
Performance-Guaranteed ODE Solvers with
Complexity-Informed Neural Networks

Feng Zhao
Department of Electronic Engineering, Tsinghua University

Noah’s Ark Lab, Huawei, Beijing, China
zhaof17@mails.tsinghua.edu.cn

Xiang Chen
Noah’s Ark Lab, Huawei

Beijing, China
xiangchen.ai@huawei.com

Jun Wang
University College London, London, United Kingdom

jun.wang@cs.ucl.ac.uk

Zuoqiang Shi
Department of Mathematical Sciences, Tsinghua University, Beijing, China 10084

Yanqi Lake Beijing Institute of Mathematical Sciences and Applications
Beijing, China 101408 zqshi@mail.tsinghua.edu.cn

Shao-Lun Huang ∗
DSIT Research Center

Tsinghua-Berkeley Shenzhen Institute, Shenzhen, China 518055
shaolun.huang@sz.tsinghua.edu.cn

Abstract

Traditionally, we provide technical parameters for ODE solvers, such as the order,
the stepsize and the local error threshold. However, there is no guarantee for
performance metrics that users care about, such as the time consumption and the
global error. In this paper, we provide such a user-oriented guarantee by using
neural networks to fit the complex relationship between the technical parameters
and performance metrics. The form of the neural network is carefully designed to
incorporate the prior knowledge from time complexity analysis of ODE solvers,
which has better performance than purely data-driven approaches. We test our
strategy on some parametrized ODE problems, and experimental results show that
the fitted model can achieve high accuracy, thus providing error guarantee for fixed
methods and time guarantee for adaptive stepsize methods.

1 Introduction

The choice of stepsize for ODE solvers has great influences on the computational time and error,
which are two fundamental performance metrics when solving differential equations. Existing
approaches to choose the stepsize usually make the solver satisfy either the time or error constraint by
providing some technical parameters. On the one hand, the fixed stepsize method like forward Euler
is often used in real-time simulator of complex systems [1], which requires strict time guarantee of
the method. On the other hand, the adaptive stepsize method with error control strategy is used in
settings when the precision of the solution is required. In both cases, no convenient method has been

∗corresponding author

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



developed to choose the appropriate hyper-parameters of ODE solvers to satisfy the requirements. In
recent years, artificial neural networks are developed for the design of new ODE solvers [2] or the
construction of differentiable integrators (NeuralODE)[3] to facilitate the parameter identification
of dynamic systems. Based on the pioneering work of NeuralODE, the proxy ODE simulators
(hypersolvers) are constructed using neural networks to reduce the time complexity of the inference
[4]. To our best knowledge, no efforts have been spared to use neural networks for the purpose of
guaranteeing the user-oriented performance. In our work, we will fill this gap by selecting ODE
solvers with complexity-informed neural networks, which is a combination of the mathematical
model and the data-driven approach. To unify the two control goals, we utilize neural networks to fit
the complex relationship between user-oriented metrics (the error or time) and technical parameters
for given ODE problems. Using our approach, we can provide strict global error control for fixed
stepsize method and approximated time guarantee for adaptive stepsize method, which enlarges the
usability for existing ODE solvers.

2 Methodology

We consider solving the initial value problem for a given ODE:

du

dt
= f(t, u)

u(t0) = u0

(1)

Many solvers are available to obtain numerical solutions of u(t) for an interval [t0, tmax]. For explicit
Runge-Kutta (RK) methods, un is updated with the following scheme to approximate the value u(tn).

un+1 = un + hnψ(tn, un, hn)

tn+1 = tn + hn
(2)

In the above formula, ψ(t, u, h) is a scheme-specific function for different RK methods. For example,
forward Euler method has ψ(t, u, h) = f(t, u). Depending on whether hn changes or not, the
methods can be divided by the fixed stepsize method (hn = h is pre-specified) and the adaptive
stepsize method (hn is adjusted at each step).

