023.

[58] Wentao Zhang et al. Agentorchestra: A hierarchical multi-agent framework for general-purpose
task solving. arXiv preprint arXiv:2506.12508, 2025.

[59] Zhongyue Zhang, Zijie Qiu, Yingcheng Wu, Shuya Li, Dingyan Wang, Zhuomin Zhou, Duo
An, Yuhan Chen, Yu Li, Yongbo Wang, et al. Origene: A self-evolving virtual disease biologist
automating therapeutic target discovery. bioRxiv, pp. 2025–06, 2025.

13

https://www.futurehouse.org/research-announcements/hle-exam
https://www.futurehouse.org/research-announcements/hle-exam

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 RAG DATABASE CONSTRUCTION

To construct the RAG dataset, we sourced 10,876 PDF papers in biology and chemistry from Open-
DataLab [20]. We then converted these PDFs to plain text using MinerU [50] to ensure downstream
readability and analyzability.

Because the raw corpus spans many topics, we designed a two-stage semantic filtering pipeline to focus
the final corpus on biology- and chemistry-centric research.

We defined a set of positive keywords to capture target research areas, and in parallel, we curated
negative keywords to exclude off-topic or tangential materials, as demonstrated in Figure A1.

Positive and Negative Keywords

Positive Keywords
• Biology: biology, DNA Replication, RNA Transcription, Protein Synthesis, Gene

Editing, Viral Infection, Cell Signaling, Nucleic Acid Probes, Genomic Sequenc-
ing, Transgenic Technology, Immune Response, Biomarkers, Cell Culture, CRISPR
Technology, Viral Vectors, RNA Interference, Gene Expression Regulation, Cell Differ-
entiation, Metabolic Pathways, Apoptosis, Bioinformatics

• Chemistry: chemistry, Organic Synthesis, Inorganic Chemistry, Catalysis, Poly-
mer Chemistry, Spectroscopy, Crystallography, Chemical Kinetics, Thermodynamics,
Electrochemistry, Quantum Chemistry

Negative Keywords
• Non-biology: Cosmetics, Food Additives, Drug Advertising, Environmental Pollu-

tion, Ecological Balance, Medical Ethics, Social Sciences, Psychology, Nutrition,
Educational Methods

• Non-academic chemistry: Household Chemicals, Industrial Wastewater, Pesticide
Residues, Fertilizer Application, Chemical Engineering Safety, Petrochemical Produc-
tion

Figure A1: Positive and Negative Keywords.

This design concentrates positives on fundamental research fronts (e.g., gene editing, molecular
signaling, organic synthesis, spectroscopy, thermodynamics) while negatives cover applied or peripheral
themes (e.g., chemical production, pesticide residues, environmental pollution), improving separation
of target papers from irrelevant content.

For filtering, we encoded each paper’s title and abstract with a pretrained Transformer and computed
cosine similarities against the positive and negative keyword sets. Papers were retained only if

cos(Epaper, Epositive) > 0.2, cos(Epaper, Enegative) < 0.1,

where Epaper denotes the vector representation of a paper’s title and abstract, and Epositive/Enegative
denote aggregate vectors of the positive/negative keyword sets. This step effectively removed content
unrelated to biology and chemistry. The post-filter distribution is summarized in Table A1.

Table A1: Paper Classification Statistics by Domain (Side-by-Side)

Biology Category (n=2029) % of Domain Chemistry Category (n=359) % of Domain

Molecular and Cell Biology (777) 38.39% Organic Chemistry (172) 47.91%
Immunology and Microbiology
(482)

23.76% Physical Chemistry (71) 19.78%

Genetics, Genomics & Computa-
tion (411)

20.26% Materials Chemistry (68) 18.94%

Neuroscience (205) 10.11% Analytical Chemistry (37) 10.31%
Ecology and Evolution (149) 7.35% Inorganic Chemistry (11) 3.06%

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Overall Summary
Total Biology Papers: 2029 (100%) Total Chemistry Papers: 359 (100%)
Total Papers: 2388 (100%)

After semantic filtering, we used a large language model (LLM) to extract structured text suitable for
Retrieval-Augmented Generation (RAG). We designed a paper-specific prompt that guides the LLM to
segment each paper into retrievable knowledge units (e.g., definitions, methods, experimental results,
discussion) with consistent formatting across papers.

Prompt of RAG Bullet-Point Summarization

Role: You are an information synthesis assistant.

General Rules:
• Use ONLY the paper content provided below. No outside knowledge or invented facts.
• Do NOT include verbatim quotes, citations, or page references.
• The final output MUST be a single CSV code block with rows containing ONLY

synthesized, self-contained bullet-point summaries for RAG.
Complete Paper Content:
{paper content}

Objective: Read the entire paper content and internally construct self-contained knowledge
paragraphs. Then derive standalone, self-contained bullet-point summaries from those
paragraphs for retrieval-augmented generation (RAG). The intermediate knowledge paragraphs
are an internal step and MUST NOT be printed in the final output.

