

VINCIE: UNLOCKING IN-CONTEXT IMAGE EDITING FROM VIDEO

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

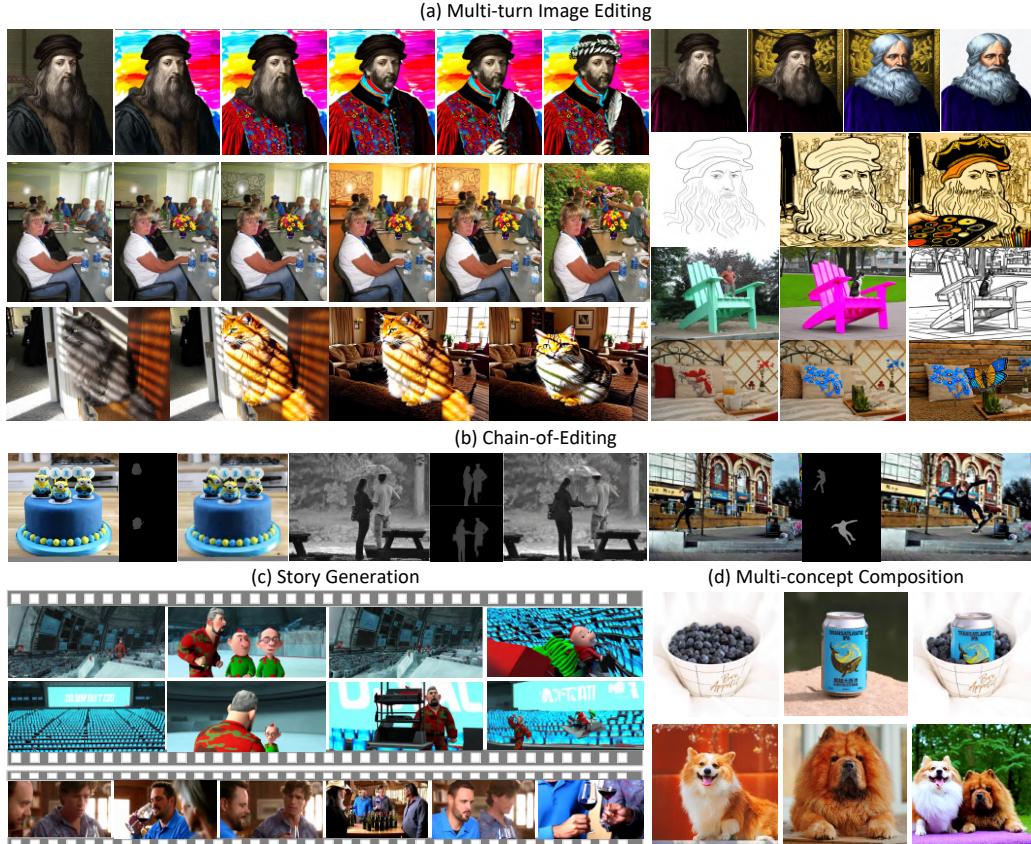


Figure 1: By learning from videos, our method could attain universal in-context editing and generation abilities to handle various practical creation scenarios.

ABSTRACT

In-context image editing aims to modify images based on a contextual sequence comprising texts and images. Existing methods typically depend on task-specific pipelines and expert models (e.g., segmentation and inpainting) to curate training data. In this work, we explore whether an in-context image editing model can be learned directly from videos. Toward this end, we introduce a scalable approach to annotate videos as interleaved multimodal sequences. To effectively learn from this data, we design three proxy tasks: next-image prediction, current segmentation prediction, and next-segmentation prediction. Additionally, we propose a novel multi-turn image editing benchmark to advance research in this area. Extensive experiments demonstrate that our model exhibits strong in-context image editing capabilities and achieves state-of-the-art results on two multi-turn image editing benchmarks. Despite being trained exclusively on videos, our model also shows promising abilities in multi-concept composition, story generation, and chain-of-editing applications. Code is available at: <https://anonymous.4open.science/r/VINCIE-11669/>.

054
055
056
057
1 INTRODUCTION058
059
060
061
062
063
064
065
Recent research has devoted significant effort to image editing, which enables users to generate images
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
models largely depends on the high-quality training data, typically composed of three elements: an input image, a text prompt describing the desired modification, and the corresponding edited image (Brooks et al., 2023; Shi et al., 2024a; Xiao et al., 2024; Wei et al., 2024; Han et al., 2024b; Xia et al., 2024; Liu et al., 2025). To collect such paired image data at scale, various methods have been proposed, including generating image grids (Wu et al., 2025c), leveraging diffusion denoising processes (Brooks et al., 2023), and developing specialized models or tools to extract before-and-after image pairs from the web (Hertz et al., 2022; Zhuang et al., 2024; Boesel & Rombach, 2024).Very recently, the problem of *in-context image editing* (OpenAI, 2025b) has garnered growing interest in the research community. In this setting, a target image is generated based on a contextual sequence of text prompts and previously generated images. Unlike single-turn image editing, in-context image editing supports multi-turn interactions, enabling users to iteratively refine images while maintaining visual consistency throughout the editing process. A key challenge lies in acquiring contextualized training data that includes coherent sequences of text and images. Existing approaches to mine single-turn image editing (Brooks et al., 2023; Wu et al., 2025c; Hertz et al., 2022; Zhuang et al., 2024; Boesel & Rombach, 2024) struggle to construct meaningful long-form content that is capable of capturing the dependencies and evolving intent that emerge over multiple editing steps. The lack of contextualized, quality training data remains a significant barrier to progress in this area of research.In this paper, we approach in-context image editing from a different perspective and investigate the following research question: *Can a meaningful in-context image editing model be learned solely from videos, without using any standalone images?* Our intuition is that videos, as a rich source of multimodal information, inherently contain a long duration of visual dynamics that might facilitate the learning of multi-turn interactions. For instance, changes within a scene, such as objects entering or exiting the frame, shifts in camera focus, or character actions, provide implicit cues for learning operations like addition, removal, and modification in image editing.To this end, we propose an approach that natively learns transitions from video data, named Video-driven IN-Context Image Editing (VINCIE). Unlike conventional image editing methods that rely on separately collected pairs of pre- and post-editing images for training, we choose not to alter the video, *i.e.*, we train on native video data (**only natural videos as the source of visual modality**), but instead provide the model with detailed annotations that describe the transitions or actions occurring within the scene. Since our method eliminates the need for paired data collection and relies solely on video, it can be trivially scaled using the vast amount of video data readily available on the web.Specifically, we first sample a few coherent frames from a video scene, annotate the visual transitions, and identify Regions of Interest for editing (RoEs) using a pretrained Vision-Language Model (VLM). Additionally, we employ Grounding-DINO (Liu et al., 2024b) and SAM2 (Ravi et al., 2024) to generate RoE segmentation masks based on textual descriptions of the transitions. This process establishes our training samples, which capture context and form an interleaved multimodal sequence. **Next, we train a Diffusion Transformer (Peebles & Xie, 2023) with full attention as our primary implementation and additionally design a variant with block-wise causal attention, which applies bidirectional attention within each modality (frame, text, and segmentation mask) and causal attention across modalities. Both variants are compared to provide a direct assessment of their differences.**

Finally, to enhance the model’s learning of contextual dependencies, we design three proxy tasks: (1) next-image prediction, which serves as the primary task in training; (2) current segmentation prediction, which enables the model to understand which regions have changed; and (3) next segmentation prediction, which prepares the model to anticipate where changes are likely to occur.

Extensive experiments show that our model, trained solely on video data, demonstrates strong in-context image editing capabilities and outperforms existing baselines on the multi-turn image editing tasks. Scaling up the model and training data leads to substantial performance gains—for example, the success rate at the challenging 5-turn editing increases from 5% to 22% when scaling the training data from 0.25M to 10M sessions—demonstrating the scalability of our approach enabled by native video data. Notably, to the best of our knowledge, this is the first work to demonstrate the feasibility

108 of learning an in-context image editing model solely from video data, while also showcasing the
 109 scalability benefits of this approach.
 110

111 We find that our model can learn disentangled representations of visual changes (*e.g.*, object appear-
 112 ance/disappearance, posture shifts, and orientation changes) purely from patterns inherent in video
 113 data. It also demonstrates reasonable generalization to scenarios that are less common in natural
 114 video, such as background changes, attribute modifications, and multi-concept compositions. As an
 115 additional benefit, our model can be used for generating consistent frames for storytelling through
 116 in-context editing.
 117

2 RELATED WORK

119 **Data Construction Methods for Image Editing.** Constructing image editing datasets requires
 120 first designing clear and diverse editing instructions that articulate the intended visual modifications.
 121 Based on these instructions, paired image examples are then created, consisting of original images
 122 and their corresponding edited versions that reflect the specified transformations. Single-turn image
 123 editing methods (Hertz et al., 2022; Brooks et al., 2023; Sheynin et al., 2024; Shi et al., 2024a; Zhao
 124 et al., 2024; Wei et al., 2024; Hui et al., 2024; Yang et al., 2024b; Jin et al., 2024) use pre-trained off-
 125 the-shelf models (Ramesh et al., 2022; Rombach et al., 2022; Brown et al., 2020; Sauer et al., 2024) to
 126 construct paired data for image editing. For example, InstructPix2Pix (Brooks et al., 2023) leverages
 127 GPT-3 (Brown et al., 2020) for generating editing instructions and Stable Diffusion v1.5 (Rombach
 128 et al., 2022) for paired image data generation. UltraEdit creates editing instructions using LLMs and
 129 combines grounding models (Kirillov et al., 2023; Liu et al., 2024b) with SDXL-Turbo (Sauer et al.,
 130 2024) to produce region-based editing samples. Our approach relies on learning transitions from
 131 videos without manually crafted paired data pipelines, bringing impressive scalability.
 132

133 **Learning from Video for Image Generation.** Video Frames naturally exhibit consistency across
 134 characters, objects, and scenes, which has inspired recent efforts to construct source and target images
 135 from sampled video frames. Leveraging such frame-based data has proven beneficial for enhancing
 136 consistency in image generation tasks, such as instructive image editing (Chen et al., 2024d; Krojer
 137 et al., 2024), interactive image editing (Zhang et al., 2025a; Shi et al., 2024b), streamlining image
 138 editing (Alzayer et al., 2024), and object-level image customization (Chen et al., 2024c). The most
 139 recent work, *e.g.*, RealGeneral (Lin et al., 2025) and UES (Chen et al., 2024a), explored the temporal
 140 in-context consistency within video foundation models (Yang et al., 2024c) for universal image
 141 generation and editing. Despite notable progress, existing methods typically rely on only two frames
 142 per video, overlooking richer, long-range contextual information. Furthermore, they often depend
 143 on task-specific data construction pipelines (Chen et al., 2024d; Zhang et al., 2025a; Chen et al.,
 144 2024c), limiting their universality and scalability. In this work, we propose constructing session-wise
 145 data with long, interleaved image-text context from native videos, and leverage it for pre-training or
 146 mid-training to learn the inherent consistency and transformations in abundant multimodal sequences.
 147

3 METHODOLOGY

3.1 INTERLEAVED MULTIMODAL SEQUENCE CONSTRUCTION

151 Figure 2 shows an overview of our data construction pipeline. Starting with a video, we sparsely
 152 sample K frames (I_0, \dots, I_K) and use a vision-language model (VLM) to generate textual visual
 153 transitions T_i describing the change from frame I_i to I_{i+1} . To better capture the Regions-of-interest
 154 for editing (RoEs), we additionally annotate segmentation masks M_i and M_{i+1} , which identify the
 155 changing objects in I_i and I_{i+1} , respectively. Combining these elements, we construct the multimodal
 156 sequence $(I_0, T_0, T_{m0}, M_{00}, T_{m1}, M_{01}, I_1, \dots, I_K)$. T_{m0} and T_{m1} are predefined prompts such as
 157 “generate the mask of changing areas in the source image” and “generate the mask of changing areas
 158 in the target image”.

159 **Frame Sampling.** We use a hybrid sampling strategy: 1) *Equal-interval sampling*, which selects
 160 frames at fixed time intervals (*e.g.*, 3 sec), and 2) *Fixed-frame sampling*, which uniformly samples
 161 a fixed number (*e.g.*, $2 \leq n \leq 6$) of frames regardless of video duration. This approach is used to
 capture both subtle object-level changes and significant scene-level transitions.

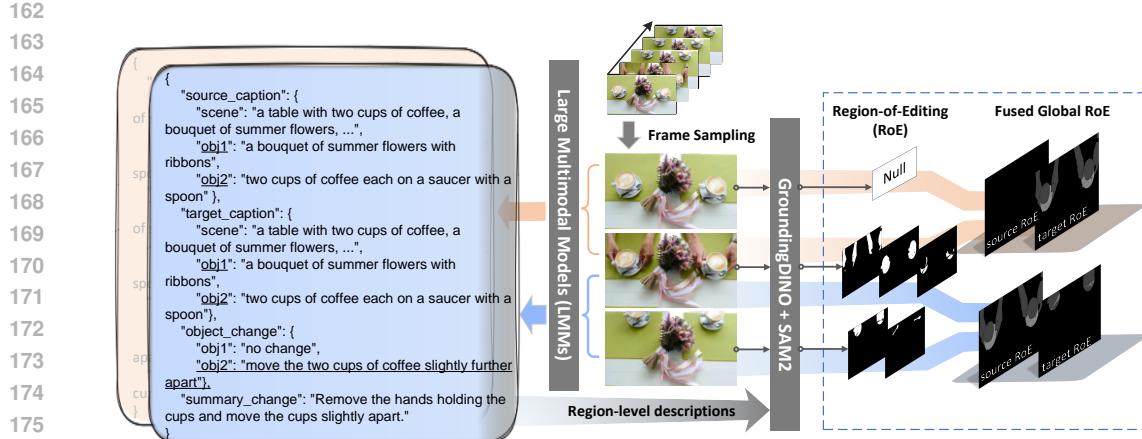


Figure 2: Our session data construction pipeline. We use a VLM to annotate the visual transitions. We then use the generated textual descriptions to prompt GroundingDINO+SAM2, extracting segmentation masks for the edited regions.

Visual Transition Annotation. To describe visual transitions between frames, we use chain-of-thought (CoT) prompting (Wei et al., 2022) to instruct a VLM to perform visual transition annotation: 1) generate detailed and coherent descriptions of each frame from multiple aspects (*e.g.*, characters, objects, attributes, interactions, scenes, and environments); 2) identify semantic and visual differences between the two frames from the above aspects; 3) and summarize all the differences into a concise, instruction-style statement T_i suitable for guiding editing. Unlike existing interleaved datasets (Zhu et al., 2023; Laurençon et al., 2023; Chen et al., 2024b) derived from web documents and retrieval tools, our dataset is built from native videos, ensuring stronger textual and visual coherence.

Segmentation Annotation and Encoding. We explicitly annotate Regions-of-Editing (RoEs) in both adjacent frames I_i and I_{i+1} . Specifically, we leverage region-level descriptions (*i.e.*, characters and objects) in the visual transition annotation as input to GroundingDINO (Liu et al., 2024b) and SAM 2 (Ravi et al., 2024) for extracting segmentation map's. Based on the region-level difference annotations, we determine which regions undergo visual transitions, *i.e.*, RoEs, and construct corresponding global maps by fusing local maps from the current and next session images.

3.2 MODEL ARCHITECTURE

As illustrated in Fig. 3, our model is built upon a Diffusion Transformer (DiT) architecture, initialized from a video foundation model. We represent the interleaved input sequence as $S = (I_0, T_0, \dots, T_{M-1}, I_M)$, where T_i denotes the textual editing instruction at turn- i , and I_i represents either an image or a segmentation mask.

As our focus is on the in-context image editing task, we optimize the model by maximizing the likelihood of the next image prediction:

$$\log p(S) = \sum_{i=1}^M \log p(I_i | I_0, \dots, T_{i-1}, I_{i-1}) \quad (1)$$

where the conditional probability is modeled using flow-matching in the latent space, an objective commonly used in diffusion model for text-to-image (Rombach et al., 2022; Esser et al., 2024; Labs, 2024; Podell et al., 2023) and text-to-video (Singer et al., 2022; Wan et al., 2025; Hong et al., 2022; Seaweed et al., 2025) generation tasks. Each text instruction (T_i) and image (I_i) is encoded into latent tokens using a text encoder (*e.g.*, T5) and an image encoder (*e.g.*, VAE), respectively. The details about the text encoder and VAE are provided in the supplementary material.

Learnable <TURN> Tokens. We separate the interleaved input sequence S by modality into two groups: $S = (I_0, T_0, \dots, T_{M-1}, I_M) \rightarrow T = (T_0, T_1, \dots, T_{M-1}); I = (I_0, \dots, I_M)$. Their latent tokens are concatenated together. Since the number of text tokens at each turn may vary, we introduce M special learnable tokens $\langle \text{TURN} \rangle_i, i = 1, \dots, M$ to mark the turn boundary, where $\langle \text{TURN} \rangle_i$ is inserted before the latent tokens of T_i .

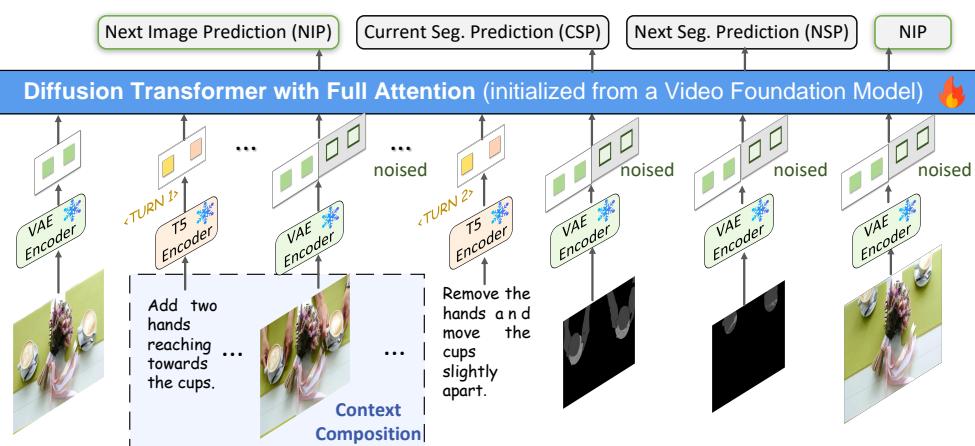


Figure 3: Model architecture. We apply a diffusion transformer framework (initialized from a video generative foundation model) with full attention to learn from the multimodal interleaved context, through three tasks (CSP, NSP, and NIP). Losses are only computed on noised tokens.

