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ABSTRACT

For full-batch gradient descent (GD), it has been empirically shown that the
sharpness, the top eigenvalue of the Hessian, increases and then hovers above
2/(learning rate), and this is called “the edge of stability” phenomenon. However,
it is unclear why the sharpness is somewhat larger than 2/(learning rate) and how
this can be extended to general mini-batch stochastic gradient descent (SGD).
We propose a new sharpness measure (interaction-aware-sharpness) aware of the
interaction between the batch gradient distribution and the loss landscape geometry.
This leads to a more refined and general characterization of the edge of stability
for SGD. Moreover, based on the analysis of a concentration measure of the batch
gradient, we propose a more accurate scaling rule, Linear and Saturation Scaling
Rule (LSSR), between batch size and learning rate.

1 INTRODUCTION

For full-batch GD, it has been empirically observed that the sharpness, the top eigenvalue of the
Hessian, increases and then hovers above 2/(learning rate) (Cohen et al., 2021) as the training
proceeds. This observation can provide a link between two empirical results regarding generalization,
(i) using larger learning rates for GD can generalize better (Bjorck et al., 2018; Li et al., 2019b;
Lewkowycz et al., 2020; Smith et al., 2020) and (ii) minima with low sharpness tend to generalize
better (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017). This observation has a significant
implication in existing neural network optimization convergence analyses since it is contrary to the
frequent assumption that ‘the learning rate is less than 2/β (here β is an upper bound of the Hessian
top eigenvalue)’, which ensures the decrease in the training loss (Nesterov, 2003; Schmidt, 2014;
Martens, 2014; Bottou et al., 2018). Even though the training loss evolves non-monotonically over
short timescales due to the violation of the assumption, interestingly, the loss is observed to decrease
over long timescales consistently. This regime in which GD typically occurs has been referred to as
‘the edge of stability (EoS)’ (Cohen et al., 2021).

There remain many aspects that are not clearly explained about the EoS regime. For example, it is not
clear why and to what extent the sharpness hovers above 2/(learning rate). Moreover, the inherent
mechanism is not yet elucidated for the unstable optimization to occur at the EoS consistently while
prevented from entirely diverging. How this phenomenon can be generalized beyond GD, especially
to mini-batch SGD, is still an open question.

In this paper we provide a new characterization of the EoS for SGD, which can serve as an answer
to the above questions. As a tool to analyze the optimization process of SGD, we first propose
a sharpness measure of neural network loss landscape aware of SGD batch gradient distribution
(hence capturing the interaction between SGD and the loss landscape), which we refer to as the
interaction-aware-sharpness (IAS) (Section 2). Based on this measure, we define the stable and
unstable regions in the neural network parameter space. We then scrutinize both theoretically and
empirically the transition process of the iterate from the stable to the unstable region (Section 4.1)
and the mechanism to escape from the unstable region, i.e., how the optimization can occur at the
EoS. We interpret the latter mechanism based on the non-quadraticity of the loss and the presence of
asymmetric valleys in the loss landscape (He et al., 2019) (Section 4.2).
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Based on these analyses, we propose the notion of implicit interaction regularization (IIR), i.e., the
IAS is implicitly bounded during SGD, as an implicit bias of SGD (Section 4.3). The value that IAS
is bounded by is the ratio of a concentration measure of the batch gradient distribution of SGD to the
learning rate. This is a more refined characterization of the EoS, as it shows that IAS does not hover
above a certain value, but rather hovers around. More importantly, it can be naturally applied to SGD
since we do not make any impractical assumptions on the batch size or learning rate.

Our new characterization of the EoS leads to a novel scaling rule between batch size and learning
rate, from the idea of preserving a similar level of IIR (Section 5). This scaling rule, referred to as
the Linear and Saturation Scaling Rule (LSSR), recovers the well-known linear scaling rule (LSR)
(Jastrzębski et al., 2017; Masters & Luschi, 2018; Zhang et al., 2019; Shallue et al., 2018; Smith et al.,
2020; 2021) for small batch sizes and reduces to no scaling (due to saturation) for large batch sizes.

2 GRADIENT DISTRIBUTION AND LOSS LANDSCAPE

In this section, we review some concepts required for further discussion. See Appendix A for a
quick reference for the notations. To simplify the notations, we often omit the dependence on some
variables and the subscript of the expectation operation when clear from the context.

For a learning task, we use a parameterized model with model parameter θ ∈ Θ ⊂ Rm. Then we
train the model using training data D = {xi}ni=1 and a loss function ℓ(x; θ). We denote the (total)
training loss by L(θ) ≡ 1

n

∑n
i=1 ℓ(xi; θ) for training data D. At time step t, we update the parameter

θt using GD: θt+1 = θt − η∇θL(θt) with a learning rate η > 0, or using SGD: θt+1 = θt − ηgξ(θt)
with a mini-batch gradient gξ(θt) ≡ 1

b

∑
x∈Bt

ξ
∇θℓ(x; θt) ∈ Rm for a mini-batch Bt

ξ ⊂ D of size b
(1 ≤ b ≤ n). Here, we use the subscript ξ to denote the random batch sampling procedure.

Now, we are ready to introduce some important matrices, Cb, Sb, and H . First, we define the
covariance Cb(θ) ≡ Varξ[gξ(θ)] = Eξ

[
(gξ(θ)− Eξ[gξ(θ)]) (gξ(θ)− Eξ[gξ(θ)])

⊤
]
∈ Rm×m and

the second moment Sb(θ) ≡ Eξ[gξ(θ)gξ(θ)
⊤] ∈ Rm×m of the mini-batch gradient gξ(θ) over batch

sampling for a batch size 1 ≤ b ≤ n.1 The covariance Cb and the second moment Sb satisfy not only
Cb = Sb − Sn but also the following equation (Hoffer et al., 2017; Li et al., 2017; Wu et al., 2020):

Cb =
γn,b
b

(S1 − Sn) =
γn,b
b
C1, where γn,b =

{
n−b
n−1 for sampling without replacement
1 for sampling with replacement

. (1)

We provide a self-contained proof of (1) in Appendix B.1. We note that, for sampling without
replacement, many previous works approximate γn,b ≈ 1 assuming b ≪ n (Jastrzębski et al.,
2017; Hoffer et al., 2017; Smith et al., 2021), but we consider the whole range of 1 ≤ b ≤ n
(0 ≤ γn,b ≤ 1 with γn,1 = 1 and γn,n = 0). Second, we define the Hessian H(θ) = ∇2

θL(θ) =
1
n

∑n
i=1 ∇2

θℓ(xi; θ) ∈ Rm×m and denote the i-th largest eigenvalue and its corresponding normalized
eigenvector by λi(H) ∈ R and qi(H) ∈ Rm, respectively, for i = 1, · · · ,m. The operator norm
∥H∥ ≡ sup∥u∥=1 ∥Hu∥ of H is equivalent to the top eigenvalue λ1. We emphasize that Cb and Sb

represent the stochasticity of the batch gradients, and H represents the loss landscape geometry.

Therefore, we can write one of our goals as follows: we aim to understand how the loss landscape
geometry (H) and the gradient distribution (Sb) interact with each other during SGD training. We
investigate this “interaction” in terms of matrix multiplication HSb. To be specific, we consider the
trace tr(HSb) and its normalized value tr(HSb)

tr(Sb)
, and we call the latter interaction-aware sharpness:

Definition 1 (Interaction-Aware Sharpness (IAS)).

∥H∥Sb
≡ tr(HSb)

tr(Sb)
. (2)

Here, tr(HSb) ≤ ∥H∥ tr(Sb), i.e., ∥H∥Sb
≤ ∥H∥, and the equality holds only when every gξ is

aligned in the direction of the top eigenvector q1 of H .

1These two matrices Cb and Sb are often called the second central and non-central moments, respectively.
But to avoid confusion, we use the term “second moment” only for the non-central Sb.
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3 RELATED WORK

Some studies investigate the interaction between the gradient distribution and the loss landscape
geometry represented by tr(HSb) in the context of escaping efficiency (Zhu et al., 2019, Section
3.1), stationarity (Yaida, 2019, Section 2.2), and convergence (Thomas et al., 2020, Section 3.1.1).
However, they require some additional assumptions like stochastic differential equation (SDE)
approximation of SGD (Zhu et al., 2019), the existence of a stationary-state distribution of the model
parameter (Yaida, 2019, Section 2.3.4), and strong convexity of the training loss function (Thomas
et al., 2020), respectively. In this paper, we provide a new insight into the interaction tr(HSb) without
these assumptions.

Convergence of full-batch GD (b = n) has been instead analyzed with an upper bound on the
interaction tr(HSn) with further assumptions for the stable optimization, such as β-smoothness
of the objective and 0 < η < 2

β (e.g., η = 1
β ) (Nesterov, 2003; Schmidt, 2014; Martens, 2014;

Bottou et al., 2018). 2 However, it may lose useful information of the interaction between H and
Sn. Moreover, when we train a standard neural network with GD in practice, ∥H∥(≤ β) increases in
the early phase of training and the iterate enters the EoS where ∥H∥ ⪆ 2

η , i.e., η ⪆ 2
∥H∥ ≥ 2

β . This
contradicts with the assumption for stable optimization and the iterate exhibits unstable behavior
with a non-monotonically decreasing loss (Xing et al., 2018; Wu et al., 2018; Cohen et al., 2021). We
further extend this discussion of unstable dynamics for GD at the EoS to the case of SGD.

From the generalization perspective, many studies focus on the implicit bias of SGD toward a better
generalization (Neyshabur, 2017; Zhang et al., 2021; Gunasekar et al., 2017; Soudry et al., 2018;
Jastrzębski et al., 2020; 2021; Barrett & Dherin, 2021; Smith et al., 2021). There are mainly two
factors known to correlate with the generalization performance: the batch gradient distribution during
training (Hoffer et al., 2017; Jastrzębski et al., 2017; Smith & Le, 2018; Zhu et al., 2019) and the
sharpness of the loss landscape at the minimum (Hochreiter & Schmidhuber, 1997; Keskar et al.,
2017; Dinh et al., 2017; Jiang et al., 2020; Foret et al., 2021; Kwon et al., 2021). We provide a link
between the batch gradient distribution and the sharpness that the model is implicitly regularized to
have a low sharpness when the second moment of the batch gradient is large (see Section 4.3).