Process:
• Phase 1 Internal Knowledge Paragraphs (DO NOT OUTPUT):

– After reading the full content, synthesize a set of self-contained knowledge
paragraphs.

– Each paragraph must be strictly grounded in the provided text, define acronyms
upon first use, include concrete details when available (tasks, datasets, sample
sizes, metrics, effect sizes, confidence intervals, ablations, baselines, hyperpa-
rameters, assumptions, limitations), written in neutral third-person factual style,
and able to stand alone without context from other paragraphs.

• Phase 2 RAG Bullet-Point Summaries (FINAL OUTPUT ONLY):
– Produce around 3 bullet points in total.
– Each bullet must be self-contained, concise (13 sentences), define acronyms upon

first use, include concrete quantitative or methodological details when available,
state scope/assumptions/limitations when given, and use neutral third-person
factual style.

Output Format (CSV ONLY):
• Output EXACTLY ONE CSV code block and NOTHING ELSE.
• Header MUST be: name,year,locator,topic,quote
• For EACH bullet point, create ONE row with:

– name = ”SYNTHESIZED POINT SUMMARY”
– year = N/A
– locator = N/A
– topic = N/A
– quote = the bullets full self-contained text (escape quotes as needed; no line

breaks inside a cell)
• Do NOT include the intermediate knowledge paragraphs in the output.
• Do NOT add extra columns or any prose outside the CSV block.

Begin: Output only the CSV code block.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Through this pipeline, we obtained a topic-focused, structurally consistent research corpus that provides
high-quality knowledge support for downstream RAG systems.

A.2 AGENT PROMPT

A.2.1 REFINEMENT

The following shows the prompt we use in the HSR stage.

Prompt of Refinement

Assistant Prefix Prompt
<think>
Okay, I will answer user’s problem by deep reasoning together
with writing python code in <code></code> format. I should
review and check the solution from student first with web
functions to identify errors if exist, then present my
solution and answer. For example
1. If I want to use the function of web search(keywords),
will say:
keywords=...
results=web search(keywords)
print(results)
2. If I want to use the function of web parse(link, query),
will say:
link=...
query=...
results=web parse(link, query)
print(results)
3. If I want to use the function of search local documents(query),
will say:
query="..."
documents=search local documents(query)
print(results)
4. If I want to do computation, I will write code for
accurate result:
a = 123
b = 456
print(a+b)
Now, let me analyze the user’s question.
</think>

User Prompt
Problem
{query}

Anchor Solution
{anchor solution}

Student 1’s Solution
{reference 1}

Student 2’s Solution
{reference 2}

Student 3’s Solution
{reference 3}

Student 4’s Solution
{reference 4}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Your Job
You should critically check the Anchor Solution to the
problem, then correct it if needed and write your own answer.
1. Identify its weak points (missing reasoning steps,
calculation errors, unclear logic, etc.).
2. You can refer to other students’ solutions for targeted
improvements relevant to those weak points.
3. Please note that other students’ solutions may have
errors. Please refer to the points worth learning and make
improvements.
4. Apply repair strategies if needed:
- Logic Completion (fill missing reasoning)
- Numerical Correction (fix calculation errors)
- Method Replacement (use a better method if needed)
- Expression Refinement (clarify presentation)

Only use improvements that directly address anchors weak
points. Avoid unnecessary information merging.

You can solve the problem with the help of feedback from a
code executor. Every time you write a piece of code between
<code> and </code>, the code inside will be executed. For
example, when encountering numerical operations, you might
write a piece of code to inteprete the math problem into
python code and print the final result in the code. Based
on the reasoning process and the executor feedback, you could
write code to help answering the question for multiple times
(either for gaining new information or verifying). There are
also several integrated functions that can be used to help you
solve the problem. The available functions are:
1. search local documents(query: str) - this function takes
a query string as input, and the output is a JSON string
containing a list of relevant document snippets from a local,
private knowledge base. This function should be your first
choice for answering questions.
2. web search(keywords) - this function takes keywords
as input, which is a string, and the output is a string
containing several web information. This function will call a
web search engine to return the search results. This function
is especially useful when answering knowledge-based questions.
3. web parse(link:str, query:str) - this function takes the
link and query as input, and the output is a string containing
the answer to the query according to the content in this link.
This function is useful when looking into detail information
of a link.