Separate Text and Image Position Embedding. We apply 1D RoPE (Su et al., 2024) to text tokens and 3D RoPE to image tokens. The starting positions are 0 for all dimensions. This separate RoPE design aligns with our pretrained MM-DiT model, where text and image tokens are positioned continuously. Position collisions are avoided as MM-DiT employs distinct weights for each modality, and the bias terms in the linear layers effectively act as modality-specific embeddings.

Attention. We employ two attention mechanisms in DiT and obtain two variants: (1) full attention over all tokens, as shown in Fig. 3, and (2) block-wise causal attention, where causality is enforced across blocks (e.g., text or image) and bidirectional attention is applied within each block. Full attention enables comprehensive token interactions at a higher computational cost, while block-wise causal attention improves efficiency while maintaining causal structure. Additional details and discussions are provided in Appendix C.4.

Condition on Clean Context. We model the distribution of each image (except the first) using a diffusion loss, conditioned on an interleaved context. To enhance training efficiency, we concatenate the clean and noisy tokens of each image as model inputs, and apply an attention mask to ensure that each noisy image attends only to the clean representations of preceding images, as illustrated in Fig. 11.

3.3 CONTEXT COMPOSITION LEARNING

To facilitate effective ability transfer from segmentation modeling to image editing and generation, we unify image and segmentation modeling within a generative framework using the MSE-based diffusion loss in flow matching. Through interleaved context composition, our framework further unlocks multiple capabilities and supports a variety of corresponding tasks (see Fig. 12 for more details). Specifically, we augment Eqn. 1 by adding a random dropout operation Rd on the context, as shown in equation:

$$\log p(S) = \sum_{i=1}^M \log p(F_i | Rd(I_0, T_1), Rd(T_{m0}, M_{00}), Rd(T_{m1}, M_{01}), \dots) \quad (2)$$

where F_i can be either the target image, RoE mask¹ of the source image, or RoE mask of the target image. We ensure that the image or mask required to generate the target is always retained, while only the contextual images and texts are randomly dropped. The model is jointly learning three tasks:

- **Next Image Prediction (NIP).** NIP is our primary in-context image editing task.

¹In implementation, we treat segmentation masks as RGB images, by replicating the mask across all three channels, and then encode them using the VAE encoder to obtain the latents.

270 • **Current Segmentation Prediction (CSP).** CSP enhances the model’s *grounding* ability, enabling
 271 it to identify regions requiring edits while preserving consistency in other areas. This is particularly
 272 useful for local editing tasks such as removal, attribute changes, and replacements.
 273

274 • **Next Segmentation Prediction (NSP).** NSP improves the model’s *controllable generation* by
 275 incorporating the next-frame segmentation map into the context, aiding in dynamic layout adjust-
 276 ments for scenarios like shape changes and movements.

277 By randomly combining different contexts and tasks, the model learns essential abilities such as
 278 grounding, controllable generation, and multi-concept composition, enabling versatile in-context
 279 image editing.

281 4 EXPERIMENTS

284 4.1 IMPLEMENTATION DETAILS

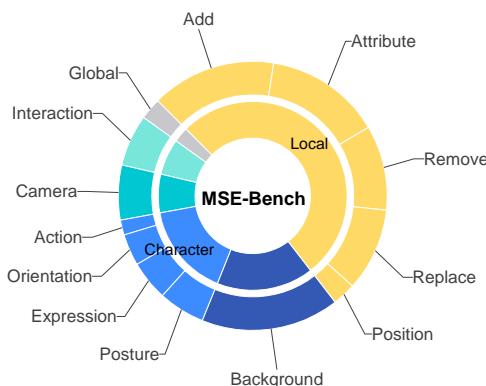
286 **Data.** Through the proposed scalable data construction pipeline, we collect and annotate about 10M
 287 session instances, with the number of images in each session from 2 to 20. For each session data,
 288 we consider RoE map with a probability of 80%. We apply a context drop rate with 20%, 70%, and
 289 70%, to the current frame, current RoE map, and next RoE map, respectively. During inference, the
 290 sampling step is set to 50, the classifier-free guidance scale is set to 10. Using the proposed data
 291 construction pipeline, we collect and annotate about 10M session instances, each containing 2 to 20
 292 images. During training, a RoE map is included with an 80% probability for each session. We apply
 293 context dropout rates of 20%, 70%, and 70% to the current frame, current RoE map, and next RoE
 294 map, respectively, with dropout applied independently at each turn. We use 50 sampling steps and set
 295 the classifier-free guidance scale to 10.

296 **Model.** We initialize our model with the weights of our in-house MM-DiT (3B and 7B),
 297 pre-trained on text-to-video tasks and architecturally similar to (Seaweed et al., 2025; Kong
 298 et al., 2024). The 3B and 7B variants are optimized on session data for 15k and 40k steps,
 299 consuming approximately 30 and 150 hours on 256
 300 H100 GPUs, respectively.

302 4.2 MULTI-TURN 303 SESSION IMAGE EDITING BENCHMARK

305 Existing benchmarks (Zhang et al., 2023a; Basu
 306 et al., 2023; Sheynin et al., 2024), such as MagicBrush
 307 (Zhang et al., 2023a), are constrained to
 308 basic editing operations, such as addition, replace-
 309 ment, removal, attribute modification, and back-
 310 ground changes, and thus fall short of meeting practical
 311 user needs. Moreover, MagicBrush supports
 312 only up to three editing turns per session, with each
 313 turn treated in isolation, further diverging from real-
 314 world editing workflows. To address these limita-
 315 tions, we propose **MSE-Bench** (Multi-turn Session
 316 image Editing Benchmark), which comprises 100
 317 test instances, each featuring a coherent five-turn editing session. MSE-Bench *expands the range*
 318 *of editing categories* to include more complex and realistic scenarios such as posture adjustment,
 319 object interaction, and camera view changes, as shown in Fig. 4. To better reflect user intent and
 320 practical applications, we also incorporate *aesthetic* considerations into the construction, encouraging
 321 progressive visual enhancement across turns.

322 For each editing instruction, multiple generated images may satisfy the user’s request. Consequently,
 323 our benchmark does not provide ground-truth images. Instead, we use GPT-4o to evaluate whether
 324 the generated image successfully follows the instructions and remains consistent with the input image.
 325 The final score for each turn is computed by averaging the success rates across all samples.



326 Figure 4: Category distribution of MSE-Bench.
 327 “others” includes expression, orientation, position,
 328 global, and action change.

324 Table 1: Performance comparison on MagicBrush (Zhang et al., 2023a) (multi-turn) for consistency
 325 (DINO and CLIP-I) and prompt following (CLIP-T). SFT means we carry out supervised fine-tuning.
 326 * denotes the use of context across all preceding turns. Entries by gray denote proprietary models.
 327

328 Method	329 Turn-1			330 Turn-2			331 Turn-3		
	332 DINO	333 CLIP-I	334 CLIP-T	335 DINO	336 CLIP-I	337 CLIP-T	338 DINO	339 CLIP-I	340 CLIP-T
Instruct-Pix2Pix (Brooks et al., 2023)	0.514	0.727	0.270	0.397	0.674	0.268	0.335	0.646	0.263
MagicBrush (Zhang et al., 2023a)	0.826	0.901	0.278	0.756	0.863	0.277	0.718	0.834	0.271
HQEEdit (Hui et al., 2024)	0.522	0.696	0.259	0.441	0.659	0.248	0.397	0.637	0.238
UltraEdit (Zhao et al., 2024)	0.755	0.852	0.289	0.706	0.827	0.278	0.683	0.810	0.266
ICEdit (Zhang et al., 2025b)	0.853	0.922	0.281	0.780	0.882	0.278	0.731	0.852	0.272
OmniGen (Zhang et al., 2025b)	0.874	0.924	0.273	0.718	0.851	0.264	0.586	0.786	0.261
OmniGen2 (Wu et al., 2025b)	0.863	0.919	0.285	0.777	0.869	0.280	0.716	0.832	0.278
Step1X-Edit (Liu et al., 2025)	0.852	0.915	0.288	0.785	0.875	0.286	0.743	0.840	0.277
Bagel (Deng et al., 2025)	0.845	0.912	0.286	0.767	0.873	0.292	0.723	0.844	0.286
Bagel* (Deng et al., 2025)	0.847	0.914	0.287	0.729	0.858	0.295	0.684	0.823	0.287
FLUX.1-Kontext (dev) (Batifol et al., 2025)	0.858	0.917	0.288	0.757	0.863	0.296	0.691	0.818	0.291
Qwen-Image-Edit (Wu et al., 2025a)	0.827	0.900	0.292	0.745	0.856	0.292	0.697	0.819	0.287
GPT Image 1* (OpenAI, 2025a)	0.805	0.875	0.293	0.708	0.820	0.300	0.666	0.789	0.292
Nano Banana* (DeepMind & Gemini, 2025)	0.886	0.933	0.287	0.811	0.896	0.294	0.773	0.867	0.291
Ours* (3B)	0.822	0.895	0.273	0.733	0.850	0.272	0.676	0.827	0.267
Ours* (3B) + SFT	0.852	0.917	0.283	0.739	0.861	0.291	0.667	0.814	0.290
Ours* (7B)	0.838	0.906	0.272	0.721	0.848	0.272	0.645	0.804	0.271
Ours* (7B) + SFT	0.891	0.937	0.283	0.817	0.895	0.289	0.775	0.861	0.286

343 4.3 COMPARISON WITH STATE-OF-THE-ARTS

344 We evaluate our model on two multi-turn image editing benchmarks: MagicBrush (Zhang et al.,
 345 2023a) and our proposed MSE-Bench.

346 **MagicBrush.** Given its support for multi-turn editing, high-quality manual annotations, and close
 347 alignment with real-world editing needs, we first adopt MagicBrush to evaluate our method and
 348 compare against baselines. Tab. 1 reports quantitative results across three standard evaluation
 349 metrics: DINO, CLIP-I, and CLIP-T. First, our model, trained solely on interleaved video data,
 350 achieves performance comparable to SOTA methods UltraEdit and OmniGen, which rely on pairwise
 351 editing data, highlighting video data as a natural and effective source for image editing tasks. Second,
 352 with supervised fine-tuning on editing-oriented data, our method outperforms nearly all metrics,
 353 demonstrating that interleaved video data complements existing data creation approaches. Lastly, our
 354 model’s advantages become increasingly evident with more edit turns, showcasing the benefits of
 355 learning from contextual video data.

356 **MSE-Bench.** Tab. 2 presents the multi-turn editing success rates as evaluated by GPT-4o. In this
 357 setup, the generated image at turn- i serves as the input for editing at turn- $i + 1$. Consequently, failure
 358 at any turn propagates to subsequent turns. Existing academic methods perform poorly, with a success
 359 rate of < 2% at turn-5. In contrast, our method achieves a 25% success rate at turn-5, demonstrating
 360 the advantages of our model and the use of native video data. However, our approach still falls short
 361 compared to proprietary models like GPT-4o, which benefit from significantly larger training datasets
 362 and model sizes. Even so, GPT-4o achieves only a 62.7% success rate, highlighting the long-term
 363 value of our proposed benchmark for advancing multi-turn editing.

364 4.4 IN-DEPTH ANALYSIS

365 **In-Context Editing Mitigates Artifact Accumulation.** Artifact accumulation, where artifacts be-
 366 come more pronounced with increasing editing turns, is a common issue in multi-turn editing (Sheynin
 367 et al., 2024). We observe this phenomenon as well (upper part of Fig. 6) when using our model as a
 368 single-turn editing method, *i.e.*, without incorporating context from previous turns. However, when
 369 all contexts are included as input, no artifacts are observed (lower part of Fig. 6).

370 **Impact of Segmentation Prediction and Generation.** As shown in Tab. 3, training with seg-
 371 mentation and generation as context enhances both consistency and multi-turn editing success rate.
 372 Notably, the substantial gain in consistency on MagicBrush (Zhang et al., 2023a) demonstrates the
 373 effectiveness of segmentation modeling, especially under the CoE strategy (CS → NS → I).

374 **Impact of Context.** Table 4 highlights the impact of context in multi-turn image editing.

378 Table 2: Performance comparison on MSE-Bench (editing success rate evaluated by GPT-4o). *
 379 denotes the use of context across all preceding turns. Entries by gray denote proprietary models.
 380

381 Method	382 GPT-4o Evaluation				
	383 Turn-1	384 Turn-2	385 Turn-3	386 Turn-4	387 Turn-5
Instruct-Pix2Pix (Brooks et al., 2023)	0.520	0.130	0.110	0.083	0.060
MagicBrush (Zhang et al., 2023a)	0.707	0.300	0.213	0.170	0.087
HQEEdit (Hui et al., 2024)	0.477	0.177	0.140	0.113	0.077
UltraEdit (Zhao et al., 2024)	0.673	0.230	0.173	0.113	0.067
ICEdit (Zhang et al., 2025b)	0.633	0.340	0.257	0.163	0.090
OmniGen (Xiao et al., 2024)	0.847	0.223	0.170	0.140	0.083
OmniGen* (Xiao et al., 2024)	0.853	0.188	0.160	0.125	0.065
OmniGen2 (Wu et al., 2025b)	0.847	0.393	0.327	0.263	0.133
Step1X-Edit (Liu et al., 2025)	0.937	0.540	0.420	0.300	0.140
Bagel (Deng et al., 2025)	0.967	0.650	0.613	0.550	0.413
Bagel* (Deng et al., 2025)	0.963	0.630	0.567	0.473	0.300
FLUX.1-Kontext (dev) (Batifol et al., 2025)	0.950	0.670	0.623	0.573	0.440
Qwen-Image-Edit (Wu et al., 2025a)	0.980	0.737	0.667	0.613	0.430
GPT Image 1 (OpenAI, 2025a)	0.963	0.690	0.673	0.637	0.557
GPT Image 1* (OpenAI, 2025a)	0.967	0.707	0.700	0.697	0.640
Nano Banana (DeepMind & Gemini, 2025)	0.987	0.773	0.753	0.727	0.627
Nano Banana* (DeepMind & Gemini, 2025)	0.997	0.773	0.757	0.730	0.643
Ours* (3B)	0.913	0.450	0.393	0.300	0.210
Ours* (3B) + SFT	0.913	0.533	0.497	0.443	0.330
Ours* (7B)	0.837	0.517	0.463	0.400	0.350
Ours* (7B) + SFT	0.950	<u>0.693</u>	0.667	0.617	0.487

401 Table 3: **Impact of segmentation (seg.) prediction and generation as context during training**
 402 **and inference on consistency** (CLIP-I and DINO on MagicBrush) **and success rate** (evaluated
 403 by GPT-4o). I: image generation. CS: current segmentation generation. NS: next segmentation
 404 generation. (This ablation study was conducted using an intermediate checkpoint, so the reported
 405 numbers may not be directly comparable to those in other tables.)

406 Train	407 Inference	408 MagicBrush (CLIP-I)			409 MagicBrush (DINO)			410 MSE-Bench (Success Rate by GPT-4o)				
		411 Turn-1	412 Turn-2	413 Turn-3	414 Turn-1	415 Turn-2	416 Turn-3	417 Turn-1	418 Turn-2	419 Turn-3	420 Turn-4	421 Turn-5
w/o Seg.	I	0.875	0.824	0.784	0.765	0.663	0.592	0.847	0.473	0.337	0.177	0.113
w/ Seg.	I	0.880	0.832	0.797	0.786	0.680	0.604	0.887	0.520	0.327	0.183	0.103
w/ Seg.	CS → I	0.886	0.832	0.801	0.797	0.687	0.622	0.873	0.590	0.407	0.260	0.173
w/ Seg.	NS → I	<u>0.889</u>	<u>0.840</u>	<u>0.815</u>	<u>0.807</u>	<u>0.711</u>	<u>0.661</u>	0.837	0.487	0.323	<u>0.197</u>	<u>0.117</u>
w/ Seg.	CS → NS → I	0.890	0.847	0.823	0.814	0.724	0.679	0.867	<u>0.523</u>	<u>0.367</u>	0.190	0.110

422 In Turn-1, where no prior context exists, adding a dummy context—comprising the original image and an instruction, In Turn-2 and Turn-3, where editing instructions and ground-truth images from previous turns are provided as context, adding a dummy context results in minimal improvements. "generate the same image," prepended before Turn-1—significantly improves performance. The L1 and L2 distances are nearly halved, indicating greater consistency between the generated image and the original image in unchanged areas, as these distances are measured pixel-wise. This is expected, as the existing context already provides sufficient information. These findings underscore the critical role of context in multi-turn image editing tasks.

423 Table 4: **Impact of context on multi-turn image editing**
 424 **with MagicBrush.** The "Dummy-Context" includes the original image and the instruction, "generate the same image." "History" refers to providing previous turns' ground-truth images as context. Results show that performance significantly improves when a reasonable context is included, emphasizing the importance of context in multi-turn image editing.

425 Method	426 L1↓	427 L2↓	428 DINO↑	429 CLIP-I↑	430 CLIP-T↑
	431 Turn-1				
w/o Context	0.155	0.063	0.814	0.894	0.277
Dummy-Context	0.086	0.031	0.850	0.913	0.277
432 Turn-2					
w/o Context	0.159	0.067	0.834	0.902	0.279
History	0.099	0.038	0.845	0.909	0.278
Dummy-Context	0.087	0.033	0.869	0.922	0.280
433 Turn-3					
w/o Context	0.164	0.071	0.851	0.904	0.273
History	0.088	0.034	0.878	0.923	0.273
Dummy-Context	0.088	0.034	0.895	0.929	0.272

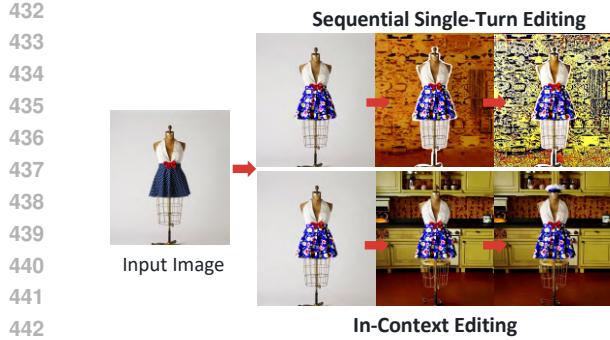


Figure 6: In-context editing mitigates artifact accumulation issue in sequential single-turn editing.

