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Figure 1: By learning from videos, our method could attain universal in-context editing and generation
abilities to handle various practical creation scenarios.

ABSTRACT

In-context image editing aims to modify images based on a contextual sequence
comprising texts and images. Existing methods typically depend on task-specific
pipelines and expert models (e.g., segmentation and inpainting) to curate training
data. In this work, we explore whether an in-context image editing model can be
learned directly from videos. Toward this end, we introduce a scalable approach
to annotate videos as interleaved multimodal sequences. To effectively learn from
this data, we design three proxy tasks: next-image prediction, current segmentation
prediction, and next-segmentation prediction. Additionally, we propose a novel
multi-turn image editing benchmark to advance research in this area. Extensive
experiments demonstrate that our model exhibits strong in-context image editing
capabilities and achieves state-of-the-art results on two multi-turn image editing
benchmarks. Despite being trained exclusively on videos, our model also shows
promising abilities in multi-concept composition, story generation, and chain-
of-editing applications. Code is available at: https://anonymous.4open.
science/r/VINCIE-11669/.
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1 INTRODUCTION

Recent research has devoted significant effort to image editing, which enables users to generate images
that closely follow editing instructions provided in text prompts. The performance of image editing
models largely depends on the high-quality training data, typically composed of three elements:
an input image, a text prompt describing the desired modification, and the corresponding edited
image (Brooks et al., 2023; Shi et al., 2024a; Xiao et al., 2024; Wei et al., 2024; Han et al., 2024b;
Xia et al., 2024; Liu et al., 2025). To collect such paired image data at scale, various methods have
been proposed, including generating image grids (Wu et al., 2025c), leveraging diffusion denoising
processes (Brooks et al., 2023), and developing specialized models or tools to extract before-and-after
image pairs from the web (Hertz et al., 2022; Zhuang et al., 2024; Boesel & Rombach, 2024).

Very recently, the problem of in-context image editing (OpenAl, 2025b) has garnered growing interest
in the research community. In this setting, a target image is generated based on a contextual sequence
of text prompts and previously generated images. Unlike single-turn image editing, in-context image
editing supports multi-turn interactions, enabling users to iteratively refine images while maintaining
visual consistency throughout the editing process. A key challenge lies in acquiring contextualized
training data that includes coherent sequences of text and images, Existing approaches to mine
single-turn image editing (Brooks et al., 2023; Wu et al., 2025c; Hertz et al., 2022; Zhuang et al.,
2024; Boesel & Rombach, 2024) struggle to construct meaningful long-form content that is capable
of capturing the dependencies and evolving intent that emerge over multiple editing steps. The lack of
contextualized, quality training data remains a significant barrier to progress in this area of research.

In this paper, we approach in-context image editing from a different perspective and investigate the
following research question: Can a meaningful in-context image editing model be learned solely
from videos, without using any standalone images? Our intuition is that videos, as a rich source of
multimodal information, inherently contain a long duration of visual dynamics that might facilitate
the learning of multi-turn interactions. For instance, changes within a scene, such as objects entering
or exiting the frame, shifts in camera focus, or character actions, provide implicit cues for learning
operations like addition, removal, and modification in image editing.

To this end, we propose an approach that natively learns transitions from video data, named Video-
driven IN-Context Image Editing (VINCIE). Unlike conventional image editing methods that rely
on separately collected pairs of pre- and post-editing images for training, we choose not to alter the
video, i.e., we train on native video data (only natural videos as the source of visual modality), but
instead provide the model with detailed annotations that describe the transitions or actions occurring
within the scene. Since our method eliminates the need for paired data collection and relies solely on
video, it can be trivially scaled using the vast amount of video data readily available on the web.

Specifically, we first sample a few coherent frames from a video scene, annotate the visual transitions,
and identify Regions of Interest for editing (RoEs) using a pretrained Vision-Language Model (VLM).
Additionally, we employ Grounding-DINO (Liu et al., 2024b) and SAM2 (Ravi et al., 2024) to
generate RoE segmentation masks based on textual descriptions of the transitions. This process
establishes our training samples, which capture context and form an interleaved multimodal sequence.
Next, we train a Diffusion Transformer (Peebles & Xie, 2023) with full attention as our primary
implementation and additionally design a variant with block-wise causal attention, which applies
bidirectional attention within each modality (frame, text, and segmentation mask) and causal attention
across modalities. Both variants are compared to provide a direct assessment of their differences.

Finally, to enhance the model’s learning of contextual dependencies, we design three proxy tasks:
(1) next-image prediction, which serves as the primary task in training; (2) current segmentation
prediction, which enables the model to understand which regions have changed; and (3) next
segmentation prediction, which prepares the model to anticipate where changes are likely to occur.

Extensive experiments show that our model, trained solely on video data, demonstrates strong in-
context image editing capabilities and outperforms existing baselines on the multi-turn image editing
tasks. Scaling up the model and training data leads to substantial performance gains—for example,
the success rate at the challenging 5-turn editing increases from 5% to 22% when scaling the training
data from 0.25M to 10M sessions—demonstrating the scalability of our approach enabled by native
video data. Notably, to the best of our knowledge, this is the first work to demonstrate the feasibility
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of learning an in-context image editing model solely from video data, while also showcasing the
scalability benefits of this approach.

We find that our model can learn disentangled representations of visual changes (e.g., object appear-
ance/disappearance, posture shifts, and orientation changes) purely from patterns inherent in video
data. It also demonstrates reasonable generalization to scenarios that are less common in natural
video, such as background changes, attribute modifications, and multi-concept compositions. As an
additional benefit, our model can be used for generating consistent frames for storytelling through
in-context editing.

2 RELATED WORK

Data Construction Methods for Image Editing. Constructing image editing datasets requires
first designing clear and diverse editing instructions that articulate the intended visual modifications.
Based on these instructions, paired image examples are then created, consisting of original images
and their corresponding edited versions that reflect the specified transformations. Single-turn image
editing methods (Hertz et al., 2022; Brooks et al., 2023; Sheynin et al., 2024; Shi et al., 2024a; Zhao
et al., 2024; Wei et al., 2024; Hui et al., 2024; Yang et al., 2024b; Jin et al., 2024) use pre-trained off-
the-shelf models (Ramesh et al., 2022; Rombach et al., 2022; Brown et al., 2020; Sauer et al., 2024) to
construct paired data for image editing. For example, InstructPix2Pix (Brooks et al., 2023) leverages
GPT-3 (Brown et al., 2020) for generating editing instructions and Stable Diffusion v1.5 (Rombach
et al., 2022) for paired image data generation. UltraEdit creates editing instructions using LLMs and
combines grounding models (Kirillov et al., 2023; Liu et al., 2024b) with SDXL-Turbo (Sauer et al.,
2024) to produce region-based editing samples. Our approach relies on learning transitions from
videos without manually crafted paired data pipelines, bringing impressive scalability.

Learning from Video for Image Generation. Video Frames naturally exhibit consistency across
characters, objects, and scenes, which has inspired recent efforts to construct source and target images
from sampled video frames. Leveraging such frame-based data has proven beneficial for enhancing
consistency in image generation tasks, such as instructive image editing (Chen et al., 2024d; Krojer
et al., 2024), interactive image editing (Zhang et al., 2025a; Shi et al., 2024b), streamlining image
editing (Alzayer et al., 2024), and object-level image customization (Chen et al., 2024c). The most
recent work, e.g., RealGeneral (Lin et al., 2025) and UES (Chen et al., 2024a), explored the temporal
in-context consistency within video foundation models (Yang et al., 2024c) for universal image
generation and editing. Despite notable progress, existing methods typically rely on only two frames
per video, overlooking richer, long-range contextual information. Furthermore, they often depend
on task-specific data construction pipelines (Chen et al., 2024d; Zhang et al., 2025a; Chen et al.,
2024c), limiting their universality and scalability. In this work, we propose constructing session-wise
data with long, interleaved image-text context from native videos, and leverage it for pre-training or
mid-training to learn the inherent consistency and transformations in abundant multimodal sequences.

3 METHODOLOGY

3.1 INTERLEAVED MULTIMODAL SEQUENCE CONSTRUCTION

Figure 2 shows an overview of our data construction pipeline. Starting with a video, we sparsely
sample K frames (Io, ...,k ) and use a vision-language model (VLM) to generate textual visual
transitions 7; describing the change from frame I; to I;4 ;. To better capture the Regions-of-interest
for editing (RoEs), we additionally annotate segmentation masks M; and M, which identify the
changing objects in I; and I; 1, respectively. Combining these elements, we construct the multimodal
sequence (1o, To, Tono, Moo, Trm1, Mo1, 11, - - -, I ). T and T,,1 are predefined prompts such as
“generate the mask of changing areas in the source image” and “generate the mask of changing areas
in the target image”.

Frame Sampling. We use a hybrid sampling strategy: 1) Equal-interval sampling, which selects
frames at fixed time intervals (e.g., 3 sec), and 2) Fixed-frame sampling, which uniformly samples
a fixed number (e.g., 2 < n < 6) of frames regardless of video duration. This approach is used to
capture both subtle object-level changes and significant scene-level transitions.
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"source_caption’: {
"scene": "a table with two cups of coffee, a
bouquet of summer flowers, ...",
"obj1™ "a bouquet of summer flowers with
ribbons",
"obj2": "two cups of coffee each on a saucer with a
spoon™},
“target_caption":'{
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bouquet of summer flowers; ...";
“objl1" "a bouquet of summer flowers with
ribbons",
"obj2"; "two cups of coffee each on a saucer with a
spoon'},
"object_change™: {
"obj1": "no change",
"obj2": "move the two cups of coffee slightly further
apart"}
"summary_change™: "Remove the hands holding the » v
cups and move the cups slightly apart.” Region-level desc""tm"”
}
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Figure 2: Our session data construction pipeline. We use a VLM to annotate the visual transitions.
We then use the generated textual descriptions to prompt GroundingDINO+SAM?2, extracting seg-
mentation masks for the edited regions.