Your workflow for solving the problem must follow these steps:
- Step 1: Local Document Search (Mandatory First Action):
You must always begin by using search local documents to check
for relevant information in the private knowledge base.
- Step 2: Evaluate and Supplement: After receiving results
from search local documents, evaluate them carefully. Treat
this information as a supplement to your background knowledge,
not as absolute truth. This supplementary context may be
incomplete or require further verification.
- Step 3: Web Search & Parse (Verification & Detail): After
your initial local search, use web search to find relevant
web pages for verification or supplementation. If a specific
link from the search results seems particularly useful, use

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

web parse to extract detailed information from that page.

- You should not be overconfident in your knowledge and
reasoning.
- Each time you write code put the code into <code></code>
snippet. Put your final answer in <answer></answer> with .

The following shows the prompt we use in the QAIR stage.

A.2.2 QUALITY EVALUATOR

Prompt of Quality Evaluator

User Prompt
You are an expert evaluator. Your task is to evaluate the
given solution for the problem from multiple perspectives.

Problem
{query}

Candidate Solution
{solution}

Evaluation Dimensions
1. Logical Reasonableness (0-5): Does the reasoning process
follow valid logic?
2. Answer Correctness (0-5): Is the final answer correct and
reasonable?
3. Explanation Completeness (0-5): Does the solution explain
the reasoning clearly and completely?

Output Format
Return your answer strictly in JSON:
{
"quality scores": [float, float, float], // [logic, answer,
explanation]
"suggestion": "Provide an improvement suggestion for this
solution that could help refine it in the next iteration."
}

The following shows the prompt we use in the RAG Monitor.

A.2.3 RAG MONITOR PROMPT

Prompt of RAG Monitor

Role: You are a helpful assistant.

Task: Analyze the following text and determine if responding to it accurately requires
retrieving information from an external source.

Instructions:
• If you find any doubt or uncertainty about a concept or term in the text, consider it

necessary to retrieve information (RAG).
• If retrieval is required, answer: yes.
• If no retrieval is required, answer: no.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Text:
{text}
Judgment:

The following shows the prompt we use in the RAG Querier.

A.2.4 RAG QUERIER PROMPT

Prompt of RAG Querier

Role: You are a helpful assistant.

Task: Generate a single, concise, and effective search query for retrieving the information
required by the text below.

Instructions:
• Return only the search query itself.
• Do not include explanations, punctuation, quotation marks, or other text.
• The query should be direct and contain only the most essential keywords.

Text:
{text}
Search Query:

The following shows the prompt we use in the RAG Querier.

A.2.5 RAG INJECTOR PROMPT

Prompt of RAG Injector

Role & Core Objective: You are an information integration specialist. Your sole task is
to process the provided RAG (Retrieval-Augmented Generation) output. Maximize the
utilization of all relevant information to substantively support the reasoning, argumentation, or
conclusions presented in the main text. Do not perform additional reasoning or generate new
conclusions.

Content Integration Principles:
• Comprehensive Extraction: Extract all valuable information from the RAG outputs

that enhances the logical depth, robustness, and persuasiveness of the main text’s
arguments.

• Seamless Cohesion and Minimal Completion: Maintain smooth contextual coher-
ence and stylistic consistency. Perform minimal completion only if the main text ends
mid-thought.

• Neutral Representation: Present all information objectively. Do not evaluate, ques-
tion, or add subjective commentary.

Output Specifications:
• Output should follow the template: ”¡main text completion if necessary¿. Wait a

minute, by searching information about ¡rag query¿, I found that ¡rag result¿. Now
that I have more relevant information, I can continue my reasoning.”

• Directly appendable to the end of the original main text.
• Do not include process summaries, headings, bullet points, or labels like ”Supple-

ment:”.
Instruction Recap: Only select, filter, organize, and polish the RAG content. Do not perform
external reasoning or add new information.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Main Text:
{text}

RAG Query:
{rag query}

RAG Result:
{rag result}

A.3 EVALUATION PROTOCOL AND ANSWER SCORING GUIDELINES

The o3-mini model was employed as an automatic judge to verify model-generated responses against
the reference answers, following the official HLE Evaluation Prompts.

Prompt of Answer Evaluation

Role: You are an expert evaluator.

Task: Judge whether the following response to a question is correct or not based on the precise
and unambiguous correct answer provided.

Question:
{question}

Response:
{response}

Correct Answer:
{correct answer}

Evaluation Instructions:
• extracted final answer: Extract the final exact answer from the response. If there is

no exact final answer, put ’None’.
• reasoning: Explain why the extracted final answer is correct or incorrect based on the

correct answer. Focus only on differences between the response and correct answer.
Do not comment on background, do not attempt to solve the problem, do not argue
for any alternative answer.

• correct: Answer ’yes’ if extracted final answer matches the correct answer (allow
small margin for numerical problems). Answer ’no’ otherwise (any inconsistency,
ambiguity, or non-equivalency counts as ’no’).

