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Abstract

Point cloud semantic segmentation from projected views, such as range-view (RV) and
bird’s-eye-view (BEV), has been intensively investigated. Different views capture different
information of point clouds and thus are complementary to each other. However, recent
projection-based methods for point cloud semantic segmentation usually utilize a vanilla
late fusion strategy for the predictions of different views, failing to explore the complemen-
tary information from a geometric perspective during the representation learning. In this
paper, we introduce a geometric flow network (GFNet) to explore the geometric correspon-
dence between different views in an align-before-fuse manner. Specifically, we devise a novel
geometric flow module (GFM) to bidirectionally align and propagate the complementary
information across different views according to geometric relationships under the end-to-
end learning scheme. We perform extensive experiments on two widely used benchmark
datasets, SemanticKITTI and nuScenes, to demonstrate the effectiveness of our GFNet for
project-based point cloud semantic segmentation. Concretely, GFNet not only significantly
boosts the performance of each individual view but also achieves state-of-the-art results over
all existing projection-based models. Code is available in the supplementary material1.

1 Introduction

3D point cloud analysis has drawn increasing attention from both academic and industrial communities, since
the wide deployments of lidar sensors have made it possible to obtain abundant 3D point cloud data (Behley
et al., 2019; Caesar et al., 2020). Compared to 2D images (e.g., RGB images), a point cloud can capture
precise structures of objects, thus providing a geometry-accurate perspective representation, intrinsically in
line with the 3D real world. Point cloud semantic segmentation, aiming to assign a semantic label to each
point, is fundamental to scene understanding, which enables intelligent agents to precisely perceive not only
the objects but also the dynamically changing environment. Therefore, point cloud semantic segmentation
plays a crucial role, especially in safety-critical applications such as autonomous driving (Li et al., 2020b;
Aksoy et al., 2020) and robotics (Li et al., 2020a; Yang et al., 2020).

Unlike structural pixels in an image, a point cloud is a set of points represented by (x, y, z) coordinates
without a specific order, and extremely sparse for in-the-wild scenes. Hence, it is non-trivial to utilize off-the-
shelf deep learning technologies on images for point cloud analysis. Recent point cloud segmentation methods
usually address the above-mentioned sparse distributed issue from the perspectives of either voxelization,
single/multi-view projections, or novel point-based operations. However, voxel-based methods mainly suffer
from heavy computations while point-based operations also struggle to efficiently capture the neighbour
information, especially when dealing with large-scale outdoor scenes (Behley et al., 2019). With the great
success of fully convolutional networks for image-based semantic segmentation (Chen et al., 2017a;b; Long
et al., 2015; Zhao et al., 2017), projection-based methods have recently received increasing attention. Figure 1
illustrates two widely used projected views, i.e., range-view (RV) (Milioto et al., 2019) and bird’s-eye-view
(BEV) (Zhang et al., 2020b). Single view based methods can only learn view-specific representations (Alonso
et al., 2020; Cortinhal et al., 2020a; Xu et al., 2020), failing to handle those occluded points during projection.

1Please refer to its README.md for instruction.
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For example, the RV in Figure 2 shows a occluded tail phenomenon (i.e., the distant occluded points are
assigned with the labels of near displayed points) in the red rectangle areas. To address this problem, recent
methods resort to multi-view models to incorporate complementary information over different views, which
usually deal with RV/BEV in sequence (Chen et al., 2020; Gerdzhev et al., 2021) or perform a vanilla late
fusion (Alnaggar et al., 2021; Liong et al., 2020). However, existing methods fail to probe the intrinsically
geometric connections of RV/BEV during the representation learning.
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Figure 1: Geometric bidirectional transformation di-
agram between range-view (RV) and bird’s-eye-view
(BEV).

As we can see from Figure 1, to find the geometric
correspondence between two views (the dash line),
we can utilize the original point cloud as a bridge,
e.g., the transformation RV to BEV can be obtained
from two transformations (the solid line): 1) from
RV to point cloud; and 2) from point cloud to BEV.
Inspired by this, we introduce a novel geometric
flow network (GFNet) to simultaneously learn view-
specific representations and explore the geometric
correspondences between RV and BEV in an end-to-
end learnable manner. Specifically, we first propose
to adopt two symmetric branches to process RV and
BEV inputs, where each branch follows an encoder-
decoder architecture using a ResNet (He et al., 2016)
as the backbone. We then devise a geometric flow
module (GFM), which is then applied at multiple
levels of feature representations, to bidirectionally
align and propagate geometric information across
two projection views, aiming to learn more discrim-
inative representations. Figure 2 illustrates an ex-
ample of propagating the information from BEV to RV which benefits handling those occluded points by RV
projection. In addition, inspired by Kochanov et al. (2020), we also use KPConv (Thomas et al., 2019) at
the top of GFNet to replace a KNN post-processing, thus making it easy to train the overall multi-view point
cloud semantic segmentation pipeline in an end-to-end paradigm. The main contributions of this paper are
summarized as follows:

• We introduce a novel GFNet to simultaneously learn and fuse multi-view representations, where the
proposed geometric flow module (GFM) enables the geometric correspondence information to flow
across different views.

• We devise two symmetric branches for RV and BEV with KNN post-processing replaced by KPConv,
making the proposed GFNet end-to-end trainable.