Visual Transition Annotation. To describe visual transitions between frames, we use chain-of-
thought (CoT) prompting (Wei et al., 2022) to instruct a VLM to perform visual transition annotation:
1) generate detailed and coherent descriptions of each frame from multiple aspects (e.g., characters,
objects, attributes, interactions, scenes, and environments); 2) identify semantic and visual differences
between the two frames from the above aspects; 3) and summarize all the differences into a concise,
instruction-style statement 7; suitable for guiding editing. Unlike existing interleaved datasets (Zhu
et al., 2023; Laurencon et al., 2023; Chen et al., 2024b) derived from web documents and retrieval
tools, our dataset is built from native videos, ensuring stronger textual and visual coherence.

Segmentation Annotation and Encoding. We explicitly annotate Regions-of-Editing (RoEs) in
both adjacent frames I; and I, ;. Specifically, we leverage region-level descriptions (i.e., characters
and objects) in the visual transition annotation as input to GroundingDINO (Liu et al., 2024b)
and SAM 2 (Ravi et al., 2024) for extracting segmentation map‘s. Based on the region-level
difference annotations, we determine which regions undergo visual transitions, i.e., RoEs, and
construct corresponding global maps by fusing local maps from the current and next session images.

3.2 MODEL ARCHITECTURE

As illustrated in Fig. 3, our model is built upon a Diffusion Transformer (DiT) architecture,
initialized from a video foundation model. We represent the interleaved input sequence as
S = (Iy,To,. .-y Tar—1, 1), where T; denotes the textual editing instruction at turn-i, and I;
represents either an image or a segmentation mask.

As our focus is on the in-context image editing task, we optimize the model by maximizing the
likelihood of the next image prediction:

M
log p(5) = Zlogp([i | Lo, ..., Ti—1, Li1) ey
i=1

where the conditional probability is modeled using flow-matching in the latent space, an objective
commonly used in diffusion model for text-to-image (Rombach et al., 2022; Esser et al., 2024; Labs,
2024; Podell et al., 2023) and text-to-video (Singer et al., 2022; Wan et al., 2025; Hong et al., 2022;
Seawead et al., 2025) generation tasks. Each text instruction (7;) and image ([;) is encoded into
latent tokens using a text encoder (e.g., TS) and an image encoder (e.g., VAE), respectively. The
details about the text encoder and VAE are provided in the supplementary material.

Learnable <TURN> Tokens. We separate the interleaved input sequence .S by modality into two
groups: S = (Io,To,-- - Tr—1,In) = T = (To,T1, -, Trni—1); I = (Lo, ..., Ipr). Their latent
tokens are concatenated together. Since the number of text tokens at each turn may vary, we introduce
M special learnable tokens <TURN>;,¢ = 1,..., M to mark the turn boundary, where <TURN>; is
inserted before the latent tokens of 7.
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Figure 3: Model architecture. We apply a diffusion transformer framework (initialized from a video
generative foundation model) with full attention to learn from the multimodal interleaved context,
through three tasks (CSP, NSP, and NIP). Losses are only computed on noised tokens.

Separate Text and Image Position Embedding. We apply 1D RoPE (Su et al., 2024) to text
tokens and 3D RoPE to image tokens. The starting positions are O for all dimensions. This separate
ROPE design aligns with our pretrained MM-DiT model, where text and image tokens are positioned
continuously. Position collisions are avoided as MM-DiT employs distinct weights for each modality,
and the bias terms in the linear layers effectively act as modality-specific embeddings.

Attention. We employ two attention mechanisms in DiT and obtain two variants: (1) full attention
over all tokens, as shown in Fig. 3, and (2) block-wise causal attention, where causality is enforced
across blocks (e.g., text or image) and bidirectional attention is applied within each block. Full
attention enables comprehensive token interactions at a higher computational cost, while block-wise
causal attention improves efficiency while maintaining causal structure. Additional details and
discussions are provided in Appendix C.4.

Condition on Clean Context. We model the distribution of each image (except the first) using a
diffusion loss, conditioned on an interleaved context. To enhance training efficiency, we concatenate
the clean and noisy tokens of each image as model inputs, and apply an attention mask to ensure
that each noisy image attends only to the clean representations of preceding images, as illustrated in
Fig. 11.

3.3 CONTEXT COMPOSITION LEARNING

To facilitate effective ability transfer from segmentation modeling to image editing and generation,
we unify image and segmentation modeling within a generative framework using the MSE-based
diffusion loss in flow matching. Through interleaved context composition, our framework further
unlocks multiple capabilities and supports a variety of corresponding tasks (see Fig. 12 for more
details). Specifically, we augment Eqn. 1 by adding a random dropout operation Rd on the context,
as shown in equation:

M
log p(5) = Zlogp(Fi | Rd(lo, T1), Rd(Tmo, Moo), Rd(T 1, Mor), - ) @)

i=1

where F; can be either the target image, RoE mask' of the source image, or RoE mask of the target
image. We ensure that the image or mask required to generate the target is always retained, while
only the contextual images and texts are randomly dropped. The model is jointly learning three tasks:

* Next Image Prediction (NIP). NIP is our primary in-context image editing task.

'In implementation, we treat segmentation masks as RGB images, by replicating the mask across all three
channels, and then encode them using the VAE encoder to obtain the latents.
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* Current Segmentation Prediction (CSP). CSP enhances the model’s grounding ability, enabling
it to identify regions requiring edits while preserving consistency in other areas. This is particularly
useful for local editing tasks such as removal, attribute changes, and replacements.

* Next Segmentation Prediction (NSP). NSP improves the model’s controllable generation by
incorporating the next-frame segmentation map into the context, aiding in dynamic layout adjust-
ments for scenarios like shape changes and movements.

By randomly combining different contexts and tasks, the model learns essential abilities such as
grounding, controllable generation, and multi-concept composition, enabling versatile in-context
image editing.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Data. Through the proposed scalable data construction pipeline, we collect and annotate about 10M
session instances, with the number of images in each session from 2 to 20. For each session data,
we consider RoE map with a probability of 80%. We apply a context drop rate with 20%, 70%, and
70%, to the current frame, current RoE map, and next RoE map, respectively. During inference, the
sampling step is set to 50, the classifier-free guidance scale is set to 10. Using the proposed data
construction pipeline, we collect and annotate about 10M session instances, each containing 2 to 20
images. During training, a RoE map is included with an 80% probability for each session. We apply
context dropout rates of 20%, 70%, and 70% to the current frame, current RoE map, and next RoE
map, respectively, with dropout applied independently at each turn. We use 50 sampling steps and set
the classifier-free guidance scale to 10.

Model. We initialize our model with the weights of our in-house MM-DiT (3B and 7B),
pre-trained on text-to-video tasks and architecturally similar to (Seawead et al., 2025; Kong
et al., 2024). The 3B and 7B variants are optimized on session data for 15k and 40k steps,
consuming approximately 30 and 150 hours on 256

. Add
H100 GPUs, respectively. Attibute
Global /"
4.2 MULTI-TURN Interaction\
SESSION IMAGE EDITING BENCHMARK Local

_—Remove

Existing benchmarks (Zhang et al., 2023a; Basu <™ . - MSE-Bench

et al., 2023; Sheynin et al., 2024), such as Mag- Action—
ﬁ. I Replace

icBrush (Zhang et al., 2023a), are constrained to

. . . .. Orientation
basic editing operations, such as addition, replace-
ment, removal, attribute modification, and back- Expression
. Position
ground changes, and thus fall short of meeting prac- Posture~

tical user needs. Moreover, MagicBrush supports Background
only up to three editing turns per session, with each
turn treated in isolation, further diverging from real-
world editing workflows. To address these limita-
tions, we propose MSE-Bench (Multi-turn Session
image Editing Benchmark), which comprises 100
test instances, each featuring a coherent five-turn editing session. MSE-Bench expands the range
of editing categories to include more complex and realistic scenarios such as posture adjustment,
object interaction, and camera view changes, as shown in Fig. 4. To better reflect user intent and
practical applications, we also incorporate aesthetic considerations into the construction, encouraging
progressive visual enhancement across turns.

Figure 4: Category distribution of MSE-Bench.
“others” includes expression, orientation, posi-
tion, global, and action change.

For each editing instruction, multiple generated images may satisfy the user’s request. Consequently,
our benchmark does not provide ground-truth images. Instead, we use GPT-4o to evaluate whether
the generated image successfully follows the instructions and remains consistent with the input image.
The final score for each turn is computed by averaging the success rates across all samples.
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Table 1: Performance comparison on MagicBrush (Zhang et al., 2023a) (multi-turn) for consistency
(DINO and CLIP-I) and prompt following (CLIP-T). SFT means we carry out supervised fine-tuning.
* denotes the use of context across all preceding turns. Entries by gray denote proprietary models.