• confidence: Extract the confidence score from the response between 0% and 100%.
If no score is available, put 100.

Output Format:
{
"extracted final answer": "...",
"reasoning": "...",
"correct": "yes/no",
"confidence": "..."
}

In Figure 8, the vertical and horizontal axes represent the scores assigned by the LLM for answer
continuation, with output values ranging from 0 to 1. Below are the prompts used to assess the accuracy
and consistency of the answers.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Prompt of Answer Accuracy Evaluation

You are a meticulous grader. Evaluate a set of solver responses (up to five) for one stage of a
medical/biological question by comparing each responses FINAL + full RESP reasoning to the
ground truth GT + official rationale R. Output a continuous accuracy in [0,1] for each response.
Inputs:

• Q: question stem (may or may not have multiple-choice options).
• GT: ground-truth answer. This can be a multiple-choice letter or a short text for

free-response questions.
• R: official rationale (may be empty).
• FINAL[i]: the solver’s extracted final answer from < answer > ... < /answer >

(may be a letter or short text).
• RESP[i]: the solver’s entire assistant message for response i in this stage.

How to grade (read carefully):
Grade one solver’s response at a time, each solver’s grading process should be independent,
and should not rely on anything else except the solver’s response, final answer, Q, R, and GT.
The grading process for one solver:

• Determine the solver’s FINAL answer from FINAL[i]. If missing, infer only if
RESP[i] makes the choice unambiguous; otherwise treat as unanswered.

• Compare against GT:
– For multiple-choice questions, check if the letter matches GT (case-insensitive).
– or free-response questions, check semantic equivalence to GT (normalize word-

ing, allow synonyms or equivalent phrasing).
• Evaluate reasoning quality: Does RESP[i] align with R (key findings, mechanisms,

exclusions)? Does it avoid contradictions, hallucinations, or irrelevant statements?
• Scoring recipe (simple, smooth, continuous); Use a continuous score reflecting BOTH

aspects:
– 0.94–1.00 → FINAL matches GT and RESP closely aligns with R with sound,

non–contradictory reasoning.
– 0.69-0.94 → FINAL matches GT but RESP shows minor gaps, superficiality, or

small inconsistencies.
– 0.34-0.69 → FINAL ̸= GT, yet RESP shows substantial, partially-correct rea-

soning aligned with R (good differential, one key mistake).
– 0.00-0.34 → FINAL ̸= GT and RESP shows weak/mostly incorrect reasoning

(some relevant bits).
– 0.00 → Off-topic, unsupported, self–contradictory, or clearly wrong with no

meaningful alignment to R.
• Penalize confidently wrong statements or contradictions; do not reward verbosity.

Return ONLY valid JSON in the following form:
{{

"items": [
{{"accuracy": <float in [0,1]>,

"reason": "<<= 40 words justification>"}},
{{"accuracy": ..., "reason": ...}},
...

]
}}

Now grade the following batch of responses:
• Q: q
• GT: gt
• R: r
• FINALS: {final items}
• RESPONSES: {resp items}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Prompt of Consistency Evaluation

You are an expert biomedical exam grader. Below are two independently generated solutions to
the same question. Your task is to evaluate how consistent these two solutions are.
Instructions:

• Compare the reasoning processes, scientific logic, and final answers.
• Assign a consistency score from 0.00 to 1.00 (two decimal places):

– 1.00 = Solutions are highly consistent (nearly identical reasoning and conclusion).
– 0.00 = Solutions are completely inconsistent (different reasoning and conclusion).

Solution A:
{solution1}

Solution B:
{solution2}

Please provide your consistency score (e.g., 0.85):

A.4 EXTERNAL VALIDATION AND LIMITATIONS

Primary evaluation. As detailed above, our main results are scored automatically by o3-mini
using the official HLE judging prompts and our continuous scoring rubric (Sec. A.3). No human expert
adjudication is included in the reported metrics.

Risk of bias and robustness. Automatic judging ensures scalability and reproducibility but may
introduce grader-specific biases and failure modes, especially for free-response rationales. To mitigate
this concern and to support future replication, we pre-register a small-scale expert validation protocol
focused on HLE free-response items:

• Sampling. Randomly sample n=20 items from HLE Bio/Chem (stratified by topic and
difficulty), prioritizing free-response questions where judging is more nuanced than multiple
choice.

• Blinding. Two independent domain experts (blinded to model identity and to each other’s
scores) will grade each item using the exact same criteria as our o3-mini rubric (binary
correctness and a continuous accuracy score in [0, 1]).

• Outputs. For each response, experts record: (i) extracted final answer, (ii) binary correctness,
(iii) a continuous accuracy in [0, 1] with ≤40-word justification.