• Extensive experiments are performed on two popular large-scale point cloud semantic segmentation
benchmarks, i.e., SemanticKITTI and nuScenes, to demonstrate the effectiveness of GFNet, which
achieves state-of-the-art performance over all existing projection-based models.

2 Related Work

In this section, we review recent point cloud semantic segmentation literature from the perspectives of point-
based, voxel-based, and projection-based methods. Among all projection-based methods, we mainly focus
on the multi-view projection-based methods.

Point-based Methods. They mainly concentrate on devising novel point operations/architectures to di-
rectly learn representations from raw point formats (Hu et al., 2020; Li et al., 2018; Qi et al., 2017a;b; Thomas
et al., 2019; Wang et al., 2019), including mlp-based (Hu et al., 2020; Qi et al., 2017a;b), cnn-based (Li et al.,
2018), and graph-based (Thomas et al., 2019; Wang et al., 2019). Specifically, PointNet (Qi et al., 2017a) is
a pioneering network that directly processes raw point clouds with multi-layer perceptron (MLP), which is
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Figure 2: The distant occluded points caused by RV projection are misclassified as the labels of near displayed
points in the red rectangle areas, while they are totally captured by BEV. By propagating the information
between BEV and RV, this issue can be well addressed by our GFNet.

then improved by PointNet++ (Qi et al., 2017b) using hierarchical neural networks to learn local features.
PointCNN (Li et al., 2018) learns a X-transformation from the input points for alignment, followed by typical
convolution layers. DGCNN (Wang et al., 2019) proposes a new graph convolution module called EdgeConv
to capture local geometric features. RandLA-Net (Hu et al., 2020) employs random point sampling with an
effective local feature aggregation module to persevere the local information. KPConv (Thomas et al., 2019)
introduces a new point convolution operator named Kernel Point Convolution to directly take neighbouring
points as input and processes with spatially located weights. Nevertheless, the irregular and disordered
characteristics of point clouds make it inefficient to capture the neighbour information.

Voxel-based Methods. They (Cheng et al., 2021; Tang et al., 2020; Yan et al., 2020a; Zhang et al.,
2020a; Zhu et al., 2021) first voxelize point clouds to regular grids and process with 3D convolutions. Cylin-
der3D (Zhu et al., 2021) introduces the cylindrical partition and asymmetrical 3D convolution networks to
tackle the issues of sparsity and varying density of point clouds. SPVNAS (Tang et al., 2020) proposes Sparse
Point-Voxel Convolution (SPVConv), which is a lightweight 3D module consisting of the vanilla Sparse Con-
volution and the high-resolution point-based branch. Furthermore, 3D Neural Architecture Search (3D-NAS)
is presented to obtain the efficient and effective architecture for semantic segmentation. AF2S3Net (Cheng
et al., 2021) designs an AF2M to capture the global context and local details and an AFSM to learn inter-
relationships between channels across multi-scale feature maps from AF2M. However, the distributions of
large-scale outdoor scenes (e.g., SemanticKITTI (Behley et al., 2019)) are extremely sparse, and the com-
putations grow cubically when increasing the voxel resolution.

Projection-based Methods. Point clouds are first projected to 2D images, e.g., range-view (RV) (Alonso
et al., 2020; Cortinhal et al., 2020a; Milioto et al., 2019; Wu et al., 2018; 2019; Xu et al., 2020) and bird’s-eye-
view (BEV) (Zhang et al., 2020b), and then processed using well-developed 2D convolutions. For example,
RangeNet++ (Milioto et al., 2019) adopts a DarkNet (Redmon & Farhadi, 2018) as the backbone to process
RV images, and uses a KNN for post-processing. SqueezeSegV3 (Xu et al., 2020), standing on the shoulders of
Wu et al. (2018; 2019), employs a spatially-adaptive Convolution (SAC) to adopt different filters for different
locations according to input RV images. SalsaNext (Cortinhal et al., 2020a) introduces a new context module
which consists of a residual dilated convolution stack to fuse receptive fields at various scales. On the other
hand, PolarNet (Zhang et al., 2020b) uses a polar-based birds-eye-view (BEV) instead of the standard 2D
Cartesian BEV projections to better model the imbalanced spatial distribution of point clouds.

Multi-view projection-based methods can leverage rich complementary information (Alnaggar et al., 2021;
Chen et al., 2020; Gerdzhev et al., 2021; Liong et al., 2020), while previous works usually process RV/BEV
individually in sequence (Chen et al., 2020; Gerdzhev et al., 2021) or perform a vanilla late fusion (Alnaggar
et al., 2021; Liong et al., 2020). For example, MVLidarNet (Chen et al., 2020) first obtains predictions
from the RV image, which are then projected to BEV as initial features to learn representation by feature
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Figure 3: The overview of geometric flow network (GFNet). Point clouds are first projected to range-
view (RV) and bird’s-eye-view (BEV) using spherical and top-down projections, respectively. Then two
symmetric branches with the proposed geometric flow module (GFM) handle RV/BEV to generate feature
maps (H ×W ×C). Finally, grid sampling based on corresponding projection relationships is utilized to get
the probability (N ×C) for each point, and the fused prediction F3D is obtained by applying kpconv on the
concatenation of RV/BEV.

pyramid networks. Differently, TornadoNet (Gerdzhev et al., 2021) conducts in reverse order by devising
a pillar-projection-learning module (PPL) to extract features from BEV, and then placing these features
into RV, modeled by an encoder-decoder CNN. On the other side, MPF (Alnaggar et al., 2021) utilizes two
different models to separately process RV and BEV, and then combines the predicted softmax probabilities
from two branches as final predictions. AMVNet (Liong et al., 2020) takes a further step, i.e., after obtaining
the separate predictions from RV and BEV, it adopts a point head (Qi et al., 2017a) to refine the uncertain
predictions, which are defined by the disagreements of two branches. Whereas, our GFNet enables geometric
correspondence information to flow between RV/BEV at multi-levels during end-to-end learning, leading to
a more discriminative representation and better performances.