Method Turn-1 Turn-2 Trun-3
DINO CLIP-I CLIP-T | DINO CLIP-I CLIP-T | DINO CLIP-I CLIP-T

Instruct-Pix2Pix (Brooks et al., 2023) 0.514 0.727 0270 | 0.397 0.674 0.268 | 0.335 0.646  0.263
MagicBrush (Zhang et al., 2023a) 0.826 0.901 0.278 | 0.756 0.863 0.277 | 0.718 0.834 0.271
HQEdit (Hui et al., 2024) 0.522 0.696 0.259 | 0.441 0.659 0.248 | 0.397 0.637 0.238
UltraEdit (Zhao et al., 2024) 0.755 0.852 0.289 | 0.706 0.827 0.278 | 0.683 0.810 0.266
ICEdit (Zhang et al., 2025b) 0.853 0.922 0.281 | 0.780 0.882 0.278 | 0.731 0.852 0.272
OmniGen (Zhang et al., 2025b) 0.874 0.924 0.273 | 0.718 0.851 0.264 | 0.586 0.786 0.261
OmniGen2 (Wu et al., 2025b) 0.863 0919 0.285 | 0.777 0.869 0.280 | 0.716 0.832 0.278
Step1X-Edit (Liu et al., 2025) 0.852 0915 0.288 | 0.785 0.875 0.286 | 0.743 0.840 0.277
Bagel (Deng et al., 2025) 0.845 0912 0.286 | 0.767 0.873 0.292 | 0.723 0.844 0.286
Bagel* (Deng et al., 2025) 0.847 0914 0.287 | 0.729 0.858 0.295 | 0.684 0.823  0.287
FLUX.1-Kontext (dev) (Batifol et al., 2025) | 0.858 0.917 0.288 | 0.757 0.863 0.296 | 0.691 0.818 0.291
Qwen-Image-Edit (Wu et al., 2025a) 0.827 0.900 0.292 | 0.745 0.856 0.292 | 0.697 0.819 0.287
GPT Image 1* (OpenAl, 2025a) 0.805 0.875 0.293 | 0.708 0.820 0.300 | 0.666 0.789 0.292
Nano Banana* (DeepMind & Gemini, 2025) | 0.886  0.933 0.287 | 0.811 0.896 0.294 | 0.773 0.867 0.291
Ours* (3B) 0.822 0.895 0.273 | 0.733 0.850 0.272 | 0.676 0.827  0.267
Ours* (3B) + SFT 0.852 0917 0.283 | 0.739 0.861 0.291 | 0.667 0.814 0.290
Ours* (7B) 0.838 0.906 0.272 | 0.721 0.848 0.272 | 0.645 0.804 0.271
Ours* (7B) + SFT 0.891 0.937 0.283 | 0.817 0.895 0.289 | 0.775 0.861 0.286

4.3 COMPARISON WITH STATE-OF-THE-ARTS

We evaluate our model on two multi-turn image editing benchmarks: MagicBrush (Zhang et al.,
2023a) and our proposed MSE-Bench.

MagicBrush. Given its support for multi-turn editing, high-quality manual annotations, and close
alignment with real-world editing needs, we first adopt MagicBrush to evaluate our method and
compare against baselines. Tab. | reports quantitative results across three standard evaluation
metrics: DINO, CLIP-I, and CLIP-T. First, our model, trained solely on interleaved video data,
achieves performance comparable to SOTA methods UltraEdit and OmniGen, which rely on pairwise
editing data, highlighting video data as a natural and effective source for image editing tasks. Second,
with supervised fine-tuning on editing-oriented data, our method outperforms nearly all metrics,
demonstrating that interleaved video data complements existing data creation approaches. Lastly, our
model’s advantages become increasingly evident with more edit turns, showcasing the benefits of
learning from contextual video data.

MSE-Bench. Tab. 2 presents the multi-turn editing success rates as evaluated by GPT-4o. In this
setup, the generated image at turn-¢ serves as the input for editing at turn-¢ 4+ 1. Consequently, failure
at any turn propagates to subsequent turns. Existing academic methods perform poorly, with a success
rate of < 2% at turn-5. In contrast, our method achieves a 25% success rate at turn-5, demonstrating
the advantages of our model and the use of native video data. However, our approach still falls short
compared to proprietary models like GPT-40, which benefit from significantly larger training datasets
and model sizes. Even so, GPT-40 achieves only a 62.7 % success rate, highlighting the long-term
value of our proposed benchmark for advancing multi-turn editing.

4.4 IN-DEPTH ANALYSIS

In-Context Editing Mitigates Artifact Accumulation. Artifact accumulation, where artifacts be-
come more pronounced with increasing editing turns, is a common issue in multi-turn editing (Sheynin
et al., 2024). We observe this phenomenon as well (upper part of Fig. 6) when using our model as a
single-turn editing method, i.e., without incorporating context from previous turns. However, when
all contexts are included as input, no artifacts are observed (lower part of Fig. 6).

Impact of Segmentation Prediction and Generation. As shown in Tab. 3, training with seg-
mentation and generation as context enhances both consistency and multi-turn editing success rate.
Notably, the substantial gain in consistency on MagicBrush (Zhang et al., 2023a) demonstrates the
effectiveness of segmentation modeling, especially under the CoE strategy (CS — NS — I).

Impact of Context. Table 4 highlights the impact of context in multi-turn image editing.

7
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Table 2: Performance comparison on MSE-Bench (editing success rate evaluated by GPT-40). *
denotes the use of context across all preceding turns. Entries by gray denote proprietary models.

Method GPT-40 Evaluation

Turn-1 Turn-2 Turn-3 Turn-4 Turn-5
Instruct-Pix2Pix (Brooks et al., 2023) 0.520 0.130 0.110 0.083 0.060
MagicBrush (Zhang et al., 2023a) 0.707 0.300 0.213 0.170 0.087
HQEdit (Hui et al., 2024) 0.477 0.177 0.140 0.113 0.077
UltraEdit (Zhao et al., 2024) 0.673 0.230 0.173 0.113 0.067
ICEdit (Zhang et al., 2025b) 0.633 0.340 0.257 0.163 0.090
OmniGen (Xiao et al., 2024) 0.847 0.223 0.170 0.140 0.083
OmniGen* (Xiao et al., 2024) 0.853 0.188 0.160 0.125 0.065
OmniGen2 (Wu et al., 2025b) 0.847 0.393 0.327 0.263 0.133
Step1X-Edit (Liu et al., 2025) 0.937 0.540 0.420 0.300 0.140
Bagel (Deng et al., 2025) 0.967 0.650 0.613 0.550 0.413
Bagel* (Deng et al., 2025) 0.963 0.630 0.567 0.473 0.300
FLUX.1-Kontext (dev) (Batifol et al., 2025) 0.950 0.670 0.623 0.573 0.440
Qwen-Image-Edit (Wu et al., 2025a) 0.980 0.737 0.667 0.613 0.430
GPT Image 1 (OpenAl, 2025a) 0.963 0.690 0.673 0.637 0.557
GPT Image 1* (OpenAl, 2025a) 0.967 0.707 0.700 0.697 0.640
Nano Banana (DeepMind & Gemini, 2025) 0.987 0.773 0.753 0.727 0.627
Nano Banana* (DeepMind & Gemini, 2025) 0.997 0.773 0.757 0.730 0.643
Ours* (3B) 0.913 0.450 0.393 0.300 0.210
Ours* (3B) + SFT 0.913 0.533 0.497 0.443 0.330
Ours* (7B) 0.837 0.517 0.463 0.400 0.350
Ours* (7B) + SFT 0.950 0.693 0.667 0.617 0.487

Table 3: Impact of segmentation (seg.) prediction and generation as context during training

and inference on consistency (CLIP-

I and DINO on MagicBrush) and success rate (evaluated

by GPT-40). I: image generation. CS: current segmentation generation. NS: next segmentation
generation. (This ablation study was conducted using an intermediate checkpoint, so the reported
numbers may not be directly comparable to those in other tables. )

MagicBrush (CLIP-I) MagicBrush (DINO) MSE-Bench (Success Rate by GPT-40)

Train Inference Turn-1 Turn-2 Turn-3 Turn-1 Turn-2 Turn-3 | Turn-1 Turn-2 Turn-3 Turn-4 Turn-5
w/o Seg. 1 0.875 0.824 0.784 0.765 0.663 0.592 | 0.847 0473 0337 0.177 0.113
w/ Seg. I 0.880 0.832 0.797 0.786 0.680 0.604 | 0.887 0.520 0.327 0.183 0.103
w/ Seg. CS—1 0.886 0.832 0.801 0.797 0.687 0.622 | 0.873 0.590 0.407 0.260 0.173
w/ Seg. NS —1 0.889 0.840 0.815 0.807 0.711 0.661 | 0.837 0.487 0.323 0.197 0.117

w/ Seg. CS—NS—1| 0.890 0.847 0823 0.814 0.724 0.679 | 0.867 0.523 0.367 0.190 0.110

In Turn-1, where no prior con-
text exists, adding a dummy con-
text—comprising the original image
and an instruction, In Turn-2 and
Turn-3, where editing instructions
and ground-truth images from pre-
vious turns are provided as context,
adding a dummy context results in
minimal improvements. '"generate
the same image," prepended before
Turn-1—significantly improves per-
formance. The L1 and L2 distances
are nearly halved, indicating greater
consistency between the generated
image and the original image in un-
changed areas, as these distances are
measured pixel-wise. This is ex-
pected, as the existing context already

Table 4: Impact of context on multi-turn image editing
with MagicBrush. The “Dummy-Context” includes the orig-
inal image and the instruction, “generate the same image.”
“History” refers to providing previous turns’ ground-truth im-
ages as context. Results show that performance significantly
improves when a reasonable context is included, emphasiz-
ing the importance of context in multi-turn image editing.

Method L1} L2|  DINOt CLIP-It CLIP-Tt
Turn-1

w/o Context 0.155 0.063  0.814 0.894 0.277

Dummy-Context  0.086  0.031 0.850 0.913 0.277
Turn-2

w/o Context 0.159 0.067  0.834 0.902 0.279

History 0.099 0.038  0.845 0.909 0.278

Dummy-Context  0.087  0.033  0.869 0.922 0.280
Turn-3

w/o Context 0.164 0.071 0.851 0.904 0.273

History 0.088 0.034  0.878 0.923 0.273

Dummy-Context  0.088  0.034  0.895 0.929 0.272

provides sufficient information. These findings underscore the critical role of context in multi-turn

image editing tasks.
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Sequential Single-Turn Editing
Without Segmentation Mask Prediction

- -

- -)
Input Image

Input Image
With Segmentation Mask Prediction

In-Context Editing Figure 7: Subject position shift can be addressed

Figure 6: In-context editing mitigates artifact ac- by predicting segmentation mask first.
cumulation issue in sequential single-turn editing.