• Agreement metrics. We will report expert–expert agreement (percent agreement, Cohen’s
κ for binary correctness; Pearson/Spearman for continuous accuracy) and expert–o3-mini
agreement (macro-F1 for binary correctness; Pearson/Spearman correlations for continuous
accuracy).

• Release. We will release the sampled IDs, anonymized expert score sheets, and scripts to
recompute all agreement statistics in our artifact package.

Takeaway. While our main findings rely on automatic judging for scale and consistency, the above
protocol provides a concrete path to independently verify fairness and robustness on the subset of
free-response items where grader discretion matters most. We will include the full results of this expert
validation in the camera-ready or artifact release.

A.5 RAG MONITOR HYPERPARAMETER SETTINGS

In our implementation of the RAG-enhanced reasoning agent, several key hyperparameters are used.
Table A2 summarizes these hyperparameters and their functions.

The choice of query top k = 3 is motivated by our design of frequent and fine-grained monitoring. Each
retrieval must be highly precise, since too many retrieved documents would unnecessarily lengthen the
context, slow down reasoning, and introduce redundant or noisy information.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Hyperparameter Value Description
model gpt-4.1-mini LLM model used in RAG Monitor
query top k 3 Maximum number of retrieved documents for each

query.
rag chunk 512 Text chunk size for RAG monitoring.
rag overlapping 128 Number of overlapping characters between consec-

utive chunks to maintain continuity.
max rag 2 Maximum number of RAG insertions allowed in

one reasoning step.
temperature 0.5 Controls generation diversity; higher values lead

to more randomness.

Table A2: Main Hyperparameter Settings used in RAG Monitor.

The parameters rag chunk and rag overlapping control the monitoring frequency of the RAG module.
A large rag chunk would make detection too sparse, causing some uncertain reasoning fragments to
miss external knowledge injection. The overlapping setting ensures continuity between consecutive
windows and avoids missing potential triggers.

The parameter max rag limits the maximum number of retrievals that can be inserted within one agent
step. This prevents the monitor from triggering too frequently and ensures that the reasoning process
remains stable and forward-moving.

In practice, the RAG monitor is triggered on average 3.64 times per 10,000 generated characters. Each
trigger adds about 176.17 tokens of new context, resulting in an average of 641.25 additional tokens
per 10,000 characters. Although this introduces extra tokens, it reduces the need for explicit tool calls,
which significantly lowers the tool usage cost. As a result, the overall reasoning process requires fewer
steps and consumes fewer tokens, as shown in Table 3.

A.6 ERROR CASE ANALYSIS

Here, we examine three representative failure modes of our model: reasoning-process errors, knowledge-
application errors, and comprehension errors. In the subsections that follow, we present a real case for
each and analyze how HSR and QAIR contributed to the failure.

A.6.1 CASE 1: REASONING PROCESS ERROR

HLE Question. Transgenic Arabidopsis lines constitutively expressing wheat proteins AKP1, RIB3,
KIB1, and YKL23 were tested in three assays: (i) luminol-based ROS over 60 min to MAMPs
(flagpep25–40, flagpep140–168, csp192–208), (ii) split-luciferase complementation in tobacco leaves,
and (iii) GFP localization under water vs flagpep140–168. Choose the correct statement.

Answer Choices (A–H):

• A. AKP1 and RIB3 are redundant receptors for pepflag22.
• B. KIB1 is the receptor for flagpep25–40 and flagpep140–168 but not for csp192–208.

• C. RIB3 is the coreceptor of AKP1; KIB1 acts downstream of RIB3.

• D. All tested proteins are transmembrane proteins...
• E. YKL23 acts upstream of KIB1; RIB3 does not act upstream of KIB1.
• F. flagpep25–40 is the ligand for AKP1 and csp192–208 for YKL23.
• G. Tobacco lacks an endogenous homolog of AKP1.
• H. None of the above.

HSR (Hierarchical Solution Refinement)

Anchor s∗ (initially correct): From the cross-modal evidence, the solver first forms the anchor
“AKP1 requires RIB3 to sense flagpep140–168; KIB1 acts downstream” ⇒ favors C.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

early pass supporting C:

"... the correct statement is choice C: ’RIB3 is the coreceptor
of AKP1;

KIB1 acts downstream of RIB3.’
- ROS: AKP1+RIB3 -> flagpep140-168 (2e6 RLUs), neither alone

responds.
- Split-luc: AKP1<->RIB3 baseline suggests ligand-dependent

complex;
KIB1<->AKP1 and KIB1<->YKL23 are positive.

- GFP: KIB1 relocalizes under flagpep140-168; AKP1/RIB3/YKL23
stay at PM."

HSR Error Note

Misweighting across modalities. HSR over-weighted split-luc magnitudes and under-weighted
ligand dependence implied by ROS. Missed consistency repair. No reconciliation step to
explain baseline AKP1↔RIB3 (no ligand) vs. positive ROS (with ligand).