In the above, we have described the numerical routine to provide the values of two performance
metrics Q1 and Q2. For these two metrics, our goal is to find their optimal tradeoff, which is
controlled by varying the threshold (abbreviated as th). Let gth be a function which maps a problem
(parametrized by p) to the most suitable solver (parametrized by s, which is specified by a certain
integration method and stepsize control strategy). Then for a given th, gth is determined by

max
gth:p→s

Q1(p, gth(p))

s.t. Q2(p, gth(p)) ≥ th
(3)

The optimal gth for (3) makes us achieve the best for the first performance metric Q1, while satisfying
the threshold requirement for the second performance metric Q2. Within this article, we focus on two
performance metrics: accuracy (global error) and efficiency (time complexity).

The function gth should be pre-trained and well generalized on problems, so that in usage, we don’t
need to spend extra computational cost.

2.1 Global error control for fixed stepsize method

The time complexity for fixed stepsize method is inverse proportional to the adopted stepsize h while
the relationship between the error and h is unknown. To provide error control in such a case, we
replace abstract variables of (3) in the following way: Q1 specially means T1, Q2 means the global
error (abbreviated as err), and th means the error tolerance (abbreviated as tol).

min
h

T (p,RK, h)

s.t. err(p,RK, h) ≤ tol
(4)

Once we fix the p and RK method in use, the minimal T is reached when the equality constraint
is satisfied. We then need to find an inverse mapping from tol to h such that err(p,RK, h) = tol.

2



Since the local truncation error is of the order O(hq) where q is the order of the RK method, the
relationship between log h and log(err) is approximately linear. Therefore, we assume the inverse
mapping has the following form

log h = k log(err) + C(p) (5)

For a given problem parametrized by p, the intercept function C(p) (represented by a neural network)
and the slope k can be learned after obtaining multiple triads of (pi, hi, erri). In latter experiments,
we show that (5) performs better than fitting the functional relationship from (h, err) to h directly
by an MLP with the same model complexity. The loss function can be constructed by MSE or the
quantile loss. When more strict error control is preferred, the latter loss is adopted for a small quantile
value q. In inference stage, the learned model is used directly to obtain the step h given the prescribed
error level tol for fixed stepsize method.

To interpret the learned model visually, we consider solving a simple ODE problem by classical RK
with order 4 [5]. The integration interval is [0, tmax], and the solution is a two-dimensional spiral.

du1
dt

= b cos t− u2 + u2(t0), u1(t0) = x0

du2
dt

= b sin t+ u1 − u1(t0), u2(t0) = y0

(6)

For this ODE problem, the parameter p is concatenated by {b, x0, y0, tmax}. To train the model
described by (5), we first sample multiple data of (p, h) from bounded intervals and obtain the
corresponding global errors in `∞ norm. Using an MLP with one hidden layer to describe C(p), we
obtain the model illustrated in Figure 1 by varying one input variable at each time. Since (5) captures
the order condition, the fitted curve matches the true relationship exactly as shown in (a). For other
inputs, (5) differs not far from the numerical approximation of the true relationship, as shown in (b,c).
By using the quantile loss, all the fitted curves in this example problem lie below the corresponding
true one, thus the strict error control is achieved in such a case.

−14 −12 −10 −8 −6
log(err)

−3.0

−2.5

−2.0

−1.5

−1.0

lo
g(
h)

complexity-informed nn
ground truth

(a) tmax = 2π, b = 1

1.5 2.0 2.5 3.0
log(tmax)

−2.8

−2.6

−2.4

−2.2

−2.0

−1.8

lo
g(
h)

complexity-informed nn
true

(b) log(err) = −8, b = 1

−0.5 0.0 0.5 1.0
log(b)

−2.5

−2.4

−2.3

−2.2

−2.1

−2.0

−1.9

lo
g(
h)

complexity-informed nn
ground truth

(c) tmax = 2π, log(err) = −8

Figure 1: Illustration for how log h changes with respect to different inputs at x0 = 0, y0 = 0

2.2 Time control for adaptive stepsize method

In this subsection, our goal is to provide time guarantee for adaptive stepsize method. We focus on
the proportional-integral stepsize controller (PIController) [6], which is a classical control strategy
for explicit RK methods. PIController uses the following formula to obtain the new step size hn+1

hn+1 = hn

(
sc

errn

)β1 (errn−1
sc

)β2

(7)

β1, β2 and sc (abbreviation of step control) are three parameters while sc has the greatest influence
on the computational time. When β2 = 0, the controller is called the integral controller (IController),
which only uses errn, the local error estimation at t = tn, to determine the new stepsize hn+1.