3 Method

In this section, we first provide an overview of point cloud semantic segmentation and the proposed geometric
flow network (GFNet). We then introduce projection-based point cloud segmentation using range-view
(RV) and bird’s-eye-view (BEV) in detail. After that, we describe the proposed geometric flow module
(GFM), including geometric alignment and attention fusion. Lastly, the end-to-end optimization of GFNet
is depicted.

3.1 Overview

Given a lidar point cloud with N 3D points P ∈ RN×4, we then have the format of each point as
(x, y, z, remission), where (x, y, z) is the cartesian coordinate of the point relative to the lidar sensor and
remission indicates the intensity of returning laser beam. The goal of point cloud semantic segmentation
is to assign all points in P with accurate semantic labels, i.e., Q ∈ NN . For projection-based point cloud
semantic segmentation, we also need to transform the ground truth labels Q to the projected views during
training, i.e., Qr for RV and Qb for BEV.

The overall pipeline of GFNet is illustrated in Figure 3. Specifically, a point cloud P is first transformed
to range-view (RV) as Ir and bird’s-eye-view (BEV) as Ib using spherical and top-down projections, respec-
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tively. We then have two sub-network branches with encoder-decoder architectures to take RV/BEV images
as inputs, and generate probabilistic maps. The proposed geometric flow module (GFM) is incorporated
into each layer of the decoder, bidirectionally propagating feature information according to the geometric
correspondences between two views. After that, we obtain the classification probabilities of all points by
applying a grid sampling on the dense probabilistic maps, which is based on the projection relationship
between a specific view and the original point cloud, as illustrated in the bottom right corner of Figure 3.
Inspired by Kochanov et al. (2020), we also introduce KPConv (Thomas et al., 2019) on the top of the pro-
posed GFNet to replace the KNN operation and capture the accurate neighbour information in a learnable
way. By doing this, the overall multi-view point cloud semantic segmentation pipeline can be trained in an
end-to-end manner.

3.2 Multi-View Projection

For projection-based methods, a point cloud P ∈ RN×4 needs to be transformed to an image I ∈ RHW ×C

first to leverage deep neural networks primarily developed for 2D visual recognition, where H and W indicate
the spatial size of projected images and C is the number of channels. Different projections are corresponding
to different transformations, i.e., P : RN×4 7→ RHW ×C . In this paper, we adopt two widely-used projected
views for point cloud analysis, i.e., range-view (RV) and bird’s-eye-view (BEV). As shown in Figure 3,
we aims to learn effective representations from two different views, RV and BEV, using the proposed two-
branch networks with an encoder-decoder architecture in each branch. We describe the details of multi-view
projection as follows.

Range-View (RV). To learn effective representations from RV images, spherical projection is required to
first project a point cloud P to a 2D RV image (Milioto et al., 2019). Specifically, we first project a point
(x, y, z) from the cartesian space to the spherical space as follows:ψϕ

r

 =

 arctan(y, x)
arcsin(z/

√
x2 + y2 + z2)√

x2 + y2 + z2

 , (1)

where ψ, ϕ, and r indicate azimuthal angle, polar angle, and radial distance (i.e., the range of each point),
respectively. We then have the pixel coordinate of (x, y, z) in the projected 2D range image as[

ũ
ṽ

]
=

[
(1 − ψ/π)/2 ·W

(1 − ϕ+ fup)/f ·H

]
, (2)

where (H,W ) represent the spatial size of range image, and f = fup + fdown is the vertical field-of-view of
the lidar sensor. For each projected pixel (u, v) (discretized from (ũ, ṽ)), we take the (x, y, z, r, remission)
as its feature, leading to a range image with the size of (H,W, 5). In addition, an improved range-projected
method is proposed by Triess et al. (2020), which further unfolds the point clouds following the captured
order by the lidar sensor, leading to smoother projected images and a higher valid projection rate2. If not
otherwise stated, we adopt this improved range projection (Triess et al., 2020) in all our experiments.

Bird’s-Eye-View (BEV). To learn effective representations from BEV images, top-down orthogonal pro-
jection is employed to transform a point cloud into a BEV image (Chen et al., 2017c). Furthermore, the
polar coordinate system is introduced to replace the cartesian system by Zhang et al. (2020b), which can be
formulated as follows: [

ũ
ṽ

]
=

[√
x2 + y2 cos(arctan(y, x))√
x2 + y2 sin(arctan(y, x))

]
= polar(x, y), (3)

where polar(·) is the coordinate transformation from cartesian system to polar system. Following Zhang
et al. (2020b), the feature of each pixel (u, v) (by discretizing (ũ, ṽ) to [0, H − 1] and [0,W − 1]) in BEV
image can be constructed as follows:

[∆polar(x, y, z), polar(x, y, z), x, y, remission)], (4)
2Please refer to App. A for more details.
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Figure 4: An overview of the proposed geometric flow module (GFM). It contains two main steps, i.e., geo-
metric alignment and attention fusion, which first aligns the feature from the source view (RV or BEV) to the
target view using their geometric correspondences, and then applies self-attention and residual connections
to combine view-specific features with the flowed information.

where ∆polar(x, y, z) is the relative distance to the center of the BEV grid, and each BEV image thus has
the shape of (H,W, 9).

