
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFUSION ON SYNTAX TREES FOR PROGRAM SYN-
THESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models generate code one token at a time. Their autoregressive
generation process lacks the feedback of observing the program’s output. Training
LLMs to suggest edits directly can be challenging due to the scarcity of rich edit
data. To address these problems, we propose neural diffusion models that operate
on syntax trees of any context-free grammar. Similar to image diffusion models,
our method also inverts “noise” applied to syntax trees. Rather than generating
code sequentially, we iteratively edit it while preserving syntactic validity, which
makes it easy to combine this neural model with search. We apply our approach
to inverse graphics tasks, where our model learns to convert images into programs
that produce those images. Combined with search, our model is able to write
graphics programs, see the execution result, and debug them to meet the required
specifications. We additionally show how our system can write graphics programs
for hand-drawn sketches. Video results can be found at https://td-anon.
github.io.

1 INTRODUCTION

Large language models (LLMs) have made remarkable progress in code generation, but their au-
toregressive nature presents a fundamental challenge: they generate code token by token, without
access to the program’s runtime output from the previously generated tokens. This makes it difficult
to correct errors, as the model lacks the feedback loop of seeing the program’s output and adjusting
accordingly. While LLMs can be trained to suggest edits to existing code (Chakraborty et al., 2020;
Zhang et al., 2022; Jin et al., 2023), acquiring sufficient training data for this task is difficult.

In this paper, we introduce a new approach to program synthesis using neural diffusion models that
operate directly on syntax trees. Diffusion models have previously been used to great success in
image generation (Ho et al., 2020; Nichol et al., 2021; Song et al., 2020). By leveraging diffusion,
we let the model learn to iteratively refine programs while ensuring syntactic validity. Crucially,
our approach allows the model to observe the program’s output at each step, effectively enabling a
debugging process.

In the spirit of systems like AlphaZero (Silver et al., 2018), the iterative nature of diffusion naturally
lends itself to search-based program synthesis. By training a value model alongside our diffusion
model, we can guide the denoising process toward programs that are likely to achieve the desired
output. This allows us to efficiently explore the program space, making more informed decisions at
each step of the generation process.

We implement our approach for inverse graphics tasks, a problem of interest in the symbolic program
synthesis literature (Ellis et al., 2021; 2019). This domain is naturally suitable for our approach
because small changes in the code produce semantically meaningful changes in the rendered image.
We are further motivated to explore this domain because modern vision-language models (VLMs)
struggle to achieve exact pixel matches on these tasks (Figure 4).

Our main contributions for this work are (a) a novel approach to program synthesis using diffusion on
syntax trees and (b) an implementation of our approach for inverse graphics tasks that significantly
outperforms previous methods.

1

https://td-anon.github.io
https://td-anon.github.io

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Examples of programs recovered by our system. The top row shows a hand-drawn sketch
of an icon (left), the recovered program (middle), and the compilation of the recovered program
(right). The top two rows are for the constructive solid geometry language (CSG2D-Sketch). The
last row is an example output from our TinySVG environment that learns to invert hierarchical
programs of shapes and colors. Video examples can be found at https://td-anon.github.
io.

2 BACKGROUND & RELATED WORK

Neural program synthesis Neural program synthesis is a prominent area of research, in which
neural networks generate programs from input-output examples. Early work, such as Parisotto et al.
(2016), demonstrated the feasibility of this approach. While modern language models can be directly
applied to program synthesis, combining neural networks with search strategies often yields better
results and guarantees. In this paradigm, the neural network guides the search process by providing
proposal distributions or scoring candidate programs. Examples of such hybrid methods include
Balog et al. (2016), Ellis et al. (2021), and Devlin et al. (2017). A key difference from our work
is that these methods construct programs incrementally, exploring a vast space of partial programs.
Our approach, in contrast, focuses on editing programs, allowing us to both grow programs from
scratch and make corrections based on the program execution.

Neural diffusion Neural diffusion models, a class of generative models, have demonstrated im-
pressive results for modeling high-dimensional data, such as images (Ho et al., 2020; Nichol et al.,
2021; Song et al., 2020). A neural diffusion model takes samples from the data distribution (e.g.
real-world images), incrementally corrupts the data by adding noise, and trains a neural network
to incrementally remove the noise. To generate new samples, we can start with random noise and
iteratively apply the neural network to denoise the input.

Diffusion for discrete data Recent work extends diffusion to discrete and structured data like
graphs (Vignac et al., 2022), with applications in areas such as molecule design (Hoogeboom et al.,
2022; Schneuing et al., 2022; Corso et al., 2022). Notably, Lou et al. (2023) proposed a discrete
diffusion model using a novel score-matching objective for language modeling. Another promising
line of work for generative modeling on structured data is generative flow networks (GFlowNets)
(Bengio et al., 2023), where neural models construct structured data one atom at a time.

Diffusion for code generation Singh et al. (2023) use a diffusion model for code generation.
However, their approach is to first embed text into a continuous latent space, train a continuous

2

https://td-anon.github.io
https://td-anon.github.io

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: An overview of our method. Analogously to adding noise in image diffusion, we randomly
make small mutations to the syntax trees of programs. We then train a conditional neural model
to invert these small mutations. In the above example, we operate in a domain-specific language
(DSL) for creating 2D graphics using a constructive solid geometry language. The leftmost panel
(z0) shows the target image (bottom) alongside its program as a syntax tree (top). The y value of
the circle gets mutated from 16 to 10 in the second panel, making the black circle ”jump” a little
higher. Between z1 and z2, we see that we can mutate the Subtract (−) node to a Circle node,
effectively deleting it.

diffusion model on that space, and then unembed at the end. This means that intermediate stages of
the latent representation are not trained to correspond to actual code. The embedding tokens latch
to the nearest embeddings during the last few steps.