Where HSR goes wrong (pivot to a faulty anchor): When a later refinement step over-weights
split-luciferase magnitudes and under-weights ligand dependence, the anchor flips to E. Two faulty
moves are visible in the refinement trace:
• Fault 1 (magnitude ⇒ direction): Interprets strong KIB1¡-¿YKL23 (8e5 RLU) as directional

upstreamness of YKL23 over KIB1, even though magnitude does not encode causal order.
• Fault 2 (baseline ⇒ absence): Treats AKP1↔RIB3 baseline (2e2 RLU) without ligand as

evidence against co-reception, ignoring the ROS gain-of-function with AKP1+RIB3 under
flagpep140–168 (a classic ligand-dependent complex pattern).

refinement pivot toward E:

"... search_local_documents timed out. Proceed from assays.
KIB1<->YKL23 is strong (8e5), AKP1<->RIB3 is baseline (2e2),
so YKL23 likely acts upstream of KIB1 and RIB3 does not.
Final choice: E."

HSR diagnosis: The error is reasoning process, not missing knowledge. All requisite facts (ROS
synergy for AKP1+RIB3 at 140–168; KIB1 relocalization; split-luc positives with KIB1) are
available, but the refinement applies invalid inference rules that overturn the initially correct anchor
C.

QAIR (Quality-Aware Iterative Review)

Checks logged as performed vs. missed:

Performed:
- Parse ROS matrix (AKP1+RIB3 -> 140-168; YKL23 -> csp192-208):

OK
- Parse split-luc matrix (KIB1<->AKP1, KIB1<->YKL23 positive;

AKP1<->RIB3 baseline): OK
- Consistency of the "E" narrative with split-luc magnitudes: OK

Missed:
- Cross-modal reconciliation: ligand-dependent complexes can

yield
baseline split-luc (no ligand) yet positive ROS (with ligand).

- Directionality audit: interaction magnitude != causal
upstreamness.

- Sanity link: GFP relocalization of KIB1 implies downstream
role,

which conflicts with "YKL23 upstream of KIB1" narrative.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

QAIR Error Note

Missed mandatory audits. QAIR should have enforced:
• Cross-modal reconciliation requires an explanation for baseline split-luc vs. positive ROS

under ligand.
• Directionality audit disallow inferring causal order from interaction magnitude alone.
• Downstream sanity link KIB1s relocalization supports a downstream role; flag conflict with

the YKL23 upstream of KIB1 story.
Skipping these allowed a self-consistent but incorrect E narrative to pass.

Observed plateau: QAIR accepts internal consistency of the E narrative without enforcing cross-
modal reconciliation, so the faulty anchor persists.
finalization kept by QAIR:

"... Based on strong KIB1<->YKL23 luminescence and no
AKP1<->RIB3 signal,

YKL23 acts upstream of KIB1, and RIB3 does not act upstream of
KIB1.

<answer>E</answer>"

A.6.2 CASE 2: KNOWLEDGE APPLICATION ERROR

HLE Question. A university field trip samples bats on an island for one month (methodology assumed
valid). The student computes Simpson’s diversity index using the formula D = 1 - N(N-1)/sum n(n-1)
and obtains D = 0. Which statement best describes this result?

Answer Choices:

• A. Mathematically and ecologically valid

• B. Mathematically inconclusive with the index value provided

• C. Not mathematically valid, but ecologically valid

• D. Mathematically valid, but not ecologically valid

• E. Not mathematically or ecologically valid

HSR (Hierarchical Solution Refinement)

Initial anchor (as formed): Accept the problems formula exactly as stated, derive what D = 0
implies under that formula, then judge mathematical vs. ecological validity.
problem framing and anchor start:

"... the standard Simpson’s diversity index is either (1 -
lambda) or (1/lambda)

where lambda = sum n_i(n_i - 1)/[N(N-1)]. The formula given in
the problem,

D = 1 - N(N-1)/sum n(n-1), is not standard. However, for the
purpose of this

problem, we must work with the formula as stated.

The student obtained a value of 0, which occurs when sum n(n-1)
= N(N-1) ..."

What HSR should have applied (correct knowledge use):
• Ecological validity is evaluated against the observed community in the stated sampling frame

(the one-month survey), not against lifetime site anecdotes.
• Given the solver already decided to use the provided formula as stated, D = 0 is mathematically

valid and, if the months sample indeed shows one species, ecologically valid for that sample ⇒
A.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

HSR Error Note

Misapplied knowledge at refinement. Instead of auditing ecological validity within the
sampling frame, HSR imported out-of-frame site priors (known island diversity), which overrode
the sample-level conclusion. Missed consistency repair. After explicitly deciding to work
with the formula as stated, HSR later allowed a pivot to wrong formula ⇒ option 4, without a
reconciliation step.