3.3 Geometric Flow Module

Intuitively, RV and BEV contain different view information of the original point cloud through different
projections, leading to different information loss on different classes. For example, RV is good at those tiny or
vertically-extended objects such as motorcycle and person, while BEV is sensitive to those objects with large
and discriminative spatial size on the x-y plane. To sufficiently investigate the complementary information
from RV/BEV, we explore them from a geometric perspective. Specifically, we devise a geometric flow
module (GFM), which is based on the geometric correspondences between RV and BEV, to bidirectionally
propagate the complementary information across different views. As illustrated in Figure 4, the first step is
referred to as Geometric Alignment, which aligns the feature of source view (RV or BEV) to the target
view using their geometric transformation; then the second step is called Attention Fusion, which applies
the self-attention and the residual connection to combine the aligned feature representation with the original
one. We describe the above-mentioned key steps of the proposed GFM module in detail as follows.

Geometric Alignment. The key idea lies in the geometric transformation matrices between two views,
i.e., TR→B (from RV to BEV) and TB→R (from BEV to RV). To obtain these transformation matrices, we
propose to utilize the original point cloud as an intermediary agent. Specifically, from Eq.(1) and (2), we
have the transformation from RV to the point cloud P as follows:

TR→P =

 n0,0 · · · n0,Wr−1
...

...
...

nHr−1,0 · · · nHr−1,Wr−1

 , (5)

where TR→P ∈ ZHr×Wr , (Hr,Wr) are the spatial size of 2D RV image, and {(ni,j)| 0 <= i <= Hr −1, 0 <=
j <= Wr − 1} is the (ni,j)th point which projects on (i, j) coordinates. Note that if multiple points project
to the same pixel, the point with smaller range is kept; If a pixel is not projected by any points, then its ni,j

is assigned as −1. We then have the transformation from P to BEV image according to Eq.(3):

TP →B =
[
u0 · · · uN−1

]T (6)

=
[
u0 · · · uN−1
v0 · · · vN−1

]T

, (7)

where TP →B ∈ ZN×2, and {uk = (uk, vk)| 0 <= k <= N − 1} are the projected pixel coordinates of 2D
BEV image, corresponding to the kth point.
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Algorithm 1 Geometric Flow Module (BEV → RV)
Input: RV feature Fr : [Hr,Wr, Cr], BEV feature Fb : [Hb,Wb, Cb], TR→B : [Hr,Wr, 2].
Output: Fused RV feature F r

fused : [Hr,Wr, Cr].
Step 1: Geometric Alignment

• Zero-initializing aligned feature Fb→r with the shape of [Hr,Wr, Cb];
• foreach (i, j) ∈ [1 : Wr] × [1 : Hr] do

u = TR→B [i, j]
u, v = u
Fb→r[i, j, :] = Fb[u, v, :]

Step 2: Attention Fusion

• Concatenating Fr and Fb→r along the channel dimension as Fconcat : [Hr,Wr, Cr + Cb]

• Applying the self-attention module to get Fatten = µ(Fconcat) · θ(µ(Fconcat)) with the shape of
[Hr,Wr, Cr]

• Employing residual connection F r
fused = Fr + Fatten

Lastly, we calculate the transformed matrix TR→B via TR→P and TP →B . In particular, for each pixel (i, j)
in RV image, we first get its 3D point ni,j = TR→P [i, j], then project ni,j to BEV image to obtain the
corresponding pixel TP →B [ni,j ] = uni,j . Now, we obtain TR→B ∈ ZHr×Wr×2 as:

TR→B =

 un0,0 · · · un0,Wr−1
...

...
...

unHr−1,0 · · · unHr−1,Wr−1

 , (8)

Once obtaining TR→B , we can then align BEV features to RV features as follows: for each location (i, j) in
RV image, the (u, v) coordinates in BEV image can be fetched via TR→B [i, j], and then we fuse the feature
in (u, v) to (i, j) to get aligned feature Fb→r. To align features from RV to BEV, we can operate in a similar
way with TB→R ∈ ZHb×Wb×2.

Attention Fusion. After the geometric feature alignment, we employ an attention fusion module to obtain
the fused feature by concatenating the aligned feature and the target feature, which is followed by two
convolution operations µ(·) and θ(·). They have simple architectures “Conv-BN-RELU” and “Conv-BN-
Softmax” respectively, where the softmax function in θ is to map values to [0, 1] as attention weights. The
attention feature is finally combined with the target feature using a residual connection. We demonstrate
the overall process of fusing BEV to RV, including geometric alignment and attention fusion modules, in
Algorithm 1. The geometric flow from RV to BEV can be calculated similarly.