Direct code editing using neural models has also been explored. Chakraborty et al. (2020) use a
graph neural network for code editing, trained on a dataset of real-world code patches. Similarly,
Zhang et al. (2022) train a language model to edit code by modifying or inserting [MASK] tokens
or deleting existing tokens. They further fine-tune their model on real-world comments and patches.
Unlike these methods, our approach avoids the need for extensive code edit datasets and inherently
guarantees syntactic validity through our pretraining task. ChainCoder (Zheng et al., 2023) used the
abstract-syntax tree structure explicitly for code generation with language models, but do not use
execution guidance like our approach.

Program synthesis for inverse graphics We are inspired by previous work by Sharma et al.
(2018); Ellis et al. (2018; 2019), which also uses the CSG2D language. Sharma et al. (2018) propose
a convolutional encoder and a recurrent model to go from images to programs. Ellis et al. (2019)
propose a method to provide a neural model with the intermediate program execution output in a
read–eval–print loop (REPL). Unlike our method, the ability to execute partial graphics programs is
a key requirement for their work. Our system operates on complete programs and does not require a
custom partial compiler. As mentioned in their work, their policies are also brittle. Once the policy
proposes an object, it cannot undo that proposal. Hence, these systems require a large number of
particles in a Sequential Monte-Carlo (SMC) sampler to make the system less brittle to mistakes.

3 METHOD

The main idea behind our method is to develop a form of denoising diffusion models analogous to
image diffusion models for syntax trees.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Consider the example task from Ellis et al. (2019) of generating a constructive solid geometry
(CSG2D) program from an image. In CSG2D, we can combine simple primitives like circles and
quadrilaterals using boolean operations like addition and subtraction to create more complex shapes,
with the context-free grammar (CFG),

S→ S+ S | S− S | Circler
x,y | Quad

w,h
x,y,θ.

In Figure 2, z0 is our target program, and x0 is the rendered version of z0. Our task is to invert x0

to recover z0. Our noising process randomly mutates y=16 to y=10. It then mutates the whole ⊖
sub-tree with two shapes with a new sub-tree with just one shape. Conditioned on the image x0, and
starting at z3, x3, we would like to train a neural network to reverse this noising process to get to z0.

In the following sections, we will first describe how “noise” is added to syntax trees. Then, we will
detail how we train a neural network to reverse this noise. Finally, we will describe how we use this
neural network for search.

3.1 SAMPLING SMALL MUTATIONS

Let zt be a program at time t. Let pN (zt+1|zt) be the distribution over randomly mutating program
zt to get zt+1. We want pN mutations to be: (1) small and (2) produce syntactically valid zt+1’s.

To this end, we turn to the rich computer security literature on grammar-based fuzzing (Zeller et al.,
2023; Godefroid et al., 2008; Srivastava & Payer, 2021; Wang et al., 2019). To ensure the mutations
are small, we first define a function σ(z) that gives us the “size” of program z. For all our experi-
ments, we define a set of terminals in our CFG to be primitives. As an example, the primitives in our
CSG2D language are {Quad,Circle}. In that language, we use σ(z) = σprimitive(z), which counts
the number of primitives. Other generic options for σ(z) could be the depth, number of nodes, etc.

We then follow Luke (2000) and Zeller et al. (2023) to randomly sample programs from
our CFG under exact constraints, σmin < σ(z) ≤ σmax. We call this function
ConstrainedSample(σmin, σmax). Setting a small value for σmax allows us to sample small
programs randomly. We set σmax = σsmall when generating small mutations.

To mutate a given program z, we first generate a set of candidate nodes in its tree under some σsmall,
C = {n ∈ SyntaxTree(z) | σ(n) ≤ σsmall}.

Then, we uniformly sample a mutation node from this set,
m ∼ Uniform[C].

Since we have access to the full syntax tree and the CFG, we know which production rule produced
m, and can thus ensure syntactically valid mutations. For example, if m were a number, we know
to replace it with a number. If m were a general subexpression, we know we can replace it with any
general subexpression. Therefore, we sample m′, which is m’s replacement as,

m′ ∼ ConstrainedSample(ProductionRule(m), σsmall).

3.2 POLICY

3.2.1 FORWARD PROCESS

We cast the program synthesis problem as an inference problem. Let p(x|z) be our observation
model, where x can be any kind of observation. For example, we will later use images x produced
by our program, but x could also be an execution trace, a version of the program compiled to
bytecode, or simply a syntactic property. Our task is to invert this observation model, i.e. produce a
program z given some observation x.

We first take some program z0, either from a dataset, D = {z0, z1, . . .}, or in our case, a randomly
sampled program from our CFG. We sample z0’s such that σ(z0) ≤ σmax. We then add noise to z0
for s ∼ Uniform[1, smax], steps, where smax is a hyper-parameter, using,

zt+1 ∼ pN (zt+1|zt).
We then train a conditional neural network that models the distribution,

qϕ(zt−1|zt, xt;x0),

where ϕ are the parameters of the neural network, zt is the current program, xt is the current output
of the program, and x0 is the target output we are solving for.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2.2 REVERSE MUTATION PATHS

Since we have access to the ground-truth mutations, we can generate targets to train a neural network
by simply reversing the sampled trajectory through the forward process Markov-Chain, z0 → z1 →
. . . → zT . At first glance, this may seem a reasonable choice. However, training to simply invert
the last mutation can potentially create a much noisier signal for the neural network.