Scalability. Fig. 5 illustrates the editing success rate as a function of training data size. While the success rate at Turn-1 begins to saturate at 2.5M training samples, the success rate at later turns (e.g., Turn-4 and Turn-5) exhibits a nearly log-linear increase with more training data. These results demonstrate the scalability of both our model and data construction pipeline.

Training on Native Video Data Introduces Addressable Subject Position-Shift. A key challenge when training on videos is the potential for subject position shifts across editing turns, as illustrated in the upper part of Fig.7. This issue arises from the natural movement of subjects over time in videos. However, incorporating segmentation prediction—where the model first predicts a mask before generating the target image—mitigates this drifting effect (see lower part of Fig.7). The segmentation mask enforces consistency in unedited regions, thereby reducing positional drift.

Effectiveness of Our Video Sequence Data

Table 5 demonstrates the impact of incorporating our video sequence data. Using the same pretrained model, training with our video sequence data increases success rates by **16.4%** and **21.0%** on Turn-1 and Turn-5, respectively, compared to training solely on specialized pairwise image editing data (Wei et al., 2024). The highest performance is achieved by first pretraining on our video sequence data, followed by supervised fine-tuning (SFT) on pairwise data, underscoring the effectiveness of our data for continual pretraining.

4.5 APPLICATIONS

Fig. 1 showcases several emerging capabilities that arise when training our model exclusively on video data. Notably, these abilities seem to develop implicitly, as they differ from the model’s explicit training objectives:

- **Controllable Editing:** By including the segmentation mask of the region of interest in the context, users can achieve controllable editing by modifying the segmentation mask.
- **Multi-Concept Composition:** The model demonstrates the ability to compose multiple concepts together, even without explicit composition training data—a surprising emergent capability.
- **Story Generation:** Leveraging the consistent and extended context in video data, the model can generate coherent frames for storytelling through in-context editing.
- **Chain-of-Editing:** Each multi-turn editing session functions as a multimodal chain of thought, where the model interprets editing instructions, identifies regions of interest, generates ROI masks,

Figure 7: Subject position shift can be addressed by predicting segmentation mask first.

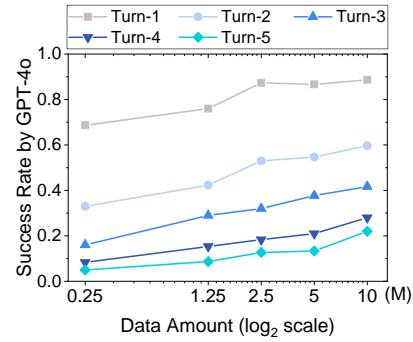


Figure 5: Editing success rates in 5 turns at various data scales.

Table 5: Ablation study on MSE-Bench (GPT-4o evaluated success rate), to assess the impact of our video sequence data.

Training Data	Turn-1	Turn-2	Turn-3	Turn-4	Turn-5
pairwise	0.723	0.263	0.123	0.033	0.010
sequence	0.887	0.597	0.417	0.280	0.220
sequence → pairwise	0.880	0.647	0.483	0.370	0.250

486 produces target images, and iterates the process. Our model reveals the potential of video data in
 487 modeling multimodal chains of thought.
 488

489 5 CONCLUSION

490
 491 In this work, we explore the research question: "Can an in-context image editing model be learned
 492 solely from videos?" To address this, we propose a learning framework that enables context-aware
 493 image generation directly from native videos. We introduce a scalable data construction pipeline
 494 that transforms videos into contextual multimodal sequences, comprising sparsely sampled frames,
 495 textual visual transition descriptions, and segmentation masks of regions of interest. To model this
 496 multimodal sequence, we train a DiT model using three proxy tasks: next-image prediction, current
 497 segmentation prediction, and next-segmentation prediction. Experimental results demonstrate that
 498 our model, trained exclusively on videos, exhibits strong in-context image editing capabilities and
 499 achieves state-of-the-art performance on multiple multi-turn image editing benchmarks. Additionally,
 500 our model showcases emerging abilities such as controllable editing, multi-concept composition,
 501 story generation, and multimodal chain-of-thought, highlighting the untapped potential of video data
 502 and the effectiveness of our proposed framework.
 503

504 ETHICS STATEMENT

505
 506 Our work on scalable, context-aware image editing has the potential to democratize creative tools,
 507 enhance accessibility, streamline media production, and advance intuitive human-AI collaboration.
 508 However, it also raises important concerns, including the risk of misuse for misinformation or
 509 manipulation, privacy issues from large-scale video data, potential biases in generated content,
 510 job displacement in creative industries, and increased environmental impact due to computational
 511 demands. Addressing these challenges will require careful dataset curation, privacy safeguards, bias
 512 mitigation, responsible deployment practices, and ongoing engagement with diverse stakeholders.
 513

514 REPRODUCIBILITY STATEMENT

515
 516 We have taken several steps to ensure the reproducibility of our work. An anonymous link
 517 (<https://anonymous.4open.science/r/VINCIE-11669/>) to the source code is pro-
 518 vided, enabling replication of our implementation. The main text and appendix together provide
 519 comprehensive descriptions of the model design, training procedure, and evaluation protocol. Details
 520 on the dataset construction and preprocessing pipeline are presented in the appendix. These resources
 521 collectively ensure that readers can reproduce and validate our experimental results.
 522

523 REFERENCES

524
 525 Johannes Ackermann and Minjun Li. High-resolution image editing via multi-stage blended diffusion.
 526 *arXiv preprint arXiv:2210.12965*, 2022.
 527
 528 Hadi Alzayer, Zhihao Xia, Xuaner Zhang, Eli Shechtman, Jia-Bin Huang, and Michael Gharbi. Magic
 529 fixup: Streamlining photo editing by watching dynamic videos. *ACM Transactions on Graphics*,
 530 2024.
 531
 532 Samyadeep Basu, Mehrdad Saberi, Shweta Bhardwaj, Atoosa Malemir Chegini, Daniela Massiceti,
 533 Maziar Sanjabi, Shell Xu Hu, and Soheil Feizi. Editval: Benchmarking diffusion based text-guided
 534 image editing methods. *arXiv preprint arXiv:2310.02426*, 2023.
 535
 536 Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril Diagne, Tim Dockhorn,
 537 Jack English, Zion English, Patrick Esser, Sumith Kulal, et al. Flux. 1 kontext: Flow matching for
 538 in-context image generation and editing in latent space. *arXiv e-prints*, pp. arXiv–2506, 2025.
 539
 540 Frederic Boesel and Robin Rombach. Improving image editing models with generative data refine-
 541 ment. In *The Second Tiny Papers Track at ICLR 2024*, 2024.

540 Manuel Brack, Felix Friedrich, Katharia Kornmeier, Linoy Tsaban, Patrick Schramowski, Kristian
 541 Kersting, and Apolinário Passos. Ledits++: Limitless image editing using text-to-image models.
 542 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 543 8861–8870, 2024.

544 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
 545 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 546 *recognition*, pp. 18392–18402, 2023.

548 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 549 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 550 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

551 Haodong Chen, Lan Wang, Harry Yang, and Ser-Nam Lim. Omnicreator: Self-supervised unified
 552 generation with universal editing. *arXiv preprint arXiv:2412.02114*, 2024a.

554 Songyan Chen and Jiancheng Huang. Fec: Three finetuning-free methods to enhance consistency for
 555 real image editing. In *2023 International Conference on Image Processing, Computer Vision and*
 556 *Machine Learning (ICICML)*, pp. 76–87. IEEE, 2023.

557 Wei Chen, Lin Li, Yongqi Yang, Bin Wen, Fan Yang, Tingting Gao, Yu Wu, and Long Chen. Comm:
 558 A coherent interleaved image-text dataset for multimodal understanding and generation. *arXiv*
 559 *preprint arXiv:2406.10462*, 2024b.

561 Wenhui Chen, Hexiang Hu, Chitwan Saharia, and William W Cohen. Re-imagen: Retrieval-augmented
 562 text-to-image generator. *arXiv preprint arXiv:2209.14491*, 2022.

563 Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. Anydoor: Zero-
 564 shot object-level image customization. In *Proceedings of the IEEE/CVF conference on computer*
 565 *vision and pattern recognition*, pp. 6593–6602, 2024c.

567 Xi Chen, Zhifei Zhang, He Zhang, Yuqian Zhou, Soo Ye Kim, Qing Liu, Yijun Li, Jianming Zhang,
 568 Nanxuan Zhao, Yilin Wang, et al. Unireal: Universal image generation and editing via learning
 569 real-world dynamics. *arXiv preprint arXiv:2412.07774*, 2024d.

570 Gayoon Choi, Taejin Jeong, Sujung Hong, and Seong Jae Hwang. Dragtext: Rethinking text
 571 embedding in point-based image editing. In *2025 IEEE/CVF Winter Conference on Applications*
 572 *of Computer Vision (WACV)*, pp. 441–450. IEEE, 2025.

574 Guillaume Couairon, Jakob Verbeek, Holger Schwenk, and Matthieu Cord. Diffedit: Diffusion-based
 575 semantic image editing with mask guidance. *arXiv preprint arXiv:2210.11427*, 2022.

576 Google DeepMind and Google Gemini. Nano banana (gemini 2.5 flash image) – image
 577 editing generation model, 2025. URL <https://blog.google/products/gemini/updated-image-editing-model/>. Official announcement: “Image editing in Gemini
 578 just got a major upgrade. Nano Banana is the latest upgrade to image generation in the Gemini
 579 app.”.

581 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
 582 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv*
 583 *preprint arXiv:2505.14683*, 2025.

585 Zheng Ding, Xuaner Zhang, Zhihao Xia, Lars Jebe, Zhuowen Tu, and Xiuming Zhang. Diffusionrig:
 586 Learning personalized priors for facial appearance editing. In *Proceedings of the IEEE/CVF*
 587 *conference on computer vision and pattern recognition*, pp. 12736–12746, 2023.

588 Wenkai Dong, Song Xue, Xiaoyue Duan, and Shumin Han. Prompt tuning inversion for text-driven
 589 image editing using diffusion models. In *Proceedings of the IEEE/CVF International Conference*
 590 *on Computer Vision*, pp. 7430–7440, 2023.

592 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 593 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.

594 Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
 595 Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation.
 596 *arXiv preprint arXiv:2404.14396*, 2024.

597

598 Peyman Gholami and Robert Xiao. Diffusion brush: A latent diffusion model-based editing tool for
 599 ai-generated images. *arXiv preprint arXiv:2306.00219*, 2023.

600 Vudit Goel, Elia Peruzzo, Yifan Jiang, Dejia Xu, Nicu Sebe, Trevor Darrell, Zhangyang Wang, and
 601 Humphrey Shi. Pair-diffusion: Object-level image editing with structure-and-appearance paired
 602 diffusion models. *CoRR*, 2023.

603

604 Lixue Gong, Xiaoxia Hou, Fanshi Li, Liang Li, Xiaochen Lian, Fei Liu, Liyang Liu, Wei Liu, Wei Lu,
 605 Yichun Shi, et al. Seedream 2.0: A native chinese-english bilingual image generation foundation
 606 model. *arXiv preprint arXiv:2503.07703*, 2025.

607

608 Qin Guo and Tianwei Lin. Focus on your instruction: Fine-grained and multi-instruction image
 609 editing by attention modulation. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 610 and *Pattern Recognition*, pp. 6986–6996, 2024.

611

612 Yuwei Guo, Ceyuan Yang, Ziyan Yang, Zhibei Ma, Zhijie Lin, Zhenheng Yang, Dahua Lin, and
 613 Lu Jiang. Long context tuning for video generation. *arXiv preprint arXiv:2503.10589*, 2025.

614

615 Ligong Han, Song Wen, Qi Chen, Zhixing Zhang, Kunpeng Song, Mengwei Ren, Ruijiang Gao,
 616 Anastasis Stathopoulos, Xiaoxiao He, Yuxiao Chen, et al. Proxedit: Improving tuning-free real
 617 image editing with proximal guidance. In *Proceedings of the IEEE/CVF Winter Conference on*
 618 *Applications of Computer Vision*, pp. 4291–4301, 2024a.

619

620 Zhen Han, Zeyinzi Jiang, Yulin Pan, Jingfeng Zhang, Chaojie Mao, Chenwei Xie, Yu Liu, and Jingren
 621 Zhou. Ace: All-round creator and editor following instructions via diffusion transformer. *arXiv*
 622 *preprint arXiv:2410.00086*, 2024b.

623

624 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-
 625 to-prompt image editing with cross attention control. *arXiv preprint arXiv:2208.01626*, 2022.

626

627 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale
 628 pretraining for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.

629

630 Lianghua Huang, Wei Wang, Zhi-Fan Wu, Yupeng Shi, Huanzhang Dou, Chen Liang, Yutong
 631 Feng, Yu Liu, and Jingren Zhou. In-context lora for diffusion transformers. *arXiv preprint*
 632 *arXiv:2410.23775*, 2024.

633

634 Nisha Huang, Fan Tang, Weiming Dong, Tong-Yee Lee, and Changsheng Xu. Region-aware diffusion
 635 for zero-shot text-driven image editing. *arXiv preprint arXiv:2302.11797*, 2023.

636

637 Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong, He Zhang,
 638 Liangliang Cao, and Shifeng Chen. Diffusion model-based image editing: A survey. *IEEE*
 639 *Transactions on Pattern Analysis and Machine Intelligence*, 2025.

640

641 Mude Hui, Siwei Yang, Bingchen Zhao, Yichun Shi, Heng Wang, Peng Wang, Yuyin Zhou, and
 642 Cihang Xie. Hq-edit: A high-quality dataset for instruction-based image editing. *arXiv preprint*
 643 *arXiv:2404.09990*, 2024.

644

645 Ying Jin, Pengyang Ling, Xiaoyi Dong, Pan Zhang, Jiaqi Wang, and Dahua Lin. Reasonpix2pix:
 646 instruction reasoning dataset for advanced image editing. *arXiv preprint arXiv:2405.11190*, 2024.

647

648 Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
 649 Michal Irani. Imagic: Text-based real image editing with diffusion models. In *Proceedings of the*
 650 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 6007–6017, 2023.

651

652 Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Diffusionclip: Text-guided diffusion models
 653 for robust image manipulation. In *Proceedings of the IEEE/CVF conference on computer vision*
 654 and *pattern recognition*, pp. 2426–2435, 2022.

648 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 649 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings*
 650 *of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

651 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 652 Bo Wu, Jianwei Zhang, et al. Hunyuanyvideo: A systematic framework for large video generative
 653 models. *arXiv preprint arXiv:2412.03603*, 2024.

654 Benno Krojer, Dheeraj Vattikonda, Luis Lara, Varun Jampani, Eva Portelance, Chris Pal, and Siva
 655 Reddy. Learning action and reasoning-centric image editing from videos and simulation. *Advances*
 656 *in Neural Information Processing Systems*, 37:38035–38078, 2024.

657 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

658 Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov,
 659 Thomas Wang, Siddharth Karamchetti, Alexander Rush, Douwe Kiela, et al. Obelics: An open
 660 web-scale filtered dataset of interleaved image-text documents. *Advances in Neural Information*
 661 *Processing Systems*, 36:71683–71702, 2023.

662 Dongxu Li, Junnan Li, and Steven Hoi. Blip-diffusion: Pre-trained subject representation for
 663 controllable text-to-image generation and editing. *Advances in Neural Information Processing*
 664 *Systems*, 36:30146–30166, 2023.

665 Shanglin Li, Bohan Zeng, Yutang Feng, Sicheng Gao, Xiuhui Liu, Jiaming Liu, Lin Li, Xu Tang, Yao
 666 Hu, Jianzhuang Liu, et al. Zone: Zero-shot instruction-guided local editing. In *Proceedings of the*
 667 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6254–6263, 2024.

668 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 669 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision–*
 670 *ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings,*
 671 *Part V 13*, pp. 740–755. Springer, 2014.

672 Yijing Lin, Mengqi Huang, Shuhan Zhuang, and Zhendong Mao. Realgeneral: Unifying visual
 673 generation via temporal in-context learning with video models. *arXiv preprint arXiv:2503.10406*,
 674 2025.

675 Yupei Lin, Sen Zhang, Xiaojun Yang, Xiao Wang, and Yukai Shi. Regeneration learning of diffusion
 676 models with rich prompts for zero-shot image translation. *arXiv preprint arXiv:2305.04651*, 2023.

677 Haofeng Liu, Chenshu Xu, Yifei Yang, Lihua Zeng, and Shengfeng He. Drag your noise: Interactive
 678 point-based editing via diffusion semantic propagation. In *Proceedings of the IEEE/CVF conference*
 679 *on computer vision and pattern recognition*, pp. 6743–6752, 2024a.

680 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 681 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 682 for open-set object detection. In *European Conference on Computer Vision*, pp. 38–55. Springer,
 683 2024b.

684 Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming Wang,
 685 Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image editing.
 686 *arXiv preprint arXiv:2504.17761*, 2025.

687 Jingyi Lu, Xinghui Li, and Kai Han. Regiondrag: Fast region-based image editing with diffusion
 688 models. In *European Conference on Computer Vision*, pp. 231–246. Springer, 2024.

689 Qi Mao, Lan Chen, Yuchao Gu, Zhen Fang, and Mike Zheng Shou. Mag-edit: Localized image
 690 editing in complex scenarios via mask-based attention-adjusted guidance. In *Proceedings of the*
 691 *32nd ACM International Conference on Multimedia*, pp. 6842–6850, 2024.

692 Ashkan Mirzaei, Tristan Aumentado-Armstrong, Marcus A Brubaker, Jonathan Kelly, Alex Levin-
 693 shtein, Konstantinos G Derpanis, and Igor Gilitschenski. Watch your steps: Local image and scene
 694 editing by text instructions. In *European Conference on Computer Vision*, pp. 111–129. Springer,
 695 2024.

702 Daiki Miyake, Akihiro Iohara, Yu Saito, and Toshiyuki Tanaka. Negative-prompt inversion: Fast im-
 703 age inversion for editing with text-guided diffusion models. In *2025 IEEE/CVF Winter Conference*
 704 *on Applications of Computer Vision (WACV)*, pp. 2063–2072. IEEE, 2025.

705 Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and Jian Zhang. Dragondiffusion: Enabling
 706 drag-style manipulation on diffusion models. *arXiv preprint arXiv:2307.02421*, 2023.