We provide further discussion to reconcile our arguments with some previous studies in Appendix D

4 A NEW CHARACTERIZATION OF THE EDGE OF STABILITY

4.1 UNSTABLE OPTIMIZATION

Using the second-order Taylor expansion of the total training loss L(θ) at θt, the change in the loss
Lt = L(θt) as the SGD iterate moves from θt to θt+1 at time step t can be expressed as follows:

Lt+1 − Lt = −η∇L(θt)⊤gξ +
η2

2
g⊤ξ H(θt)gξ +O(∥δt∥3), (3)

where δt = θt+1 − θt = −ηgξ. Given θt, the expected loss difference over batch sampling ξ is

Eξ[Lt+1]− Lt (4)

=− η∇L(θt)⊤Eξ[gξ] +
η2

2
Eξ[g

⊤
ξ H(θt)gξ] + ϵ (Taking Eξ for the both sides of (3)) (5)

=− η∥∇L(θt)∥2 +
η2

2
tr
(
Eξ[H(θt)gξg

⊤
ξ ]
)
+ ϵ (Eξ[gξ] = ∇L and u⊤v = tr(vu⊤)) (6)

=
η2

2
tr(Sn)

[
tr(HSb)

tr(Sn)
− 2

η

]
+ ϵ (by definition of Sb and Sn), (7)

where ϵ = O(Eξ[∥δt∥3]) and Eξ[X] is the conditional expectation of X given θt. We consider a
bounded region with a finite maximum loss near and including θt in which the loss is approximately
quadratic. Then, when the following instability condition is met within the region, the loss (close to
the expected loss) tends to increase and the iterate tends to escape from the region:

2L(θt+1)−L(θt) ≤ ∇L⊤(θt+1−θt)+
β
2
∥θt+1−θt∥2 = −η∥∇L∥2+ βη2

2
∥∇L∥2 = −η(1− βη

2
)∥∇L∥2

and thus the loss monotonically decreases when 0 < η < 2
β

.
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Figure 1: [An empirical validation of (7) for SGD (top) and (12) for GD (bottom)] In the early
phase, until the iterate enters the unstable region, it validates (7) and (12) with the blue line with
the slope η2

2 and x-intercept 2
η . For GD (bottom), they are plotted after ∥H∥ exceeds 2

η after which
∥H∥Sn

starts to increase from 0 to 2
η in a few steps. For cross-entropy (CE) loss, we mark the end

point with ‘x’ when the iterate enters the unstable region. For mean squared error (MSE) loss (bottom
right), we plot the graph for a few more steps after the iterate enters the EoS. We train 6CNN on
CIFAR-10-8k with η = 0.02 (see Remark at the end of Section 4.2).

Theorem 1. For SGD on a quadratic L, the expected loss increases, i.e., Eξ[Lt+1]− Lt > 0, if and
only if θt satisfies the instability condition tr(HSb)

tr(Sn)
> 2

η . Furthermore, if the batch gradient gξ is
normally distributed, then the following inequalities hold for any positive x > 0:

P
(
Lt+1 − Eξ[Lt+1] ≥

√
2βx+

η2γn,b
b

∥H∥∥C1∥x
∣∣∣ θt) ≤ exp(−x), (8)

P
(
Lt+1 − Eξ[Lt+1] ≤ −

√
2βx

∣∣∣ θt) ≤ exp(−x), (9)

where β =
η2γn,b

b

(
v⊤C1v +

η2γn,b

2b tr(HC1HC1)
)

and v = (I − ηH)∇L.

The proof is deferred to Appendix B.2. From the above theorem, we define unstable and stable
region:

U ≡ {θ ∈ Θ :
tr(HSb)

tr(Sn)
>

2

η
} and S ≡ Uc, (10)

respectively. It has been empirically shown that, for full-batch GD, ∥H∥ increases and then hovers
above 2/η and Cohen et al. (2021) mark the EoS with {θ ∈ Θ : ∥H(θ)∥ = 2

η}, but we mark with

∂S = {θ ∈ Θ :
tr(HSb)

tr(Sn)
=

2

η
}. (11)

We emphasize the superiority of our ∂S over the previous EoS that (i) ∂S provides a clearer “edge”
since it considers the interaction between the gradient direction and the Hessian and that (ii) it is
more general since it applies to SGD with any batch size 1 ≤ b ≤ n.

Figure 1 (top row) empirically validates (7), showing the normalized loss difference Eξ[Lt+1]−Lt

tr(Sn)

against tr(HSb)
tr(Sn)

in the early phase of training before entering the unstable region. This result implies
that the training loss L(θ) is approximately locally quadratic, i.e., ϵ ≈ 0, in the early phase.

Especially, for full-batch GD (b = n), the instability condition can be rewritten as ∥H∥Sn
> 2

η and
we have the following relationship between the loss difference Lt+1 − Lt and ∥H∥Sn from (7):

Lt+1 − Lt =
η2

2
tr(Sn)

(
∥H∥Sn

− 2

η

)
+ ϵ. (12)
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Figure 2: [Non-quadraticity and overestimation] The normalized loss difference Eξ[Lt+1]−Lt

tr(Sn)

against tr(HSb)
tr(Sn)

during training. After the iterate enters the EoS, it often shows a more gentle slope

than η2

2 , especially in the unstable region. See the caption of Figure 1.

Figure 1 (bottom row) shows ∥H∥Sn
soars from 0 in a few steps after ∥H∥ exceeds 2

η , satisfying (12)
with ϵ ≈ 0, before the iterate enters the unstable region. This result is consistent with the following
theorem for a quadratic loss L and generalized momentum GD with (β1, β2):

δt = β1δt−1 − η∇θL(θt + β2δt−1), (13)
θt+1 = θt + δt, (14)

where β1, β2 ∈ [0, 1). Here, we have vanilla GD when β1 = β2 = 0, Polyak momentum when
β1 ∈ (0, 1) and β2 = 0 (Polyak, 1963), and Nesterov momentum when β1 = β2 ∈ (0, 1) (Nesterov,
1983). We will focus on the vanilla GD as it can be easily extended to the generalized momentum
variants (see Appendix C.6 for details). The proof is deferred to Appendix B.3.
Theorem 2. For generalized momentum GD with (β1, β2) on a quadratic L, if 0 < λi <
2
ηγ(β1, β2) < λ1 for all i ̸= 1 where γ(β1, β2) = 1+β1

1+2β2
, then q⊤1 δt oscillates and diverges

with the exponential growth of |q⊤1 δt| = Θ(ect) for some c > 0. Moreover, | cos(q1, δt)| and ∥H∥Sn

increase to 1 and λ1, as t→ ∞, respectively, with 1− | cos(q1, δt)|, λ1 − ∥H∥Sn
= O(e−2ct).

Note that γ(β1, β2) = 1 for the vanilla GD. To summarize, if ∥H∥ exceeds 2
η , then ∥H∥Sn increases

towards ∥H∥ with the exponential convergence rate and also exceeds 2
η in a few steps, i.e., the iterate

enters the unstable region U. Together with Theorem 1, if we consider a bounded subregion V ⊂ U
with a finite maximum loss near and including θt in which the loss is approximately quadratic, then
the iterate tends to escape from the region V (Nar & Sastry, 2018; Wu et al., 2018; Cohen et al.,
2021).

4.2 NON-QUADRATICITY, ASYMMETRIC VALLEYS AND THE EDGE OF STABILITY

In the previous section, we have shown that the training loss is approximately locally quadratic
before the iterate enters the unstable region. However, after the iterate enters the unstable region, i.e.,
tr(HSb)
tr(Sn)

reaches and exceeds 2
η , the step size is relatively large for the sharp loss landscape so that the

iterate jumps across the valley (Jastrzębski et al., 2019), and the higher-order terms ϵ in (7) and (12)
become non-negligible and cause a different behavior of the iterate than in the stable region.

Figure 2 shows empirical evidences for the non-quadraticity. After the SGD/GD iterate enters the
unstable region, when the instability condition tr(HSb)

tr(Sn)
> 2

η is met, the normalized increase in the

loss
∣∣∣Eξ[Lt+1]−Lt

tr(Sn)

∣∣∣ is often smaller than η2

2

∣∣∣ tr(HSb)
tr(Sn)

− 2
η

∣∣∣ from (7) and (12) (blue line), which is the

case for a locally quadratic function. This results in a gentle slope less than η2

2 .
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Figure 3: [Asymmetric valleys] Left: The ratio ∥Hα∥Sn

∥H∥Sn
where Hα = H(θ − αη∇L(θ)) for

α = 1
4 × [1, 2, 3, 4, 5] for each t during training. When ∥H∥Sn

< 2
η (red), ∥Hα∥Sn

is usually
larger than ∥H∥Sn

. On the other hand, when ∥H∥Sn
> 2

η (blue), ∥Hα∥Sn
is usually smaller

than ∥H∥Sn . Right: The training loss difference along the gradient descent direction, for each θt.
Each plot is normalized and translated to have the same minimum value and the same zero where
∆L(zero) = L(zero)− L(θt) = 0. We also plot the quadratic baseline (cyan dashed curve). When
∥H∥Sn

< 2
η (red), it usually becomes sharper across the valley (right-shifted), while the opposite is

observed (left-shifted) when ∥H∥Sn
> 2

η (blue). We train 6CNN using GD with η = 0.04.

We hypothesize that due to this non-quadraticity of the training loss, the iterate is discouraged from
staying within the unstable region. Note that, for a globally quadratic loss, when the iterate is in the
unstable region, it diverges within the unstable region. Figure 3 demonstrates the asymmetric valley
(He et al., 2019) that one side is sharp and the other is flat. In Figure 3 (left), we evaluate the directional
sharpness ∥Hα∥Sn

along the gradient descent direction −η∇L(θ) where Hα ≡ H(θ − αη∇L(θ))
for α ∈ 1

4 × [1, 2, 3, 4, 5], and compare ∥Hα∥Sn(θ) with ∥H∥Sn(θ). At the sharp side, it has a high
∥H∥Sn

> 2
η (blue) with the gradient ∇L and the top eigenvector q1(H) of the Hessian being highly

aligned (cf. Theorem 2). However, when the loss landscape gets far from being quadratic, the Hessian
and its top eigenvector can change abruptly, q1(Hα) would not always be aligned with q1(H) and
∇L(θ), and ∥Hα∥Sn tends to decrease. This would be a possible explanation for the tendency of
decreasing and then oscillating ∥H∥Sn . See Appendix C.3 for detailed empirical evidences of the
above arguments. Figure 3 (right) similarly shows that when the iterate is at a sharp side of the valley,
it tends to jump to the other side of a flatter area, and vice versa.