Consider the case where, within a much larger syntax tree, a color was mutated as,

Red→ Blue→ Green.

The color in our target image, x0, is Red, while the color in our mutated image, x2, is Green. If
we naively teach the model to invert the above Markov chain, we are training the network to turn
the Green to a Blue, even though we could have directly trained the network to go from Green
to a Red.

Therefore, to create a better training signal, we compute an edit path between the target tree and the
mutated tree. We use a tree edit path algorithm loosely based on the tree edit distance introduced
by Pawlik & Augsten (2016; 2015). The general tree edit distance problem allows for the insertion,
deletion, and replacement of any node. Unlike them, our trees can only be edited under an action
space that only permits small mutations. For two trees, zA and zB , we linearly compare the syntax
structure. For changes that are already≤ σsmall, we add that to our mutation list. For changes that are
> σsmall, we find the first mutation that reduces the distance between the two trees. Therefore, for
any two programs, zA and zB , we can compute the first step of the mutation path in O(|zA|+ |zB |)
time.

3.3 VALUE NETWORK & SEARCH

We additionally train a value network, vϕ(xA, xB), which takes as input two rendered images, xA

and xB , and predicts the edit distance between the underlying programs that generated those images.
Since we have already computed edit paths between trees during training, we have direct access to
the ground-truth program edit distance for any pair of rendered images, allowing us to train this
value network in a supervised manner.

Using our policy, qϕ(zt−1|zt, xt;x0), and our value, vϕ(xtA , xtB), we can perform beam-search for
a given target image, x0, and a randomly initialized program zt. At each iteration, we maintain a
collection of nodes in our search tree with the most promising values and only expand those nodes.

3.4 ARCHITECTURE

Figure 3 shows an overview of our neural architecture. We use a vision-language model described
by Tsimpoukelli et al. (2021) as our denoising model, qϕ(zt−1|zt, xt;x0). We use an off-the-shelf
implementation (Wightman, 2019) of NF-ResNet-26 as our image encoder, which is a normalizer-
free convolutional architecture proposed by Brock et al. (2021) to avoid test time instabilities with
Batch-Norm (Wu et al., 2023). We implement a custom tokenizer, using the terminals of our CFG
as tokens. The rest of the edit model is a small decoder-only transformer (Vaswani et al., 2017;
Radford et al., 2019), with a total model size of ≈ 10 million parameters.

We add two additional types of tokens: an <EDIT> token, which serves as a start-of-sentence to-
ken for the model; and <POS x> tokens, which allow the model to reference positions within its
context. Given a current image, a target image, and a current tokenized program, we train this trans-
former model to predict the edit position and the replacement text autoregressively. While making
predictions, the decoding is constrained under the grammar. We mask out the prediction logits to
only include edit positions that represent nodes in the syntax tree, and only produce replacements
that are syntactically valid for the selected edit position.

We set σsmall = 2, which means the network is only allowed to produce edits with fewer than two
primitives. For training data, we sample an infinite stream of random expressions from the CFG.
We choose a random number of noise steps, s ∈ [1, 5], to produce a mutated expression. For
some percentage of the examples, ρ, we instead sample a completely random new expression as our
mutated expression. We trained for 3 days for the environments we tested on a single Nvidia A6000
GPU.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: We train qϕ(zt−1|zt, xt;x0) as a decoder only vision-language transformer following
Tsimpoukelli et al. (2021). We use an NF-ResNet as the image encoder, which is a normalizer-free
convolutional architecture proposed by Brock et al. (2021). The image encoder encodes the current
image, xt, and the target images, x0. The current program is tokenized according to the vocabulary
in our context-free grammar. The decoder first predicts an edit location in the current program, and
then tokens that replace what the edit location should be replaced by. We constrain the autoregressive
decoding by our context-free grammar by masking only the valid token logits.

4 EXPERIMENTS

4.1 ENVIRONMENTS

We conduct experiments on four domain-specific graphics languages, with complete grammar spec-
ifications provided in Appendix B.

CSG2D A 2D constructive solid geometry language where primitive shapes are added and sub-
tracted to create more complex forms, as explored in our baseline methods (Ellis et al., 2019; Sharma
et al., 2018). We also create CSG2D-Sketch, which has an added observation model that simulates
hand-drawn sketches using the algorithm from Wood et al. (2012).

TinySVG A language featuring primitive shapes with color, along with Arrange commands
for horizontal and vertical alignment, and Move commands for shape offsetting. Figure 1 portrays
an example program. Unlike the compositional nature of CSG2D, TinySVG is hierarchical: sub-
expressions can be combined into compound objects for high-level manipulation. We also create,
Rainbow, a simplified version of TinySVG without Move commands for ablation studies due to
its reduced computational demands.

We implemented these languages using the Lark (Lark Contributors, 2014) and Iceberg (IceBerg
Contributors, 2023) Python libraries, with our tree-diffusion implementation designed to be generic
and adaptable to any context-free grammar and observation model.