3.4 Optimization

Given Qr as the labels for RV image Ir and Qb for BEV image Ib, which are projected from the original
point cloud label Q, we then have the 2D predictions Rc for RV and Bc for BEV, respectively. After that, we
obtain the 3D predictions via grid sampling and KPConv, i.e., R3D for RV and B3D for BEV. After fusion,
we get the final 3D predictions F3D. For simplicity and better illustration, we also highlight all predictions,
i.e., Rc,Bc and R3D,B3D,F3D, in Figure 3. To train the proposed GFNet, we first use the loss functions
L2D and L3D for 2D and 3D predictions, respectively, as follows:

L2D = ρ · LCL(Rc,Qr) + σ · LCL(Rb,Qb), (9)

and
L3D = β · LCE(R3D,Q) + γ · LCE(B3D,Q), (10)
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where LCE indicates the typical cross entropy loss function while LCL is the combination of the cross entropy
loss and the Lovasz-Softmax loss (Berman et al., 2018). We then apply the cross entropy loss on the final
3D predictions F3D, that is, the overall loss function Ltotal can be evaluated as:

Ltotal = α · LCE(F3D,Q) + L3D + L2D, (11)

where λ .= [α, β, γ, ρ, σ] indicates the weight coefficient of different losses, and we investigate the influences
of different loss terms in Sec. 4.4.

4 Experiments

In the section, we first introduce the adopted SemanticKITTI (Behley et al., 2019) and nuScenes (Caesar
et al., 2020) datasets and the mean IoU and accuracy metric for point cloud segmentation. We then provide
the implementation details of GFNet, including the network architectures and training settings. After that,
we perform extensive experiments to demonstrate the effectiveness of GFM and analyze the influences of
different hyper-parameters in GFNet. Lastly, we compare the proposed GFNet with recent state-of-the-art
point/projection-based methods to show our superiority.

4.1 Datasets and Evaluation Metrics

SemanticKITTI (Behley et al., 2019), derived from the KITTI Vision Benchmark (Geiger et al., 2012),
provides dense point-wise annotations for semantic segmentation task. The dataset presents 19 challenging
classes and contains 43551 lidar scans from 22 sequences collected with a Velodyne HDL-64E lidar, where
each scan contains approximately 130k points. Following Behley et al. (2019); Milioto et al. (2019), these
22 sequences are divided into 3 sets, i.e., training set (00 to 10 except 08 with 19130 scans), validation set
(08 with 4071 scans) and testing set (11 to 21 with 20351 scans). We perform extensive experiments on the
validation set to analyze the proposed method, and also report performance on the test set by submitting
the result to the official test server.

nuScenes (Caesar et al., 2020) is a public large-scale dataset for autonomous driving, which collects 1000
driving scenes of 20 second length in Boston and Singapore. 1000 scenes are officially divided into training
(850 scenes) and validation set (150 scenes). After merging similar classes and removing rare classes, 16
classes in total for point cloud semantic segmentation are remained, including 10 foreground classes and 6
background classes. We upload results to their official test server to report the final performance on test set.

Evaluation Metrics. Following Behley et al. (2019), we use mean intersection-over-union (mIoU) over all
classes as the evaluation metric. Mathematically, the mIoU can be defined as:

mIoU = 1
C

C∑
c=1

TPc

TPc + FPc + FNc
, (12)

where TPc, FPc, and FNc represent the numbers of true positive, false positive, and false negative predictions
for the given class c, respectively, and C is the number of classes. For a comprehensive comparison, we also
report the accuracy among all samples, which can be formulated as:

Accuracy = TP + TN

TP + FP + FN + TN
. (13)

4.2 Implementation Details

For SemanticKITTI, we use two symmetric branches to learn representations from RV/BEV in an end-to-
end trainable way, where each branch follows an encoder-decoder architecture with a ResNet-34 (He et al.,
2016) as the backbone. The ASPP module (Chen et al., 2017b) is also used between the encoder and the
decoder. The proposed geometric flow module (GFM) is incorporated into each upsampling layer. Note
that the elements of TR→B ,TB→R fed into GFM are scaled linearly according to the current flowing feature
resolution. For RV branch, point clouds are first projected to a range image with the resolution [64, 2048],
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which is sequentially upsampled bilinearly to [64 × 2S, 2048 × S] where S is a scale factor. During training,
a horizontal 1/4 random crop of RV image, i.e., [128S, 512S], is used as data augmentation. On the other
hand, we adopt polar partition (Zhang et al., 2020b) for BEV, and use a polar grid size of [480, 360, 32]
to cover a space of [radius : (3m, 50m), z : (−3m, 1.5m)] relative to the lidar sensor. The grid first goes
through a mini PointNet (Qi et al., 2017a) to obtain the maximum feature activations along the z axis,
leading to a reduced resolution [480, 360] for BEV branch. We employ a SGD optimizer with momentum
0.9 and the weight decay 1e− 4. We use the cosine learning rate schedule (Loshchilov & Hutter, 2016) with
warmup at the first epoch to 0.1. The backbone network is initialized using the pretrained weights from
ImageNet (Deng et al., 2009). By default, we use λ = [2.0, 2.0, 2.0, 1.0, 1.0] as the loss weight for Eq.11. We
train the proposed GFNet for 150 epochs with batch size 16 using four NVIDIA A100 GPUs (40GB).