Turn-1 Turn-2  —A—Turn-3

Scalability. Fig. 5 illustrates the editing success rate as —v—Turn-4 Turn-5
a function of training data size. While the success rate g Lo ' '
at Turn-1 begins to saturate at 2.5M training samples, the E’ 0.8
success rate at later turns (e.g., Turn-4 and Turn-5) exhibits 2
a nearly log-linear increase with more training data. These ~ 20
results demonstrate the scalability of both our model and 8, e
data construction pipeline. 2 a—A

s . . g 0.2 A/ /V/V/ M
Training on Native Video Data Introduces Addressable % —

. PN L 003 . . . .
Subject Position-Shift. A key challenge when training 055 1% 55 5 1o (M)

on videos is the potential for subject position shifts across
editing turns, as illustrated in the upper part of Fig.7. This
issue arises from the natural movement of subjects over  Fjgure 5: Editing success rates in 5 turns
time in videos. However, incorporating segmentation pre- 4t various data scales.

diction—where the model first predicts a mask before

generating the target image—mitigates this drifting effect (see lower part of Fig.7). The segmentation
mask enforces consistency in unedited regions, thereby reducing positional drift.

Data Amount (log, scale)

Effectiveness of Our Video Sequence
Data. Table 5 demonstrates the impact of
incorporating our video sequence data. Us-
ing the same pretrained model, training with
our video sequence data increases success

Table 5: Ablation study on MSE-Bench (GPT-4o0 eval-
uated success rate), to assess the impact of our video
sequence data.

rates by 16.4% and 21.0% on Turn-1 and Training Data Turn-1 Turn-2 Turn-3 Turn-4 Turn-5
Turn-5, respectively, compared to training pairwise 0.723  0.263 0.123 0.033 0.010
solely on specialized pairwise image editing sequence 0.887 0597 0417 0280 0.220

data (Wel et al 2024) The hlghest perfOI‘- sequence — pairwise 0.880 0.647 0.483 0370 0.250
mance is achieved by first pretraining on our

video sequence data, followed by supervised fine-tuning (SFT) on pairwise data, underscoring the
effectiveness of our data for continual pretraining.

4.5 APPLICATIONS

Fig. 1 showcases several emerging capabilities that arise when training our model exclusively on
video data. Notably, these abilities seem to develop implicitly, as they differ from the model’s explicit
training objectives:

* Controllable Editing: By including the segmentation mask of the region of interest in the context,
users can achieve controllable editing by modifying the segmentation mask.

* Multi-Concept Composition: The model demonstrates the ability to compose multiple concepts
together, even without explicit composition training data—a surprising emergent capability.

* Story Generation: Leveraging the consistent and extended context in video data, the model can
generate coherent frames for storytelling through in-context editing.

* Chain-of-Editing: Each multi-turn editing session functions as a multimodal chain of thought,
where the model interprets editing instructions, identifies regions of interest, generates Rol masks,



Under review as a conference paper at ICLR 2026

produces target images, and iterates the process. Our model reveals the potential of video data in
modeling multimodal chains of thought.

5 CONCLUSION

In this work, we explore the research question: "Can an in-context image editing model be learned
solely from videos?" To address this, we propose a learning framework that enables context-aware
image generation directly from native videos. We introduce a scalable data construction pipeline
that transforms videos into contextual multimodal sequences, comprising sparsely sampled frames,
textual visual transition descriptions, and segmentation masks of regions of interest. To model this
multimodal sequence, we train a DiT model using three proxy tasks: next-image prediction, current
segmentation prediction, and next-segmentation prediction. Experimental results demonstrate that
our model, trained exclusively on videos, exhibits strong in-context image editing capabilities and
achieves state-of-the-art performance on multiple multi-turn image editing benchmarks. Additionally,
our model showcases emerging abilities such as controllable editing, multi-concept composition,
story generation, and multimodal chain-of-thought, highlighting the untapped potential of video data
and the effectiveness of our proposed framework.

ETHICS STATEMENT

Our work on scalable, context-aware image editing has the potential to democratize creative tools,
enhance accessibility, streamline media production, and advance intuitive human-AlI collaboration.
However, it also raises important concerns, including the risk of misuse for misinformation or
manipulation, privacy issues from large-scale video data, potential biases in generated content,
job displacement in creative industries, and increased environmental impact due to computational
demands. Addressing these challenges will require careful dataset curation, privacy safeguards, bias
mitigation, responsible deployment practices, and ongoing engagement with diverse stakeholders.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. An anonymous link
(https://anonymous.4open.science/r/VINCIE-11669/) to the source code is pro-
vided, enabling replication of our implementation. The main text and appendix together provide
comprehensive descriptions of the model design, training procedure, and evaluation protocol. Details
on the dataset construction and preprocessing pipeline are presented in the appendix. These resources
collectively ensure that readers can reproduce and validate our experimental results.
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A THE USE OF LARGE LANGUAGE MODELS

We acknowledge that large language models (LLMs) were employed to assist in the preparation of
this manuscript. Their use was restricted to grammar checking, language refinement, and enhancing
clarity and fluency of the text. In addition, LLMs were applied in a limited capacity to support minor
debugging and syntactic corrections of code snippets.

B ADDITIONAL RELATED WORK

Image Editing. Building on advances in foundational image generation models (Huang et al., 2025;
Ramesh et al., 2022; Saharia et al., 2022; Esser et al., 2024), image editing has achieved remarkable
progress. Techniques now enable a wide range of edits, including zero-shot editing (Li et al., 2024;
Huang et al., 2023; Wu & De la Torre, 2023; Han et al., 2024a; Chen & Huang, 2023), changing
object classes (Kim et al., 2022; Xu et al., 2023; Ackermann & Li, 2022; Yang et al., 2023c; Tsaban
& Passos, 2023; Gholami & Xiao, 2023; Brack et al., 2024; Nie et al., 2023) and faces (Ding et al.,
2023), free-form text-based modifications (Brooks et al., 2023; Hertz et al., 2022; Lin et al., 2023;
Dong et al., 2023; Zhang et al., 2023b; Kawar et al., 2023; Guo & Lin, 2024; Zhang et al., 2024;
Sheynin et al., 2024; Wei et al., 2024; Shi et al., 2024a; Wang et al., 2023a; Li et al., 2023; Mirzaei
et al., 2024; Miyake et al., 2025), mask-based edits (Wang et al., 2023b; Xie et al., 2023; Couairon
etal.,, 2022; Zou et al., 2024; Mao et al., 2024), point dragging (Mou et al., 2023; Shin et al., 2024; Liu
et al., 2024a; Lu et al., 2024; Choi et al., 2025), and reference image-guided transformations (Song
et al., 2023; Goel et al., 2023; Yang et al., 2023a). A series of recent works (Yang et al., 2023b; Wu
et al., 2023; Xiao et al., 2024; Najdenkoska et al., 2024; Sun et al., 2024) enables edits conditioned
on multiple text and images. Our work focuses on in-context image editing (OpenAl, 2025b), where
edits are conditioned on a contextual sequence of text and previously generated images. Moreover,
we explore learning from native video data, unlike existing methods that use hand-crafted synthesized
data.

C IMPLEMENTATION DETAILS

C.1 DATA DETAILS

The training videos are sourced from a wide spectrum of domains, including stock footage, films,
documentaries, etc. We split the raw videos into both single-shot clips and multi-shot scene videos.
We also pre-process the raw videos by using different filtering strategies to keep high-quality videos,
including logo detection, black border detection, and aesthetic estimation.

As described in Sec.3.1, we adopt two frame sampling strategies: equal-interval sampling and
fixed-frame sampling. As illustrated in Fig.8, these approaches jointly ensure both the diversity and
temporal stability of visual dynamics—two key factors for effective training of in-context image
editing models.
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(a) Equal-interval Frame Sampling

all video frames all video frames

TIR

sampled frames
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Figure 8: Two ways of frame sampling: (a) equal-interval sampling and (b) fixed-frame sampling.
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C.2 VISUAL TRANSITION ANNOTATION

Instruction for Visual Transition Annotation

Imagine that you are an image editing assistant who wants to edit the first image to the second image. I
will provide you two frames from a video clip as the source and target images. The caption of the raw
video clip is: {}

Your task is to summarize how you intend to achieve this image editing task by providing
detailed but brief text instructions, from the following guidelines:

1. Understand the two images first, and describe the two frames in detail and coherently. Please include
the details of the environment, main subjects, their appearances, and main features.

2. Describe the main characters and objects and their appearances. Do not mention the real name
entities. Follow the format such as: {“charl”: “a woman with blonde hair wearing a red jacket”,
“char2”: “a girl wearing a floral dress”, “obj1”: “a green apple”, ...}

3. Highlight the semantic and visual differences between the two images in detail.

4. Provide only factual descriptive differences based on observable content. Avoid words or phrases
that suggest speculation or assumptions, such as “likely”, “possibly”, or “appear to”.

5. Avoid elliptical referential pronouns, such as "the same, frame 1, frame 2, the first image, the second

image, ... ".

An editing instruction should include:

1. main character change, including appearance, disappearance, position, action, expression, pose,
orientation, ... (e.g., “make the person smile”)

2. object change, including appearance, disappearance, position, count, relationship, layout, ... (e.g.,
“add a dog beside the person”)

3. attribute change, including color, texture, material, shape, size, depth, dynamics, ... (e.g., "make the
person’s hair red")

4. interaction change, including the interaction between characters, objects, and the environment. (e.g.,
“make the person hold the dog”)

5. global change, including background, atmosphere, environment, style, weather, season, lighting, ...
(e.g., “make the weather dark™)

6. camera change, including orbiting, dolly-in, dolly-out, pan-left, pan-right, tilt-up, tilt-down.