What actually happened in HSR (knowledge misapplication): The refinement step imported
site-level prior knowledge (known island diversity) to overrule the sample-level ecological judgment
and flipped away from A.
knowledge misapplication trace:

"- Ecological validity: Ecologically, it is invalid because it
contradicts the

known diversity of the island, as multiple species are known to
exist."

"The student chose D, which is option 3."

refinement concluding to option 4 in this run:

"... using a wrong formula makes it mathematically invalid.
Thus, the correct answer is option 4: Not mathematically or

ecologically valid.
<answer>E</answer>

HSR diagnosis: The error is knowledge application. The solver had all needed facts (including the
decision to use the given formula and the implication of D = 0) but applied ecological knowledge
at the wrong level (site history rather than the sampled community), causing the anchor to settle on
D or E instead of A.

QAIR (Quality-Aware Iterative Review)

Checks recorded as performed vs. missed (from the run text):

Performed:
- Algebra under the given D-formula: D = 0 <=> sum n(n-1) =

N(N-1) (OK).
- Consistency of "mathematically valid" under the accepted

(given) formula (OK).

Missed:
- Ecological validity audit constrained to the stated sampling

frame
(evaluate representativeness of the one-month sample, not
lifetime site knowledge).

- Consistency check: if the month legitimately observed a
single-species sample,

then both mathematical and ecological validity hold => Choice
A.

QAIR Error Note

Missed mandatory audits. QAIR should have enforced:
• Sampling-frame ecological audit - judge ecological validity only within the months survey.
• Formula-consistency audit - after use the formula as stated, reject later pivots to wrong formula

unless reconciled.
• Gold-aligned sanity check - if the accepted sample contains one species, then both mathemati-

cal and ecological validity hold ⇒ A.
Skipping these allowed a self-consistent but incorrect narrative (ecologically invalid due to
island history) to pass.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Observed plateau: QAIR validated internal consistency of the ecologically invalid due to island
history narrative and did not enforce a sampling-frame ecological audit, so the faulty anchor
persisted.
finalization kept by QAIR in this run:

"... Ecologically ... known diversity on the island ... making
the result

ecologically invalid. Thus ... corresponds to option 3."
<answer>4</answer>

A.6.3 CASE 3: COMPREHENSION ERROR

HLE Question. A university field trip samples bats on an island for one month (methodology assumed
valid). The student computes Simpson’s diversity index using the formula D = 1 - N(N-1)/sum n(n-1)
and obtains D = 0. Which statement best describes this result?

Options:

• A. Mathematically and ecologically valid

• B. Mathematically inconclusive with the index value provided

• C. Not mathematically valid, but ecologically valid

• D. Mathematically valid, but not ecologically valid

• E. Not mathematically or ecologically valid

HSR (Hierarchical Solution Refinement)

Anchor s∗ (as formed by the solver): correct mechanism up to the enal stage (thermolysis of the
sulfoxide → vinyl ether → [3,3]-Claisen → unsaturated aldehyde).
excerpt from the run (mechanistic anchor):

"... thermal elimination at 180 C gives the vinyl ether
CH2=CH-O-C(CH3)2-CH=CH2,

which undergoes a [3,3]-sigmatropic Claisen rearrangement to an
aldehyde ..."

Where HSR should have repaired comprehension (nomenclature layer): For aldehydes, the
parent chain must (i) include the carbonyl carbon as C1 and (ii) maximize chain length while
assigning the lowest locants jointly to C=O and the C=C. Under the rearranged connectivity, the
correct parent is hex, absorbing one methyl into the main chain; the double bond is at C4 and the
remaining methyl is at C5, yielding 5-methylhex-4-enal (Gold).

HSR Error Note

Missed comprehension repair. HSR failed to:
• apply the aldehyde parent-chain rule (chain must include C=O and be maximized);
• apply the lowest-locant rule for the C=C within that parent;
• re-evaluate pent-* vs. hex-* after the [3,3]-shift mapping.
Result: the naming anchor should have flipped to 5-methylhex-4-enal, but did not.

What actually happened in HSR (missed repair; wrong anchor kept): The refinement layer
accepted a pent-based chain and locked the name accordingly.
excerpts from the run (mis-naming kept by refinement):

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

"The IUPAC name is derived as follows:
- The longest carbon chain containing the aldehyde group is five

carbons (pentanal).
- The double bond is between carbons 4 and 5 (pent-4-enal).
- Two methyl groups are attached to carbon 3 (3,3-dimethyl).
Thus, the correct name is 3,3-dimethylpent-4-enal.