For nuScenes, we adopt Milioto et al. (2019) to project point clouds to a RV image with the resolution
[32, 1024] which is then upsampled bilinearly to [32×3S, 1024×S] where S = 4 in our experiments. Besides,
a polar grid size of [480, 360, 32] is used to cover a relative space of [radius : (0m, 50m), z : (−5m, 3m)] for
BEV branch. We train the model for total 400 epoch with batch size 56 using 8 NVIDIA A100-SXM4-40GB
GPUs. We adopt cosine learning rate schedule (Loshchilov & Hutter, 2016) with warmup at the first 10
epoch to 0.2. Other settings are kept the same with SemanticKITTI.

4.3 Effectiveness of GFM

In this part, we show the effectiveness of the proposed geometric flow module (GFM) as well as its influences
on each single branch. As shown in Figure 3, we denote the results from R3D and B3D as RV-Flow and
BEV-Flow, respectively, in regard to the information flow between RV and BEV brought by GFM. The
predictions from F3D (obtained by applying KPConv on the concatenation of R3D and B3D) are actually
our final results, termed as GFNet. Note that the above results are evaluated using λ = [2, 2, 2, 1, 1] for Eq.11.
In addition, we train also each single branch separately without GFM modules, i.e., using λ = [0, 2, 0, 1, 0]
and λ = [0, 0, 2, 0, 1] for RV-Single and BEV-Single, respectively.

We compare the performances of RV/BEV-Single and BEV/BEV-Flow in Table 1. Specifically, we find that
both RV and BEV branches have been improved by a clear margin when incorporating with the proposed
GFM module, e.g., 55.7% → 61.0% for BEV. Intuitively, RV is good at those vertically-extended objects
like motorcycle and person, while BEV is sensitive to the classes with large and discriminative spatial size
on the x-y plane. For example, RV-Single only achieves 32.4% on truck while BEV-Single obtains 64.8%,
which is also illustrated by the first row of Figure 5 where RV predicts truck as a mixture of truck, car
and other-vehicle, but BEV acts much well. This is partially because truck is more discriminative on x-y
plane (captured by BEV) than vertical direction (captured by RV) compared to car, other-vehicle. With the
information flow from BEV to RV using GFM, RV-Flow significantly boosts the performance from 32.4%
to 69.9%. A similar phenomenon can be observed in the second row of Figure 5, where BEV misclassifies
bicyclist as trunk, since both of them are vertically-extended and also very close to each other, while RV
predicts precisely. With the help of RV, BEV-Flow dramatically improves the performance from 55.7%
to 61.0%. When further applying KPConv on the concatenation of RV/BEV-Flow, the proposed GFNet
achieves the best performance 63.0%. These results demonstrate that the proposed GFM can effectively

Table 1: Quantitative comparisons in terms of mIoU to demonstrate the effectiveness of GFM on the
validation set of SemanticKITTI.
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RV-Single 93.7 48.7 57.7 32.4 40.5 69.2 79.9 0.0 95.9 53.4 83.9 0.1 89.2 59.0 87.8 66.1 75.3 64.0 45.2 60.1
RV-Flow 93.8 45.0 58.8 69.9 31.6 63.6 73.8 0.0 95.6 52.9 83.6 0.3 90.3 62.1 88.0 64.3 75.8 63.2 47.4 61.1
BEV-Single 93.6 29.9 42.4 64.8 26.8 48.1 74.0 0.0 94.0 45.9 80.7 1.4 89.2 46.5 86.9 61.4 74.9 56.8 41.6 55.7
BEV-Flow 93.7 43.7 61.2 74.0 31.0 61.6 80.6 0.0 95.3 53.1 82.8 0.2 90.8 61.4 88.0 63.1 75.6 58.9 43.1 61.0
GFNet 94.2 49.7 63.2 74.9 32.1 69.3 83.2 0.0 95.7 53.8 83.8 0.2 91.2 62.9 88.5 66.1 76.2 64.1 48.3 63.0
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RV BEVGT GFNet

car truck other-vehicle bicyclist road parking sidewalk other-ground building fence vegetation trunk terrain pole traffic-sign

Figure 5: Visualization of RV and BEV. The view with the cyan contour helps the one with red. By
incorporating both RV and BEV, our GFNet makes more accurate predictions.

propagate complementary information between RV and BEV to boost the performance of each other, as well
as the final performance.

4.4 Ablation Studies

In this subsection, we first explore the impacts of attention mechanism in the proposed GFM; then different
loss weight coefficients λ defined by Eq.11 are evaluated; finally the scale factor S introduced in Sec. 4.2 is
investigated. Note that the default settings are softmax attention with λ = [2, 2, 2, 1, 1] and S = 3.

Table 2: Ablation studies of attention in GFM, loss
weight coefficient λ and scale factor S on the Se-
manticKITTI val set.

(a) Attention in GFM

attention mIoUsigmoid softmax
62.0

✓ 62.9
✓ 63.0

(b) λ and S under △ = 1, ▽ = 2

cfg α β γ ρ σ S mIoU
a △ 3 61.7
b △ △ △ 3 61.8
c △ △ △ △ △ 3 62.4
d ▽ ▽ ▽ △ △ 3 63.0
e ▽ ▽ ▽ △ △ 2 61.7
f ▽ ▽ ▽ △ △ 4 63.2

As we can see from Table 2a, without attention
mechanism (i.e., no θ(·) and ⊗ in Figure 4), the per-
formance 62.0% is obviously inferior to the counter-
parts 62.9% and 63.0%, which indicates that the at-
tention operation can help to focus on the strengths
instead of weaknesses of source view when fusing
it into target view. Different attention types (i.e.,
sigmoid and softmax) achieve similar performances,
and we use softmax attention for the rest experi-
ments.