To summarize, we make the following observations for GD in order: (i) ∥H∥ increases in the
beginning (the progressive sharpening (Jastrzębski et al., 2019; 2020; Cohen et al., 2021)), (ii) ∥H∥
exceeds 2

η , (iii) the gradient ∇L becomes more aligned with the top eigenvector q1(H) in a few
steps, (iv) ∥H∥Sn

reaches the threshold 2
η and the iterate jumps across the valley, (v) ∥H∥Sn

tends
to decrease due to the non-quadraticity, and it repeats this process, while ∥H∥Sn

oscillating around
2
η . We observe a similar behavior with oscillating tr(HSb)

tr(Sn)
around 2

η for SGD. It requires further
investigation into the exact underlying mechanisms (e.g., the progressive sharpening) (Arora et al.,
2022; Li et al., 2022; Damian et al., 2022; Zhu et al., 2022) and we leave it as a future work.

Remark (Experiments in Section 4.1 and 4.2). We report the experimental results using vanilla
SGD/GD without momentum and weight decay, constant learning rate, and no data augmentation.
We train a simple 6-layer CNN (6CNN, m = 0.51M) on CIFAR-10-8k where DATASET-n denotes
a subset of DATASET with |D| = n and k = 210 = 1024. See Appendix C.1-C.3 for the results
from other datasets, learning rates and networks (ResNet-9 with m = 2.3M (He et al., 2016) and
WRN-28-2 with m = 36M (Zagoruyko & Komodakis, 2016) where m = dim(θ)).

4.3 IMPLICIT INTERACTION REGULARIZATION (IIR)

In the previous sections, we have shown the SGD iterate is implicitly discouraged from staying in the
unstable region. Now, we are ready to investigate this property from the regularization perspective.
First, to understand the effect of batch size b on the batch gradient distribution, we define the following
concentration measure ρb:
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Figure 4: [Clearer indication of the EoS] (a)-(b): After a few steps of full-batch training, ∥H∥
(blue) hovers above 2

η (Cohen et al., 2021), but ∥H∥Sn (red, defined in (2)) oscillates around 2
η

(red dashed horizontal line). The EoS is more evident in the latter (red). We also observe a sharp
increase in ∥H∥Sn

right after ∥H∥ exceeds 2
η . Curves are plotted for every step. We train a model

on CIFAR-10-8k (n = 213) using cross-entropy loss with η = 0.01/0.02, respectively. (c)-(d): We
plot curves (c) ∥H∥Sb

and (d) ∥H∥Sb

ρb
when trained with various b. After a few steps, the curves in (c)

reach the threshold 2ρb

η (see (d) together) which increases as b becomes larger when b≪ n = 213,
and saturates to 2ρb

η ≈ 2
η when b is large. Curves are smoothed for visual clarity.

Definition 2 (a concentration measure of the batch gradient). We define ρb as the ratio of the squared
norm of the total gradient ∥∇L∥2 to the expected squared norm of the batch gradients Eξ[∥gξ∥2], i.e.,

ρb ≡
∥∇L∥2

Eξ[∥gξ∥2]
=

tr(Sn)

tr(Sb)
. (15)

Here, we can write ∥∇L∥2 = ∥Eξ[gξ]∥2 and thus the ratio ρb =
∥Eξ[gξ]∥2

Eξ[∥gξ∥2] ≤ 1 is similar to the square
of the mean resultant length R̄2

b ≡ ∥Eξ[
gξ

∥gξ∥ ]∥
2 ≤ 1 of the batch gradient gξ (Mardia et al., 2000),

especially when stdξ[∥gξ∥] ≪ Eξ[∥gξ∥] (see Appendix C.5 for empirical evidences). Both ρb and
R̄2

b are concentration measures and have lower values when the batch gradients gξ are more scattered.
Therefore, it is natural to expect that the ratio ρb is small for a small batch size b, and we will revisit
this in more detail in the following section (cf. (17)). We also note that ρn = R̄2

n = 1. Yin et al.
(2018) call 1/(nρ1) the gradient diversity.

Now, we can rewrite the instability condition tr(HSb)
tr(Sn)

> 2
η (multiplying both sides by ρb) as follows:

∥H∥Sb
>

2ρb
η
. (16)

From Theorem 1 and 2, the instability condition (16) implies that IAS ∥H∥Sb
is implicitly regularized

and bounded to be less than 2ρb

η . We name this Implicit Interaction Regularization (IIR). We argue
that the upper constraint 2ρb

η in IIR is crucial in determining the SGD dynamics. With a low constraint,
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SGD strongly bounds IAS ∥H∥Sb
. We also note that IIR affects not only the magnitude ∥H∥ but also

the directional interaction. In other words, IIR discourages the batch gradients from aligning with the
top eigensubspace of the Hessian that is spanned by a few largest eigenvectors of the Hessian (cf.
Gur-Ari et al. (2018)).

Figures 4(a)-4(b) show that, for GD (ρn = 1), IAS ∥H∥Sn (red) oscillates around 2
η and exhibits IIR.

This result is consistent with Cohen et al. (2021) that ∥H∥ hovers above 2
η for GD. This is because,

as mentioned earlier, 2
η ≈ ∥H∥Sn

≤ ∥H∥ and the equality holds only when the gradient ∇L and the
top eigenvector q1 of H are aligned, which is in general not the case. For this reason, IIR provides
a tighter relation and more clearly identifies the EoS than Cohen et al. (2021). These results are
also consistent with Theorem 2 that ∥H∥Sn

suddenly increases from 0 to 2
η in a few steps after ∥H∥

exceeds 2
η (see Appendix C.3-C.4 for more). Moreover, IIR also applies to a general SGD training

with 1 ≤ b ≤ n. Figure 4(c)-4(d) show IIR for SGD with different batch sizes. The upper bound
2ρb

η of ∥H∥Sb
according to IIR is higher when using a larger batch size, but limited to less than 2

η

(ρb ≤ 1). We will further discuss this behavior with an investigation of ρb in the following section.

5 LINEAR AND SATURATION SCALING RULE (LSSR)

In this section, we first introduce two previous scaling rules on how to tune the learning rate for
varying batch sizes. Then we explain why they fail and propose a new scaling rule based on IIR.

The ratio b/η of batch size b to learning rate η has long been believed as an important factor influencing
the generalization performance, and the test accuracy has observed to be similar when trained with
the same ratio b/η = b′/η′, i.e., b′ = kb and η′ = kη for k > 0. This is called the linear scaling
rule (LSR) (Krizhevsky, 2014; Goyal et al., 2017; Jastrzębski et al., 2017; Smith & Le, 2018; Zhang
et al., 2019). They argued that LSR holds because θt+k − θt = −η

b

∑k−1
i=0

∑
x∈Bt+i

ξ
∇θℓ(x; θt+i) ≈

−η
b

∑k−1
i=0

∑
x∈Bt+i

ξ
∇θℓ(x; θt) = −η′

b′

∑
x∈Bt:t+k

ξ
∇θℓ(x; θt) assuming ∇θℓ(θt+i) ≈ ∇θℓ(θt) for

0 ≤ i < k, where Bt:t+k
ξ ≡ ∪k−1

i=0 B
t+i
ξ and |Bt:t+k

ξ | = kb = b′. However, the assumption is not
accurate since the gradient oscillates mostly with a negative cosine value cos(gξ(θt), gξ(θt+1)) < 0
between two consecutive gradients after entering the EoS (see Figure 24-25 in Appendix C.3).
Moreover, LSR is known to fail when the batch size is large (Jastrzębski et al., 2017; Masters & Luschi,
2018; Zhang et al., 2019; Smith et al., 2020; 2021). On the other hand, Krizhevsky (2014); Hoffer et al.
(2017) proposed the square root scaling rule (SRSR) with another ratio

√
b/η to keep the covariance

of the parameter update constant for b ≪ n based on Varξ[ηgξ] = η2Cb =
γn,bη

2

b C1 ≈ η2

b C1.
However, Shallue et al. (2018) showed that both LSR and SRSR do not hold in general.

Based on the analysis of IIR with a new ratio 2ρb/η in the previous section, we explore why LSR
fails in the large-batch regime and provide a more accurate rule to achieve similar generalization
performance of the models trained with various choices of batch size and learning rate pairs (b, η).

To this end, we investigate the concentration measure ρb = tr(Sn)/ tr(Sb). By combining two
equations, Cb = Sb − Sn (by definition) and Cb =

γn,b

b (S1 − Sn) in (1), we can obtain Sb =

Cb + Sn =
γn,b

b S1 + (1− γn,b

b )Sn. Therefore, we have tr(Sb) =
γn,b

b tr(S1) + (1− γn,b

b ) tr(Sn),
which leads to the following equation:

ρb ≡
tr(Sn)

tr(Sb)
=

tr(Sn)
γn,b

b tr(S1) + (1− γn,b

b ) tr(Sn)
=

1
γn,b

b
1
ρ + (1− γn,b

b )︸ ︷︷ ︸
(∗)

≈

{
b

γn,b
ρ ≈ bρ if b is small

1 if b is large

(17)
from (15) where ρ = ρ1 = tr(Sn)/ tr(S1). Note that ρ is (much) smaller than 1 because ∇θℓ(xi) has
different direction for each xi and tr(Sn) = ∥∇L∥2 = ∥ 1

n

∑
i ∇θℓ(xi)∥2 ≤ 1

n

∑
i ∥∇ℓθ(xi)∥2 =

tr(S1). In other words, 1/ρ is (much) larger than 1 (see Appendix C.5).

Figure 5 (left) demonstrates a new scaling rule with the ratio ρb/η, called the Linear and Saturation
Scaling Rule (LSSR), with the two regimes that (i) ρb is almost linear when b≪ n (linear regime)
and (ii) ρb saturates when b is large (saturation regime). It depends on which part of the denominator
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Figure 5: [Linear and Saturation Scaling Rule (LSSR)] Left: LSSR (red) in (17), LSR (black
dotted line) (Goyal et al., 2017) and SRSR (blue dotted line) (Hoffer et al., 2017). For LSSR, we can
observe both linear and saturation regions (n = 8k, ρ = 2−7). Right: Heatmaps of test accuracy for
models trained with a large number of pairs of (b, η) on CIFAR-10-8k , CIFAR-100-8k , STL-10-4k,
and Tiny-ImageNet-32k (from left to right, from top to bottom). It does not follow either LSR or
SRSR, but tends to follow LSSR. We also plot ρb/η = C (yellow dashed curve) for some ρ and C on
each heatmap. Note that they are all log-log plots and thus a slope of 1 indicates linear relationship.