<answer>
\boxed{3,3-dimethylpent-4-enal}
</answer>"

HSR diagnosis: The failure is comprehension of IUPAC chain selection rules (parent-chain
identification when both a C=O and an alkene must be included), not mechanism recall. HSR
improved mechanistic clarity but did not apply a naming-level repair to flip from pent-* to the
hex-* parent required by the Gold answer.

QAIR (Quality-Aware Iterative Review)

Checks recorded (as reflected in the run text):

- Mechanistic plausibility (elimination -> vinyl ether ->
Claisen): PASSED

- Role of NaHCO3 as neutralizing base (sulfenic acid): PASSED
- Internal consistency of proposed names vs. drawn skeleton:

PASSED
- IUPAC audit: parent-chain selection and lowest-locant C=C

(REQUIRED): SKIPPED

QAIR Error Note

Missed mandatory audit. QAIR should have enforced:
• Parent-chain audit (aldehyde rule): chain includes C=O and is maximized;
• Lowest-locant audit (C=C) within that parent chain;
• [3, 3] - mapping check to determine which branch becomes part of the main chain.
Skipping these allowed a self-consistent but wrong pent-* narrative to pass.

Observed plateau: QAIR converged on a self-consistent pent-chain narrative and terminated
without running the naming audit that would force re-evaluation of the parent chain under aldehyde
rules.
Conclusion kept by QAIR:

"... The major product is 4,4-dimethylpent-5-enal ...
<answer> \boxed{4,4-dimethylpent-5-enal} </answer>"

A.7 ADDITIONAL BENCHMARK RESULTS

A.8 PSEUDO-CODE

A.9 USAGE OF LANGUAGE MODELS

We utilized a large language model (LLM) to aid in the preparation of this manuscript. Its use was
limited to editorial tasks, including proofreading for typographical errors, correcting grammar, and
improving the clarity and readability of the text.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table A3: Benchmark comparison on HLE Bio/Chem (149 problems; o3-mini judge)

Model Acc (%)

LLMs
DeepSeek V3.1 (Non-Think) 6.71
Deekseek R1 10.74
Qwen3 235B A22B 15.38

LLM with Tools
Deekseek R1 with Browsing 16.82
DeepSeek V3.1 with Browsing 11.21
Doubao with Browsing 11.21

Agents
Kimi Researcher 9.35

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Algorithm 1 Eigen-1: High-level Workflow
Require: Query q, config C (LLM & retriever), #proposers K (e.g., 5), QAIR threshold τ , max rounds Tmax

Ensure: Final solution s⋆

1: Init: set up LLM, RETRIEVER, and tool endpoints from C
2:

Proposer generates initial solutions
3: for all i ∈ {1, . . . ,K} in parallel do
4: S[i]← GENERATE(q) ▷ initial solution generation
5: end for
6:

Local correction (optional, per-candidate)
7: for all i ∈ {1, . . . ,K} in parallel do
8: C[i]← CORRECTOR(S[i]) ▷ targeted fixes without cross-solution access
9: end for

10:
Hierarchical Solution Refinement (HSR)

11: R← ∅
12: for a ∈ {1, . . . ,K} do ▷ rotate anchors
13: A← C[a], Ref ← C \ {C[a]}
14: R[a]← REFINE(A,Ref) ▷ apply peer-informed repairs: logic, numeric, method, expression
15: end for
16:

Quality-Aware Iterative Reasoning (QAIR)
17: t← 0, P ← R
18: while t < Tmax do
19: (parallel) for each s ∈ P : (qlogic, qans, qexp, suggestion)← EVALUATOR(s)
20: score(s)← 0.2 · qlogic + 0.6 · qans + 0.2 · qexp
21: Pass← {s ∈ P | score(s) ≥ τ}; Fail← P \ Pass
22: if Fail = ∅ then break
23: end if
24: (parallel) for each s ∈ Fail: s̃← CORRECTOR(s, suggestion)
25: P ← Pass ∪ {s̃ | s ∈ Fail}; t← t+ 1
26: end while
27:

Rank & select
28: s⋆ ← RANKER.SELECT(P) ▷ e.g., composite score or pairwise compare
29: return s⋆

Subroutines used in all LLM generation process
30: function MONITOR-BASED RAG(q)
31: ctx← INITCONTEXT(q)
32: while not DONE(ctx) do
33: ctx← LLM.NEXT(ctx)
34: if MONITOR(ctx) = 1 then ▷ detect uncertainty/insufficiency on-stream
35: qry ← QUERIER(ctx) ▷ minimal, targeted keywords
36: docs← RETRIEVER(qry)
37: ctx← INJECTOR(ctx, docs) ▷ compress & integrate evidence seamlessly
38: end if
39: end while
40: return TRACETOSOLUTION(ctx)
41: end function

30