708 Ivona Najdenkoska, Animesh Sinha, Abhimanyu Dubey, Dhruv Mahajan, Vignesh Ramanathan, and
 709 Filip Radenovic. Context diffusion: In-context aware image generation. In *European Conference*
 710 *on Computer Vision*, pp. 375–391. Springer, 2024.

712 Shen Nie, Hanzhong Allan Guo, Cheng Lu, Yuhao Zhou, Chenyu Zheng, and Chongxuan Li. The
 713 blessing of randomness: Sde beats ode in general diffusion-based image editing. *arXiv preprint*
 714 *arXiv:2311.01410*, 2023.

715 OpenAI. Introducing 4o image generation, 2025a. URL <https://openai.com/index/introducing-4o-image-generation/>.

717 OpenAI. Addendum to gpt-4o system card: Native image generation. *openai*, 2025b.

719 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 720 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

722 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 723 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 724 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

725 Leigang Qu, Meng Liu, Jianlong Wu, Zan Gao, and Liqiang Nie. Dynamic modality interaction
 726 modeling for image-text retrieval. In *Proceedings of the 44th International ACM SIGIR Conference*
 727 *on Research and Development in Information Retrieval*, pp. 1104–1113, 2021.

729 Leigang Qu, Shengqiong Wu, Hao Fei, Liqiang Nie, and Tat-Seng Chua. Layoutllm-t2i: Eliciting lay-
 730 out guidance from llm for text-to-image generation. In *Proceedings of the 31st ACM International*
 731 *Conference on Multimedia*, pp. 643–654, 2023.

732 Leigang Qu, Wenjie Wang, Yongqi Li, Hanwang Zhang, Liqiang Nie, and Tat-Seng Chua. Dis-
 733 criminative probing and tuning for text-to-image generation. *arXiv preprint arXiv:2403.04321*,
 734 2024.

736 Leigang Qu, Haochuan Li, Tan Wang, Wenjie Wang, Yongqi Li, Liqiang Nie, and Tat-Seng Chua. Tiger:
 737 Unifying text-to-image generation and retrieval with large multimodal models. In *The*
 738 *Thirteenth International Conference on Learning Representations*, 2025a.

739 Leigang Qu, Haochuan Li, Wenjie Wang, Xiang Liu, Juncheng Li, Liqiang Nie, and Tat-Seng Chua.
 740 Silmm: Self-improving large multimodal models for compositional text-to-image generation.
 741 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 18497–18508,
 742 2025b.

743 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 744 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.

746 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 747 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
 748 and videos. *arXiv preprint arXiv:2408.00714*, 2024.

749 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 750 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 751 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

753 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 754 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 755 text-to-image diffusion models with deep language understanding. *Advances in Neural Information*
Processing Systems, 35:36479–36494, 2022.

756 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
 757 distillation. In *European Conference on Computer Vision*, pp. 87–103. Springer, 2024.
 758

759 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 760 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 761 open large-scale dataset for training next generation image-text models. *Advances in Neural
 762 Information Processing Systems*, 35:25278–25294, 2022.

763 Team Seawead, Ceyuan Yang, Zhijie Lin, Yang Zhao, Shanchuan Lin, Zhibei Ma, Haoyuan Guo, Hao
 764 Chen, Lu Qi, Sen Wang, et al. Seaweed-7b: Cost-effective training of video generation foundation
 765 model. *arXiv preprint arXiv:2504.08685*, 2025.
 766

767 Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh,
 768 and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks. In
 769 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 770 8871–8879, 2024.

771 Yichun Shi, Peng Wang, and Weilin Huang. Seededit: Align image re-generation to image editing.
 772 *arXiv preprint arXiv:2411.06686*, 2024a.
 773

774 Yujun Shi, Chuhui Xue, Jun Hao Liew, Jiachun Pan, Hanshu Yan, Wenqing Zhang, Vincent YF
 775 Tan, and Song Bai. Dragdiffusion: Harnessing diffusion models for interactive point-based image
 776 editing. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 777 pp. 8839–8849, 2024b.

778 Joonghyuk Shin, Daehyeon Choi, and Jaesik Park. Instantdrag: Improving interactivity in drag-based
 779 image editing. In *SIGGRAPH Asia 2024 Conference Papers*, pp. 1–10, 2024.
 780

781 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 782 Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
 783 data. *arXiv preprint arXiv:2209.14792*, 2022.

784 Yizhi Song, Zhifei Zhang, Zhe Lin, Scott Cohen, Brian Price, Jianming Zhang, Soo Ye Kim, and
 785 Daniel Aliaga. Objectstitch: Object compositing with diffusion model. In *Proceedings of the
 786 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18310–18319, 2023.
 787

788 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 789 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.
 790

791 Zeyi Sun, Ziyang Chu, Pan Zhang, Tong Wu, Xiaoyi Dong, Yuhang Zang, Yuanjun Xiong, Dahua
 792 Lin, and Jiaqi Wang. X-prompt: Towards universal in-context image generation in auto-regressive
 793 vision language foundation models. *arXiv preprint arXiv:2412.01824*, 2024.

794 Linoy Tsaban and Apolinário Passos. Ledits: Real image editing with ddpm inversion and semantic
 795 guidance. *arXiv preprint arXiv:2307.00522*, 2023.
 796

797 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 798 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative models.
 799 *arXiv preprint arXiv:2503.20314*, 2025.

800 Qian Wang, Biao Zhang, Michael Birsak, and Peter Wonka. Instructedit: Improving automatic masks
 801 for diffusion-based image editing with user instructions. *arXiv preprint arXiv:2305.18047*, 2023a.
 802

803 Su Wang, Chitwan Saharia, Ceslee Montgomery, Jordi Pont-Tuset, Shai Noy, Stefano Pellegrini,
 804 Yasumasa Onoe, Sarah Laszlo, David J Fleet, Radu Soricut, et al. Imagen editor and editbench: Ad-
 805 vancing and evaluating text-guided image inpainting. In *Proceedings of the IEEE/CVF conference
 806 on computer vision and pattern recognition*, pp. 18359–18369, 2023b.
 807

808 Cong Wei, Zheyang Xiong, Weiming Ren, Xeron Du, Ge Zhang, and Wenhui Chen. Omnidit:
 809 Building image editing generalist models through specialist supervision. In *The Thirteenth
 International Conference on Learning Representations*, 2024.

810 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 811 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 812 *neural information processing systems*, 35:24824–24837, 2022.

813

814 Chen Henry Wu and Fernando De la Torre. A latent space of stochastic diffusion models for zero-
 815 shot image editing and guidance. In *Proceedings of the IEEE/CVF International Conference on*
 816 *Computer Vision*, pp. 7378–7387, 2023.

817 Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
 818 sual chatgpt: Talking, drawing and editing with visual foundation models. *arXiv preprint*
 819 *arXiv:2303.04671*, 2023.

820

821 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 822 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 823 2025a.

824

825 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 826 Jiang, Yexin Liu, Junjie Zhou, et al. Omnipgen2: Exploration to advanced multimodal generation.
 827 *arXiv preprint arXiv:2506.18871*, 2025b.

828 Shaojin Wu, Mengqi Huang, Wenxu Wu, Yufeng Cheng, Fei Ding, and Qian He. Less-to-more general-
 829 ization: Unlocking more controllability by in-context generation. *arXiv preprint arXiv:2504.02160*,
 830 2025c.

831

832 Bin Xia, Yuechen Zhang, Jingyao Li, Chengyao Wang, Yitong Wang, Xinglong Wu, Bei Yu, and
 833 Jiaya Jia. Dreamomni: Unified image generation and editing. *arXiv preprint arXiv:2412.17098*,
 834 2024.

835 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
 836 Shuting Wang, Tiejun Huang, and Zheng Liu. Omnipgen: Unified image generation. *arXiv preprint*
 837 *arXiv:2409.11340*, 2024.

838

839 Shaoan Xie, Zhifei Zhang, Zhe Lin, Tobias Hinz, and Kun Zhang. Smartbrush: Text and shape guided
 840 object inpainting with diffusion model. In *Proceedings of the IEEE/CVF conference on computer*
 841 *vision and pattern recognition*, pp. 22428–22437, 2023.

842

843 Sihan Xu, Ziqiao Ma, Yidong Huang, Honglak Lee, and Joyce Chai. Cyclenet: Rethinking cycle
 844 consistency in text-guided diffusion for image manipulation. *Advances in Neural Information*
 845 *Processing Systems*, 36:10359–10384, 2023.

846

847 Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and Fang
 848 Wen. Paint by example: Exemplar-based image editing with diffusion models. In *Proceedings of*
 849 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 18381–18391, 2023a.

850

851 Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin Cui. Mastering
 852 text-to-image diffusion: Recaptioning, planning, and generating with multimodal llms. *arXiv*
 853 *preprint arXiv:2401.11708*, 2024a.

854

855 Ling Yang, Bohan Zeng, Jiaming Liu, Hong Li, Minghao Xu, Wentao Zhang, and Shuicheng Yan.
 856 Editworld: Simulating world dynamics for instruction-following image editing. *arXiv preprint*
 857 *arXiv:2405.14785*, 2024b.

858

859 Shiyuan Yang, Xiaodong Chen, and Jing Liao. Uni-paint: A unified framework for multimodal
 860 image inpainting with pretrained diffusion model. In *Proceedings of the 31st ACM International*
 861 *Conference on Multimedia*, pp. 3190–3199, 2023b.

862

863 Zhen Yang, Ganggui Ding, Wen Wang, Hao Chen, Bohan Zhuang, and Chunhua Shen. Object-aware
 864 inversion and reassembly for image editing. *arXiv preprint arXiv:2310.12149*, 2023c.

865

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 866 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 867 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024c.

864 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 865 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 866 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.

867

868 Kai Zhang, Lingbo Mo, Wenhui Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
 869 dataset for instruction-guided image editing. *Advances in Neural Information Processing Systems*,
 870 36:31428–31449, 2023a.

871

872 Shiwen Zhang, Shuai Xiao, and Weilin Huang. Forgedit: Text guided image editing via learning and
 873 forgetting. *arXiv preprint arXiv:2309.10556*, 2023b.

874

875 Yabo Zhang, Xinpeng Zhou, Yihan Zeng, Hang Xu, Hui Li, and Wangmeng Zuo. Framepainter:
 876 Endowing interactive image editing with video diffusion priors. *arXiv preprint arXiv:2501.08225*,
 877 2025a.

878

879 Zechuan Zhang, Ji Xie, Yu Lu, Zongxin Yang, and Yi Yang. In-context edit: Enabling instructional
 880 image editing with in-context generation in large scale diffusion transformer. *arXiv preprint
 881 arXiv:2504.20690*, 2025b.

882

883 Zhongping Zhang, Jian Zheng, Zhiyuan Fang, and Bryan A Plummer. Text-to-image editing by
 884 image information removal. In *Proceedings of the IEEE/CVF winter conference on applications of
 885 computer vision*, pp. 5232–5241, 2024.

886

887 Haozhe Zhao, Xiaojian Shawn Ma, Liang Chen, Shuzheng Si, Ruijie Wu, Kaikai An, Peiyu Yu, Minjia
 888 Zhang, Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image editing at
 889 scale. *Advances in Neural Information Processing Systems*, 37:3058–3093, 2024.

890

891 Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Youngjae
 892 Yu, Ludwig Schmidt, William Yang Wang, and Yejin Choi. Multimodal c4: An open, billion-scale
 893 corpus of images interleaved with text. *Advances in Neural Information Processing Systems*, 36:
 894 8958–8974, 2023.

895

896 Junhao Zhuang, Yanhong Zeng, Wenran Liu, Chun Yuan, and Kai Chen. A task is worth one word:
 897 Learning with task prompts for high-quality versatile image inpainting. In *European Conference
 898 on Computer Vision*, pp. 195–211. Springer, 2024.

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918	CONTENTS	
919		
920	1 Introduction	2
921		
922	2 Related Work	3
923		
924	3 Methodology	3
925	3.1 Interleaved Multimodal Sequence Construction	3
926	3.2 Model Architecture	4
927	3.3 Context Composition Learning	5
928		
929	4 Experiments	6
930		
931	4.1 Implementation Details	6
932	4.2 Multi-Turn Session Image Editing Benchmark	6
933	4.3 Comparison with State-of-the-Arts	7
934	4.4 In-depth Analysis	7
935	4.5 Applications	9
936		
937	5 Conclusion	10
938		
939	Appendix	18
940		
941	A The Use of Large Language Models	20
942		
943	B Additional Related Work	20
944		
945	C Implementation Details	20
946		
947	C.1 Data Details	20
948	C.2 Visual Transition Annotation	22
949	C.3 Segmentation Mask Annotation and RoE Construction	22
950	C.4 Model Architecture	25
951	C.5 Composition of Input Conditions and Output	25
952	C.6 Details of MSE-Bench	27
953	C.7 Supervised Fine-Tuning	27
954		
955	D Additional Experimental Results	28
956		
957	D.1 Human Evaluation on Multi-turn Image Editing	28
958	D.2 Correlation Between GPT-4o and Human Evaluation	28
959	D.3 Human Evaluation for VLM annotation	28
960	D.4 Additional Ablation Study	28
961	D.5 Additional Performance Comparison on Story Keyframe Generation	29
962		
963	E Additional Application Examples	35
964		

972	E.1	Image Editing	35
973	E.2	Multi-concept Composition	35
974	E.3	Story Generation	35
975	E.4	Chain-of-Editing	35
976	E.5	Drag-based Image Editing	42
977			
978	F	Limitations	42
979			
980	G	Future Work	42
981			
982			
983			
984			
985			
986			
987			
988			
989			
990			
991			
992			
993			
994			
995			
996			
997			
998			
999			
1000			
1001			
1002			
1003			
1004			
1005			
1006			
1007			
1008			
1009			
1010			
1011			
1012			
1013			
1014			
1015			
1016			
1017			
1018			
1019			
1020			
1021			
1022			
1023			
1024			
1025			

1026 **A THE USE OF LARGE LANGUAGE MODELS**
1027
1028
1029
1030

1031 We acknowledge that large language models (LLMs) were employed to assist in the preparation of
1032 this manuscript. Their use was restricted to grammar checking, language refinement, and enhancing
1033 clarity and fluency of the text. In addition, LLMs were applied in a limited capacity to support minor
1034 debugging and syntactic corrections of code snippets.

1035 **B ADDITIONAL RELATED WORK**
1036
1037
1038
1039

1040 **Image Editing.** Building on advances in foundational image generation models (Huang et al., 2025;
1041 Ramesh et al., 2022; Saharia et al., 2022; Esser et al., 2024), image editing has achieved remarkable
1042 progress. Techniques now enable a wide range of edits, including zero-shot editing (Li et al., 2024;
1043 Huang et al., 2023; Wu & De la Torre, 2023; Han et al., 2024a; Chen & Huang, 2023), changing
1044 object classes (Kim et al., 2022; Xu et al., 2023; Ackermann & Li, 2022; Yang et al., 2023c; Tsaban
1045 & Passos, 2023; Gholami & Xiao, 2023; Brack et al., 2024; Nie et al., 2023) and faces (Ding et al.,
1046 2023), free-form text-based modifications (Brooks et al., 2023; Hertz et al., 2022; Lin et al., 2023;
1047 Dong et al., 2023; Zhang et al., 2023b; Kawar et al., 2023; Guo & Lin, 2024; Zhang et al., 2024;
1048 Sheynin et al., 2024; Wei et al., 2024; Shi et al., 2024a; Wang et al., 2023a; Li et al., 2023; Mirzaei
1049 et al., 2024; Miyake et al., 2025), mask-based edits (Wang et al., 2023b; Xie et al., 2023; Couairon
1050 et al., 2022; Zou et al., 2024; Mao et al., 2024), point dragging (Mou et al., 2023; Shin et al., 2024; Liu
1051 et al., 2024a; Lu et al., 2024; Choi et al., 2025), and reference image-guided transformations (Song
1052 et al., 2023; Goel et al., 2023; Yang et al., 2023a). A series of recent works (Yang et al., 2023b; Wu
1053 et al., 2023; Xiao et al., 2024; Najdenkoska et al., 2024; Sun et al., 2024) enables edits conditioned
1054 on multiple text and images. Our work focuses on in-context image editing (OpenAI, 2025b), where
1055 edits are conditioned on a contextual sequence of text and *previously generated* images. Moreover,
1056 we explore learning from native video data, unlike existing methods that use hand-crafted synthesized
1057 data.

1058 **C IMPLEMENTATION DETAILS**
1059
1060
1061
1062
1063
1064
10651066 **C.1 DATA DETAILS**
1067
1068
1069

1070 The training videos are sourced from a wide spectrum of domains, including stock footage, films,
1071 documentaries, etc. We split the raw videos into both single-shot clips and multi-shot scene videos.
1072 We also pre-process the raw videos by using different filtering strategies to keep high-quality videos,
1073 including logo detection, black border detection, and aesthetic estimation.

1074 As described in Sec.3.1, we adopt two frame sampling strategies: equal-interval sampling and
1075 fixed-frame sampling. As illustrated in Fig.8, these approaches jointly ensure both the diversity and
1076 temporal stability of visual dynamics—two key factors for effective training of in-context image
1077 editing models.

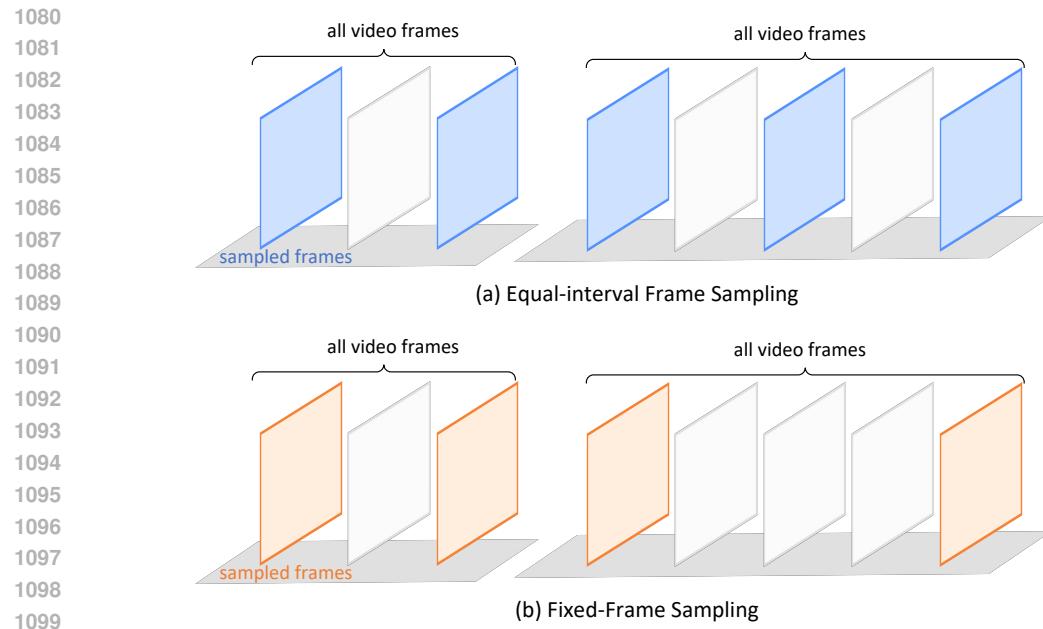


Figure 8: Two ways of frame sampling: (a) equal-interval sampling and (b) fixed-frame sampling.