(∗) in (17) dominates the other. First, when b ≪ n, then γn,b/b is not very small and the first term
γn,b

b
1
ρ dominates the second term 1− γn,b

b since 1
ρ ≫ 1. Second, as b becomes large, γn,b/b ≈ 0 and

the second term (≈ 1) dominates the first term. Thus, ρb saturates to 1 and is not linearly related to b,
and LSR is no longer valid. The above arguments also hold for the batches sampled with replacement
where the only modification is γn,b = 1, ∀b in (17). Figure 5 (right) empirically supports LSSR
with the test accuracies when trained with various combinations of pairs (b, η). To be specific, the
optimal learning rate is almost linear to b when b is small, but it saturates when b is large. We also
plot ρb/η = C (the yellow dashed curve) for some ρ and C which shows a theoretical prediction of
pairs (η, b) that yield the optimal performance. Note that Figure 8 of Shallue et al. (2018, Section
4.7) shows similar “linear and saturation” behaviors supportive of LSSR on other datasets (see also
Figure 7 of Zhang et al. (2019, Section 4.3)).
Remark (Experiments in Section 4.3 and 5). We train models using vanilla SGD/GD without
momentum and weight decay, constant learning rate, and no data augmentation. For Figure 5, we
use subsets of the datasets CIFAR-10 (Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky &
Hinton, 2009), STL-10 (Coates et al., 2011), and Tiny-ImageNet (a subset of ImageNet (Deng et al.,
2009) with 3 × 64 × 64 images and 200 object classes). We use a large number of epochs (800)
and batch normalization (Ioffe & Szegedy, 2015) to achieve a zero training error even with a large
b and a small η. In the lower right corner (red area) of each heatmap in Figure 5 (right), when b is
too large or η is too small so that ∥θt+1 − θt∥ = η∥gξ∥ is too small, it requires an exponentially
large number of steps for the iterate to enter the EoS. Thus, in this case, the assumption in Goyal
et al. (2017), ∇θℓ(θt) ≈ ∇θℓ(θt+i) for 0 ≤ i < k, approximately holds and the reasoning on LSR is
valid. However, this only holds for a non-practical (b, η) which shows a suboptimal performance.
See Appendix C.4-C.5 for the results from other networks and hyperparameters.

6 CONCLUSION

From an analysis of unstable dynamics of SGD and the instability condition, we clearly mark the
edge of stability with the interaction-aware sharpness ∥H∥Sb

and show the presence of the implicit
regularization effect on the interaction between the gradient distribution and the loss landscape
geometry (IIR). Moreover, introducing the concentration measure ρb of the batch gradient, we link the
second moment of the gradient distribution and the sharpness of the loss landscape, and propose a new
scaling rule called Linear and Saturation Scaling Rule (LSSR). Due to the simplicity of the analysis,
we hope that our insights will motivate the future work toward understanding various learning tasks.
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A NOTATIONS

We summarize the notations for a quick reference.

t ∈ N time step
θ ∈ Θ ⊂ Rm (or indexed θt); dim(θ) = m model parameter
x ∈ X (or indexed xi) training sample
D = {xi}ni=1; |D| = n training data
ℓ(x; θ) loss function

L(θ) ≡ 1

n

n∑
i=1

ℓ(xi; θ) =
1

|D|
∑
x∈D

ℓ(x; θ);Lt = L(θt) (total) training loss

η > 0 learning rate

B ⊂ D (or indexed Bξ,Bt
ξ) batch

b = |B|; 1 ≤ b ≤ n batch size

gξ(θ) ≡
1

b

∑
x∈Bξ

∇ℓ(x; θ) = 1

|Bξ|
∑
x∈Bξ

∇ℓ(x; θ) batch gradient

θt+1 = θt − η∇θL(θt) GD
θt+1 = θt − ηgξ(θt) SGD
δt = θt+1 − θt displacement/velocity vector

Cb(θ) ≡ Varξ[gξ(θ)] ∈ Rm×m the covariance of the batch gradient

Sb(θ) ≡ Eξ

[
gξ(θ)gξ(θ)

⊤] ∈ Rm×m the second moment of the batch gradient

γn,b =

{
n−b
n−1 for sampling without replacement
1 for sampling with replacement

sampling coefficient

H(θ) ≡ ∇2
θL(θ) = Ex∼D[∇2

θℓ(x; θ)] ∈ Rm×m Hessian

∥u∥ =

(∑
i

u2i

)1/2

the Euclidean ℓ2-norm of a vector u

∥A∥ ≡ sup
u̸=0

∥Au∥
∥u∥

the spectral (operator) norm of a matrix A

λi = λi(H) ∈ R the i-th largest eigenvalue of the Hessian
qi = qi(H) ∈ Rm the corresponding i-th eigenvector of the Hessian

tr(A) =
∑
i

Ai,i the trace of a square matrix A

∥H∥Sb
≡ tr(HSb)

tr(Sb)
interaction-aware sharpness

ρb ≡
tr(Sn)

tr(Sb)
concentration measure of the batch gradient

ρ ≡ tr(Sn)

tr(S1)
concentration measure of the per-example gradient

U = {θ ∈ Θ : ∥H∥Sb
>

2ρb
η

} unstable regime

S = Uc = {θ ∈ Θ : ∥H∥Sb
≤ 2ρb

η
} stable regime

∂S = {θ ∈ Θ : ∥H∥Sb
=

2ρb
η

} the edge of stability

β1, β2 ∈ (0, 1] hyperparameters for generalized momentum GD
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B PROOFS AND REMARKS

B.1 PROOF OF (1)

We provide a proof of (1) to make the paper self-contained. Similar proofs are given in Li et al.
(2017); Hoffer et al. (2017); Wu et al. (2020).

Proof. We start with

Cb = Eξ[gξg
⊤
ξ ]−∇L∇L⊤ (18)

= ∇LEξ[ww
⊤]∇L⊤ −∇L

(
1

n
1
1

n
1⊤
)
∇L⊤ (19)

= ∇L
(
Eξ[ww

⊤]− 1

n2
11⊤

)
∇L⊤ (20)

= ∇LVarξ[w]∇L⊤ (21)

=
1

b2
∇LVarξ[v]∇L⊤, (22)

where ∇L = [∇ℓ1, · · · ,∇ℓn] ∈ Rm×n, ℓi = ℓ(xi), the random vector w = [w1, · · · , wn]
⊤, each

element of which represents 1
b× “how many times the index i is sampled in Bξ”, and v = bw.

In case of sampling with replacement, we have v = v(1) + · · ·+ v(b) where v(i) represents sampling
of a single sample. Thus, Varξ[v] = bVar[v(1)]. We have E[v(1)] = 1

n1 and

E[v(1)v(1)T ]i,j =
{
P [i ∈ B(1)] = 1

n if i = j

P [i ∈ B(1), j ∈ B(1)] = 0 else
, (23)

where |B(1)| = 1. Thus,

Varξ[v] = bVar[v(1)] = b

(
1

n
I − 1

n2
11⊤

)
. (24)

In case of sampling without replacement, we have Eξ[v] =
b
n1 and

Eξ[vv
⊤]i,j =

{
P [i ∈ Bξ] =

C(n−1,b−1)
C(n,b) = b

n if i = j

P [i ∈ Bξ, j ∈ Bξ] =
C(n−2,b−2)

C(n,b) = b(b−1)
n(n−1) else

, (25)

where C(n1, r1) is the number of r1-combinations from a set of n1 elements. This leads to

Eξ[vv
⊤] =

b(b− 1)

n(n− 1)
11⊤ +

(
b

n
− b(b− 1)

n(n− 1)

)
I (26)

and

Varξ[v] = Eξ[vv
⊤]− b2

n2
11⊤ =

(
b(b− 1)

n(n− 1)
− b2

n2

)
11⊤ +

b(n− b)

n(n− 1)
I (27)

=
b(b− n)

n2(n− 1)
11⊤ +

b(n− b)

n(n− 1)
I (28)

=
b(n− b)

n− 1

(
1

n
I − 1

n2
11⊤

)
(29)

Putting the two cases together, from (22), (24) and (29), we have

Cb =
1

b2
bγn,b∇L

(
1

n
I − 1

n2
11⊤

)
∇L⊤ =

γn,b
b

(
1

n
∇L∇L⊤ − 1

n2
(∇L1)(∇L1)⊤

)
(30)

=
γn,b
b

(
1

n

∑
i

∇ℓi∇ℓ⊤i −∇L∇L⊤

)
(31)

=
γn,b
b

(S1 − Sn), (32)
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where

γn,b =

{
1 for the sampling with replacement
n−b
n−1 for the sampling without replacement

. (33)

B.2 PROOF OF THEOREM 1

First, we expect the variance of the loss at the next iteration (t+ 1) to be small for a sufficiently large
b.
Lemma 3. If the batch gradient gξ is normally distributed and the loss L is quadratic, then

Varξ[Lt+1|θt] =
η2γn,b
b

(
v⊤C1v +

η2γn,b
2b

tr(HC1HC1)

)
, (34)

where v = (I − ηH)∇L.

Proof. Since L is quadratic, we have the following:

Lt+1 = Lt − ηg⊤gξ +
η2

2
g⊤ξ Hgξ (g = ∇L) (35)

= constant − ηg⊤(g + ε) +
η2

2
(g + ε)⊤H(g + ε) (ε ∼ N (0,Σ = Cb)) (36)

= constant − ηg⊤ε+ η2g⊤Hε+
η2

2
ε⊤Hε (37)

= constant − η((I − ηH)g)⊤ε+
η2

2
ε⊤Hε, (38)

Then, the variance of Lt+1 is Varξ[Lt+1|θt] = Eξ[Q
2
ξ ]− Eξ[Qξ]

2 where Qξ = −ηv⊤ε+ η2

2 ε
⊤Hε.