4.2 BASELINES

We use two prior works, Ellis et al. (2019) and the vision-language model (VLM) suggested by
Tsimpoukelli et al. (2021) in the spirit of Sharma et al. (2018) as baseline methods.

VLM Sharma et al. (2018) employed a convolutional and recurrent neural network to generate
program statements from an input image. For a fair comparison, we re-implemented CSGNet using
the same vision-language transformer architecture (VLM) as our method, representing the mod-
ern autoregressive approach to code generation. We use rejection sampling, repeatedly generating
programs until a match is found.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

REPL VLM Ellis et al. (2019) proposed a method to build programs one primitive at a time
until all primitives have been placed. They also give a policy network access to a REPL, i.e., the
ability to execute code and see outputs. Notably, this current image is rendered from the current
partial program. As such, we require a custom partial compiler. This is straightforward for CSG2D
since it is a compositional language. We simply render the shapes placed so far. For TinySVG,
it is not immediately obvious how this partial compiler should be written. This is because the
rendering happens bottom-up. Primitives get arranged, and those arrangements get arranged again
(see Figure 1). Therefore, we only use this baseline method with CSG2D.

Tree Diffusion We split our approach into two. The first, Tree Diffusion Search, uses the beam
search method previously described, that leverages both a policy network and a value network. This
allows us to explore the possible program solutions more effectively, guided by the output generated
at each step of the program’s execution. The second part, Tree Diffusion Rollouts, relies solely on
the policy network. It repeatedly samples potential edit actions from the policy’s distribution until it
arrives at a program that satisfies the given specification.

Test tasks For TinySVG we used a held-out test set of randomly generated expressions and their
images. For the CSG2D task, we noticed that all methods were at ceiling performance on an in-
distribution held-out test set. In Ellis et al. (2019), the authors created a harder test set with more
objects. However, simply adding more objects in an environment like CSG2D resulted in simpler
final scenes, since sampling a large object that subtracts a large part of the scene becomes more
likely. Instead, to generate a hard test set, we filtered for images at the 95th percentile or more on
incompressibility with the LZ4 (Collet et al., 2013; Welch, 1984) compression algorithm.

Evaluation In CSG2D, we accepted a predicted program as matching the specification if it
achieved an intersection-over-union (IoU) of 0.99 or more. In TinySVG, we accepted an image
if 99% of the pixels were within 0.005 ≈ 1

256 . It is notably very challenging to pass this strict
requirement to match almost all the pixels. In Appendix D, Figure 11, we show the complexity of
these test tasks.

All methods were trained with supervised learning and were not fine-tuned with reinforcement learn-
ing. The training data was generated by using our ConstrainedSample function, which ran-
domly samples programs from grammars. All methods used the grammar-based constrained decod-
ing method described in Section 3.4, which ensured syntactically correct outputs. While testing,
we measured performance based on the number of nodes the method needed to expand to com-
plete the task. For each method, a node expansion is a call to the neural network and a rendering
step to check the answer. Since all methods tested use an identical neural architecture and param-
eter counts, “number of nodes expanded” is a comparable metric of total amount of computation
required by each of the methods.

Figure 4 shows the performance of our method compared to the baseline methods. In both the
CSG2D and TinySVG environments, our tree diffusion policy rollouts significantly outperform the
policies of previous methods. Our policy combined with beam search further improves performance,
solving problems with fewer calls to the renderer than all other methods. Figure 6 shows successful
qualitative examples of our system alongside outputs of baseline methods. We note that our system
can fix smaller issues that other methods miss. Figure 7 shows some examples of recovered programs
from sketches in the CSG2D-Sketch language, showing how the observation model does not
necessarily need to be a deterministic rendering; it can also consist of stochastic hand-drawn images.

4.3 ABLATIONS

To understand the impact of our design decisions, we performed ablation studies on the simplified
Rainbow environment using a smaller transformer model.

First, we examined the effect of removing the current image (no REPL) from the policy network’s
input. As shown in Figure 5(a), this drastically hindered performance, confirming the importance of
a REPL-like interface observed by Ellis et al. (2019).

Next, we investigated the necessity of our reverse mutation path algorithm. While training on the
last mutation step alone provides a valid path, it introduces noise by potentially targeting subopti-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000

Number of Nodes Expanded

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ra

ct
io

n
of

P
ro

b
le

m
s

S
ol

ve
d

Performance on the CSG2D Environment

0 1000 2000 3000 4000 5000

Number of Nodes Expanded

0.00

0.05

0.10

0.15

0.20

F
ra

ct
io

n
of

P
ro

b
le

m
s

S
ol

ve
d

Performance on the TinySVG Environment

Tree Diffusion Search (Ours) Tree Diffusion Rollouts (Ours) REPL VLM VLM

Figure 4: Performance of our approach in comparison to baseline methods in CSG2D and TinySVG
languages. We give the methods n = 256 images from the test set and measure the number of nodes
expanded to find a solution. The auto-regressive baseline was queried with rejection sampling. Our
policy outperforms previous methods, and our policy combined with search helps boost performance
further. All neural networks here have the same architecture and number of parameters. Error bars
show standard deviation across 5 random seeds.