1134
1135

C.2 VISUAL TRANSITION ANNOTATION

1136
1137

Instruction for Visual Transition Annotation

1138
1139
1140

Imagine that you are an image editing assistant who wants to edit the first image to the second image. I will provide you two frames from a video clip as the source and target images. The caption of the raw video clip is: {}

1141
1142

Your task is to summarize how you intend to achieve this image editing task by providing detailed but brief text instructions, from the following guidelines:

1143
1144
1145

1. Understand the two images first, and describe the two frames in detail and coherently. Please include the details of the environment, main subjects, their appearances, and main features.
2. Describe the main characters and objects and their appearances. Do not mention the real name entities. Follow the format such as: {"char1": "a woman with blonde hair wearing a red jacket", "char2": "a girl wearing a floral dress", "obj1": "a green apple", ...}

1146
1147
1148

3. Highlight the semantic and visual differences between the two images in detail.
4. Provide only factual descriptive differences based on observable content. Avoid words or phrases that suggest speculation or assumptions, such as "likely", "possibly", or "appear to".

1149
1150
1151

5. Avoid elliptical referential pronouns, such as "the same, frame 1, frame 2, the first image, the second image, ...".

1152

An editing instruction should include:

1153
1154
1155

1. main character change, including appearance, disappearance, position, action, expression, pose, orientation, ... (e.g., "make the person smile")

1156
1157
1158

2. object change, including appearance, disappearance, position, count, relationship, layout, ... (e.g., "add a dog beside the person")

1159
1160
1161

3. attribute change, including color, texture, material, shape, size, depth, dynamics, ... (e.g., "make the person's hair red")

1162
1163
1164

4. interaction change, including the interaction between characters, objects, and the environment. (e.g., "make the person hold the dog")

1165
1166
1167

5. global change, including background, atmosphere, environment, style, weather, season, lighting, ... (e.g., "make the weather dark")

1168
1169
1170

6. camera change, including orbiting, dolly-in, dolly-out, pan-left, pan-right, tilt-up, tilt-down.

1171
1172
1173

7. others

Output Format: You should output a json file to include the following information:

Frame1 Caption: <describe the first image/frame, characters and objects in detail>

Frame2 Caption: <describe the second image/frame, characters and objects in detail>

Character Change: <the detailed character and attribute change>

Object Change: <the detailed object and attribute change>

Global Change: <the detailed global change>

Camera Change: <the detailed camera change>

Other Change: <the detailed other change>

Summary Change: <a comprehensive but brief user editing instruction to achieve the editing>

Your output should be a JSON file in one row (without any format), which looks like:

```
{"frame1_caption": {"scene": str, "char1": str, "char2": str, ..., "obj1": str, "obj2": str, ...}, "frame2_caption": {"scene": str, "char1": str, "char2": str, ..., "obj1": str, "obj2": str, ...}, "character_change": {"char1": str, "char2": str, ...}, "object_change": {"obj1": str, "obj2": str, ...}, "global_change": str, "camera_change": str, "other_change": str, "summary_change": str}
```

1174
1175
1176
1177
1178
1179

To bridge the semantic gap between two sampled frames, we use our in-house LMM to annotate visual transitions, as introduced in Sec.3.1. The instruction used during annotation is shown above, and Fig. 10 presents example annotations to illustrate their quality.

1180
1181

C.3 SEGMENTATION MASK ANNOTATION AND ROE CONSTRUCTION

1182
1183
1184

The proposed visual transition annotation framework leverages an LMM to generate multi-level annotations, ranging from local concepts to global scene descriptions. As illustrated in Fig.2, we first use character and object descriptions from the source and target frames as query inputs to GroundingDINO(Liu et al., 2024b) to obtain object detection results. These detections are then passed to SAM 2 (Ravi et al., 2024) to extract segmentation masks for the corresponding local concepts. Guided by the annotated local changes, we identify and fuse the objects or characters undergoing transitions to construct the final RoEs.

1188

1189

1190

1191

1192

1193

1194

1195

1196 Turn 1: Replace the crescent moon and
 1197 stars with a smiling sun to change
 1198 the time of day to daytime.

Turn 1: Remove the rocky cliff and mist, change the background to an ocean - side beach with a hazy sky.
 Turn 2: Swap the positions of the two women, let them stand sideways, and make them face the camera more directly.

1204 Turn 1: Remove the rocky cliff and mist, change the
 1205 background to an ocean - side beach with a hazy
 1206 sky. Swap the positions of the two women, let
 1207 them stand sideways, and make them face the
 1208 camera more directly

Turn 1: Change the man's facial expression from neutral to an open - mouthed expression as if speaking or exclaiming
 Turn 2: Remove the man from the image and close the door.

1212 Turn 1: Change the background landscape to show more
 1213 greenery, smaller water bodies, and add some
 1214 buildings near the shoreline in the distance. Turn
 1215 the man's head slightly to the right.

Turn 1: Remove the hand and add blueberries evenly spread over the dough.
 Turn 2: Add a pair of hands creating a lattice - pattern with dough strips on top of the blueberries in the baking dish
 Turn 3: Remove the hands and complete the lattice pattern of dough strips on the dish with blueberries

1221 Turn 1: Change the visible part of the man's face
 1222 to show more of the eyes and forehead, add
 1223 hair on the forehead, and add a red -
 1224 outlined white mark on the forehead
 1225 Turn 2: Pan down the camera to focus on the man's
 1226 nose and mouth area and move the red -
 1227 outlined white patch from the forehead to
 1228 the lower lip
 1229 Turn 3: Zoom out to show the full face of the man,
 1230 add hair, change the framing to include a
 1231 plain background, and change the
 1232 expression to neutral

Turn 1: Transform the simple fox - like sketch into a detailed female character with fox - like features performing a dance move
 Turn 2: Change the female character's dance pose from having one arm raised and one leg lifted to having both arms extended and one leg forward.
 Turn 3: Change the female character's pose to standing upright with arms raised and add wings behind her

Figure 9: Examples (1/2) of visual transition annotation performed by our in-house large multimodal model.

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

Turn 1: Stop the man's hand - gesturing and close his mouth 1,

Turn 2: Add a curved stick to the man's left hand and make him gesture with his right hand.

Turn 3: Change the man's hand gesture from a general gesture to a rock - on hand gesture with the arm raised higher

1252

1253

1254

1255

1256

1257

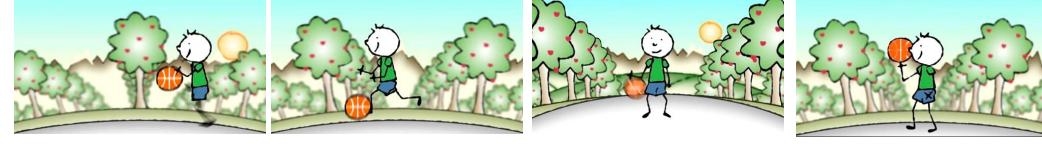
1258

1259

Turn 1: Change the boy's action to running with one arm extended towards the basketball and move the basketball to in front of the boy on the ground, and change the boy's orientation to face more towards the left.

Turn 2: Change the boy's action to standing upright and looking forward, move the basketball to the boy's right hand, and add a sun on the right side of the sky.

Turn 3: Add a black X on the boy's shorts and change his pose to holding the basketball up to his face



1260

1261

1262

1263

Turn 1: Remove the two women and add a white armchair with a blanket, a small black round table, a floor lamp with a white shade, and a potted plant.

Turn 2: Add a woman with red hair, wearing a yellow short - sleeved shirt and black pants, standing and facing away from the camera with her right hand raised slightly to the room scene.

Turn 3: Change the woman's action from walking and gesturing to standing and touching the patterned curtain with both hands.

Turn 4: Add a woman with blonde hair sitting on the armchair, holding a white cup and raising her hand.

Turn 4: Change the first woman's action to standing and holding a white cup and smiling. Add two white cups, one in each woman's hand.

1264

1265

1266

1267

1268

Turn 1: Move the man closer to the SUV such that he is opening the rear door with his right hand, and change the SUV's rear door to be open.

Turn 2: Edit the image to transition the man's position from standing outside the rear door of the SUV to being partially inside the vehicle, bent over.

Turn 3: Remove the man getting into the SUV and close the rear door.

Turn 4: Move the white SUV further down the path and close the rear right door.

1269

1270

1271

1272

1273

1274

1275

1276

1277

Turn 1: Move the man closer to the SUV such that he is opening the rear door with his right hand, and change the SUV's rear door to be open.

Turn 2: Edit the image to transition the man's position from standing outside the rear door of the SUV to being partially inside the vehicle, bent over.

Turn 3: Remove the man getting into the SUV and close the rear door.

Turn 4: Move the white SUV further down the path and close the rear right door.

Figure 10: Examples (2/2) of visual transition annotation performed by our in-house large multimodal model.

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

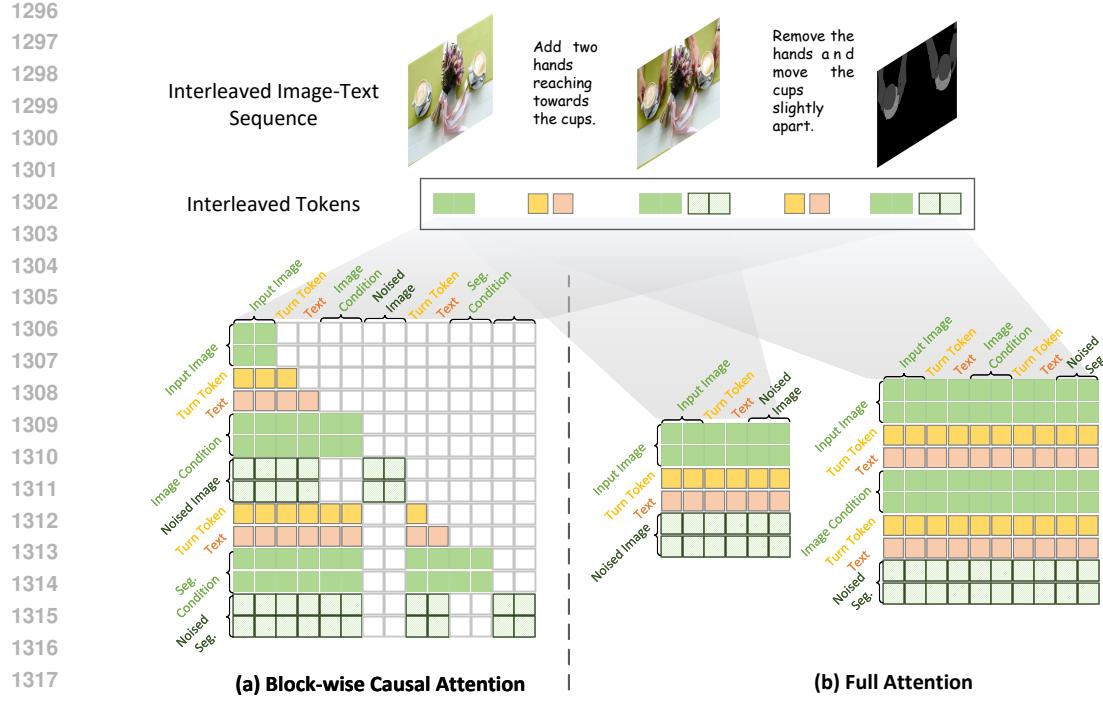


Figure 11: Implementation of (a) block-wise causal attention and (b) full attention.

C.4 MODEL ARCHITECTURE

Variational Autoencoder. Following prior work (Yu et al., 2023), we adopt the encoder in a pretrained VAE to embed each image into the latent space separately for efficient computation. Specifically, it compress raw pixels with shape $(H, W, 3)$ into a (h, w, c) -shape latent representation, with downsampling ratios as $d_h = \frac{H}{h}$ and $d_w = \frac{W}{w}$ for height and width, respectively, and the latent channel c . The decoder in VAE aims to transform latent representations generated by the DiT back into the pixel space during inference.

Text Encoder. We employ the pretrained Flan-T5 as the text encoder to separately encode the prompt in each turn, and then concatenate all the embedding with inserting turn embeddings in between. Specifically, to make the model better discriminate different turns, we define a special turn token $\langle \text{TURN} \rangle_i$ for the i -th turn, and introduce a learnable turn embedding for each one, which is inserted before the prompt embedding in the i -th turn.

Full Attention and Block-wise Causal Attention. We show the comparison between full attention and block-wise causal attention, and the condition strategy of clean context in block-wise causal attention, in Fig. 11.

C.5 COMPOSITION OF INPUT CONDITIONS AND OUTPUT

In Fig. 12, we enumerate all seven context compositions supported by our method, detailing the interleaved input conditions, the corresponding outputs, the learning objectives, and the specific capabilities unlocked by each composition.

1350

1351

1352

1353

1354

Source Image	Input Condition (In-Context)				Output	Learning Objective	Ability
	Turn-1	Turn-2	Turn-3	Turn-4			
	Add two hands reaching ...	Remove the hands holding the cups and move the cups slightly apart				NIP	Editing
	Add two hands reaching ...	Remove the hands ... First, predict the current segmentation:				CSP	Gournding
	Add two hands reaching ...	Remove the hands ... First, predict the next segmentation:				NSP	Layout Planning
	Add two hands reaching ...	Remove the hands ... First, predict the current segmentation:	Second, predict the next segmentation:			NSP	Dynamic Layout Planning
	Add two hands reaching ...	Remove the hands ... First, predict the current segmentation:	Based on the context, perform editing.			NIP	Grounded Editing
	Add two hands reaching ...	Remove the hands ... First, predict the next segmentation:	Based on the context, perform editing.			NIP	Controllable Editing
	Add two hands reaching ...	Remove the hands ... First, predict the current segmentation:	Second, predict the next segmentation:	Based on the context, perform editing.		NIP	Chain-of-Editing

1375

1376

1377

1378

1379

1380

1381

1382

Turn 1: Remove the person from the chair.
 Turn 2: Add a cat sitting on the chair.
 Turn 3: Change the chair color to vibrant pink.
 Turn 4: Replace the background with an urban park scene.
 Turn 5: Change the image style to resemble comic book art.

Turn 1: Remove the small orange flower buds from the cachepot design.
 Turn 2: Replace the large red flower with a decorative butterfly ornament.
 Turn 3: Change the blue flower color to a golden hue.
 Turn 4: Replace the cream background with a soft pastel gradient.
 Turn 5: Apply a dolly-in camera effect to focus on the butterfly ornament.

Turn 1: Remove the vintage Volkswagen van from the scene.
 Turn 2: Change the lighthouse to a red and white striped design.
 Turn 3: Replace the lighthouse with a classic streetlamp.
 Turn 4: Replace the rocky seaside with a lush garden landscape.
 Turn 5: Change the lighting to a dramatic moonlit setting.

Turn 1: Add a rainbow arching across the sky.
 Turn 2: Change the kayak's appearance to feature intricate patterns.
 Turn 3: Add a duck sitting calmly on the kayak.
 Turn 4: Replace the sky with a starry night featuring a crescent moon.
 Turn 5: Add a lily pad beside the kayak on the river surface.

Turn 1: Add a rainbow above the airplane.
 Turn 2: Change the airplane's orientation to a vertical dive.
 Turn 3: Add a flock of colorful birds around the airplane.
 Turn 4: Change the background to a vibrant sunset.
 Turn 5: Depict the airplane performing an aerobatic loop with a visible smoke trail.

Turn 1: Add a small, playful dog following the woman on the bike.
 Turn 2: Modify the woman's posture to wave her hand.
 Turn 3: Replace the background with a park setting featuring trees and a pathway.
 Turn 4: Pan the camera slightly to the right to better center the woman on the bike.
 Turn 5: Change the man's expression to look amazed with open arms.

1401

1402

1403

Figure 13: Multi-turn image editing examples of MSE-Bench.

1404
1405

C.6 DETAILS OF MSE-BENCH

1406
1407

Instruction for Evaluation of Multi-turn (turn-i) Image Editing on MSE-Bench

1408
1409
1410
1411
1412
1413
1414
1415

Assume you are an expert in evaluating multi-turn image editing. In this task, a user interacts with an image editing system across multiple turns. At the first turn, the user provides a source image and an editing prompt. The system returns the edited image. In each subsequent turn, the user supplies a new prompt, and the system generates a new image based on the output from the previous turn. Your goal is to evaluate how successfully the editing instruction of the LAST turn has been executed.

You will be given user editing prompts and images: the first image is the original source image, and the next are the edited results from each turn for each prompt. You should focus more on the last prompt and the last edited image, but you may also consider the previous prompts and images as context.

The user editing prompts are: {}

1416
1417

Please follow these evaluation rules:

1418
1419
1420
1421

1. Last-turn Evaluation: For the last turn, you should first assess the result based on two criteria by giving a reason: 1) prompt_following, does the last edited image fulfill the last user's editing prompt?
- 2) consistency: Are the untouched parts of the last result image consistent with the input reference (the source image at the first turn, or the result image at the previous turn)?

2. Scoring: Based on the reason, you assign scores for "prompt_following" and "consistency".

From scale 0 to 10:

A "prompt_following" score from 0 to 10 will be given based on the editing success of prompt following. (0 indicates that the scene in the last edited image does not follow the last editing instruction at all. 10 indicates that the scene in the last edited image follow the last editing instruction perfectly.)