First, we can obtain the square of the expected value of Qξ as follows:

Eξ[Qξ] = −ηv⊤Eξ[ε] +
η2

2

∑
i,j

Hi,jEξ[εiεj ] =
η2

2

∑
i,j

Hi,jΣi,j =
η2

2
tr(HΣ), (39)

Eξ[Qξ]
2 =

η4

4
tr(HΣ)2, (40)

where the last equation holds since Σ is symmetric and
∑

i,j Hi,jΣi,j =
∑

i,j Hi,jΣj,i =∑
i[HΣ]i,i = tr(HΣ). Second, we have the expected value of the square of Qξ as follows:

Q2
ξ = η2

∑
i,i′

vivi′εiεi′ − η3
∑
i,j,k

viHj,kεiεjεk +
η4

4

∑
j,k,j′,k′

Hj,kHj′,k′εjεkεj′εk′ (41)

and, since Eξ[εiεjεk] = 0 and E[εjεkεj′εk′ ] = E[εjεk]E[εj′εk′ ] + E[εjεj′ ]E[εkεk′ ] +
E[εjεk′ ]E[εj′εk] by Isserlis’ theorem (Isserlis, 1918) for zero-mean normal random vector ε,

Eξ[Q
2
ξ ] = η2

∑
i,i′

vivi′Σi,i′ +
η4

4

∑
j,k,j′,k′

Hj,kHj′,k′(Σj,kΣj′,k′ +Σj,j′Σk,k′ +Σj,k′Σj′,k) (42)

= η2v⊤Σv +
η4

4
(tr(HΣ)2 + 2 tr(HΣHΣ)). (43)

Finally, we have the variance

Varξ[Lt+1|θt] = Eξ[Q
2
ξ ]− Eξ[Qξ]

2 (44)

= η2
(
v⊤Σv +

η2

2
tr(HΣHΣ)

)
(45)

=
η2γn,b
b

(
v⊤C1v +

η2γn,b
2b

tr(HC1HC1)

)
. (46)
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From Lemma 3, we can easily derive the following theorem from Chebyshev’s inequality:
Theorem 4. For SGD on a quadratic loss L, the expected loss at the next step (t+ 1) is

Eξ[Lt+1] = Lt −
η2

2
tr(Sn)

[
tr(HSb)

tr(Sn)
− 2

η

]
. (47)

Further, if the batch gradient gξ is normally distributed, then given δ > 0 and α ≥
√
β/δ, we have,

with probability of at least 1− δ,

|Lt+1 − Eξ[Lt+1]| ≤ α, (48)

where β =
η2γn,b

b

(
v⊤C1v +

η2γn,b

2b tr(HC1HC1)
)

and v = (I − ηH)∇L.

However, we can replace this inequality with a better exponential inequality. To do so, we need a
generalized Lemma 6 of the following Lemma 5 (Laurent & Massart, 2000):
Lemma 5 (Laurent & Massart (2000)). For i.i.d. Gaussian variables (Y1, · · · , YD) with mean 0 and
variance 1, the following inequality holds for any positive x:

P(Z − E[Z] ≥ 2∥a∥2
√
x+ 2∥a∥∞x) ≤ exp(−x), (49)

P(Z − E[Z] ≤ −2∥a∥2
√
x) ≤ exp(−x), (50)

where Z =
∑

i aiY
2
i .

Lemma 6. For i.i.d. Gaussian variables (Y1, · · · , YD) with mean 0 and variance 1, the following
inequality holds for any positive x:

P

(
Z − E[Z] ≥ 2

√
∥a∥22 +

∥c∥22
2

√
x+ 2∥a∥∞x

)
≤ exp(−x), (51)

P

(
Z − E[Z] ≤ −2

√
∥a∥22 +

∥c∥22
2

√
x

)
≤ exp(−x), (52)

where Z =
∑

i aiY
2
i + ciYi.

Proof. For a standard normal random variable Yi ∼ N (0, 1), let ψ be the Cramér transform of
Y 2
i + ciYi − 1:

ψ(λ) = logE[exp(λ(Y 2
i + ciYi − 1))] (53)

= log

∫
R
p(y;N (0, 1)) exp(λ(y2 + ciy − 1))dy (54)

= log

∫
R

1√
2π

exp

(
−y

2

2

)
exp(λ(y2 + ciy − 1))dy (55)

= log

∫
R

1√
2π

exp

(
−y

2

2
+ λ(y2 + ciy − 1)

)
dy (56)

= log

∫
R

1√
2π

exp

(
−1

2
(1− 2λ)y2 + ciλy − λ

)
dy (57)

= log

∫
R

1√
2π

exp(−λ) exp
(
−1

2
(1− 2λ)y2

)
exp (−ciλy) dy (58)

= log

∫
R
exp(−λ)σ 1√

2πσ2
exp

(
− 1

2σ2
y2
)
exp (−ciλy) dy (σ2 = (1− 2λ)−1) (59)

= −λ+ log(σ) + Ey∼N (0,σ2) [exp (−ciλy)] (60)

= −λ− 1

2
log(1− 2λ) +

(ciλσ)
2

2
(61)

≤
λ2(1 +

c2i
2 )

1− 2λ
, (62)
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where the last inequality holds for 0 < λ < 1
2 since −λ− 1

2 log(1− 2λ) = −λ+ 1
2

∑
k≥1

(2λ)k

k =

1
2

∑
k≥2

(2λ)k

k = 2λ2
∑

k≥0
(2λ)k

k+2 ≤ 2λ2
∑

k≥0
(2λ)k

2 = λ2
∑

k≥0(2λ)
k = λ2

1−2λ .

Therefore,

logE[exp(λZ)] =
∑
i

logE
[
exp

(
aiλ

(
Y 2
i +

ci
ai
Yi − 1

))]
≤
∑
i

(1 + 1
2 (

ci
ai
)2)a2iλ

2

1− 2aiλ
(63)

≤
(∥a∥2 + ∥c∥2

2 )λ2

1− 2∥a∥∞λ
. (64)

We can obtain (69) from the following (Birgé & Massart, 1998): if logE[exp(λZ)] ≤ b1λ
2

1−b2λ
, then,

for any positive x > 0, P(Z ≥
√
b1x+b2x) ≤ exp(−x). Also, for − 1

2 < λ < 0, ψ(λ) ≤ λ2(1+
c2i
2 )

and thus logE[exp(λZ)] = (∥a∥2 + ∥c∥2

2 )λ2 which leads to (70).

Theorem 1. For SGD on a quadratic L, the expected loss increases, i.e., Eξ[Lt+1]− Lt > 0, if and
only if θt satisfies the instability condition tr(HSb)

tr(Sn)
> 2

η . Furthermore, if the batch gradient gξ is
normally distributed, then the following inequalities hold for any positive x > 0:

P
(
Lt+1 − Eξ[Lt+1] ≥

√
2βx+

η2γn,b
b

∥H∥∥C1∥x
∣∣∣ θt) ≤ exp(−x), (8)

P
(
Lt+1 − Eξ[Lt+1] ≤ −

√
2βx

∣∣∣ θt) ≤ exp(−x), (9)

where β =
η2γn,b

b

(
v⊤C1v +

η2γn,b

2b tr(HC1HC1)
)

and v = (I − ηH)∇L.

Proof. The first part of the statement is trivial from (7) with ϵ = 0 for a quadratic L. Now, we
focus on the concentration of Lt+1 from its expected value: Lt+1 − E[Lt+1] = Z − E[Z] for
Z = Qξ = −ηv⊤ε + η2

2 ε
⊤Hε where v = (I − ηH)∇L and ε ∼ N (0, Cb) from (38). For

Cb =
γn,b

b BB⊤, we can represent ε =
√

γn,b

b Bε̃ with ε̃ ∼ N (0, I) and

Z = −ηv⊤ε+ η2

2
ε⊤Hε (65)

= −η
√
γn,b
b

(B⊤v)⊤ε̃+
η2γn,b
2b

ε̃⊤B⊤HBε̃ (66)

= c⊤Y + Y ⊤ diag(a)Y (67)

=
∑
i

aiY
2
i + ciYi, (68)

where A =
η2γn,b

2b B⊤HB = Qdiag(a)Q⊤, c = −η
√

γn,b

b Q⊤B⊤v and Y = [Y1, · · · , Ym] = Q⊤ε̃.
Therefore, from the rotation invariance, {Yi} are i.i.d. Gaussian variables with mean 0 and variance 1
like ε̃. From Lemma 6, we have the following inequalities:

P

(
Lt+1 − E[Lt+1] ≥ 2

√
∥A∥2F +

∥c∥22
2

√
x+ 2∥A∥x

)
≤ exp(−x), (69)

P

(
Lt+1 − E[Lt+1] ≤ 2

√
∥A∥2F +

∥c∥22
2

√
x

)
≤ exp(−x). (70)

Further, we have

∥A∥2F = tr(A⊤A) = (
η2γn,b
2b

)2 tr(B⊤HBB⊤HB) = (
η2γn,b
2b

)2 tr(HBB⊤HBB⊤) (71)

= (
η2γn,b
2b

)2 tr(HC1HC1) (72)
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and

∥c∥2 =
η2γn,b
b

∥Q⊤B⊤v∥2 =
η2γn,b
b

∥B⊤v∥2 =
η2γn,b
b

v⊤C1v. (73)

These lead to ∥A∥2F +
∥c∥2

2

2 = (
η2γn,b

2b )2 tr(HC1HC1) +
η2γn,b

2b v⊤C1v = β
2 and then (9) follows

from (70). Moreover, we have ∥A∥ ≤ η2γn,b

2b ∥H∥∥C1∥ which leads to (8) from (69).

B.3 PROOF OF THEOREM 2

We consider the following linear homogeneous second-order equation for the sequence {yt}:
yt+2 + p1yt+1 + p2yt = 0 (74)

and its the characteristic equation
ϕ(x) = x2 + p1x+ p2 = 0. (75)

Lemma 7 (Theorem 2.35 in Elaydi (2005)). All solutions of (74) (i) oscillate (about zero) if and only
if (75) has no positive real roots, and (ii) converges to 0 if and only if the solutions of (75) x1 and x2
satisfy |x1|, |x2| < 1.
Lemma 8 (Theorem 2.37 in Elaydi (2005)). The conditions

1 + p1 + p2 >0 (C1)
1− p1 + p2 >0 (C1)

1− p2 >0 (C1)
are necessary and sufficient for the equilibrium point (solution) of (74) to be asymptotically stable
(i.g., all solutions converges to 0).
Theorem 2. For generalized momentum GD with (β1, β2) on a quadratic L, if 0 < λi <
2
ηγ(β1, β2) < λ1 for all i ̸= 1 where γ(β1, β2) = 1+β1

1+2β2
, then q⊤1 δt oscillates and diverges

with the exponential growth of |q⊤1 δt| = Θ(ect) for some c > 0. Moreover, | cos(q1, δt)| and ∥H∥Sn

increase to 1 and λ1, as t→ ∞, respectively, with 1− | cos(q1, δt)|, λ1 − ∥H∥Sn
= O(e−2ct).