7. others

Output Format: You should output a json file to include the following information:

Framel Caption: <describe the first image/frame, characters and objects in detail>

Frame?2 Caption: <describe the second image/frame, characters and objects in detail>

Character Change: <the detailed character and attribute change>

Object Change: <the detailed object and attribute change>

Global Change: <the detailed global change>

Camera Change: <the detailed camera change>

Other Change: <the detailed other change>

Summary Change: <a comprehensive but brief user editing instruction to achieve the editing>

Your output should be a JSON file in one row (without any format), which looks like:
{“framel_caption”: {‘“scene’: str, “charl”: str, “char2”: str, ..., “objl’: str, “obj2”: str, ...},
“frame2_caption™: {“scene”: str, “charl”: str, “char2”: str, ..., “obj1”: str, “obj2”: str, ...}, “char-
acter_change”: {“charl”: str, “char2”: str, ...}, “object_change”: {“objl”: str, “obj2”: str, ...},
“global_change”: str, “camera_change”: str, “other_change”: str, “summary_change”: str}

. J

To bridge the semantic gap between two sampled frames, we use our in-house LMM to annotate
visual transitions, as introduced in Sec.3.1. The instruction used during annotation is shown above,
and Fig. 10 presents example annotations to illustrate their quality.

C.3 SEGMENTATION MASK ANNOTATION AND ROE CONSTRUCTION

The proposed visual transition annotation framework leverages an LMM to generate multi-level
annotations, ranging from local concepts to global scene descriptions. As illustrated in Fig.2, we
first use character and object descriptions from the source and target frames as query inputs to
GroundingDINO(Liu et al., 2024b) to obtain object detection results. These detections are then
passed to SAM 2 (Ravi et al., 2024) to extract segmentation masks for the corresponding local
concepts. Guided by the annotated local changes, we identify and fuse the objects or characters
undergoing transitions to construct the final RoEs.
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Turn 1: Remove the rocky cliff and mist, change the background to an ocean - side
beach with a hazy sky.

Turn 2: Swap the positions of the two women, let them stand sideways, and make
them face the camera more directly.

Turn 1: Replace the crescent moon and
stars with a smiling sun to change
the time of day fo daytime.

Turn 1: Change the man's facial expression from neutral to an open
- mouthed expression as if speaking or exclaiming
Turn 2: Remove the man from the image and close the door.

Tumn 1: Remove the rocky cliff and mist, change the
background to an ocean - side beach with a hazy
sky. Swap the positions of the two women, let
them stand sideways, and make them face the
camera more directly

Turn 1: Remove the hand and add blueberries evenly spread over
the dough.

Turn 2: Add a pair of hands creating a lattice - pattern with dough
strips on top of the blueberries in the baking dish

Turn 3: Remove the hands and complete the lattice pattern of
dough strips on the dish with blueberries

Turn 1: Change the background landscape to show more
greenery, smaller water bodies, and add some
buildings near the shoreline in the distance. Turn
the man’ s head slightly o the right.

Turn1: Change the visible part of the man's face | Tum1: Transform the simple fox - like sketch into a detailed female
to show more of the eyes and forehead, character with fox - like features performing a dance move
add hair on the forehead, and add ared - = Tum2:  Change the female character's dance pose from having one arm
outlined white mark on the forehead raised and one leg lifted to having both arms extended and one
Turn2:  Pan down the camera to focus on the man's leg forward.
nose and mouth area and move the red - | Tum3: Change the female character's pose to standing upright with
outlined white patch from the forehead to arms raised and add wings behind her
the lower lip
Turn 3:  Zoom out to show the full face of the man,

add hair, change the framing to include a
plain background, and change the
expression to neutral

Figure 9: Examples (1/2) of visual transition annotation performed by our in-house large multimodal
model.
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Turn 1:
Turn 2:
Turn 3:

Turn 1:

Turn 2:

Turn 3:

Stop the man's hand - gesturing and close his mouth 1,
Add a curved stick to the man's left hand and make him gesture with his right hand.
Change the man's hand gesture from a general gesture to a rock - on hand gesture with the arm raised higher

Change the boy's action to running with one arm extended towards the basketball and move the basketball to in
front of the boy on the ground, and change the boy's orientation to face more towards the left.

Change the boy's action to standing upright and looking forward, move the basketball to the boy's right hand, and
add a sun on the right side of the sky.

Add a black X on the boy's shorts and change his pose to holding the basketball up to his face

Turn 1.

Turn 2:

Turn 3:
Turn 4:

Turn 1.

Turn 2:

Turn 3:
Turn 4:

Remove the two women and add a white armchair with a blanket, a small black round table, a floor lamp with a white
shade, and a potted plant.

Add a woman with red hair, wearing a yellow short - sleeved shirt and black pants, standing and facing away from the
camera with her right hand raised slightly to the room scene.

change the woman's action from walking and gesturing to standing and touching the patterned curtain with both hands
Add a woman with blonde hair sitting on the armchair, holding a white cup and raising her hand.

Change the first woman's action to standing and holding a white cup and smiling. Add two white cups, one in each
woman's hand.

Move the man closer to the SUV such that he is opening the rear door with his right hand, and change the SUV's rear
door to be open.

Edit the image to transition the man's position from standing outside the rear door of the SUV to being partially inside
the vehicle, bent over.

Remove the man getting into the SUV and close the rear door.

Move the white SUV further down the path and close the rear right door.

Figure 10: Examples (2/2) of visual transition annotation performed by our in-house large multimodal

model.
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(a) Block-wise Causal Attention (b) Full Attention

Figure 11: Implementation of (a) block-wise causal attention and (b) full attention.

C.4 MODEL ARCHITECTURE

Variational Autoencoder. Following prior work (Yu et al., 2023), we adopt the encoder in a
pretrained VAE to embed each image into the latent space separately for efficient computation.
Specifically, it compress raw pixels with shape (H, W, 3) into a (h, w, ¢)-shape latent representation,
with downsampling ratios as d;, = % and d,, = % for height and width, respectively, and the latent
channel c. The decoder in VAE aims to transform latent representations generated by the DiT back
into the pixel space during inference.

Text Encoder. We employ the pretrained Flan-T5 as the text encoder to separately encode the prompt
in each turn, and then concatenate all the embedding with inserting turn embeddings in between.
Specifically, to make the model better discriminate different turns, we define a special turn token
<TURN>; for the i-th turn, and introduce a learnable turn embedding for each one, which is inserted
before the prompt embedding in the i-th turn.

Full Attention and Block-wise Causal Attention. We show the comparison between full attention
and block-wise causal attention, and the condition strategy of clean context in block-wise causal
attention, in Fig. 11.

C.5 COMPOSITION OF INPUT CONDITIONS AND OUTPUT

In Fig. 12, we enumerate all seven context compositions supported by our method, detailing the
interleaved input conditions, the corresponding outputs, the learning objectives, and the specific
capabilities unlocked by each composition.
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Figure 12: Context composition supported by our method.

Turn 1: Remove the person from the
chair.

Turn 2: Add a cat sitting on the chair.

Turn 3: Change the chair color to
vibrant pink.

Turn 4: Replace the background with
an urban park scene.

Turn 5: Change the image style to
resemble comic book art.

van from the scene.
and white striped design.
classic streetlamp.

a lush garden landscape.

dramatic moonlit setting.

Turn 1: Remove the vintage Volkswagen
: s Turn 2: Change the lighthouse to a red
~|Turn 3: Replace the lighthouse with a
Turn 4: Replace the rocky seaside with

- Tun 5: Change the lighting to a

Turn1:Add a rainbow above the

airplane.

Tum2:Change the airplane's

orientation to a vertical dive.

Turn 3: Add a flock of colorful birds

around the airplane.

Turn 4: Change the background to a

vibrant sunset.

Turn 5: Depict the airplane performing
an aerobatic loop with a visible

smoke trail.

Turn 1:

Turn 2:

Turn 3:
Turn 4:

Turn 5:

Turn 1:
Turn 2:

Turn 3:
Turn 4:

Turn 5:

Turn 1:

Turn 2:

Turn 3:

Turn 4:

Turn 5:

Remove the small orange flower buds from
the cachepot design.

Replace the large red flower with a
decorative butterfly ornament.

Change the blue flower color to a golden hue.
Replace the cream background with a soft
pastel gradient.

Apply a dolly-in camera effect to focus on
the butterfly ornament.

Add a rainbow arching across the sky.
Change the kayak's appearance to feature
intricate patterns

Add a duck sitting calmly on the kayak.
Replace the sky with a starry night
featuring a crescent moon

Add a lily pad beside the kayak on the river
surface.

Add a small, playful dog following the woman
on the bike.

Modify the woman's posture to wave her
hand.

Replace the background with a park setting
featuring trees and a pathway.

Pan the camera slightly to the right to
better center the woman on the bike.

Change the man's expression fo look amazed
with open arms.

Figure 13: Multi-turn image editing examples of MSE-Bench.
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C.6 DETAILS OF MSE-BENCH

Instruction for Evaluation of Multi-turn (turn-i) Image Editing on MSE-Bench

Assume you are an expert in evaluating multi-turn image editing. In this task, a user interacts with an
image editing system across multiple turns. At the first turn, the user provides a source image and an
editing prompt. The system returns the edited image. In each subsequent turn, the user supplies a new
prompt, and the system generates a new image based on the output from the previous turn. Your goal is
to evaluate how successfully the editing instruction of the LAST turn has been executed.

You will be given user editing prompts and images: the first image is the original source image, and the
next are the edited results from each turn for each prompt. You should focus more on the last prompt
and the last edited image, but you may also consider the previous prompts and images as context.

The user editing prompts are: {}

Please follow these evaluation rules:

1. Last-turn Evaluation: For the last turn, you should first assess the result based on two criteria by
giving a reason: 1) prompt_following, does the last edited image fulfill the last user’s editing prompt?
2) consistency: Are the untouched parts of the last result image consistent with the input reference (the
source image at the first turn, or the result image at the previous turn)?