A "consistency" score from 0 to 10 will rate the degree of overediting in the last edited image. (0 indicates that the scene in the last edited image is completely different from the original. 10 indicates that the last edited image can be recognized as a minimally edited yet effective version of the original.)

3. Return your results in a JSON structure, following this format:

```
{ {"reason": "...", "prompt_following": int, "consistency": int} }
```

1428

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439

The source images for our constructed multi-turn image editing benchmark, MSE-Bench, are sampled from MS-COCO (Lin et al., 2014) and LAION-Aesthetics (Schuhmann et al., 2022). Specifically, we randomly sample 6,000 images from each dataset and employ GPT-4o to perform prompt imagination, guided by criteria such as editing reasonability, aesthetics, consistency, and coherence. To facilitate this, we define a set of editing operations (e.g., add, remove, replace) and design a series of rules to instruct GPT-4o to simulate realistic and coherent multi-turn editing prompts from real users' perspectives. The instruction used in this process is illustrated above. Following prompt generation, we conduct careful human filtering to remove low-quality cases, resulting in a final set of 100 high-quality, category-balanced examples that constitute MSE-Bench. Additional examples are shown in Fig.13.

1440

1441

C.7 SUPERVISED FINE-TUNING

1442
1443
1444
1445

After training on the constructed interleaved data from native videos, *i.e.*, VINCIE-10M, we carry out supervised fine-tuning to align the model with downstream editing tasks. Specifically, all of our SFT data comes from open-sourced datasets, including:

1446
1447
1448
1449
1450
1451
1452
1453
1454

- OmniEdit-Filtered-1.2M² (Wei et al., 2024),
- Web-Image-3 and GRIT-Entity-New splits from X2I-subject-driven³ proposed in OmniGen (Xiao et al., 2024),
- X2I2-video-editing, X2I2-inpaint-editing, X2I2-in-context-generation, and X2I2-in-context-editing splits from X2I2⁴ proposed in OmniGen (Wu et al., 2025b),
- SEED-Data-Edit-Part⁵ proposed by SEED-X (Ge et al., 2024).

²<https://huggingface.co/datasets/TIGER-Lab/OmniEdit-Filtered-1.2M>

³<https://huggingface.co/datasets/yzwang/X2I-subject-driven>

⁴<https://huggingface.co/datasets/OmniGen2/X2I2>

⁵<https://huggingface.co/datasets/AIILab-CVC/SEED-Data-Edit-Part2-32>

1458 Table 6: Human evaluation on MSE-Bench based on editing success rate. * indicates use of context.
 1459 Entries by gray denote proprietary models.

Method	Human Evaluation				
	Turn-1	Turn-2	Turn-3	Turn-4	Turn-5
HQEEdit (Hui et al., 2024)	0.170	0.073	0.020	0.003	0.000
UltraEdit (Zhao et al., 2024)	0.310	0.062	0.015	0.002	0.000
OmniGen (Xiao et al., 2024)	0.333	0.035	0.002	0.000	0.000
GPT-4o*	0.872	0.783	0.755	0.642	0.491
Ours*	0.661	0.500	0.323	0.209	0.070

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 HUMAN EVALUATION ON MULTI-TURN IMAGE EDITING

To further verify the effectiveness and superiority of the proposed method for multi-turn image editing, we conduct human evaluations to assess editing success rates. The results are reported in Tab. 6. These findings validate the benefits of training on native video data, combined with supervised fine-tuning on pairwise editing examples, in enhancing multi-turn editing performance.

D.2 CORRELATION BETWEEN GPT-4O AND HUMAN EVALUATION

Table 7: Correlation between automatic metrics and human evaluation

Metric	GPT-4o vs Human	CLIP-T vs Human	CLIP-I vs Human
Pearson r	0.4858 ($p = 0.0000$)	0.0817 ($p = 0.4191$)	-0.0549 ($p = 0.5875$)
Spearman ρ	0.4644 ($p = 0.0000$)	0.0692 ($p = 0.4941$)	-0.0217 ($p = 0.8303$)
Kendall τ	0.4154 ($p = 0.0000$)	0.0502 ($p = 0.4963$)	-0.0195 ($p = 0.7921$)

In our experiments (Sec.4), we primarily report GPT-4o evaluated success rates to assess multi-turn image editing performance. To validate the reliability of GPT-4o-based evaluation, we compute the correlation between GPT-4o scores and human judgments. As shown in Tab.7, we also compare other metrics such as CLIP-T and CLIP-I. The results demonstrate that GPT-4o correlates well with human evaluation, supporting its use as a reliable proxy for scoring multi-turn image editing.

D.3 HUMAN EVALUATION FOR VLM ANNOTATION

To further verify the validity of the proposed automatic interleaved data construction pipeline, we conducted a human evaluation for VLM annotation on accuracy and recall, as shown in Tab. 8. While current VLMs are imperfect, they offer a scalable data annotation solution, achieving a favorable balance between quality and scalability. Similar to prior works (Brooks et al., 2023), our work aims to explore continual pre-training on the constructed large-scale interleaved corpus, where data scale is critical and minor annotation noise is tolerable. Besides, we believe the proposed automatic data construction pipeline will become increasingly effective, with the rapid advancement of large multimodal models.

D.4 ADDITIONAL ABLATION STUDY

Impact of RoPE and Attention. Based on a video foundation model, VINCIE continues pre-training on the constructed interleaved text-image data. In the foundation

Table 8: Human evaluation for VLM annotation on 500 data instances randomly sampled from our training dataset.

Metric	Score
Accuracy	75.14%
Recall	69.06%

Table 10: Ablation study on MSE-Bench (GPT-4o evaluated success rate), to assess the impact of RoPE and Attention.

RoPE	Attention	Turn-1	Turn-2	Turn-3	Turn-4	Turn-5
text-then-image	full	0.968	0.360	0.320	0.238	0.160
interleaved	full	0.933	0.338	0.308	0.245	0.183
interleav28	block-causal	0.880	0.290	0.230	0.200	0.120

1512 Table 9: Impact of segmentation (seg.) prediction and camera prompt engineering (PE), *i.e.*, inserting
 1513 “[###CAMERA: None###]” before each user prompt, on consistency evaluated by CLIP-I and DINO
 1514 scores on Magicbrush (Zhang et al., 2023a).

1516	Train	Inference	CLIP-I Score			DINO Score		
			Turn-1	Turn-2	Turn-3	Turn-1	Turn-2	Turn-3
1518	w/o Seg.	-	0.875	0.824	0.784	0.765	0.663	0.592
1519	w/ Seg.	-	0.880	0.832	0.797	0.786	0.680	0.604
1520	w/ Seg.	Camera PE	0.884	0.832	0.798	0.798	0.681	0.612

1521 Table 11: Our method vs. In-context LoRA (Huang et al., 2024) with human evaluation on the
 1522 benchmark introduced in LCT (Guo et al., 2025) for story keyframe generation. Evaluation is carried
 1523 out from two aspects: prompt following and consistency.

Metric	Win	Fail	Tie
Prompt Following	55.10%	16.30%	28.60%
Consistency	43.80%	2.10%	54.20%

1532 model, we first concatenate text to-
 1533 kens and video tokens into a se-
 1534 quence, perform Rotary Position
 1535 Embedding (RoPE) (Su et al., 2024)

1536 on it, and then feed it to multiple MM-DiT (Esser et al., 2024) layers for video modeling. Full
 1537 bidirectional attention is adopted in each layer for thorough intra-modal and cross-modal interaction.
 1538 To explore the impact of RoPE and Attention, we design three variants and conduct a performance
 1539 comparison on MSE-Bench, as shown in Tab. 10. Considering the foundation model has carried
 1540 out large-scale pre-training on text-video data, it has attained strong prior knowledge based on
 1541 text-then-image RoPE and full attention. This strategy achieves the best performance on Turn-1 to
 1542 Turn-3. However, the interleaved RoPE gradually outperforms it as the sequence length increases.
 1543 One reason is that the interleaved RoPE arranges the text and image more naturally than the trivial
 1544 text-then-image strategy. Finally, block-causal attention performs the worst, which may be attributed
 1545 to the limited modality interaction. However, block-causal attention shows strong potential, offering
 1546 flexibility in next-block modeling, support for prefill decoding to enable efficient inference, and
 1547 compatibility with LLMs, which we leave for future work.

1548 **Impact of Camera Motion in Training Video Data.** In most editing scenarios, consistency is
 1549 highly required. To delve into possible entanglement issues of camera and object movement, we have
 1550 adopted a disentanglement learning strategy consisting of: 1) Explicit annotation of camera change
 1551 (see the instruction in Sec. C.2); 2) Incorporation of camera prompt wrapped in special tokens, such as
 1552 “[###CAMERA: pan-left###]”, during training; 3) Use of static camera prompt, *i.e.*, “[###CAMERA:
 1553 None###]”, during inference. This strategy enables the model to disentangle camera movement from
 1554 object dynamics, allowing flexible camera control based on application needs. The results shown in
 1555 Tab. 9 verify its effectiveness in improving consistency.

1556 D.5 ADDITIONAL PERFORMANCE COMPARISON ON STORY KEYFRAME GENERATION

1559 Tab. 11 provides a quantitative comparison of story keyframe generation performance between our
 1560 method and the recent method, *i.e.*, In-context LoRA Huang et al. (2024) on the benchmark introduced
 1561 in LCT (Guo et al., 2025), serving as empirical evidence of the effectiveness of our approach. In this
 1562 work, we aim to introduce a general video-driven learning framework to unlock in-context image
 1563 editing and generation, with story keyframe generation being one potential application. Due to the
 1564 limited time, we focus on multi-turn image editing, while more comprehensive evaluation of other
 1565 capabilities, including story generation, is left for future work.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

Change the blender's exterior to have a metallic finish.

Replace the wooden table with a white marble surface and add another small red decoration.

Change the grass court to a clay court.

It appears to be snowing.

Add a rainbow, and blue sky and cloudy days interweave.

Transform it into an oil painting style.

Generate a monochrome-style animation.

Transform this image into a Pointillist artwork.

Figure 14: **Zero-shot** qualitative results of single-turn image editing on cases uncommonly present in video data. The model was only trained with interleaved session data from video, T2I data, and T2V data.

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Figure 15: Qualitative comparison (1/4) between our method and recent baselines on MSE-Bench.

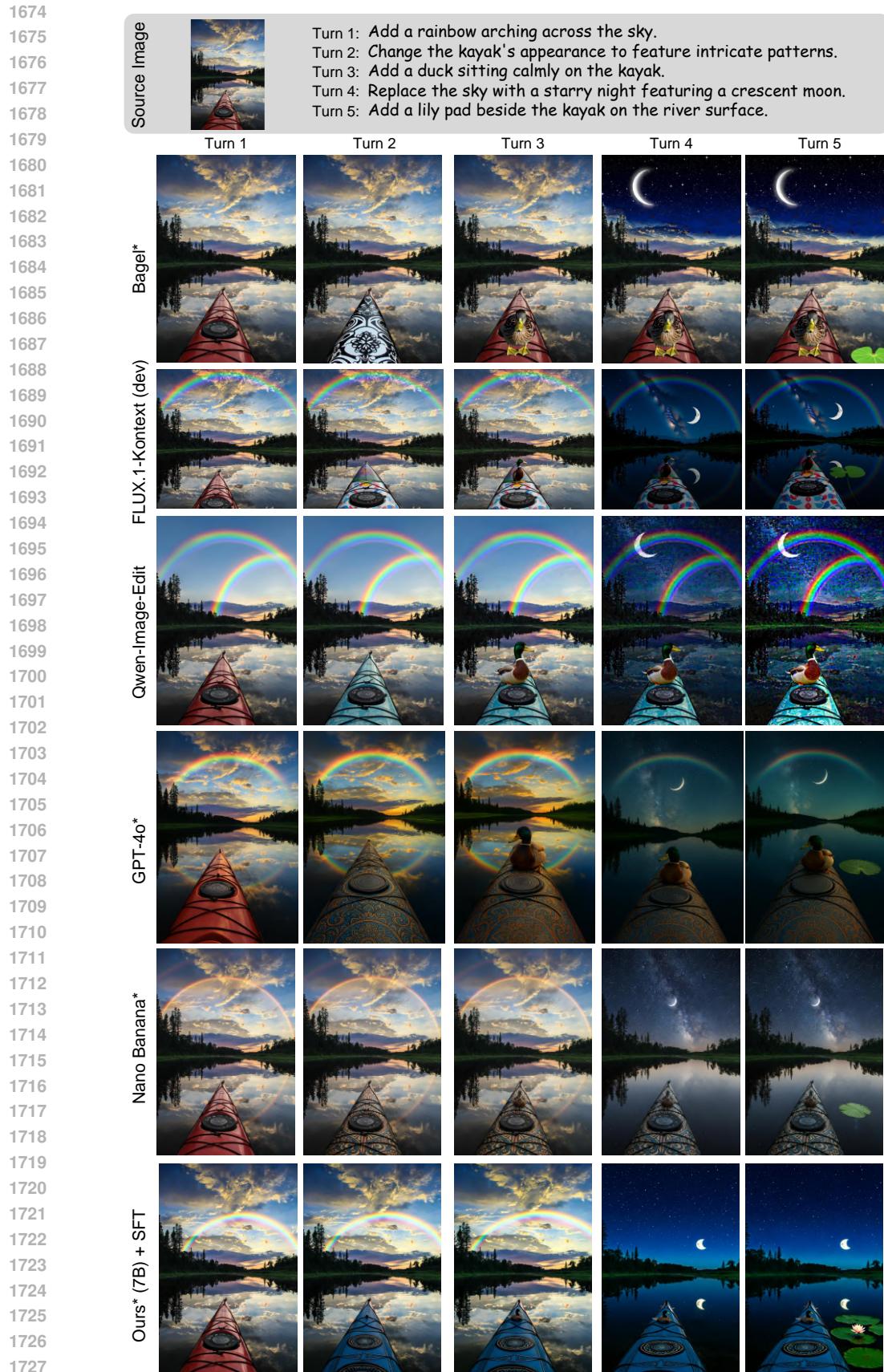


Figure 16: Qualitative comparison (2/4) between our method and recent baselines on MSE-Bench.

Figure 17: Qualitative comparison (3/4) between our method and recent baselines on MSE-Bench.

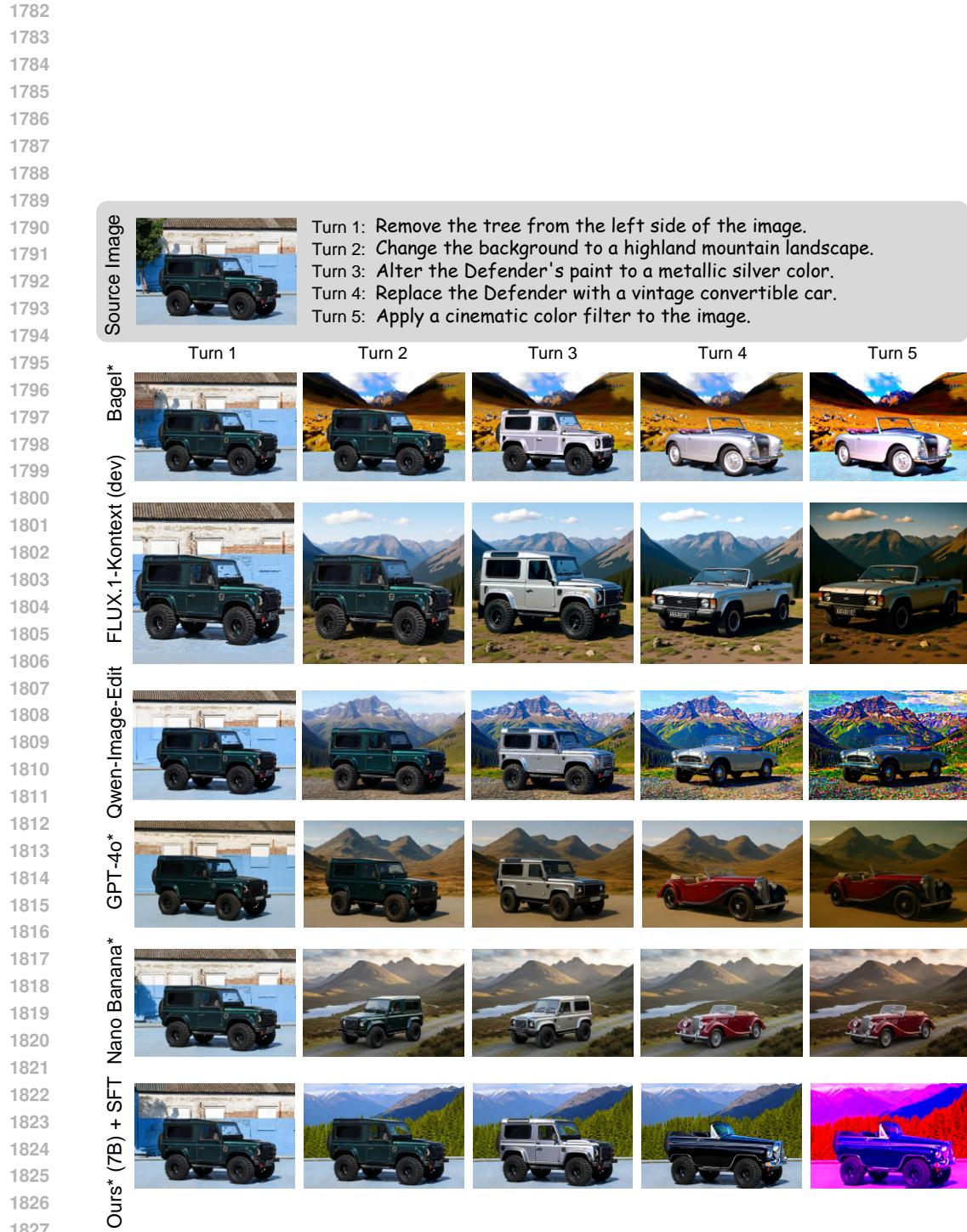


Figure 18: Qualitative comparison (4/4) between our method and recent baselines on MSE-Bench.

1830
1831
1832
1833
1834
1835

1836

E ADDITIONAL APPLICATION EXAMPLES

1837

1838

1839

E.1 IMAGE EDITING

1840

Single-turn Image Editing. In addition to common scene changes present in video data, we observe that our model generalizes well to uncommon cases, such as abrupt environmental shifts, complex style transfers, and material transformations (Fig. 14). This capability may arise for two reasons. First, although infrequent, such patterns (*e.g.*, environmental changes) are still present in our training corpus. Second, the model is initialized from a video foundation model that has been extensively pre-trained on both T2I and T2V data, enabling it to internalize high-level concepts such as style and material. These derived capabilities can be naturally transferred to the image editing setting.