Now we evaluate the influences of λ .= [α, β, γ, ρ, σ]
defined by Eq.11 in Table 2b. Note that △ =
1,▽ = 2 for separate loss weight, for example, con-
figuration d represents that λ

.= [α, β, γ, ρ, σ] =
[2.0, 2.0, 2.0, 1.0, 1.0]. Obviously, the mIoU from
configuration a to b and c are in a rising trend,
suggesting the additional supervisions on dense 2D
and each branch RV/BEV 3D predictions can fur-
ther improve performance. By comparing configu-
ration c and d, we conclude that an emphasis on
3D prediction loss weights over 2D brings even better result. Therefore, if not otherwise stated, we adopt
λ = [2.0, 2.0, 2.0, 1.0, 1.0] for remaining experiments.

The scale factor S introduced in Sec. 4.2 defines the resolution of RV image, for example, the spatial size of
[128S, 512S] = [384, 1536] and [128S, 2048S] = [383, 6144] for RV image when S = 3 are used for training
and testing, respectively. As we can observe the configuration d and e in Table 2b, the performance is
remarkably boosted from 61.7% to 63.0%, revealing the benefit of higher resolution. However, it looks like
being saturated when we further enlarge S from 3 to 4 (i.e., from configuration d to f). Considering the
tradeoff between speed and accuracy, we choose S = 3 as the default setting.
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Table 3: Comparisons under mIoU, Accuracy and Frame Per Second (FPS) on SemanticKITTI test set.
Note that the results of methods with ∗ are obtained from RangeNet++ (Milioto et al., 2019). From top to
down, the methods are grouped into point-based, projection-based and multi-view fusion models.
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PointNet∗ (Qi et al., 2017a) 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7 14.6 - 2
PointNet++∗ (Qi et al., 2017b) 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.0 72.0 18.7 41.8 5.6 62.3 16.9 46.5 13.8 30.0 6.0 8.9 20.1 - 0.1
TangentConv∗ (Tatarchenko et al., 2018) 86.8 1.3 12.7 11.6 10.2 17.1 20.2 0.5 82.9 15.2 61.7 9.0 82.8 44.2 75.5 42.5 55.5 30.2 22.2 35.9 - 0.3
PointASNL (Yan et al., 2020b) 87.9 0 25.1 39.0 29.2 34.2 57.6 0 87.4 24.3 74.3 1.8 83.1 43.9 84.1 52.2 70.6 57.8 36.9 46.8 - -
RandLa-Net (Hu et al., 2020) 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7 53.9 88.8 22
KPConv (Thomas et al., 2019) 96.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 90.5 64.2 84.8 69.2 69.1 56.4 47.4 58.8 90.3 -
SqueezeSeg∗ (Wu et al., 2018) 68.3 18.1 5.1 4.1 4.8 16.5 17.3 1.2 84.9 28.4 54.7 4.6 61.5 29.2 59.6 25.5 54.7 11.2 36.3 30.8 - 55
SqueezeSegV2∗ (Wu et al., 2019) 81.8 18.5 17.9 13.4 14.0 20.1 25.1 3.9 88.6 45.8 67.6 17.7 73.7 41.1 71.8 35.8 60.2 20.2 36.3 39.7 - 50
RangeNet++ (Milioto et al., 2019) 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9 52.2 89.0 12
PolarNet (Zhang et al., 2020b) 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5 54.3 90.0 16
3D-MiniNet-KNN (Alonso et al., 2020) 90.5 42.3 42.1 28.5 29.4 47.8 44.1 14.5 91.6 64.2 74.5 25.4 89.4 60.8 82.8 60.8 66.7 48.0 56.6 55.8 89.7 28
SqueezeSegV3 (Xu et al., 2020) 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9 55.9 89.5 6
SalsaNext (Cortinhal et al., 2020b) 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1 59.5 90.0 24
MVLidarNet (Chen et al., 2020) 87.1 34.9 32.9 23.7 24.9 44.5 44.3 23.1 90.3 56.7 73.0 19.1 85.6 53.0 80.9 59.4 63.9 49.9 51.1 52.5 88.0 92
MPF (Alnaggar et al., 2021) 93.4 30.2 38.3 26.1 28.5 48.1 46.1 18.1 90.6 62.3 74.5 30.6 88.5 59.7 83.5 59.7 69.2 49.7 58.1 55.5 - 21
TORNADONet (Gerdzhev et al., 2021) 94.2 55.7 48.1 40.0 38.2 63.6 60.1 34.9 89.7 66.3 74.5 28.7 91.3 65.6 85.6 67.0 71.5 58.0 65.9 63.1 90.7 4
AMVNet (Liong et al., 2020) 96.2 59.9 54.2 48.8 45.7 71.0 65.7 11.0 90.1 71.0 75.8 32.4 92.4 69.1 85.6 71.7 69.6 62.7 67.2 65.3 91.3 -
GFNet (ours) 96.0 53.2 48.3 31.7 47.3 62.8 57.3 44.7 93.6 72.5 80.8 31.2 94.0 73.9 85.2 71.1 69.3 61.8 68.0 65.4 92.4 10