0 20 40 60 80 100

Number of Nodes Expanded

0.0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n
of

P
ro

b
le

m
s

S
ol

ve
d

Ablations on Tree Diffusion

Control

No Reverse Path

No Noising

No Current Image

(a)

0 20 40 60 80 100

Number of Nodes Expanded

0.0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n
of

P
ro

b
le

m
s

S
ol

ve
d

Effects of Expression Initialization

ρ = 0.2

ρ = 0.5

ρ = 0.0

ρ = 0.8

ρ = 1.0

(b)

Figure 5: Effects of changing several design decisions of our system. We train smaller models on
the Rainbow environment. We give the model n = 256 test problems to solve. In (a), for No
Reverse Path, we train the model without computing an explicit reverse path, only using the
last step of the noising process as targets. For No Current Image, we train a model that does
not get to see the compiled output image of the program it is editing. For No Noising, instead of
using our noising process, we generate two random expressions and use the path between them as
targets. In (b) we examine the effect of training mixture between forward diffusion (ρ = 0.0) and
pure random initialization (ρ = 1.0) further. Error bars show standard deviation across 5 random
seeds.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: Qualitative examples of our method and baselines on two inverse graphics languages,
CSG2D (top two rows) and TinySVG (bottom two rows). The leftmost column shows the ground-
truth rendered programs from our test set. The next columns show rendered programs from various
methods. Our methods are able to finely adjust and match the ground-truth programs more closely.

mal intermediate states. Figure 5(a) demonstrates that utilizing the reverse mutation path improves
performance, particularly in finding solutions with fewer steps. However, both methods eventually
reach similar performance levels, suggesting that a noisy path, while less efficient, can still lead to a
solution.

Finally, we explored whether the incremental noise process is crucial, given our tree edit path al-
gorithm. Couldn’t we directly sample two random expressions, calculate the path, and train the
network to imitate it? We varied the training data composition between pure forward diffusion
(ρ = 0.0) and pure random initialization (ρ = 1.0) as shown in Figure 5(b). We found that a
small proportion (ρ = 0.2) of pure random initializations combined with forward diffusion yielded
the best results. This suggests that forward diffusion provides a richer training distribution around
target points, while random initialization teaches the model to navigate the program space more
broadly. The emphasis on fine-grained edits from forward diffusion proves beneficial for achieving
exact pixel matches in our evaluations.

5 CONCLUSION

In this work, we proposed a neural diffusion model that operates on syntax trees for program syn-
thesis. We implemented our approach for inverse graphics tasks, where our task is to find programs
that would render a given image. Unlike previous work, our model can construct programs, view
their output, and in turn edit these programs, allowing it to fix its mistakes in a feedback loop. We
quantitatively showed how our approach outperforms our baselines at these inverse graphics tasks.
We further studied the effects of key design decisions via ablation experiments.

Limitations There are several significant limitations to this work. First, we operate on expressions
with no variable binding, loops, strings, continuous parameters, etc. While we think our approach
can be extended to support these, it needs more work and careful design. Current large-language
models can write complicated programs in many domains, while we focus on a very narrow task.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: Examples of programs recovered for input sketches in the CSG2D-Sketch language.
The input sketches are from our observation model that simulates hand-drawn sketches (top-row).
The output programs rendered (bottom row) are able to match the input sketches by adding and
subtracting basic shapes. Video results for these sketches can be found at https://td-anon.
github.io.

Additionally, the task of inverse graphics might just be particularly suited for inverse graphics where
small mutations make informative changes in the image output.

Future Work In the future, we hope to be able to leverage large-scale internet data on programs to
train our system, making small mutations to their syntax tree and learning to invert them. We would
also like to study this approach in domains other than inverse graphics. Additionally, we would like
to extend this approach to work with both the discrete syntax structure and continuous floating-point
constants.

Impact Given the narrow scope of the implementation, we don’t think there is a direct societal
impact, other than to inform future research direction in machine-assisted programming. We hope
future directions of this work, specifically in inverse graphics, help artists, engineering CAD model-
ers, and programmers with a tool to convert ideas to precise programs for downstream use quickly.

REFERENCES

Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voznesensky,
Bin Bao, Peter Bell, David Berard, Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will
Constable, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng, Jiong Gong, Michael
Gschwind, Brian Hirsh, Sherlock Huang, Kshiteej Kalambarkar, Laurent Kirsch, Michael Lazos,
Mario Lezcano, Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie Pan, Chris-
tian Puhrsch, Matthias Reso, Mark Saroufim, Marcos Yukio Siraichi, Helen Suk, Michael Suo,
Phil Tillet, Eikan Wang, Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren Zhou,
Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu, and Soumith Chintala. PyTorch 2: Faster
Machine Learning Through Dynamic Python Bytecode Transformation and Graph Compilation.
In 29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/3620665.3640366.
URL https://pytorch.org/assets/pytorch2-2.pdf.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. arXiv preprint arXiv:1611.01989, 2016.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization. In International Conference on Machine Learning, pp.
1059–1071. PMLR, 2021.

Edwin Catmull and Raphael Rom. A class of local interpolating splines. In Computer aided geo-
metric design, pp. 317–326. Elsevier, 1974.

10

https://td-anon.github.io
https://td-anon.github.io
https://pytorch.org/assets/pytorch2-2.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray. Codit: Code editing
with tree-based neural models. IEEE Transactions on Software Engineering, 48(4):1385–1399,
2020.