1847

Multi-turn Image Editing. As shown in Fig. 15, we compare our method with several baselines, including HQ-Edit (Hui et al., 2024), UltraEdit (Zhao et al., 2024), OmniGen (Xiao et al., 2024), and GPT-4o. The results reveal several key observations: 1) Most existing models suffer from error accumulation, leading to increasingly severe artifacts across editing turns. 2) These accumulated errors often degrade prompt-following performance, where the model fails to execute edits as instructed once artifacts dominate. 3) While GPT-4o—a strong proprietary model—achieves competitive results, it may exhibit inconsistencies in some cases compared to our method. 4) Overall, these comparisons highlight the effectiveness of training on native video data for achieving coherent and prompt-aligned multi-turn image editing. Additional qualitative examples are provided in Fig. 26, Fig. 27, Fig. 28, and Fig. 29, further demonstrating the strong prompt-following and consistency of our approach across multiple editing turns.

1858

1859

E.2 MULTI-CONCEPT COMPOSITION

1860

In-context Image Generation. In Fig. 19, we present qualitative results on in-context image generation for multi-concept composition, which requires both composition and strong identity preservation. These examples demonstrate that only training on video data (*without any fine-tuning*) can effectively unlock compositional capabilities, despite the rarity of such patterns in typical video content. This emergent behavior highlights the potential of video-based pre-training. Further scaling of model capacity, compute resources, and video data may enable the emergence of even more advanced capabilities.

1861

In-context Image Editing. In addition, we conducted further supervised fine-tuning on the X2I2 (Wu et al., 2025b) dataset to explore more advanced multi-concept composition abilities. The qualitative results (Fig. 20) on in-context image editing indicate that even lightweight SFT substantially incentivizes more powerful compositional editing abilities, highlighting the effectiveness of our video-driven pre-training. Notably, compared with Fig. 19, **our fine-tuned model generalizes beyond object-centric concepts, such as background, color, and expression**, despite these concepts being uncommon in the fine-tuning dataset (Wu et al., 2025b).

1875

1876

E.3 STORY GENERATION

1877

Since our method is trained on native video data, it inherently captures the underlying storylines present in the sequences. As illustrated in Fig. 21, we formulate story generation as a multi-turn image editing task, guided by transition prompts between key frames during inference. These examples showcase the model’s ability to follow prompts while maintaining coherence and consistency across turns. When combined with existing long video generation methods (Guo et al., 2025), our approach has the potential to enhance top-down planning for generating coherent long-form story videos.

1884

1885

E.4 CHAIN-OF-EDITING

1886

1887

1888

1889

In Tab. 3, we show the effectiveness of chain-of-editing, *i.e.*, predicting segmentation maps before performing image editing. The predicted segmentation maps could be viewed as a kind of “thoughts”. In Fig. 22, we show more qualitative results for challenging cases to demonstrate the effectiveness of CoE.

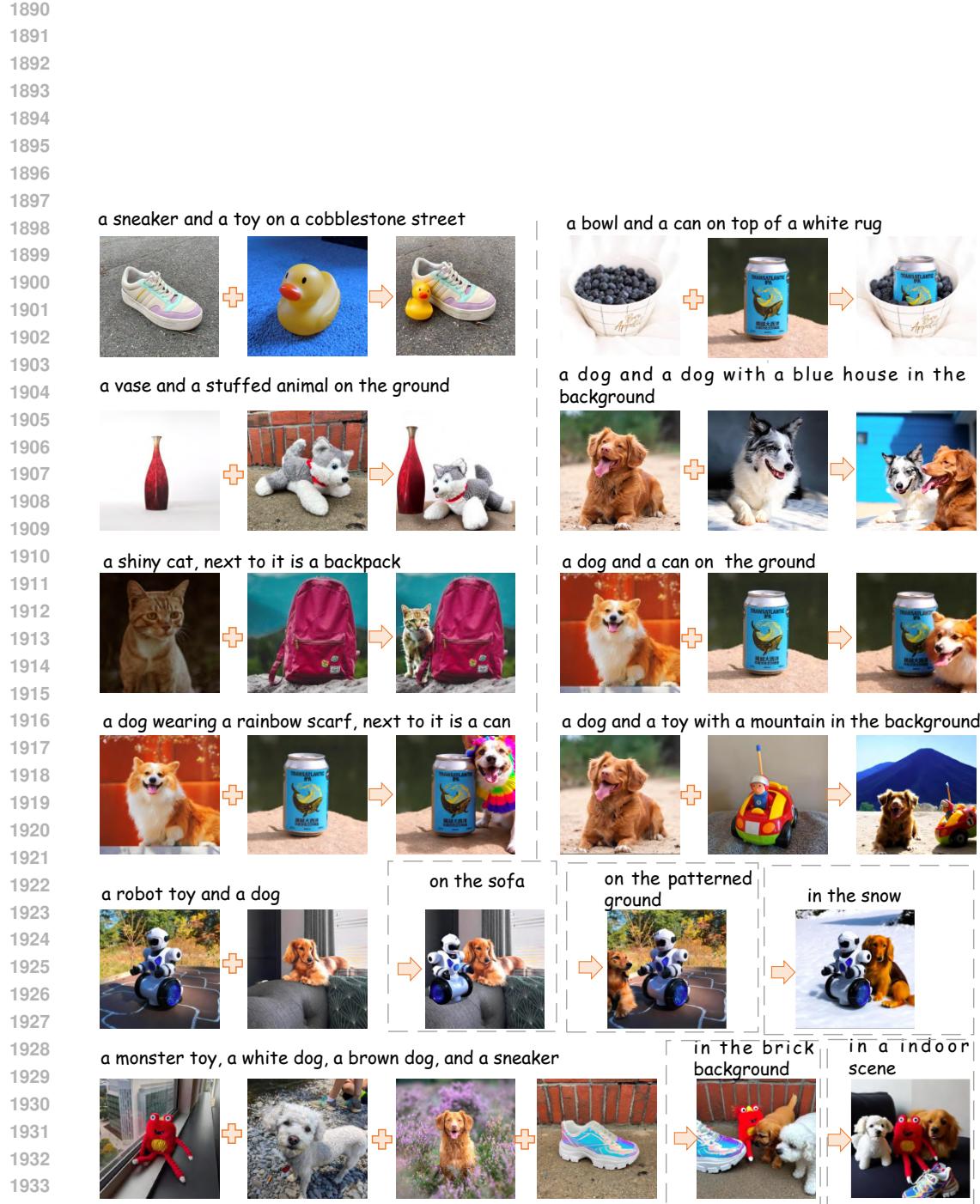


Figure 19: **Zero-shot** qualitative results of multi-concept composition (in-context generation) achieved by our method (without any fine-tuning).

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

Character 1: A woman with long brown hair, wearing a light-colored top.

2013

Turn 1: Transform the scene from a large robot crashing amidst debris with people scattering to a focused battle scene between two robots in a city street.

2014

Turn 2: Transition from a dynamic battle scene involving robots in a damaged urban setting to a close-up of a woman operating a vehicle's controls, emphasizing personal struggle over large-scale action.

2015

Turn 3: Make the woman's expression more desperate. Add a thin metallic object to her hand to indicate urgency in her actions.

2016

Turn 4: Transition from an interior vehicle scene with Character 1 trying to start the car, to an outdoor chaotic city scene featuring a giant robot, soldiers, and a passing black car.

2017

Turn 5: Shift from a smoky, chaotic city street scene with a towering robot and watching soldiers to a close-up, detailed view of the robot's face with glowing red eyes, eliminating the context and ambient elements.

2018

Turn 6: widen the focus from the robot's face to include a scene of combat with intense explosions and debris, adding context and action to the static appearance of the robot in frame 1.

2019

Turn 7: Decrease the flames and smoke to expose the robots and enhance their details in the frame.

2020

2021

2022

Character 1: A man with curly hair wearing a patterned blue shirt.

Character 2: A man with short, slightly curly hair, a mustache, and a goatee, wearing a blue shirt.

2023

Character 3: A person with long gray hair and a cowboy hat.

2024

Turn 1: Shift focus from Character 1 to Character 2 holding the wine glass to his nose, with Character 1 slightly repositioned to the background.

2025

Turn 2: Add Character 1 to the second frame, adjusting Character 2's pose to hold the wine glass similar to the second frame, while maintaining the indoor wine room's ambiance and lighting.

2026

Turn 3: Widen the shot to include a third character with long gray hair and a cowboy hat behind the counter, and add several wine bottles on the counter to transform the scene from a close-up to a wide shot, encompassing a group tasting session.

2027

Turn 4: Change from a wide shot in a wine tasting room to a medium close-up shot focusing on Character 1 and Character 2 with a blurred background, removing Character 3 and the visible wine bottles.

2028

Turn 5: Shift the focus from the characters' upper body in Frame 1 to their hands swirling wine glasses in Frame 2, emphasizing the interaction with the wine.

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

Figure 21: More qualitative results of story generation achieved by our method.

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

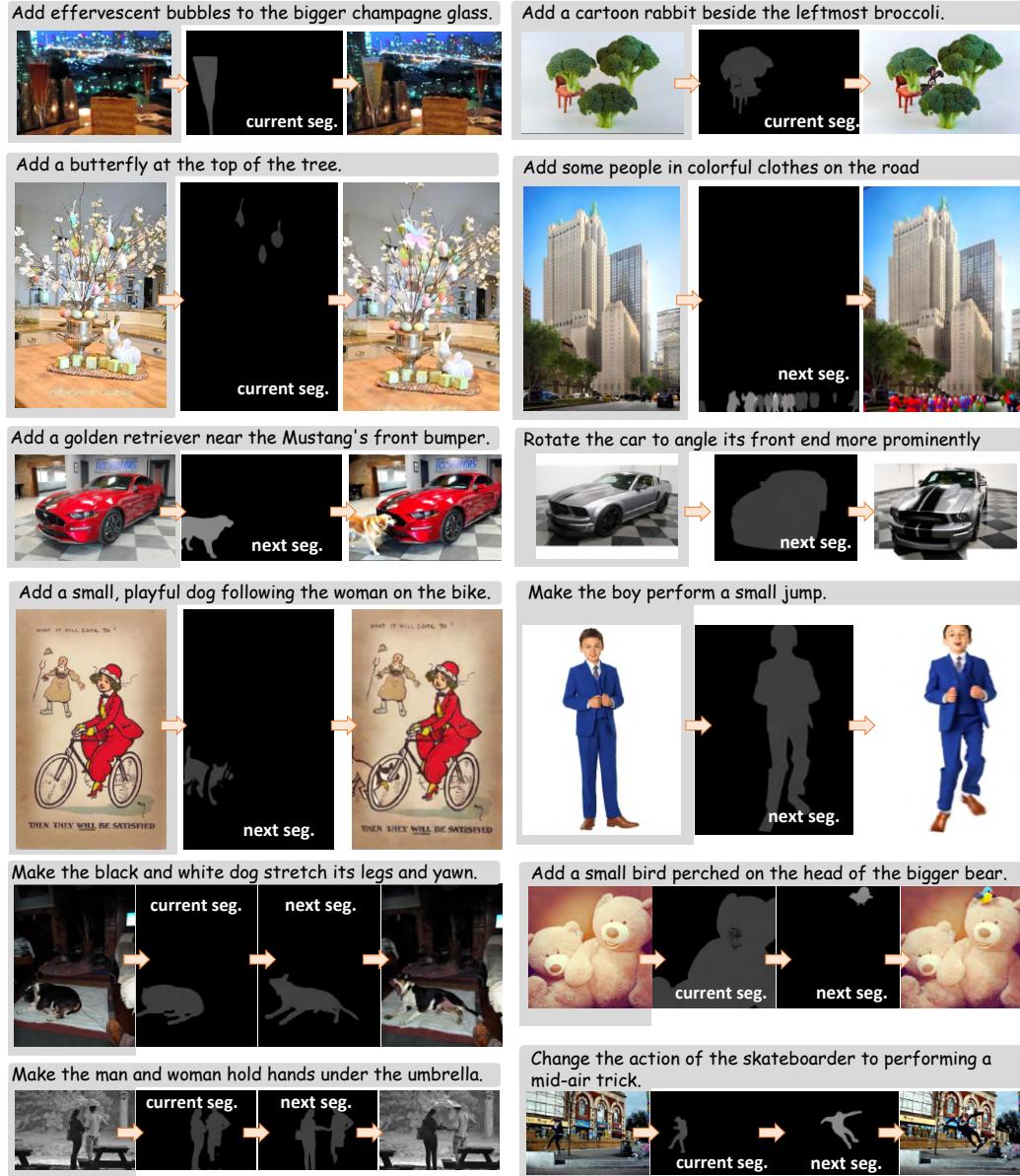


Figure 22: More qualitative results of Chain-of-Editing.

2098

2099

2100

2101

2102

2103

2104

2105

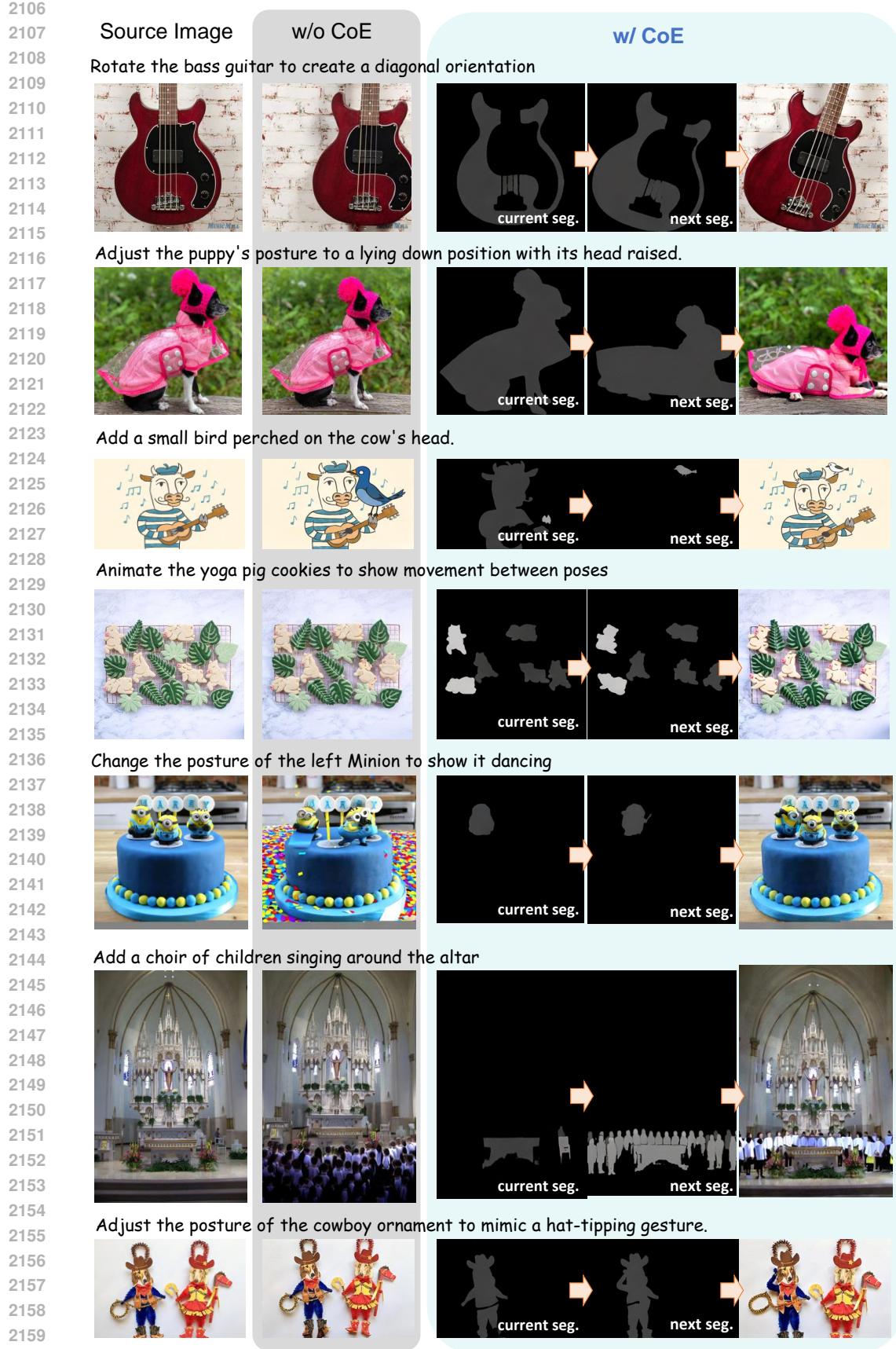


Figure 23: Qualitative comparison between w/o Chain-of-Editing (CoE) and w/ CoE.

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179

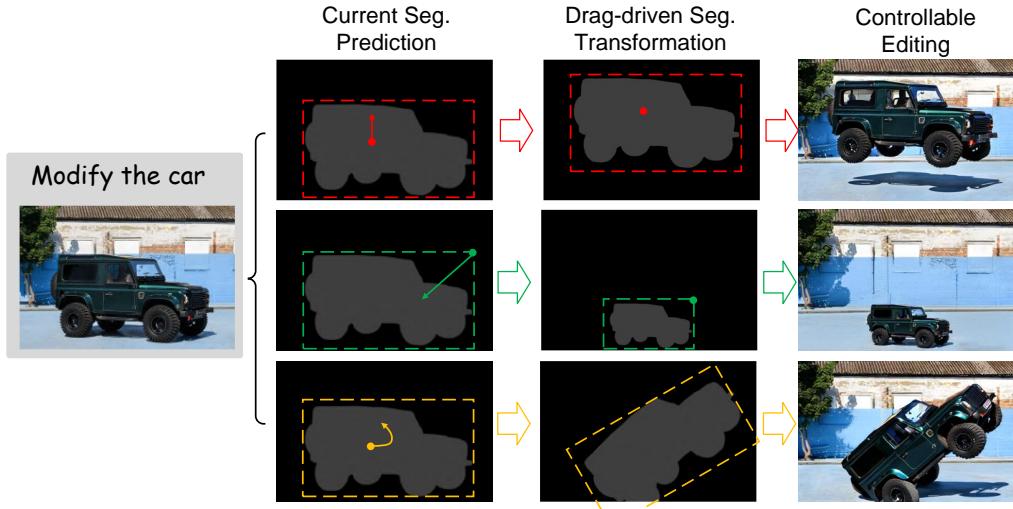


Figure 24: Qualitative results of drag-based image editing.