2. Scoring: Based on the reason, you assign scores for "prompt_following" and "consistency".

From scale 0 to 10:

A "prompt_following" score from 0 to 10 will be given based on the editing success of prompt following.
(0 indicates that the scene in the last edited image does not follow the last editing instruction at all. 10
indicates that the scene in the last edited image follow the last editing instruction perfectly.)

A "consistency" score from 0 to 10 will rate the degree of overediting in the last edited image. (0
indicates that the scene in the last edited image is completely different from the original. 10 indicates
that the last edited image can be recognized as a minimally edited yet effective version of the original.)
3. Return your results in a JSON structure, following this format:

[ TR TR

{{"reason": "...", "prompt_following": int, "consistency": int}}

. J

The source images for our constructed multi-turn image editing benchmark, MSE-Bench, are sampled
from MS-COCO (Lin et al., 2014) and LAION-Aesthetics (Schuhmann et al., 2022). Specifically, we
randomly sample 6,000 images from each dataset and employ GPT-40 to perform prompt imagination,
guided by criteria such as editing reasonability, aesthetics, consistency, and coherence. To facilitate
this, we define a set of editing operations (e.g., add, remove, replace) and design a series of rules
to instruct GPT-4o0 to simulate realistic and coherent multi-turn editing prompts from real users’
perspectives. The instruction used in this process is illustrated above. Following prompt generation,
we conduct careful human filtering to remove low-quality cases, resulting in a final set of 100 high-
quality, category-balanced examples that constitute MSE-Bench. Additional examples are shown in
Fig.13.

C.7 SUPERVISED FINE-TUNING

After training on the constructed interleaved data from native videos, i.e., VINCIE-10M, we carry out
supervised fine-tuning to align the model with downstream editing tasks. Specifically, all of our SFT
data comes from open-sourced datasets, including:

OmniEdit-Filtered-1.2M? (Wei et al., 2024),

» Web-Image-3 and GRIT-Entity-New splits from X2I-subject-driven’ proposed in Omni-
Gen (Xiao et al., 2024),

X212-video-editing, X2I2-inpaint-editing, X2I2-in-context-generation, and X2I2-in-context-
editing splits from X212* proposed in OmniGen (Wu et al., 2025b),

SEED-Data-Edit-Part3’ proposed by SEED-X (Ge et al., 2024).

https://huggingface.co/datasets/TIGER-Lab/OmniEdit-Filtered-1.2M
*https://huggingface.co/datasets/yzwang/X2I-subject-driven
*nttps://huggingface.co/datasets/OmniGen2 /X212
Shttps://huggingface.co/datasets/AILab-CVC/SEED-Data-Edit-Part2-32
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Table 6: Human evaluation on MSE-Bench based on editing success rate. * indicates use of context.
Entries by gray denote proprietary models.

Human Evaluation
Method Turn-1 Turn-2 Turn-3 Turn-4 Turn-5
HQEdit (Hui et al., 2024) 0.170 0.073 0.020 0.003 0.000
UltraEdit (Zhao et al., 2024) 0.310 0.062 0.015 0.002 0.000
OmniGen (Xiao et al., 2024) 0.333 0.035 0.002 0.000 0.000
GPT-40%* 0.872 0.783 0.755 0.642 0.491
Ours* \ 0.661 0.500 0.323 0.209 0.070

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 HUMAN EVALUATION ON MULTI-TURN IMAGE EDITING
To further verify the effectiveness and superiority of the proposed method for multi-turn image
editing, we conduct human evaluations to assess editing success rates. The results are reported in

Tab. 6. These findings validate the benefits of training on native video data, combined with supervised
fine-tuning on pairwise editing examples, in enhancing multi-turn editing performance.

D.2 CORRELATION BETWEEN GPT-40 AND HUMAN EVALUATION

Table 7: Correlation between automatic metrics and human evaluation

Metric GPT-40 vs Human CLIP-T vs Human CLIP-I vs Human

Pearson r 0.4858 (p = 0.0000) 0.0817 (p = 0.4191) -0.0549 (p = 0.5875)
Spearman p 0.4644 (p = 0.0000) 0.0692 (p = 0.4941) -0.0217 (p = 0.8303)
Kendall 7 0.4154 (p = 0.0000) 0.0502 (p = 0.4963) -0.0195 (p = 0.7921)

In our experiments (Sec.4), we primarily report GPT-40 evaluated success rates to assess multi-turn
image editing performance. To validate the reliability of GPT-40-based evaluation, we compute the
correlation between GPT-40 scores and human judgments. As shown in Tab.7, we also compare other
metrics such as CLIP-T and CLIP-I. The results demonstrate that GPT-4o correlates well with human
evaluation, supporting its use as a reliable proxy for scoring multi-turn image editing.

D.3 HUMAN EVALUATION FOR VLM ANNOTATION

To further verify the validity of the proposed automatic interleaved
data construction pipeline, we conducted a human evaluation for
VLM annotation on accuracy and recall, as shown in Tab. 8. While
current VLMs are imperfect, they offer a scalable data annotation
solution, achieving a favorable balance between quality and scala-
bility. Similar to prior works (Brooks et al., 2023), our work aims
to explore continual pre-training on the constructed large-scale in-
terleaved corpus, where data scale is critical and minor annotation
noise is tolerable. Besides, we believe the proposed automatic data
construction pipeline will become increasingly effective, with the
rapid advancement of large multimodal models.

Table 8: Human evaluation for
VLM annotation on 500 data
instances randomly sampled
from our training dataset.

Metric Score

Accuracy 75.14%
Recall 69.06%

D.4 ADDITIONAL ABLATION STUDY

Impact of RoPE and Attention.
Based on a video foundation model,
VINCIE continues pre-training on
the constructed interleaved text-

Table 10: Ablation study on MSE-Bench (GPT-40 evaluated
success rate), to assess the impact of RoPE and Attention.

image data. In the foundation RoPE Attention  Turn-1 Turn-2 Turn-3 Turn-4 Turn-5
text-then-image full 0.968 0.360 0.320 0.238 0.160
interleaved full 0.933 0.338 0.308 0.245 0.183

interleavdd  block-causal 0.880 0.290 0.230 0.200 0.120
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Table 9: Impact of segmentation (seg.) prediction and camera prompt engineering (PE), i.e., inserting
“[###CAMERA: None###]” before each user prompt, on consistency evaluated by CLIP-I and DINO
scores on Magicbrush (Zhang et al., 2023a).

Train Inference CLIP-I Score DINO Score
Turn-1 Turn-2 Turn-3 Turn-1 Turn-2 Turn-3
w/o Seg. - 0.875 0.824 0.784 0.765 0.663 0.592
w/ Seg. - 0.880 0.832 0.797 0.786 0.680 0.604

w/ Seg. Camera PE 0.884 0.832 0.798 0.798 0.681 0.612

Table 11: Our method vs. In-context LoORA (Huang et al., 2024) with human evaluation on the
benchmark introduced in LCT (Guo et al., 2025) for story keyframe generation. Evaluation is carried
out from two aspects: prompt following and consistency.

Metric Win Fail Tie
Prompt Following 55.10% 16.30% 28.60%
Consistency 43.80% 2.10% 54.20%

model, we first concatenate text to-

kens and video tokens into a se-

quence, perform Rotary Position

Embedding (RoPE) (Su et al., 2024)

on it, and then feed it to multiple MM-DiT (Esser et al., 2024) layers for video modeling. Full
bidirectional attention is adopted in each layer for thorough intra-modal and cross-modal interaction.
To explore the impact of RoPE and Attention, we design three variants and conduct a performance
comparison on MSE-Bench, as shown in Tab. 10. Considering the foundation model has carried
out large-scale pre-training on text-video data, it has attained strong prior knowledge based on
text-then-image RoPE and full attention. This strategy achieves the best performance on Turn-1 to
Turn-3. However, the interleaved RoPE gradually outperforms it as the sequence length increases.
One reason is that the interleaved RoPE arranges the text and image more naturally than the trivial
text-then-image strategy. Finally, block-causal attention performs the worst, which may be attributed
to the limited modality interaction. However, block-causal attention shows strong potential, offering
flexibility in next-block modeling, support for prefill decoding to enable efficient inference, and
compatibility with LLMs, which we leave for future work.

Impact of Camera Motion in Training Video Data. In most editing scenarios, consistency is
highly required. To delve into possible entanglement issues of camera and object movement, we have
adopted a disentanglement learning strategy consisting of: 1) Explicit annotation of camera change
(see the instruction in Sec. C.2); 2) Incorporation of camera prompt wrapped in special tokens, such as
“[###CAMERA: pan-left###]”, during training; 3) Use of static camera prompt, i.e., “[###CAMERA:
None###]”, during inference. This strategy enables the model to disentangle camera movement from
object dynamics, allowing flexible camera control based on application needs. The results shown in
Tab. 9 verify its effectiveness in improving consistency.

D.5 ADDITIONAL PERFORMANCE COMPARISON ON STORY KEYFRAME GENERATION

Tab. 11 provides a quantitative comparison of story keyframe generation performance between our
method and the recent method, i.e., In-context LoORA Huang et al. (2024) on the benchmark introduced
in LCT (Guo et al., 2025), serving as empirical evidence of the effectiveness of our approach. In this
work, we aim to introduce a general video-driven learning framework to unlock in-context image
editing and generation, with story keyframe generation being one potential application. Due to the
limited time, we focus on multi-turn image editing, while more comprehensive evaluation of other
capabilities, including story generation, is left for future work.
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Replace the wooden table with a white
Change the blender’s exterior to have a metallic marble surface and add another small red
finish. decoration.

’T a |
Add a rainbow, and blue
sky and cloudy days
interweave.

It appears to be snowing.

Change the grass court to a clay court.

- o il painti | Generate a monochrome-  Transform this image into
ransform it into an oil painting style. style animation. a Pointillist artwork.