To provide time control for the controller in (7), letQ1 be the global error andQ2 be the computational
time T in (3), then

min
sc

err(p,RK, sc)

s.t. T (p,RK, sc) ≤ T ∗
(8)

3



In (8), T ∗ is the threshold number of times to evaluate f(t, u) in (1), which is proportional to the
computational time approximately.

Similar to the methodology used in subsection 2.1, once p and RK are chosen, an inverse mapping
from T ∗ to sc is required to provide computational time guarantee for adaptive stepsize method.
Though adaptive strategy is adopted, by experiments we find the error order is still O(hq) approxi-
mately. Therefore, our goal is to fit the model with the following form

log(sc) = −k log T + C(p) (9)

After obtaining triples of (pi, sci, Ti), we can learn the model (9) in training stage and infer the sc
given the evaluation times T for adaptive stepsize method.

3 Experiments

3.1 Fixed stepsize methods

We consider fixed stepsize RK methods with order 2 (Midpoint), 3 (BS3), 4 (RKF4 [7]) and 5
(DP5 [8]). Besides, three different ODE problems are considered: Spiral(6), LotkaVolterra [9] and
Brusselator[10]. We generate 6400 data for training, and the size of the test dataset is 1280. The
evaluation metric is R2 (coefficient of determination) on test dataset. The quantile loss with quantile
value 10% is used to guarantee the error does not surpass the prescribed error level with larger
probability. All neural networks used in this experiment are equipped with one hidden layer with
size no more than 3. From Table 1 we see that using the complexity-informed model in (5) performs
better than using MLP or decision-tree based fitting with the significance level around 5%. Another
observation is that incorporating the different RK methods as input to the network model does not
decrease the performance of the fitting, as shown in the column of "All" of Table 1. The RK methods
are treated as categorical features and pre-processed by one-hot embedding before training.

1.5 2.0 2.5 3.0
log(tmax)

−2.8

−2.6

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

lo
g(

h)

complexity-informed nn
MLP
decision tree
true

(a) tmax = 2π, b = 1

−0.5 0.0 0.5 1.0
log(b)

−2.2

−2.0

−1.8

−1.6

−1.4

lo
g(
h)

complexity-informed nn
MLP
decision tree
gro nd tr th

(b) log(err) = −8, b = 1

complexity-informed nn
MLP
decision tree
ground truth

−14 −12 −10 −8 −6
log(err)

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

lo
g(
h)

(c) tmax = 2π, log(err) = −8

Figure 2: Comparison of different fitting methods on Spiral Problem by BS3

The fitted result of different methods are drawn in Figure 2, from which we can see that the curve by
the complexity-informed neural network is nearest to that of the ground truth.

Table 1: R2 value for different models

Problem Model RK Methods
Midpoint BS3 RKF4 DP5 All

Spiral
MLP (baseline) 0.960 0.977 0.946 0.944 0.974

decision-tree 0.978 0.983 0.991 0.994 0.966
complexity-informed 0.993 0.993 0.996 0.998 0.989

LotkaVolterra
MLP (baseline) 0.889 0.893 0.921 0.939 0.923

decision-tree 0.623 0.689 0.817 0.798 0.690
complexity-informed 0.896 0.914 0.936 0.933 0.927

Brusselator
MLP (baseline) 0.930 0.952 0.966 0.892 0.933

decision-tree 0.920 0.893 0.906 0.839 0.865
complexity-informed 0.972 0.972 0.964 0.929 0.962

To verify that the predicted stepsize can achieve the desirable error level, we integrate the model into
existing ODE solvers and obtain the work-precision diagram for different RK methods with fixed

4



(a) Fixed stepsize RK methods with different orders on
the Spiral problem

(b) Time guarantee verification for adaptive stepsize
method on the Spiral problem

Figure 3

stepsize strategy. From Figure 3a, we see that for each error level (10−5 to 10−2), the actual error
(shown in each mark on the curve) is near the left hand side of the corresponding dotted grey line.