2180
2181
2182
2183
2184
2185
2186
2187
2188
2189

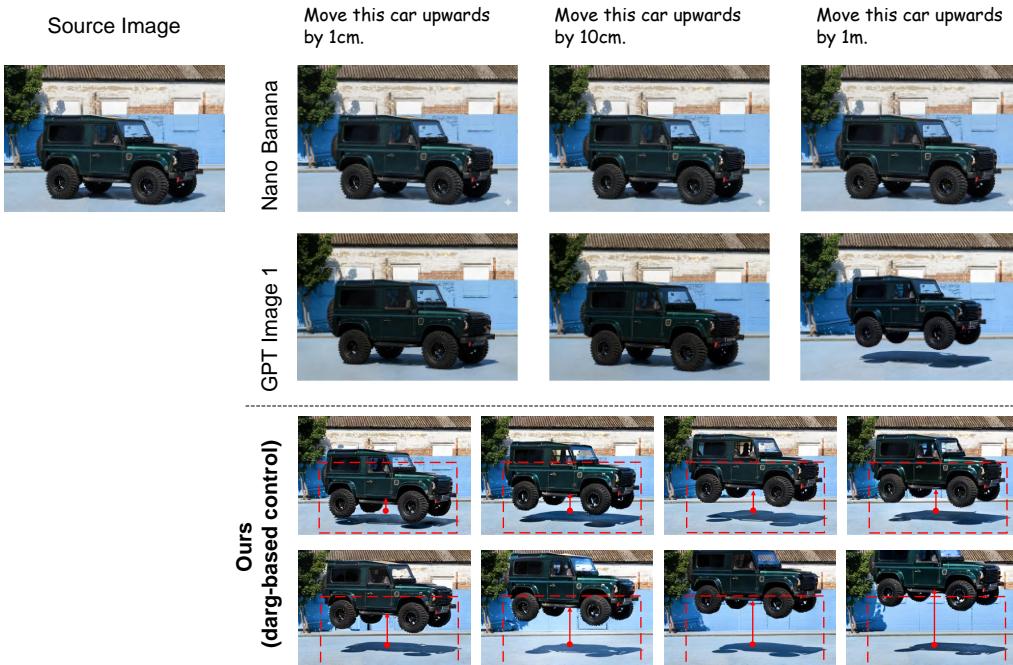


Figure 25: Qualitative comparison for subtle displacement editing.

2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

2214 E.5 DRAG-BASED IMAGE EDITING
2215

2216 The current and next segmentation prediction tasks introduced in Sec. 3.3 not only support progressive
2217 planning and generation, but also enable controllable editing for enhanced user interaction. One such
2218 application is drag-based image editing for object displacement, scaling, and rotation, as illustrated in
2219 Fig.24. In this setting, users first provide an editing prompt to localize the RoE. Then, drag operations
2220 are applied to perform geometric transformations of the RoE. The transformed segmentation map
2221 driven by the transformation is incorporated into the context, allowing the model to generate a target
2222 image that adheres to the specified edits.

2223 **Despite the strong understanding capabilities of VLMs, they may still struggle to detect subtle**
2224 **semantic or visual differences when two frames differ only minimally. As illustrated in Fig. 25, we**
2225 **first present qualitative results from the most advanced proprietary systems—GPT Image 1 (OpenAI,**
2226 **2025a) and Nano Banana (DeepMind & Gemini, 2025)—on the task of subtle displacement editing.**
2227 **We then showcase our drag-based editing results, demonstrating that this challenging requirement**
2228 **can be effectively addressed through the more flexible and fine-grained control (*i.e.*, drag). This**
2229 **comparison highlights the versatility of our method.**

2230 F LIMITATIONS
2231

2232 **Discussion of Other Potential Limitations.** First, we use T5 to encode text, which restricts the
2233 model’s ability to comprehend complex instructions and generate nuanced textual outputs. Integrating
2234 a vision-language model (VLM) into the framework could significantly improve this capability.
2235 Second, while our framework demonstrates preliminary but promising emerging abilities, these
2236 can be further enhanced through supervised fine-tuning (SFT) on high-quality, application-specific
2237 datasets. Lastly, due to the high cost of querying VLM, we annotated only 10M training samples.
2238 Expanding both the model size and the dataset scale presents an exciting avenue for future research.
2239

2240 G FUTURE WORK
2241

2242 In the future, we aim to solve more challenging image creation tasks (Qu et al., 2023; Yang et al.,
2243 2024a; Qu et al., 2024) with complex and compositional prompts, by exploring multimodal chain-
2244 of-thought. Besides, post-training (Qu et al., 2025b; Gong et al., 2025) would stimulate more
2245 potential interesting abilities endowed by learning from videos. Finally, by introducing retrieved
2246 images (Qu et al., 2025a; Chen et al., 2022; Qu et al., 2021) into context, our model could achieve
2247 knowledge-intensive visual creation scenarios via retrieval-augmented generation.
2248

2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

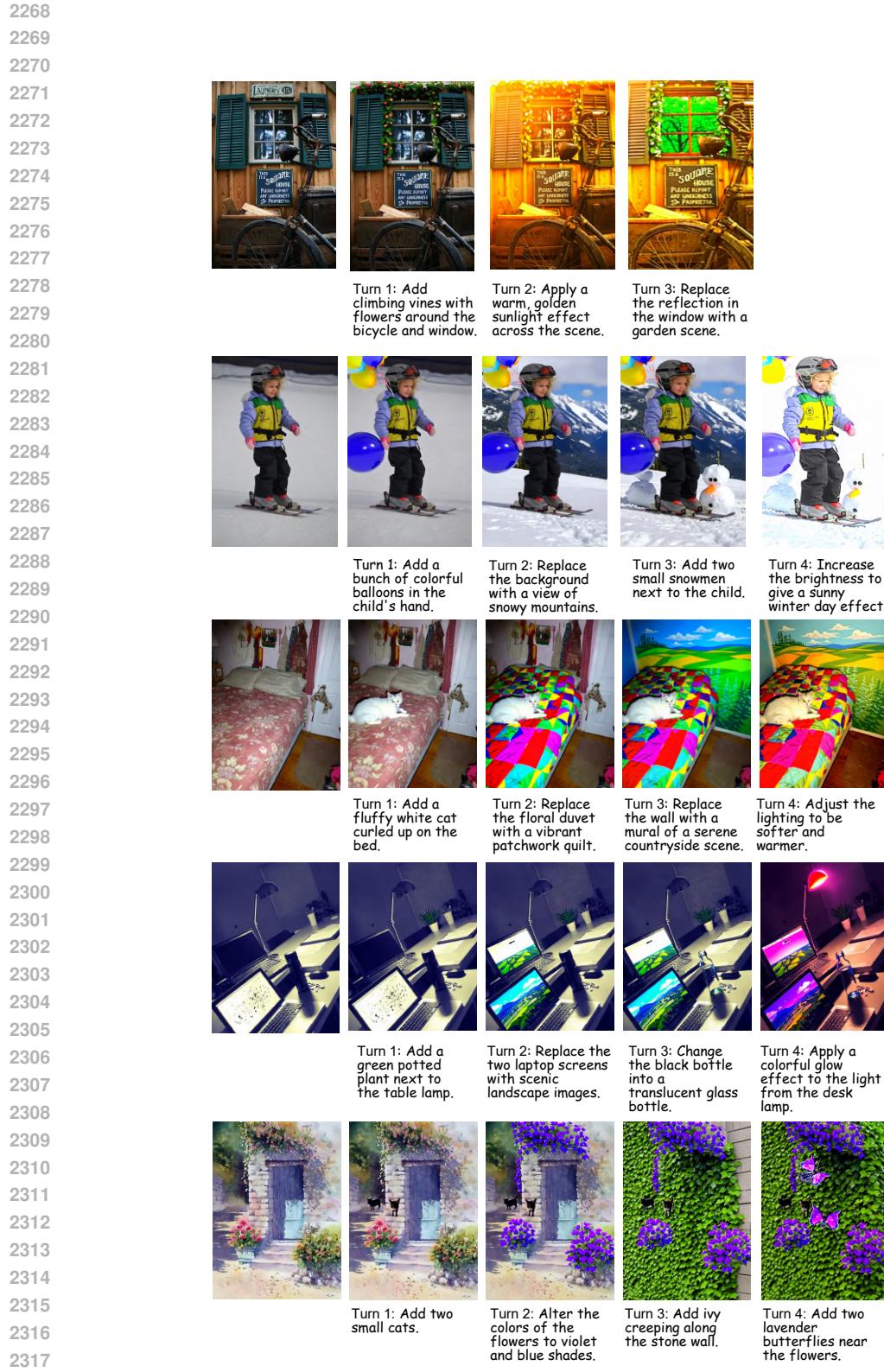


Figure 26: More qualitative results (1/4) of multi-turn image editing achieved by our method.

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

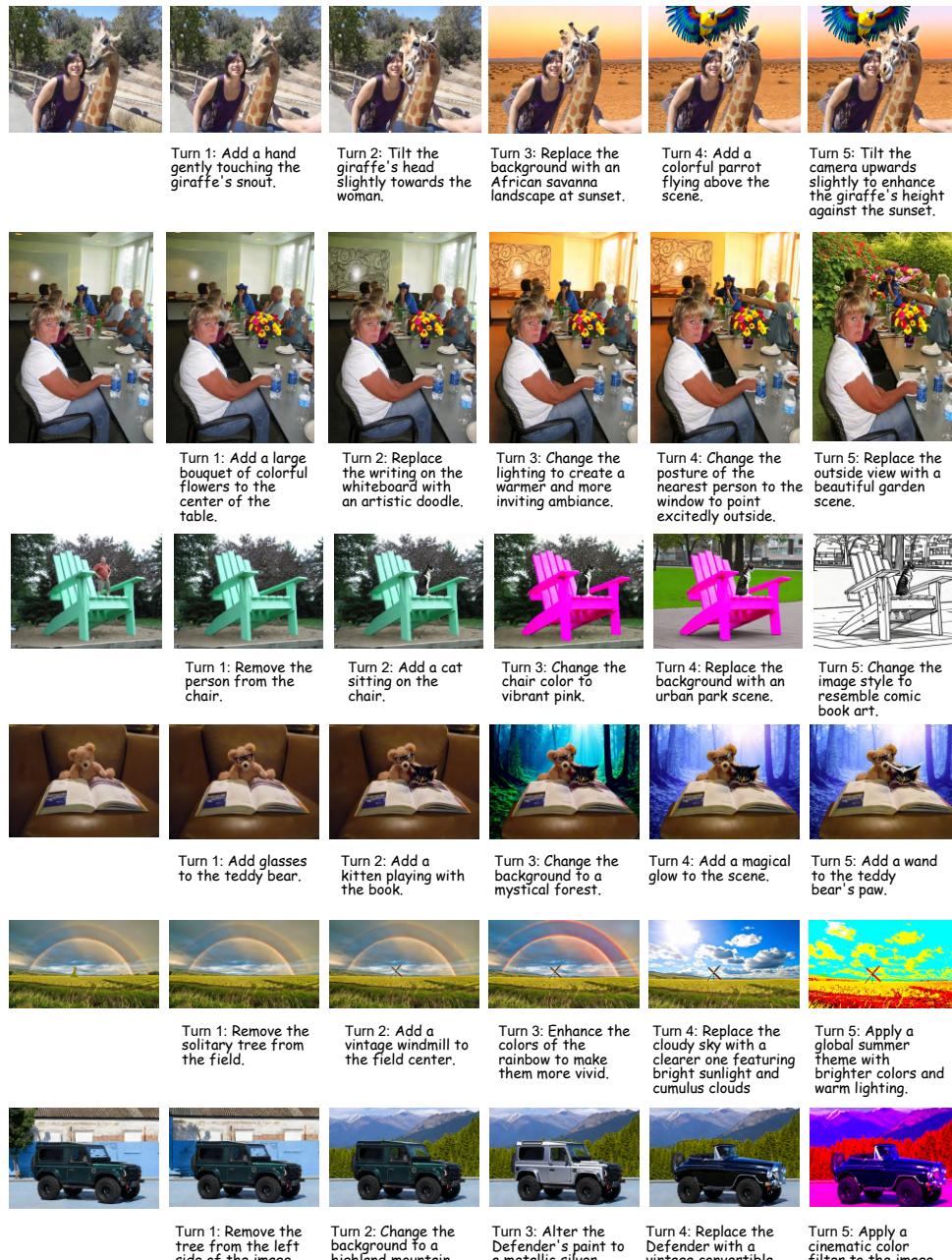


Figure 27: More qualitative results (2/4) of multi-turn image editing achieved by our method.

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

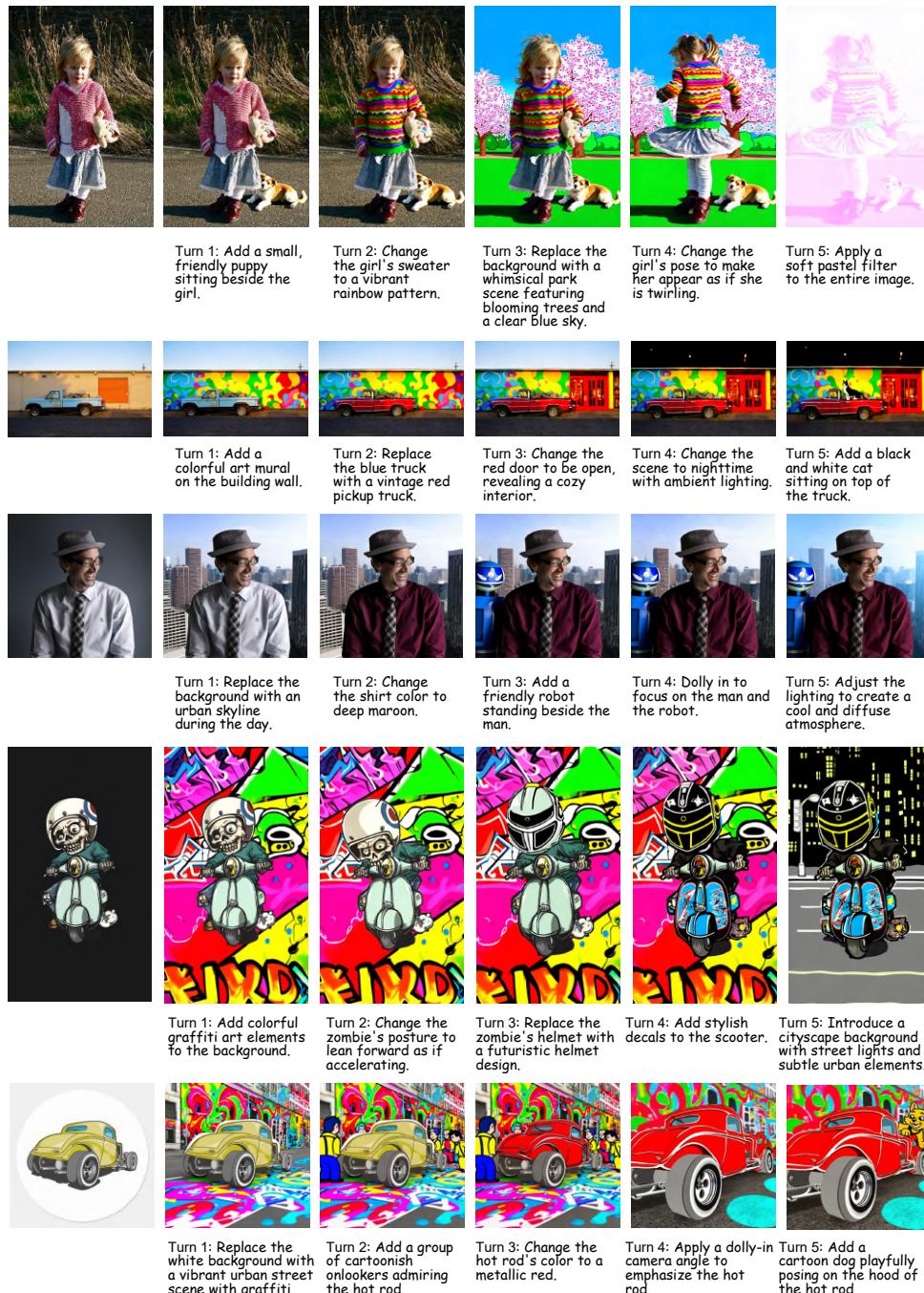


Figure 28: More qualitative results (3/4) of multi-turn image editing achieved by our method.

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

Turn 1: Add a background of colorful blossoms behind the dog.

Turn 2: Change the dog's expression to be more playful and happy.

Turn 3: Add a knitted toy bone beside the dog.

Turn 4: Add colorful stripes to the crochet hat.

Turn 5: Slightly tilt the camera up.

Turn 1: Add a small bird perched on the cow's shoulder.

Turn 2: Change the cow's posture to one of swaying gently to the music.

Turn 3: Replace the background with a stylized Parisian street scene.

Turn 4: Adjust the cow's expression to show it joyfully engaged with the music.

Turn 5: Add animated musical notes around the cow to show interaction with the music.

Turn 1: Change the car model's color to metallic blue.

Turn 2: Add a classic leather suitcase on the car roof.

Turn 3: Replace the background with a vintage urban street scene.

Turn 4: Replace the hubcaps with wire-spoke wheels.

Turn 5: Add motion light trails to indicate the car is driving.

Turn 1: Remove the cups and glass of orange juice from the tray.

Turn 2: Add a small cactus plant to the tray.

Turn 3: Change the flowers from red to blue.

Turn 4: Replace the wall structure with a rustic wooden backdrop.

Turn 5: Add a vibrant artificial butterfly on the cactus.

Turn 1: Replace the teddy bear with a plush giraffe wearing a hat.

Turn 2: Replace the greenery with a colorful garden of fantastical plants.

Turn 3: Change the girl's dress to feature rainbow patterns.

Turn 4: Add a plush panda sitting between the girl and the giraffe.

Turn 5: Transform the tea set into a magical whimsical set.

Figure 29: More qualitative results (4/4) of multi-turn image editing achieved by our method.

2479

2480

2481

2482

2483