We provide a proof of Theorem 2 which is modified from the proofs in Appendix A in Cohen et al.
(2021).

Proof. Put a quadratic training loss L(θ) = 1
2θ

⊤Hθ + b⊤θ + c. The update rules for generalized
momentum GD with (β1, β2) on this quadratic function L(θ) are:

δt = (β1I − β2ηH)δt−1 − ηb− ηHθt (76)
θt+1 = θt + δt (77)

and thus, for a pair of eigenvalue/eigenvector (q, λ) the update rules for the quantities θ̃t = q⊤θt +
1
λq

⊤b and δ̃t = q⊤δt are:

δ̃t = (β1 − β2a)δ̃t−1 − aθ̃t (78)

θ̃t+1 = θ̃t + δ̃t, (79)
where a = ηλ > 0 and this leads to:

θ̃t+1 = θ̃t + δ̃t (80)

= θ̃t + (β1 − β2a)δ̃t−1 − aθ̃t (81)

= θ̃t + (β1 − β2a)(θ̃t − θ̃t−1)− aθ̃t (82)

= (1 + β1 − (1 + β2)a) θ̃t − (β1 − β2a)θ̃t−1, (83)

0 = θ̃t+1 − (1 + β1 − (1 + β2)a) θ̃t + (β1 − β2a)θ̃t−1, (84)

0 = θ̃t+1 − θ̃t− (1 + β1 − (1 + β2)a)(θ̃t − θ̃t−1) + (β1 − β2a)(θ̃t−1 − θ̃t−2), (85)

0 = δ̃t − (1 + β1 − (1 + β2)a)︸ ︷︷ ︸
p1

δ̃t−1 + (β1 − β2a)︸ ︷︷ ︸
p2

δ̃t−2. (86)
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Note that θ̃t and δ̃t have the same characteristic equation. Thus, by Lemma 8, δ̃t is asymptotically
stable when the following three conditions (C1-3) hold:

1 + p1 + p2 = 1− (1 + β1 − (1 + β2)a) + β1 − β2a > 0, (C1) (87)
1− p1 + p2 = 1 + (1 + β1 − (1 + β2)a) + β1 − β2a > 0, (C2) (88)

1− p2 = 1− β1 + β2a > 0. (C3) (89)

C3 and C1 always hold because 1− β1 > 0 and

1− (1 + β1 − (1 + β2)a) + β1 − β2a = a > 0. (90)

Lastly, since

1 + (1 + β1 − (1 + β2)a) + β1 − β2a = 2 + 2β1 − (1 + 2β2)a > 0, (91)

The asymptotic convergence condition (C2) is equivalent to

λ <
2 + 2β1

(1 + 2β2)η
=

2

η

1 + β1
1 + 2β2

=
2

η
γ(β1, β2). (92)

Therefore, along the direction of q1, the sequence {q⊤1 δt} diverges, and along the direction of qi
(i > 1), the sequence {q⊤i δt} converges to 0. The discriminant D(a0) for the characteristic equation
ϕ(x; a0) is positive as shown below where a0 = 2γ(β1, β2), i.e., ϕ(x; a0) has two distinct real
solutions.

D(a) = p21 − 4p2 (93)

= (1 + β1 − (1 + β2)a)
2 − 4(β1 − β2a), (94)

D(a0) =

(
1 + β1
1 + 2β2

)2

− 4
β1 − 2β2
1 + 2β2

(a0 = 2γ(β1, β2)) (95)

=
(1 + β1)

2 − 4(β1 − 2β2)(1 + 2β2)

(1 + 2β2)2
(96)

=
(1− β1)

2 − 8((β1 − 1)β2 − 2β2
2)

(1 + 2β2)2
> 0. (97)

(94) implies that D(a) is convex quadratic with respect to a. Thus, to show that D(a) > 0 (ϕ(x; a)
has two distinct real solutions) for all a > a0, it is sufficient to show that D′(a) ≥ 0 for a > a0. The
following inequality holds

D′(a) = 2(1 + β2)
2a− 2(1 + β1 − β2 + β1β2) ≥ 0 (98)

if a ≥ 1+β1−β2+β1β2

(1+β2)2
. And, D′(a) ≥ 0 for a > a0 since a > a0 >

1+β1−β2+β1β2

(1+β2)2
from

a0 −
1 + β1 − β2 + β1β2

(1 + β2)2
=

2(1 + β1)

1 + 2β2
− 1 + β1 − β2 + β1β2

(1 + β2)2
(99)

=
2(1 + β1)(1 + β2)

2 − (1 + 2β2)(1 + β1 − β2 + β1β2)

(1 + 2β2)(1 + β2)2
(100)

=
1 + β1 + 3β2 + β1β2 + 4β2

2

(1 + 2β2)(1 + β2)2
> 0. (101)

Now, for a > a0, we want to show that x1 for the dominant solution (|x1| > |x2|) is negative so

that the general solution δ̃t = c1x
t
1 + c2x

t
2 = xt1

[
c1 + c2

(
x2

x1

)t]
oscillates where ci, xi ∈ R and

i ∈ {1, 2}. The sum of the two solutions of ϕ(x; a) is x1 + x2 = −p1 and this is negative for a > a0
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from the following:
p1 = −(1 + β1) + (1 + β2)a (102)
> −(1 + β1) + (1 + β2)a0 (103)
= −(1 + β1 − (1 + β2)a0) (104)

= −
(
1 + β1 − (1 + β2)

2(1 + β1)

1 + 2β2

)
(105)

= − (1 + β1)(1 + 2β2)− (1 + β2)2(1 + β1)

1 + 2β2
(106)

=
1 + β1
1 + 2β2

> 0. (107)

Thus, we have that x1 for the dominant solution is negative which leads to an oscillatory behavior of
q⊤1 δt. And it has the exponential growth of |q⊤1 δt| = Θ(|x1|t) = Θ(ect) for c = ln |x1| > 0 since

|q⊤1 δt| = |x1|t
∣∣∣∣∣
[
c1 + c2

(
x2
x1

)t
]∣∣∣∣∣ , (108)

1

2
|c1||x1|t ≤ |q⊤1 δt| ≤ 2|c1||x1|t for t ≥ t0 for some t0 (109)

(λ1 violates (92) with λ1 > 2
ηγ(β1, β2) which implies |x1| > 1).

This makes δt to be asymptotically aligned with the top eigenvector q1 of H , i.e.,

limt→∞ | cos(q1, δt)| = limt→∞
|q⊤1 δt|√∑m
i=1(q

⊤
i δt)2

= limt→∞
|δ̃(1)t |√∑m
i=1 δ̃

(i)2
t

= 1 where δ̃(i)t = q⊤i δt.

Moreover, we can obtain the exponential convergence (1− | cos(q1, δt)| = O(e−2ct)) as follows:

| cos(q1, δt)| =
|δ̃(1)t |√
δ̃
(1)2
t + s2t

(s2t =

m∑
i>1

δ̃
(i)2
t → 0), (110)

1− | cos(q1, δt)| =

√
δ̃
(1)2
t + s2t − |δ̃(1)t |√
δ̃
(1)2
t + s2t

(111)

=
δ̃
(1)2
t + s2t − |δ̃(1)t |

√
δ̃
(1)2
t + s2t

δ̃
(1)2
t + s2t

(112)

= s2t

δ̃
(1)2
t

s2t
− | δ̃

(1)
t

st
|
√

δ̃
(1)2
t

s2t
+ 1 + 1

δ̃
(1)2
t + s2t

, (113)

0 ≤ 1− | cos(q1, δt)| ≤
1

δ̃
(1)2
t

for t ≥ t1 for some t1. (114)

The last inequality holds because at = |δ̃(1)t /st| diverges to ∞ and limx→∞ x2−x
√
x2 + 1+1 = 1

2 ,

Moreover, we have
∇θL(θt) = Hθt + b (115)

=
∑
i

λiqiq
⊤
i θt +

∑
i

qiq
⊤
i b =

∑
i

λiqi(q
⊤
i θt +

q⊤i
λi
b) =

∑
i

λiθ̃
(i)
t qi,

(116)

∥∇θL(θt)∥2 =
∑
i

λ2i θ̃
(i)2
t , (117)

H∇θL(θt) =
∑
i

λiqiq
⊤
i

∑
i

λiθ̃
(i)
t qi =

∑
i

λ2i θ̃
(i)
t qi, (118)

∇θL(θt)
⊤H∇θL(θt) =

∑
i

λiθ̃
(i)
t q⊤i

∑
i

λ2i θ̃
(i)
t qi =

∑
i

λ3i θ̃
(i)2
t , (119)
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where θ̃(i)t = q⊤i θt +
q⊤i
λi
b. Therefore, we have λ1 − ∥H∥Sn

= O(e−2ct) from the following:

∥H∥Sn =
∇θL

⊤H∇θL

∥∇θL∥2
=

∑
i λ

3
i θ̃

(i)2
t∑

i λ
2
i θ̃

(i)2
t

=
λ1θ̃

(1)2
t +

λ3
2

λ2
1
θ̃
(2)2
t + · · ·

θ̃
(1)2
t +

λ2
2

λ2
1
θ̃
(2)2
t + · · ·

, (120)

λ1 − ∥H∥Sn =
(
λ2
2

λ1
− λ3

2

λ2
1
)θ̃

(2)2
t + · · ·

θ̃
(1)2
t +

λ2
2

λ2
1
θ̃
(2)2
t + · · ·

=

λ2
2

λ2
1
(λ1 − λ2)θ̃

(2)2
t + · · ·

θ̃
(1)2
t +

λ2
2

λ2
1
θ̃
(2)2
t + · · ·

, (121)

0 ≤ λ1 − ∥H∥Sn
≤ 1

θ̃
(1)2
t

for t ≥ t2 for some t2 (122)

since limt→∞ θ̃
(i)
t = 0 for i > 1.

Remark. Due to the exponential convergence of ∥H∥Sn
to λ1, it only takes a few steps (5-20) for

∥H∥Sn
to exceed 2

ηγ(β1, β2) (see Appendix C.3).