Table 4: Comparisons on nuScenes (the test set) under mIoU and Frequency Weighted IoU (or FW IoU).
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PolarNet (Zhang et al., 2020b) 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.4 96.6 67.1 77.7 72.1 87.1 84.4 69.4 87.4
AMVNet (Liong et al., 2020) 79.8 32.4 82.2 86.4 62.5 81.9 75.3 72.3 83.5 65.1 97.4 67.0 78.8 74.6 90.8 87.9 76.1 89.5
GFNet (ours) 81.1 31.6 76.0 90.5 60.2 80.7 75.3 71.8 82.5 65.1 97.8 67.0 80.4 76.2 91.8 88.9 76.1 90.4

4.5 Comparison with Recent State-of-the-Arts

SemanticKITTI. To compare our GFNet with recent state-of-the-art methods, we follow the same setting
of Behley et al. (2019); Kochanov et al. (2020) for a fair comparison, i.e., both training and validation splits
are used for training when submitting results to the test server. As shown in Table 3, the proposed GFNet
achieves new state-of-the-art performance 65.4% mIoU, significantly surpassing point-based methods (e.g.,
58.8% for KPConv (Thomas et al., 2019)) and single view models (e.g., 59.5% for SalsaNext (Cortinhal et al.,
2020b)). For multi-view fusion approaches (Alnaggar et al., 2021; Chen et al., 2020; Gerdzhev et al., 2021;
Liong et al., 2020), our GFNet defeats Alnaggar et al. (2021); Chen et al. (2020); Gerdzhev et al. (2021) by
a large margin, and is slightly better than Liong et al. (2020). It is worth noting that AMVNet (Liong et al.,
2020) requires to train models for RV/BEV branch as well as their post-processing point head separately,
while our GFNet can be conveniently trained in an end-to-end manner. Besides, the point-wise accuracy of
GFNet is 92.4%, clearly outperforming 91.3% for AMVNet (Liong et al., 2020). The superior performances
achieved by GFNet demonstrate the effectiveness of bidirectionally aligning and propagating geometric in-
formation between RV/BEV. Also, GFNet achieves 10 FPS, which can be regarded as real-time, because the
acquisition frequency of the Velodyne HDL-64E LiDAR sensor (used by SemanticKITTI) is 10 Hz.

nuScenes. To evaluate the generalization ability of GFNet, we also report the performance on the test
set of nuScenes by submitting predictions to their evaluation server as shown in Table 4. Similarly, GFNet
achieves superior mIoU performance 76.1%, which remarkably outperforms PolarNet (Zhang et al., 2020b)
and tights AMVNet (Liong et al., 2020). However, our result 90.4% under Frequency Weighted IoU (FW
IoU) beats 89.5% from AMVNet (Liong et al., 2020), which is consistent with the accuracy comparison on
SemanticKITTI. Those results confirm the effectiveness and well-generalized ability of the proposed GFNet.

5 Conclusion

In this paper, we propose a novel geometric flow network (GFNet) to simultaneously learn effective view
representations from both RV and BEV. To enable the propagation of the complementary information
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between different views, we devise a geometric flow module (GFM) to bidirectionally align and fuse learned
view representations based on their geometric correspondences. In addition, by incorporating grid sampling
and kpconv to avoid time-consuming and non-differentiable post-processing, the proposed GFNet can be
effectively and efficiently trained in an end-to-end paradigm. Extensive experiments on SemanticKITTI and
nuScenes benchmarks confirm the effectiveness of GFM and demonstrate new state-of-the-art performance
over projection-based point cloud semantic segmentation methods.
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A RV Projection

(a) Original RV

(b) Improved RV

Figure 6: Range images from original RV (Milioto et al., 2019) and improved RV (Triess et al., 2020). As
we can see, Triess et al. (2020) obtains smoother projected image than Milioto et al. (2019).

Table 5: Valid projection rate (%) when using two
different RV projections (Milioto et al., 2019; Triess
et al., 2020) to generate images of 64 × 2048 size.

Method Train Val
Original RV (Milioto et al., 2019) 72.47 72.12
Improved RV (Triess et al., 2020) 83.69 83.51

For Range-View (RV), we project 3D point cloud
P to a 2D RV image with the size of (H,W ). In
general, there are pixels that are not projected by
any points, while multiple points might be projected
to the same pixel due to the 2D-to-3D ambiguity.
We define the valid projection rate as the ratio of
valid pixels (i.e., projected by as least one point)
comparing to total pixels HW . Specifically, more
valid pixels usually result in a smoother projected image, i.e., the higher valid projection rate, the better.
We compare two different projection methods (Milioto et al., 2019; Triess et al., 2020) in terms of valid
projection rate in 5. As we can observe, Triess et al. (2020) significantly outperforms Milioto et al. (2019)
by over 11% in both train and val set. In addition, we visualize the RV images obtained by Milioto et al.
(2019); Triess et al. (2020) separately in Figure 6. Obviously, the RV image generated by Triess et al. (2020)
is clearly smoother than Milioto et al. (2019). Therefore, we use Triess et al. (2020) in all experiments if not
states otherwise.

B Visualization

Figure 7 illustrates comparisons between GFNet and groud truth on complex scenes, revealing the excellent
performance of GFNet. We also provide a GIF image, i.e., figs/vis.gif, in the supplementary material
(GFNet_Code.zip) for more visualizations.
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(a) Preds (b) GT
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Figure 7: Visualization of the predictions from our GFNet comparing to GT.
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