Figure 14: Zero-shot qualitative results of single-turn image editing on cases uncommonly present in
video data. The model was only trained with interleaved session data from video, T2I data, and T2V

data.
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S Turn 1: Remove the person from the chair.

E Turn 2: Add a cat sitting on the chair.

@ Turn 3: Change the chair color o vibrant pink.

= Turn 4: Replace the background with an urban park scene.

8 Turn 5: Change the image style to resemble comic book art.
Turn 1 Turn 2 Turn 3 Turn 4 Turn 5
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Figure 15: Qualitative comparison (1/4) between our method and recent baselines on MSE-Bench.
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S Turn 1: Add a rainbow arching across the sky.

g Turn 2: Change the kayak's appearance to feature intricate patterns.

@ Tumn 3: Add a duck sitting calmly on the kayak.

% Turn 4: Replace the sky with a starry night featuring a crescent moon.

3 Turn 5: Add a lily pad beside the kayak on the river surface.
Turn 1 Turn 2 Turn 3 Turn 4 Turn 5
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Figure 16: Qualitative comparison (2/4) between our method and recent baselines on MSE-Bench.
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S Turn 1: Add a small puppy playing near the girl.

g Turn 2: Change the color of the girl's coat to teal.

@ Turn 3: Replace the snowy background with a spring meadow.

g Turn 4: Move the fire hydrant slightly to the right.

c/g) Turn 5: Change the girl's posture to crouching as if she is petting the puppy.
Turn 1 Turn 2 Turn 3 Turn 4 Turn 5
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Ours* (7B) + SFT  Nano Banana*

Figure 17: Qualitative comparison (3/4) between our method and recent baselines on MSE-Bench.

33



Under review as a conference paper at ICLR 2026

S Turn 1: Remove the tree from the left side of the image.
E Turn 2: Change the background fo a highland mountain landscape.
@ Turn 3: Alter the Defender's paint to a metdllic silver color.
e Turn 4: Replace the Defender with a vintage convertible car.
=) . . . 9
3 Turn 5: Apply a cinematic color filter to the image.
Turn 1 Turn 2 Turn 3 Turn 4 Turn 5
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Ours* (7B) + SFT Nano Banana*

Figure 18: Qualitative comparison (4/4) between our method and recent baselines on MSE-Bench.
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E ADDITIONAL APPLICATION EXAMPLES

E.1 IMAGE EDITING

Single-turn Image Editing. In addition to common scene changes present in video data, we observe
that our model generalizes well to uncommon cases, such as abrupt environmental shifts, complex
style transfers, and material transformations (Fig. 14). This capability may arise for two reasons.
First, although infrequent, such patterns (e.g., environmental changes) are still present in our training
corpus. Second, the model is initialized from a video foundation model that has been extensively
pre-trained on both T2I and T2V data, enabling it to internalize high-level concepts such as style and
material. These derived capabilities can be naturally transferred to the image editing setting.

Multi-turn Image Editing. As shown in Fig. 15, we compare our method with several baselines,
including HQ-Edit (Hui et al., 2024), UltraEdit (Zhao et al., 2024), OmniGen (Xiao et al., 2024),
and GPT-40. The results reveal several key observations: 1) Most existing models suffer from error
accumulation, leading to increasingly severe artifacts across editing turns. 2) These accumulated errors
often degrade prompt-following performance, where the model fails to execute edits as instructed
once artifacts dominate. 3) While GPT-40—a strong proprietary model—achieves competitive results,
it may exhibit inconsistencies in some cases compared to our method. 4) Overall, these comparisons
highlight the effectiveness of training on native video data for achieving coherent and prompt-aligned
multi-turn image editing. Additional qualitative examples are provided in Fig. 26, Fig. 27, Fig. 28,
and Fig. 29, further demonstrating the strong prompt-following and consistency of our approach
across multiple editing turns.

E.2 MULTI-CONCEPT COMPOSITION

In-context Image Generation. In Fig. 19, we present qualitative results on in-context image
generation for multi-concept composition, which requires both composition and strong identity
preservation. These examples demonstrate that only training on video data (without any fine-tuning)
can effectively unlock compositional capabilities, despite the rarity of such patterns in typical video
content. This emergent behavior highlights the potential of video-based pre-training. Further scaling
of model capacity, compute resources, and video data may enable the emergence of even more
advanced capabilities.

In-context Image Editing. In addition, we conducted further supervised fine-tuning on the X2I2 (Wu
et al., 2025b) dataset to explore more advanced multi-concept composition abilities. The qualita-
tive results (Fig. 20) on in-context image editing indicate that even lightweight SFT substantially
incentivizes more powerful compositional editing abilities, highlighting the effectiveness of our video-
driven pre-training. Notably, compared with Fig. 19, our fine-tuned model generalizes beyond
object-centric concepts, such as background, color, and expression, despite these concepts being
uncommon in the fine-tuning dataset (Wu et al., 2025b).

E.3 STORY GENERATION

Since our method is trained on native video data, it inherently captures the underlying storylines
present in the sequences. As illustrated in Fig.21, we formulate story generation as a multi-turn image
editing task, guided by transition prompts between key frames during inference. These examples
showcase the model’s ability to follow prompts while maintaining coherence and consistency across
turns. When combined with existing long video generation methods(Guo et al., 2025), our approach
has the potential to enhance top-down planning for generating coherent long-form story videos.

E.4 CHAIN-OF-EDITING

In Tab. 3, we show the effectiveness of chain-of-editing, i.e., predicting segmentation maps before
performing image editing. The predicted segmentation maps could be viewed as a kind of “thoughts”.
In Fig. 22, we show more qualitative results for challenging cases to demonstrate the effectiveness of
CoE.
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a bowl and a can on top of a white rug

i =

a dog and a dog with a blue house in the
background
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a shiny cat, next to it is a backpack

a dog and a toy with a mountain in the background
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Figure 19: Zero-shot qualitative results of multi-concept composition (in-context generation)
achieved by our method (without any fine-tuning).
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Replace the woman in <IMG2> with the manin  Add the bowl in <IMG1> in front of the toy bear held by the old woman
<IMGD>. in <IMG2>.

Apply the background color from <IMG1> Swap the background in <IMG2> with the same red brick background
to <IMG2>. from <IMG1>.

A\

Make the girl in <IMG2> have the same expression ~Recolor the helmet in <IMG2> using the color of the sweater
with the woman in <IMG1>. from <IMG1>.

Figure 20: Qualitative results of multi-concept composition (in-context editing) achieved by our
method. Our model is fine-tuned on the X2I2 (Wu et al., 2025b) dataset, but the shown transferred
concepts (e.g., background, color, and expression) are uncommon in X212. It demonstrates the strong
generalization ability conferred by pre-training on video-based interleaved data.
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Character 1: A woman with long brown hair, wearing a light-colored top.

Turn 1:

Turn 2:

Turn 3:
Turn 4:

Turn 5:

Turn 6:

Turn 7:

Transform the scene from a large robot crashing amidst debris with people scattering to a focused battle scene between two robots ina
city street.

Transition from a dynamic battle scene involving robots in a damaged urban setting to a close-up of a woman operating a vehicle's controls,
emphasizing personal struggle over large-scale action.

Make the woman's expression more desperate. Add a thin metallic object to her hand to indicate urgency in her actions.

Transition from an interior vehicle scene with Character 1 trying to start the car, to an outdoor chaotic city scene featuring a giant robot,
soldiers, and a passing black car.

Shift from a smoky, chaotic city street scene with a towering robot and watching soldiers to a close-up, detailed view of the robot's face
with glowing red eyes, eliminating the context and ambient elements.

widen the focus from the robot's face to include a scene of combat with intense explosions and debris, adding context and action to the
static appearance of the robot in frame 1.

Decrease the flames and smoke to expose the robots and enhance their details in the frame.

Character 1: A man with curly hair wearing a patterned blue shirt.
Character 2: A man with short, slightly curly hair, a mustache, and a goatee, wearing a blue shirt.
Character 3: A person with long gray hair and a cowboy hat.

Turn 1:
Turn 2:

Turn 3:

Turn 4:

Turn 5:

Shift focus from Character 1 to Character 2 holding the wine glass to his nose, with Character 1 slightly repositioned to the background.
Add Character 1 to the second frame, adjusting Character 2's pose to hold the wine glass similar o the second frame, while maintaining
the indoor wine room's ambiance and lighting.

Widen the shot to include a third character with long gray hair and a cowboy hat behind the counter, and add several wine bot tles on the
counter to transform the scene from a close-up to a wide shot, encompassing a group tasting session.

Change from a wide shot in a wine tasting room to a medium close-up shot focusing on Character 1 and Character 2 with a blurred
background, removing Character 3 and the visible wine bottles.

Shift the focus from the characters' upper body in Frame 1 to their hands swirling wine glasses in Frame 2, emphasizing the interaction
with the wine.

Figure 21: More qualitative results of story generation achieved by our method.
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Add effervescent bubbles to the bigger champagne glass. ~ Add a cartoon rabbit beside the leftmost broccoli.

= = = =

Add a butterfly at the top of the tree. Add some people in colorful clothes on the road

Add a golden refriever near the Mustang's front bumper.  Rotate the car to angle its front end more prominently

= = = =

Add a small, playful dog following the woman on the bike.  Make the boy perform a small jump.

Make the black and white dog stretch its legs and yawn. Add a small bird perched on the head of the bigger bear.

> = = = = =

Change the action of the skateboarder to performing a
Make the man and woman hold hands under the umbrella. mid-air trick.

= = = = = =

Figure 22: More qualitative results of Chain-of-Editing.
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Source Image w/o CoE w/ CoE

Rotate the bass guitar to create a diagonal orientation

Adjust the posture of the cowboy ornament to mimic a hat-tipping gesture.

¥ Ad

Figure 23: Qualitative comparison between w/o Chain-of-Editing (CoE) and w/ CoE.
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Figure 24: Qualitative results of drag-based image editing.