Remark. In practice, ∥H∥ = λ1 keeps increasing after it exceeds 2
ηγ(β1, β2). Therefore, we may

relax the assumption as the eigenvalues λ1(θt) > 2
ηγ(β1, β2)+ϵ1 and ϵ2 < λi(θt) <

2
ηγ(β1, β2)−ϵ3

for i ̸= 1 may change within the bounds over t for some ϵ1, ϵ2, ϵ3 > 0 (qi’s are fixed). We can draw
the same conclusion except that the limit ∥H∥Sn

may not exist because of varying ∥H∥ according to
t, but we can ensure that ∥H∥Sn

eventually exceeds 2
ηγ(β1, β2).
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C EXPERIMENTAL SETTINGS AND ADDITIONAL FIGURES

We report the experimental results using vanilla SGD/GD without momentum and weight decay,
constant learning rate, and no data augmentation. We use a simple 6-layer CNN (6CNN,m = 0.51M),
ResNet-9 (He et al., 2016)3 (m = 2.3M ), WRN-28-2 (Zagoruyko & Komodakis, 2016) (m = 36M ).
We use subsets of the datasets CIFAR-10/100 (Krizhevsky & Hinton, 2009)4, STL-10 (Coates et al.,
2011)5, and Tiny-ImageNet6 (a subset of ImageNet (Deng et al., 2009) with 3× 64× 64 images and
200 object classes) where DATASET-n denotes a subset of DATASET with |D| = n and k=210 = 1024.

Moreover, we use PyHessian (Yao et al., 2020)7 to compute the Hessian-vector product (e.g., H∇L),
the top eigenvalue λ1 and its corresponding eigenvector q1 of the Hessian. For these computations,
we use the power iterations with a batch size of 2k, the tolerance of 0.001, and the maximum iteration
of 100.

C.1 FIGURE 1

In Figure 1 and Figure 2, we plot Eξ[Lt+1]−Lt

tr(Sn)
against tr(HSb)

tr(Sn)
, which is equivalent to Lt+1−Lt

tr(Sn)
against

∥H∥Sn
for GD. Therefore, we expect the following linear relationship with the slope η2

2 and the
x-intercept 2

η when the training loss L is locally quadratic, i.e., ϵ = 0:

Eξ[Lt+1]− Lt

tr(Sn)
=
η2

2

(
tr(HSb)

tr(Sn)
− 2

η

)
, (123)

Lt+1 − Lt

tr(Sn)
=
η2

2

(
∥H∥Sn − 2

η

)
. (124)

Figure 1 shows the behavior in the early phase, until the iterate enters the edge of stability. For GD,
they are plotted after ∥H∥ exceeds 2

η after which ∥H∥Sn
starts to increase from 0 to 2

η in a few steps.
For cross-entropy loss, we mark the end point with ‘x’ when the iterate enters the unstable regime.
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Figure 6: 6CNN with η = 0.01. See caption of Figure 1 for more details.

3from https://github.com/wbaek/torchskeleton, Apache-2.0 license
4https://www.cs.toronto.edu/~kriz/cifar.html
5https://cs.stanford.edu/~acoates/stl10/
6https://tiny-imagenet.herokuapp.com
7https://github.com/amirgholami/PyHessian, MIT license
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Figure 7: 6CNN with CE/MSE (left/right) and η = 0.04/0.08 (top/bottom). See caption of Figure 1
for more details.

0.0 1.5 3.0 4.5 6.0
||H||Sn

1e2

1

0

1

2

(L
t+

1
L t

)/t
r(S

n)

1e 2

slope=
2

2

2 = 200

Res-9, CE, GD, = 0.01

400

405

410

415

420

st
ep

0.00 0.75 1.50 2.25 3.00
||H||Sn

1e2

2

0

2

4

(L
t+

1
L t

)/t
r(S

n)

1e 2

slope=
2

2

2 = 100

Res-9, CE, GD, = 0.02

178

180

182

184

186

st
ep

0.000 0.375 0.750 1.125 1.500
||H||Sn

1e2

5

0

5

(L
t+

1
L t

)/t
r(S

n)

1e 2

slope=
2

2

2 = 50

Res-9, CE, GD, = 0.04

80

82

84

86

st
ep

0.000 1.875 3.750 5.625 7.500
||H||Sn

1e1

1

0

1

(L
t+

1
L t

)/t
r(S

n)

1e 1

slope=
2

2

2 = 25

Res-9, CE, GD, = 0.08

37

38

39

40

41

st
ep

Figure 8: ResNet-9 with CE and η = 0.01/0.02/0.04/0.08. See caption of Figure 1 for more
details.
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Figure 9: WRN-28-2 with η = 0.005/0.01. See caption of Figure 1 for more details.
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Figure 10: ResNet-9 with MSE and η = 0.02/0.04. See caption of Figure 1 for more details.
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Figure 11: (DATASET, η) = (STL-10-4k, 0.01/0.02), (CIFAR-100-4k, 0.02/0.04), (MNIST-8k,
0.02/0.04). See caption of Figure 1 for more details.
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Figure 12: (DATASET, b, η) = (STL-10-4k, 128, 0.02), (CIFAR-100-4k, 512, 0.01), (MNIST-8k,
0.02/0.04). See caption of Figure 1 for more details.
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C.2 FIGURE 2

Figure 2 shows the non-quadraticity (represented by deviation from the blue line in Figure 2 and the
following figures) of the training loss function L after the iterate enters the edge of stability.

0.0 1.5 3.0 4.5 6.0
tr(HSb)
tr(Sn)

1e2

1

0

1

2

(E
[L

t+
1]

L t
)/t

r(S
n) 1e 2

slope=
2

2

2 = 200

CE, b = 128, = 0.01

1000

2000

3000

st
ep

0.0 1.5 3.0 4.5 6.0
tr(HSb)
tr(Sn)

1e2

1

0

1

2

(E
[L

t+
1]

L t
)/t

r(S
n) 1e 2

slope=
2

2

2 = 200

CE, b = 256, = 0.01

0

1000

2000

3000

st
ep

0.0 1.5 3.0 4.5 6.0
||H||Sn

1e2

1

0

1

2

(L
t+

1
L t

)/t
r(S

n)

1e 2

slope=
2

2

2 = 200

CE, GD, = 0.01

0

500

1000

1500

st
ep

0.0 1.5 3.0 4.5 6.0
||H||Sn

1e2

1

0

1

2

(L
t+

1
L t

)/t
r(S

n)

1e 2

slope=
2

2

2 = 200

MSE, GD, = 0.01

0

500

1000

1500

st
ep

Figure 13: 6CNN with η = 0.01. See caption of Figure 2 for more details.
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Figure 14: 6CNN with CE/MSE (left/right) and η = 0.04/0.08 (top/bottom). See caption of Figure
2 for more details.

27



Published as a conference paper at ICLR 2023

0.0 1.5 3.0 4.5 6.0
||H||Sn

1e2

1

0

1

2

(L
t+

1
L t

)/t
r(S

n)

1e 2

slope=
2

2

2 = 200

Res-9, CE, GD, = 0.01

0

500

1000

1500

st
ep

0.00 0.75 1.50 2.25 3.00
||H||Sn

1e2

2

0

2

4

(L
t+

1
L t

)/t
r(S

n)

1e 2

slope=
2

2

2 = 100

Res-9, CE, GD, = 0.02

0

500

1000

1500

st
ep

0.000 0.375 0.750 1.125 1.500
||H||Sn

1e2

5

0

5

(L
t+

1
L t

)/t
r(S

n)

1e 2

slope=
2

2

2 = 50

Res-9, CE, GD, = 0.04

0

500

1000

1500

st
ep

0.000 1.875 3.750 5.625 7.500
||H||Sn

1e1

1

0

1

(L
t+

1
L t

)/t
r(S

n)

1e 1

slope=
2

2

2 = 25

Res-9, CE, GD, = 0.08

0

200

400

600

800

1000

st
ep

Figure 15: ResNet-9 with CE and η = 0.01/0.02/0.04/0.08. See caption of Figure 2 for more
details.
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Figure 16: WRN-28-2 with η = 0.005/0.01. See caption of Figure 2 for more details.
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Figure 17: ResNet-9 with MSE and η = 0.01/0.02/0.04. See caption of Figure 2 for more details.
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Figure 18: (DATASET, η) = (STL-10-4k, 0.01/0.02), (CIFAR-100-4k, 0.02/0.04), (MNIST-8k,
0.01/0.02). See caption of Figure 2 for more details.
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Figure 19: (DATASET, b, η) = (STL-10-4k, 128, 0.02), (CIFAR-100-4k, 512, 0.01). See caption of
Figure 2 for more details.
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C.3 FIGURE 3 AND THEOREM 2

Figures 20-21 provide additional information of Figure 3. After these figures, we focus on providing
some empirical evidences of Theorem 2 that ∥H∥Sn

, | cos(q1,∇L)| and |q⊤1 ∇L| increase in a few
steps after ∥H∥ exceeds 2

η .
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Figure 20: 6CNN with η = 0.02. See caption of Figure 3 for more details.
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Figure 21: To gain some intuitions of Figure 3 and 20 (right), we plot three graphs —a quadratic
function f(x) = 1

2x(x− 1) (black dashed line), and cubic functions f1(x) = α1x(x− 1)(1 + 1
4x)

in red and f2(x) = α2x(x− 1)(1− 1
5x) in blue. They are chosen to satisfy ∂2f1

∂x2 |x=1/
∂2f1
∂x2 |x=0 = 2

and ∂2f2
∂x2 |x=1/

∂2f2
∂x2 |x=0 = 0.5. We also choose α1 and α2 for f1 and f2 to have the same minimum

with f in x ∈ [0, 1], i.e., minx∈[0,1] f(x) = minx∈[0,1] fi(x) = − 1
8 for i = 1, 2.
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Figure 22: Left: A toy two-dimensional loss function L(θ) = θ21 + 16αθ22 where α = 1.1. We
optimize the loss by GD with η = 2