Yann Collet et al. Lz4: Extremely fast compression algorithm. code. google. com, 2013.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock: Dif-
fusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776, 2022.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and
Pushmeet Kohli. RobustFill: Neural program learning under noisy I/O. In Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pp. 990–998. PMLR, 06–11 Aug 2017.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer graph-
ics programs from hand-drawn images. Advances in neural information processing systems, 31,
2018.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a repl. Advances in Neural Information Processing
Systems, 32, 2019.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt,
Luc Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping in-
ductive program synthesis with wake-sleep library learning. In Proceedings of the 42nd acm
sigplan international conference on programming language design and implementation, pp. 835–
850, 2021.

Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-based whitebox fuzzing. In
Proceedings of the 29th ACM SIGPLAN conference on programming language design and imple-
mentation, pp. 206–215, 2008.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3d. In International conference on machine learning, pp. 8867–
8887. PMLR, 2022.

IceBerg Contributors. IceBerg – Compositional Graphics and Diagramming. github, July 2023.
URL https://github.com/revalo/iceberg.

Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey
Svyatkovskiy. Inferfix: End-to-end program repair with llms. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 1646–1656, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Lark Contributors. Lark - a parsing toolkit for Python. github, August 2014. URL https:
//github.com/lark-parser/lark.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 26296–26306, 2024.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

Sean Luke. Two fast tree-creation algorithms for genetic programming. IEEE Transactions on
Evolutionary Computation, 4(3):274–283, 2000.

11

https://github.com/revalo/iceberg
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Emilio Parisotto, Abdel rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis, 2016.

Mateusz Pawlik and Nikolaus Augsten. Efficient computation of the tree edit distance. ACM Trans-
actions on Database Systems (TODS), 40(1):1–40, 2015.

Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and memory-efficient. Informa-
tion Systems, 56:157–173, 2016.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom Blun-
dell, Pietro Lió, Carla Gomes, Max Welling, et al. Structure-based drug design with equivariant
diffusion models. arXiv preprint arXiv:2210.13695, 2022.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet:
Neural shape parser for constructive solid geometry. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5515–5523, 2018.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Mukul Singh, José Cambronero, Sumit Gulwani, Vu Le, Carina Negreanu, and Gust Verbruggen.
Codefusion: A pre-trained diffusion model for code generation, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Prashast Srivastava and Mathias Payer. Gramatron: Effective grammar-aware fuzzing. In Pro-
ceedings of the 30th acm sigsoft international symposium on software testing and analysis, pp.
244–256, 2021.

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill. Mul-
timodal few-shot learning with frozen language models. Advances in Neural Information Pro-
cessing Systems, 34:200–212, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. arXiv preprint
arXiv:2209.14734, 2022.

Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: Grammar-aware greybox fuzzing. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 724–735.
IEEE, 2019.

Terry A. Welch. A technique for high-performance data compression. Computer, 17(06):8–19,
1984.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Jo Wood, Petra Isenberg, Tobias Isenberg, Jason Dykes, Nadia Boukhelifa, and Aidan Slingsby.
Sketchy rendering for information visualization. IEEE transactions on visualization and computer
graphics, 18(12):2749–2758, 2012.

12

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

David Xing Wu, Chulhee Yun, and Suvrit Sra. On the training instability of shuffling sgd with batch
normalization. In International Conference on Machine Learning, pp. 37787–37845. PMLR,
2023.

Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler. Efficient
grammar fuzzing. In The Fuzzing Book. CISPA Helmholtz Center for Information Security,
2023. URL https://www.fuzzingbook.org/html/GrammarFuzzer.html. Re-
trieved 2023-11-11 18:18:06+01:00.

Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. Coditt5:
Pretraining for source code and natural language editing. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, pp. 1–12, 2022.

Wenqing Zheng, S P Sharan, Ajay Kumar Jaiswal, Kevin Wang, Yihan Xi, Dejia Xu, and Zhangyang
Wang. Outline, then details: Syntactically guided coarse-to-fine code generation. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scar-
lett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pp. 42403–42419. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/zheng23e.html.

APPENDIX

A MUTATION ALGORITHM

Figure 8: An example expression from CSG2D represented as a tree to help illustrate the mutation
algorithm. The green nodes are candidate nodes with primitives count σ(z) ≤ 2. Our mutation
algorithm only mutates these nodes.

Here we provide additional details on how we sample small mutations for tree diffusion. We will
first repeat the algorithm mentioned in Section 3 in more detail.

Our goal is to take some syntax tree and apply a small random mutation. The only type of mutation
we consider is a replacement mutation. We first collect a set of candidate nodes that we are allowed
to replace. If we select a node too high up in the tree, we end up replacing a very large part of
the tree. To make sure we only change a small part of the tree we only select nodes with ≤ σsmall
primitives. In Figure 8, if we set σsmall = 2, we get all the green nodes. We sample a node, m,
uniformly from this green set. We know the production rule for m from the CFG. For instance, if
we selected node 15, the only replacements allowed are + or−. If we selected node 46, we can only
replace it with an angle. If we selected node 11, we can replace it with any subexpression. When
we sample a replacement, we ensure that the replacement is ≤ σsmall, and that it is different than m.
Here we show 4 random mutation steps on a small expression,

(+ (+ (+ (Circle A D 4) (Quad F E 4 6 K)) (Quad 3 E C 2 M)) (Circle C 2 1))
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ --> (Circle 0 8 A)

(+ (+ (Circle 0 8 A) (Quad 3 E C 2 M)) (Circle C 2 1))
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ --> (Quad 1 0 A 3 H)

13

https://www.fuzzingbook.org/html/GrammarFuzzer.html
https://proceedings.mlr.press/v202/zheng23e.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 9: Examples of images drawn with the (a) CSG2D and (b) TinySVG languages.