Move this car upwards Move this car upwards Move this car upwards

Source Image by lcm. by 10cm. by 1m.

Nano Banana

GPT Image 1

Qurs
(darg-based control)

Figure 25: Qualitative comparison for subtle displacement editing.
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E.5 DRAG-BASED IMAGE EDITING

The current and next segmentation prediction tasks introduced in Sec. 3.3 not only support progressive
planning and generation, but also enable controllable editing for enhanced user interaction. One such
application is drag-based image editing for object displacement, scaling, and rotation, as illustrated in
Fig.24. In this setting, users first provide an editing prompt to localize the RoE. Then, drag operations
are applied to perform geometric transformations of the RoE. The transformed segmentation map
driven by the transformation is incorporated into the context, allowing the model to generate a target
image that adheres to the specified edits.

Despite the strong understanding capabilities of VLMs, they may still struggle to detect subtle
semantic or visual differences when two frames differ only minimally. As illustrated in Fig. 25, we
first present qualitative results from the most advanced proprietary systems—GPT Image 1 (OpenAl,
2025a) and Nano Banana (DeepMind & Gemini, 2025)—on the task of subtle displacement editing.
We then showcase our drag-based editing results, demonstrating that this challenging requirement
can be effectively addressed through the more flexible and fine-grained control (i.e., drag). This
comparison highlights the versatility of our method.

F LIMITATIONS

Discussion of Other Potential Limitations. First, we use T5 to encode text, which restricts the
model’s ability to comprehend complex instructions and generate nuanced textual outputs. Integrating
a vision-language model (VLM) into the framework could significantly improve this capability.
Second, while our framework demonstrates preliminary but promising emerging abilities, these
can be further enhanced through supervised fine-tuning (SFT) on high-quality, application-specific
datasets. Lastly, due to the high cost of querying VLM, we annotated only 10M training samples.
Expanding both the model size and the dataset scale presents an exciting avenue for future research.

G FUTURE WORK

In the future, we aim to solve more challenging image creation tasks (Qu et al., 2023; Yang et al.,
2024a; Qu et al., 2024) with complex and compositional prompts, by exploring multimodal chain-
of-thought. Besides, post-training (Qu et al., 2025b; Gong et al., 2025) would stimulate more
potential interesting abilities endowed by learning from videos. Finally, by introducing retrieved
images (Qu et al., 2025a; Chen et al., 2022; Qu et al., 2021) into context, our model could achieve
knowledge-intensive visual creation scenarios via retrieval-augmented generation.
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Turn 1: Add

climbing vines with
flowers around the
bicycle and window.

Turn 1: Add a
bunch of colorful
balloons in the
child's hand.

Turn 1: Add a
fluffy white cat
curled up on the
bed.

Turn 1: Add a
green potted
plant next to
the table lamp.

Turn 1: Add two
small cats.

Turn 2: Apply a
warm, goﬁﬁan
sunlight effect

across the scene.

Turn 2: Replace
the background
with a view of
snowy mountains.

Turn 2: Replace
the floral duvet
with a vibrant

patchwork quilt.

Turn 2: Replace the
two laptop screens
with scenic
landscape images.

Turn 2: Alter the
colors of the

flowers to violet
and blue shades.
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Turn 3: Replace
the reflection in

the window with a

garden scene.

Turn 3: Add two
small snowmen
next to the child.

Turn 3: Replace
the wall with a
mural of a serene
countryside scene.

Turn 3: Change
the black bottle
into a
translucent glass
bottle.

Turn 3: Add ivy
creeping alon
the stone wall.

Turn 4: Increase
the brightness to
give a sunny
winter day effect.

Turn 4: Adjust the
lighting to be
softer and
warmer.

Turn 4: Apply a
colorful glow
effect to the light
from the desk
lamp.

Turn 4: Add two
lavender
butterflies near
the flowers.

Figure 26: More qualitative results (1/4) of multi-turn image editing achieved by our method.
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Turn 1: Add a hand
gently fouching the
giraffe's snout.

Turn 1: Add a large
bouquet of colorful
flowers to the
center of the
table.

Turn 1: Remove the
person from the
chair.

Turn 1: Add glasses
to the teddy bear.

Turn 1: Remove the
solitary tree from
the field.

Turn 1: Remove the
tree from the left
side of the image.

Turn 2: Tilt the
giraffe's head

slightly towards the

woman.

Turn 2: Replace
the writing on the
whiteboard with
an artistic doodle.

Turn 2: Add a cat
sitting on the
chair.

'll('um 2: /'\dd a h
itten playing wit
the bm'):‘k.y 9

Turn 2: Add a
vintage windmill to
the field center.

Turn 2: Change the
background fo a
highland mountain
landscape.
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Turn 3: Replace the
background with an
African savanna

landscape at sunset.

Turn 3: Change the
lighting to create a
warmer and more
inviting ambiance.

Turn 3: Change the
chair color fo
vibrant pink.

Turn 3: Change the
background Yo a
mystical forest.

Turn 3: Enhance the
colors of the
rainbow to make
them more vivid.

Turn 3: Alter the
Defender's paint to
a meftallic silver
color.

Tumn 4: Add a
colorful parrot
flying above the
scene.

Turn 4: Change the
posture of the

nearest person to the

window to point
excitedly outside.

Turn 4: Replace the
background with an
urban park scene.

Turn 4: Add a magical
glow to the scene.

Turn 4: Replace the
cloudy sky with a
clearer one featuring
bright sunlight and
cumulus clouds

Turn 5: Tilt the
camera upwards
slightly to enhance
the giraffe's height
against the sunset.

Turn 5: Replace the
outside view with a
beautiful garden
scene.

Turn 5: Change the
image style fo
resemble comic
book art.

Turn 5: Add a wand
to the teddy
bear's paw.

Turn 5: Apply a
global summer
theme with
brighter colors and
warm lighting.

Turn 4: Replace the
Defender with a
vintage convertible
car.

Turn 5: Apply a
cinematic color
filter to the image.

Figure 27: More qualitative results (2/4) of multi-turn image editing achieved by our method.
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;I'u_rn :“ Add a small,
rien u
sif'ring{)gsvp eyfhe
girl.

Turn 1: Add a
colorful art mural
on the building wall.

Turn 1: Replace the
background with an
urban skyline
during the day.

Turn 1: Add colorful
graffiti art elements
Yo the background.

Turn 1: Replace the
white background with
a vibrant urban street
scene with graffiti.

Turn 2: Change
the girl's sweater
to a vibrant
rainbow pattern.

Turn 2: Replace
the blue truck
with a vintage red
pickup truck.

Turn 2: Change
the shirt color to
deep maroon.

Turn 2: Change the
zombie's posture to
lean forward as if
accelerating.

Turn 2: Add a group
of cartoonish
onlookers admiring
the hot rod.

Turn 3: Replace the
background with a
whimsical park
scene feafuring
blooming trees and
a clear glue sky.

Turn 3: Change the
red door to be open,
revealing a cozy
interior.

Turn 3: Add a
friendly robot
standing beside the
man.

Turn 3: Replace the
zombie's helmet with
a futuristic helmet
design.

Turn 3: Change the
hot rod's color to a
metallic red.
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Turn 4: Change the
girl's pose to make

er appear as if she
is twirling.

Turn 4: Change the
scene to nighttime

with ambient lighting.

Turn 4: Dolly in to
focus on the man and
the robot.

Turn 4: Add stylish
decals to the scooter.

Turn 5: Apply a
soft paswjJ %’I Iter
to the entire image.

Turn 5: Add a black
and white cat
sitting on top of
the truck.

Turn 5: Adjust the
lighting to create a
cool and diffuse
atmosphere.

Turn 5: Introduce a
cityscape background
with street lights and
subtle urban elements.

Turn 4: Apply a dolly-in Turn 5: Add a

camera angle to
emphasize the hot
rod.

cartoon dog playfull
posing on ‘raep hzlod oyf
the hot rod.

Figure 28: More qualitative results (3/4) of multi-turn image editing achieved by our method.
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Turn 1: Add a
background of
colorful blossoms
behind the dog.

Turn 1: Add a small
bird perched on

the cow's shoulder.

Turn 1: Change the
car model's color
to metallic blue.

Turn 1: Remove the
cups and glass of
orange juice from
the fray.

Turn 1: Replace the
teddy bear with a
plush giraffe
wearing a hat.

Turn 2: Change the
dog's expression
tobe more playful
and happy.

Turn 2: Change the
cow's posture to
one of swaying
gently to the music.

Turn 2: Add a classic
leather suitcase on
the car roof.

Turn 2: Add a
small cactus plant
to the tray.

Turn 2: Replace the
greenery with a
colorful garden of
fantastical plants.
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Turn 3: Add a
knitted toy bone
beside the dog.

Turn 3: Replace the
background with a
stylized Parisian
street scene.

Turn 3: Replace the
background with a
vintage urban
street scene.

Turn 3: Change the
flowers from red to
blue.

Turn 3: Change the
irl's dress to
eature rainbow

patterns.

Turn 4: Add colorful
stripes to the
crochet hat.

Turn 4: Adjust the
cow's expression to
show ifdjoyfully
engaged with the
music.

Turn 4: Replace the
hubcaps with wire-
spoke wheels.

Turn 4: Replace the
wall structure with a
rustic wooden
backdrop.

Turn 4: Add a plush

ganda sitting
etween the girl

and the giraffe.

Turn 5: Slightly tilt
the camera up.

Turn 5: Add animated
musical notes around
the cow to show
interaction with the
music.

Turn 5: Add motion
Iigh'f trails to indicate
the car is driving.

Turn 5: Add a vibrant
artificial butterfly on
the cactus.

Turn 5: Transform
the tea set intoa
magical whimsical set.

Figure 29: More qualitative results (4/4) of multi-turn image editing achieved by our method.