3.2 Adaptive stepsize methods

Using the same network architecture as complexity-informed in 3.1 and MSE loss, we obtain the
fitting results for adaptive stepsize methods with different controllers, which are listed in Table 2.

Table 2: R2 value for different controllers

Problem Controller RK Methods
Midpoint BS3 RKF4 DP5 All

Spiral IController 0.995 0.999 0.988 0.953 0.996
PIController 0.995 0.994 0.983 0.931 0.985

LotkaVolterra IController 0.968 0.932 0.873 0.729 0.926
PIController 0.978 0.927 0.909 0.853 0.942

From Table 2, we see that the model (9) has similar fitting ability for different controllers and fits
better for lower order RK methods.

Furthermore, given the expected time T ∗, we can use the model (9) to get sc and solve the ODE
problem to obtain the actual T . Then we verify whether the actual evaluation time is equal to the
expected time by plotting Figure 3b. We see that all lines are near T = T ∗ approximately, thus
demonstrating the feasibility of our method.

4 Future Work

Two directions of further improvement will be considered in the future. Firstly, for now we choose
the most decisive variable to guide the fitting of user-oriented target. To further improve the accuracy-
efficiency tradeoff, we should include as many solver parameters as possible, such as the order of
RK method in (4), and β1, β2 in (7). Besides, uniform random sampling is adopted to obtain training
data for a specific ODE problem in this paper. In the future, we will explore how to sample more
efficiently while keeping the training accuracy, which holds the potential to significantly improve the
learning accuracy and efficiency, especially when the ODE systems are of high dimensions.

Acknowledgment

The work of Shao-Lun Huang was supported in part by the National Natural Science Foundation of
China under Grant 61807021, in part by the Shenzhen Science and Technology Program under Grant
KQTD20170810150821146.

5



References
[1] et al. Chaudron Jean-Baptiste. “How to solve ODEs in real-time HLA distributed simulation”.

In: Simulation Innovation Workshop. 2016.
[2] J. C. Chedjou and K. Kyamakya. “CNN-based ultrafast solver of stiff ODEs and PDEs for

enabling realtime Computational Engineering”. In: Compel 30.4 (2011), p.1333–1349.
[3] Ricky T. Q. Chen et al. “Neural Ordinary Differential Equations”. In: Advances in Neural

Information Processing Systems (2018).
[4] Michael Poli et al. “Hypersolvers: Toward Fast Continuous-Depth Models”. In: Advances in

Neural Information Processing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates,
Inc., 2020, pp. 21105–21117. URL: https://proceedings.neurips.cc/paper/2020/
file/f1686b4badcf28d33ed632036c7ab0b8-Paper.pdf.

[5] E. Hairer. Solving Ordinary Differential Equations I. Springer, 1993.
[6] Kjell Gustafsson. “Control theoretic techniques for stepsize selection in explicit Runge-Kutta

methods”. In: ACM Transactions on Mathematical Software (TOMS) 17.4 (1991), pp. 533–554.
[7] Erwin Fehlberg. Low-order classical Runge-Kutta formulas with stepsize control and their

application to some heat transfer problems. Vol. 315. National aeronautics and space adminis-
tration, 1969.

[8] John R Dormand and Peter J Prince. “A family of embedded Runge-Kutta formulae”. In:
Journal of computational and applied mathematics 6.1 (1980), pp. 19–26.

[9] J. Hofbauer and K. Sigmund. “Evolutionary Games and Population Dynamics: References”.
In: 1998. Chap. Dynamical Systems and Lotka–Volterra Equations, pp. 1–54.

[10] Sundarapandian Vaidyanathan. “Dynamics and control of Brusselator chemical reaction”. In:
Int J ChemTech Res 8.6 (2015), pp. 740–749.

6

https://proceedings.neurips.cc/paper/2020/file/f1686b4badcf28d33ed632036c7ab0b8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f1686b4badcf28d33ed632036c7ab0b8-Paper.pdf

	Introduction
	Methodology
	Global error control for fixed stepsize method
	Time control for adaptive stepsize method

	Experiments
	Fixed stepsize methods
	Adaptive stepsize methods

	Future Work