(+ (Quad 1 0 A 3 H) (Circle C 2 1))
ˆ --> 4

(+ (Quad 1 0 A 3 H) (Circle 4 2 1))
ˆ --> 8

(+ (Quad 1 0 A 3 H) (Circle 8 2 1))

During our experiments we realized that this style of random mutations biases expression to get
longer on average, since there are many more leaves than parents of leaves. This made the net-
work better at going from very long expressions to target expressions, but not very good at editing
shorter expressions into longer ones. This also made our model’s context window run out frequently
when expressions got too long. To make the mutation length effects more uniform, we add a slight
modification to the algorithm mentioned above and in Section 3.

For each of the candidate nodes, we find the set of production rules for the candidates. We then
select a random production rule, r, and then select a node from the candidates with the production
rule r, as follows,

C = {n ∈ SyntaxTree(z) | σ(n) ≤ σsmall}
R = {ProductionRule(n) | n ∈ C}
r ∼ Uniform[R]

M = {n ∈ C | ProductionRule(n) = r}
m ∼ Uniform[M]

For CSG2D, this approach empirically biased our method to make expressions shorter 30.8%, equal
49.2%, and longer 20.0% of the times (n = 10, 000).

B CONTEXT-FREE GRAMMARS

Here we provide the exact context-free grammars of the languages used in this work.

B.1 CSG2D

s: binop | circle | quad
binop: (op s s)
op: + | -

number: [0 to 15]
angle: [0 to 315]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 10: Examples of the same scene being called multiple times by our sketch observation model.

// (Circle radius x y)
circle: (Circle r=number x=number y=number)

// (Quad x y w h angle)
quad: (Quad x=number y=number

w=number h=number
theta=angle)

B.2 TINYSVG

s: arrange | rect | ellipse | move
direction: v | h
color: red | green | blue | yellow | purple | orange | black | white | none
number: [0 - 9]
sign: + | -

rect: (Rectangle w=number h=number fill=color stroke=color border=number)

ellipse: (Ellipse w=number h=number fill=color stroke=color border=number)

// Arrange direction left right gap
arrange: (Arrange direction s s gap=number)

move: (Move s dx=sign number dy=sign number)

C SKETCH SIMULATION

As mentioned in the main text, we implement the CSG2D-Sketch environment, which is the same
as CSG2D with a hand-drawn sketch observation model. We do this to primarily show how this
sort of a generative model can possibly be applied to a real-world task, and that observations do not
need to be deterministic. Our sketch algorithm can be found in our codebase, and is based off the
approach described in Wood et al. (2012).

Our compiler uses Iceberg (IceBerg Contributors, 2023) and Google’s 2D Skia library to perform
boolean operations on primitive paths. The resulting path consists of line and cubic bézier com-
mands. We post-process these commands to generate sketches. For each command, we first add
Gaussian noise to all points stated in those commands. For each line, we randomly pick a point
near the 50% and 75% of the line, add Gaussian noise, and fit a Catmull & Rom (1974) spline. For

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 11: Examples of thresholding scene images using the LZ4 compression algorithm. The left
represents our test set, the right represents our training distribution.

all curves, we sample random points at uniform intervals and fit Catmull-Rom splines. We have a
special condition for circles, where we ensure that the start and end points are randomized to create
the effect of the pen lifting off. Additionally we randomize the stroke thickness.

Figure 10 shows the same program rendered multiple times using our randomized sketch simulator.

D COMPLEXITY FILTERING

As mentioned in Section 4, while testing our method alongside baseline methods, we reached ceiling
performance for all our methods. Ellis et al. (2019) got around this by creating a “hard” test case
by sampling more objects. For us, when we increased the number of objects to increase complexity,
we saw that it increased the probability that a large object would be sampled and subtract from
the whole scene, resulting in simpler scenes. This is shown by Figure 11(b), which is our training
distribution. Even though we sample a large number of objects, the scenes don’t look visually
interesting. When we studied the implementation details of Ellis et al. (2019), we noticed that
during random generation of expressions, they ensured that each shape did not change more that
60% or less than 10% of the pixels in the scene. Instead of modifying our tree sampling method, we
instead chose to rejection sample based on the compressibility of the final rendered image.

E TREE PATH ALGORITHM

Algorithm 1 shows the high-level pseudocode for how we find the first step of mutations to transform
tree A into tree B. We linearly walk down both trees until we find a node that is different. If the
target node is small, i.e., its σ(z) ≤ σsmall, then we can simply mutate the source to the target. If
the target node is larger, we sample a random small expression with the correct production rule, and
compute the path from this small expression to the target. This gives us the first step to convert the
source node to the target node. Repeatedly using Algorithm 1 gives us the full path to convert one
expression to another. We note that this path is not necessarily the optimal path, but a valid path that
is less noisy than the path we would get by simply chasing the last random mutation.

Figure 12 conceptually shows why computing this tree path might be necessary. The circle rep-
resents the space of programs. Consider a starting program z0. Each of the black arrows repre-
sents a random mutation that kicks the program to a slightly different program, so z0 → z1, then
z2 → z3 If we provide the neural network the supervised target to go from z5 to z4, we are teach-
ing the network to take an inefficient path to z0. The green path is the direct path from z5 → z0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 1 TreeDiff: Find the first set of mutations to turn one tree to another.