32 so that ∥H∥ = 32α > 2
η = 32. We also plot the GD

trajectory in yellow starting from (θ1, θ2) = (3, 0.1). Right: We show the exponential increase in
|q⊤1 ∇L| (purple) and the S-shape increase in ∥H∥Sn (red) and | cos(q1,∇L)| (green) to ∥H∥ and 1,
respectively, which empirically demonstrates Theorem 2. We also note that they start to increase in
the order of | cos(q1,∇L)|, ∥H∥Sn and |q⊤1 ∇L|.
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Figure 23: After ∥H∥ (blue) exceeds 2
η (red dashed line) at t ≈ 80/176/400/1250/19/43/110/280,

in a few steps (≈ 5/6/18/5/5/6/5/15), ∥H∥Sn
(red) starts to increase. As expected in Theorem 2,

∥H∥Sn
increases together with | cos(q1,∇L)| (green) and |q⊤1 ∇L| (purple). They are observed to

start to increase in the order of | cos(q1,∇L)|, ∥H∥Sn
and |q⊤1 ∇L|, as shown in Figure 22.
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Figure 24: After ∥H∥ exceeds 2
η (not shown in this Figure, see Figure 23), the cosine

| cos(q1(Ht),∇L(θt))| (green) between the sharpest direction and the gradient gets large, where
Ht = H(θt). Simultaneously, ∥Ht∥Sn increases and exceeds 2

η (red solid > red dashed), the iterate
entering the unstable regime and oscillating with cos(∇L(θt),∇L(θt+1)) ≈ −1 (orange). However,
due to the non-quadraticity, the sharpest direction changes with | cos(q1(Ht+1), q1(Ht))| (cyan) close
to 0. We train ResNet-9 on CIFAR-10-8k with η = 0.04 (top: steps 50-150, bottom: steps 0-800).
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Figure 25: We train ResNet-9 on CIFAR-10-8k with η = 0.08 (top: steps 0-100, bottom: steps
0-500). See caption of Figure 24 for more details.

33



Published as a conference paper at ICLR 2023

C.4 FIGURE 4

C.4.1 GD
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Figure 26: 6CNN, MSE, and η = 0.04/0.08. See caption of Figure 4 for more details.
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Figure 27: ResNet-9, CE, and η = 0.01/0.02/0.04/0.08. See caption of Figure 4 for more details.
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Figure 28: WRN-28-2, CE, and η = 0.005/0.01/0.02. See caption of Figure 4 for more details.
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Figure 29: WRN-28-2, MSE, and η = 0.01/0.02/0.04. See caption of Figure 4 for more details.
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C.4.2 SGD

We demonstrate two types of IIR, (i) ∥H∥Sb
≤ 2ρb

η and (ii) tr(HSb)
tr(Sn)

≤ 2
η in Figure 30 and 31,

respectively. They are equivalent, but the latter shows the effects of IIR more clearly as it has the
fixed threshold 2

η regardless of b.
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Figure 30: IIR of ∥H∥Sb
≤ 2ρb

η for SGD. We plot 2
η (red dashed line) which is not the threshold

for ∥H∥Sb
. ResNet-9, CE, η = 0.08, and b ∈ {212, 211, · · · , 23}. See caption of Figure 4 for more

details.
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Figure 31: IIR of tr(HSb)
tr(Sn)

≤ 2
η for SGD. With the upper bound 2

η (red dashed line), this shows the
effects of IIR more clearly than Figure 30. ResNet-9, CE, η = 0.08, and b ∈ {212, 211, · · · , 27}.
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Figure 32: IIR of ∥H∥Sb
≤ 2ρb

η for SGD. WRN-28-2, CE, η = 0.01, and b ∈ {29, 27, 25, 23}. See
caption of Figure 4 for more details.
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Figure 33: Left/Right: See caption of Figure 4(c)/4(d) for more details. WRN-28-2, CIFAR-10-8k,
η = 0.01.
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C.5 FIGURE 5

Figure 34-35 provide some additional information of Figure 5. Figure 36 shows that 1/ρ ≈ 100
is much larger than 1 and that std[∥gξ∥] is 2-3× smaller than Eξ[∥gξ∥] even in the case of b = 1.
Therefore, we use the approximation ∥gξ∥ ≈ Eξ[∥gξ∥], and thus the square of the mean resultant
length is similar to the concentration measure ρb as shown in the following approximation:

R̄2
b ≡

∥∥∥∥Eξ

[
gξ
∥gξ∥

]∥∥∥∥2 ≈
∥∥∥∥Eξ

[
gξ

Eξ[∥gξ∥]

]∥∥∥∥2 =

∥∥∥∥ Eξ[gξ]

Eξ[∥gξ∥]

∥∥∥∥2 = ρb. (125)
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Figure 34: (DATASET, MODEL, EPOCHS) = (CIFAR-100-32k, ResNet-9, 800 epochs), (Tiny-
ImageNet-32k, ResNet-9, 400 epochs), (Tiny-ImageNet-32k, WRN-28-2, 800 epochs). Middle: The
model is trained for 400 epochs, which is short compared to Figure 5 (bottom right heatmap). See
caption of Figure 5 (right) for more details.
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with the corresponding LSR (dotted lines). See caption of Figure 5 (left) for more details.

39



Published as a conference paper at ICLR 2023

0 50 100 150 200
Step

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3 = 0.02
train loss

10 1

100

101

102

103

104

E[|| ||]
|| L||

E[|| ||2]
std(|| ||)

0 50 100 150 200
Step

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3 = 0.04
train loss

10 1

100

101

102

103
E[|| ||]
|| L||

E[|| ||2]
std(|| ||)

0 50 100 150 200
Step

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3 = 0.08
train loss

10 1

100

101

102

103E[|| ||]
|| L||

E[|| ||2]
std(|| ||)

0 50 100 150 200
Step

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3 = 0.2
train loss

10 2

10 1

100

101

102

103

E[|| ||]
|| L||

E[|| ||2]
std(|| ||)

Figure 36: To further understand the concentration measure ρ of the per-example gradient, we plot
E[∥∇ℓ∥], ∥∇L∥ = ∥E[∇ℓ]∥,

√
tr(S1) = E[∥∇ℓ∥2] and std[∥∇ℓ∥]. We use 100 samples to compute

the expectation values and the standard deviation. Here, 1
ρ = E[∥∇ℓ∥2]

∥∇L∥2 is about 100. E[∥∇ℓ∥] is 2-3×
larger than std[∥∇ℓ∥]. We train a 6CNN with η = 0.02/0.04/0.08/0.2 (GD).
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C.6 GENERALIZED MOMENTUM VARIANTS

For generalized momentum variants of GD with (β1, β2), we have

δt = β1δt−1 − η∇θL(θt + β2δt−1). (126)

When ∥H∥ is very small in the beginning, we may approximate that L is linear where ∇θL(θ) = g is
constant with respect to θ in some region. Then δt converges to δ satisfying the following equations:

δ = β1δ − ηg, (127)

δ = − η

1− β1
g, (128)

and thus

Lt+1 − Lt ≈ −∇θL(θt)δt (129)

≈ − η

1− β1
∥∇θL(θt)∥2. (130)

Therefore, together with Theorem 2, we generalize (12) with the following approximation:

Lt+1 − Lt ≈
η2

2γ(β1, β2)(1− β1)
tr(Sn)

(
∥H∥Sn

− 2

η
γ(β1, β2)

)
, (131)

where γ(β1, β2) = 1+β1

1+2β2
. In Figures C.6 and C.6, we empirically validate (131) similar to Figures 1

and 4, respectively.
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Figure 37: We use β1 = (0.1/0.2/0.4, 0), and β2 = 0 (Right, Polyak momentum (Polyak, 1963)) or
β2 = β1 (Left, Nesterov momentum (Nesterov, 1983)) with DATASET = CIFAR-10-8k, η = 0.01 on
ResNet-9 without BN. They follows (131) before entering the edge of stability. See caption of Figure
1 for more details.
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Figure 38: We use β1 = 0.1/0.2/0.4, and β2 = 0 (Right, Polyak momentum (Polyak, 1963)) or
β2 = β1 (Left, Nesterov momentum (Nesterov, 1983)) with DATASET = CIFAR-10-8k, η = 0.01 on
ResNet-9 without BN. The red horizontal lines indicate 2

ηγ(β1, β2) where γ(β1, β2) = 1+β1

1+2β2
. See

caption of Figure 4 for more details.

D DISCUSSION

We provide a new insight on the link between the batch gradient distribution and the sharpness of the
loss landscape. In this section, we reconcile our arguments with some previous studies.

Jastrzębski et al. (2017) explain the optimization behavior of SGD with the SDE approximation
dθt = −∇L(θt)dt+

√
η
bC

1/2
1 dW (t) of the SGD where W is an m-dimensional Brownian motion.

Therefore, the same ratio η
b = η′

b′ leads to the same SDE, which implies LSR. Moreover, a large η
b

implies a large diffusion in SDE, which has been linked with the escaping efficiency from a sharp
local minimum in Zhu et al. (2019). Our arguments are free from any other problems raised for the
SDE-based analyses of SGD which assume vanishing learning rates (Mandt et al., 2016; 2017; Hu
et al., 2019; Li et al., 2017; 2019a; Jastrzębski et al., 2017; Smith & Le, 2018; Chaudhari & Soatto,
2018), e.g., the mismatch to practical finite learning rate regime or the inherent theoretical issues in
the SDE approximations (Yaida, 2019; Li et al., 2021). We instead argue that a large second moment
tr(Sb) (compared to tr(Sn)) and a large η lead to a low constraint 2ρb/η on the interaction-aware
sharpness.

Wu et al. (2020) empirically show that what is important for the generalization performance of a
neural network is not the class to which the gradient distribution belongs, but the second moment
of the distribution. This is consistent with our arguments with the interaction tr(HSb) and the
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concentration measure ρb = tr(Sn)/ tr(Sb), because they depend on the second moment Sb, not on
the class of the gradient distribution.

Recently, Li et al. (2021) suggest a necessary condition that the “noise-to-signal ratio” needs to be
large for LSR (and the SDE assumption) to hold. This is consistent with our result on the linear
regime (where b and ρb are small) because the noise-to-signal ratio is approximately the inverse of the
“signal-to-noise” ratio ρb = tr(Sn)/ tr(Sb), but defined for an equilibrium distribution. We provide
not only the necessary condition but also the sufficient condition for LSR with a novel scaling rule
LSSR applicable to every batch size including where LSR fails (the saturation regime).
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Figure 39: ρ1 is not a constant during training, but it does not change much at the EoS and shows a
similar evolution for different batch sizes, especially when they are large.
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Figure 40: ρb is not a constant during training, but it does not change much at the EoS. ρb is small
for a small batch size.
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