Require: treeA: source tree, treeB: target tree, max primitives: maximum primitives
Ensure: List of mutations to transform treeA into treeB

1: if NodeEq(treeA, treeB) then
2: mutations← []
3: for each (childA,childB) in zip(treeA.children, treeB.children) do
4: mutations ← mutations + TreeDiff(childA, childB,

max primitives)
5: end for
6: return mutations
7: else
8: if treeA.primitive count ≤ max primitives and treeB.primitive count

≤ max primitives then
9: return [Mutation(treeA.start pos, treeA.end pos,

treeB.expression)]
10: else
11: new expression ← GenerateNewExpression(treeA.production rule,

max primitives)
12: tightening diffs ← TreeDiff(new expression, treeB,

max primitives)
13: new expression ← ApplyAllMutations(new expression,

tightening diffs)
14: return [Mutation(treeA.start pos, treeA.end pos,

new expression)]
15: end if
16: end if

Figure 12: A conceptual illustration of why we need tree path-finding. The red path represents the
naive target for the neural network. The green path represents the path-finding algorithm’s target.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Method % Test Tasks Solved

Our Approach 32.18%
LLaVA (Base) 0.00%
LLaVA (Base+SVG Prompt) 0.00%
LLaVA (Fine-Tuned) 1.17%

Table 1: Performance of LLaVA on CSG2D test tasks. Note that both approaches were given a
budget of 100 samples from the model to complete these tasks, which is lower than the evaluation
results reported earlier. This is because the LLaVA model has considerably more parameters and is
much slower to run.

F COMPARISON WITH LARGE PRETRAINED MODELS

We perform some additional experiments to compare the performance of modern large vision-
language models that are pretrained on internet scale data with our approach. Specifically we eval-
uate the performance of LLaVA (Liu et al., 2024) on the CSG2D task. The base model performs
0% on our test set (100 rejection samples), and this makes sense since it is not a fair comparison,
it has not seen our DSL. Interestingly, LLaVA gets 0% even when asked to write SVG programs,
something that it has been trained on. This is because passing requires the output image to be very
close to the required specification.

To make it more fair for LLaVA, we fine-tuned it using the author’s original finetune task
script alongside the default suggested hyperparameters. To test LLaVA, we provide it with the test
image and rejection sample its output 100 times. We used LLaVA-1.5-7B , and trained on a single
A100 graphics card. Our model was also given 100 node-expansions in the tree search.

The LLaVA model has 7B parameters, and our model uses approximately 700x fewer parameters.
Because of this, node expansion count is no longer an equivalent metric for computation. If we
let our method use the same wall-clock time on the same GPU, our method reaches the ceiling
performance of 84.68%.

Figure 11 shows just how hard our task is, the left are examples from the test set, the right are
examples from the training distribution. Having a strict requirement of matching the specification
makes it a very demanding task.

G IMPLEMENTATION DETAILS

We implement our architecture in PyTorch (Ansel et al., 2024). For our image encoder we use
the NF-ResNet26 (Brock et al., 2021) implementation from the open-sourced library by Wightman
(2019). Images are of size 128 × 128 × 1 for CSG2D and 128 × 128 × 3 for TinySVG. We pass
the current and target images as a stack of image planes into the image encoder. Additionally, we
provide the absolute difference between current and target image as additional planes.

Our decoder-only transformer (Vaswani et al., 2017; Radford et al., 2019) uses 8 layers, 16 heads,
with an embedding size of 256. We use batch size 32 and optimize with Adam (Kingma & Ba, 2014)
with a learning rate of 3 × 10−4. All models, including baselines were trained for 1 million steps.
The image embeddings are of the same size as the transformer embeddings. We use 4 prefix tokens
for the image embeddings. We used a maximum context size of 512 tokens. For both environments,
we sampled expressions with at most 8 primitives. Our method and all baseline methods used this
architecture. We did not do any hyperparameter sweeps or tuning.

For the autoregressive (VLM) baseline, we trained the model to output ground-truth programs from
target images, and provided a blank current image. For tree diffusion methods, we initialized the
search and rollouts using the output of the autoregressive model, which counted as a single node
expansion. For our re-implementation of Ellis et al. (2019), we flattened the CSG2D tree into shapes
being added from left to right. We then randomly sampled a position in this shape array, compiled the
output up until the sampled position, and trained the model to output the next shape using constrained
grammar decoding.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

This is a departure from the pointer network architecture in their work. We think that the lack of prior
shaping, departure from a graphics specific pointer network, and not using reinforcement learning
to fine-tune leads to a performance difference between their results and our re-implementation. We
note that our method does not require any of these additional features, and thus the comparison is
fairer. For tree diffusion search, we used a beam size of 64, with a maximum node expansion budget
of 5000 nodes.

The value network is a small 2-layer MLP with 128 units in each layer that takes in the output of
the vision encoder, and outputs a single scalar predicting the edit distance in program space between
two images. We train this for 100, 000 steps.

19

	Introduction
	Background & Related Work
	Method
	Sampling Small Mutations
	Policy
	Forward Process
	Reverse Mutation Paths

	Value Network & Search
	Architecture

	Experiments
	Environments
	Baselines
	Ablations

	Conclusion
	Mutation Algorithm
	Context-Free Grammars
	CSG2D
	TinySVG

	Sketch Simulation
	Complexity Filtering
	Tree Path Algorithm
	Comparison With Large Pretrained Models
	Implementation Details

