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ABSTRACT

LLM-based agents have seen promising advances, yet they are still limited in
“hard-exploration” tasks requiring learning new knowledge through exploration.
We present GLoW, a novel approach leveraging dual-scale textual world mod-
els, maintaining a trajectory frontier of high-value discoveries at the global scale,
while learning from local trial-and-error in exploration through a Multi-path Ad-
vantage Reflection mechanism which infers advantage-based progress signals to
guide exploration. To evaluate our framework for hard-exploration, we tackle the
Jericho benchmark suite of text-based games, where GLoW achieves a new state-
of-the-art performance for LLM-based approaches. Compared to state-of-the-art
RL-based methods, our approach achieves comparable performance while requir-
ing 100-800× fewer environment interactions.1

1 INTRODUCTION

While LLM agents (Yao et al., 2023; Sumers et al., 2024; Wang et al., 2024) excel at leveraging
vast pre-trained knowledge in tasks such as robotic planning, software engineering, and web au-
tomation (Ahn et al., 2022; Yang et al., 2024; 2025), they are reportedly limited in hard-exploration
problems (Sutton & Barto, 2018; Ecoffet et al., 2019). Hard exploration problems are typically
characterized by large state–action spaces, deceptive local optima, and sparse rewards. These fac-
tors often trap naive exploration in local optima, such that exploration fails to reach deeper states
with rewards. For LLM agents, such problems pose two central challenges: (1) Global learning, for
maintaining long-term knowledge of valuable discoveries during exploration, (2) Local trial-and-
error, for quickly refining exploration policies from sparse environmental feedback. Current LLM
agent approaches such as ReAct (Yao et al., 2023) or Reflexion (Shinn et al., 2023) support local
trial-and-error, but lack mechanisms for long-term knowledge accumulation. Consequently, LLM
agents fall short on hard-exploration tasks that humans can often solve effectively (Cui et al., 2025;
Phan et al., 2025).

In this work, we introduce Global-Local World Models (GLoW), a framework enabling effective
exploration in hard-exploration problems through dual-scale textual world models for global and
local learning. Rather than predicting transition dynamics, these world models encode structured
knowledge from exploration trajectories to guide the LLM agent. Our approach builds on the Go-
Explore (Ecoffet et al., 2019) algorithm, which achieves breakthroughs on hard-exploration prob-
lems by enhancing the exploration capabilities of RL and LLM-based agents (Lu et al., 2025). The
key idea of Go-Explore is to store discovered states into a state archive. Then, based on this archive,
Go-Explore decomposes hard-exploration into alternating between: (1) a selection phase, choosing
a promising state from the archive to return to, and (2) an exploration phase, to continue discov-
ering new states from the selected state. In its original implementation, Go-Explore used hand-
crafted heuristics for selection, and random action sampling for exploration, while later work, such
as IGE (Lu et al., 2025) improved selection to leverage LLM inference.

In this work, our core insight is that both selection and exploration require structured learning from
past exploration experiences, but at different scales: we first enrich beyond an archive of isolated
states, by additionally maintaining a trajectory frontier, which keeps the full temporal context of how
high value states were reached and why progress stalled, into a global world model for richer struc-
tured learning. This allows an LLM-based analysis across the frontier to infer high-value regions

1Code will be open sourced after blind review
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as well as bottleneck states with high future potential, enabling principled state selection in GLoW,
beyond heuristic or LLM-internalized notions of interestingness. At the local scale, to guide explo-
ration actions from the state, we draw insights that advantage-based rewards better capture progress
signals than Q-values (Kazemnejad et al., 2025; Setlur et al., 2025): Our Multi-path Advantage Re-
flection mechanism explores multiple trajectories from the same starting state and leverages LLM
reasoning to infer intermediate advantages at key state-action pairs. Through these advantage sig-
nals, the local world model enables controlled exploration under sparse environmental feedback.

To evaluate the capability of LLM agents in hard-exploration problems, we study the Jericho bench-
mark suite of text-based games (Hausknecht et al., 2019), where the SOTA methods have been
RL-based solutions (Hausknecht et al., 2019; Ammanabrolu & Hausknecht, 2020; Guo et al., 2020)
with ε-greedy or softmax exploration or MCTS-based exploration (Jang et al., 2021; Shi et al., 2025).
However, they suffer from poor sample efficiency, relying on extensive trial-and-error which requires
hundreds of thousands of environment interactions. Meanwhile, existing LLM agents have been
insufficient to address the challenge of learning from exploration in Jericho games, showing limited
performance compared to humans (Cui et al., 2025; Phan et al., 2025).

Through extensive experiments, we show that GLoW improves the performance of LLM-based
agents while achieving orders of magnitude improvement in sample efficiency compared to RL
baselines. Our contributions are summarized as follows:

• We propose GLoW, a novel LLM agent framework for hard-exploration problems through
global-local world models.

• We conduct comprehensive comparisons with existing agent approaches (RL, MCTS,
LLM) and ablation studies to validate components of our method.

• We achieve a new state of the art for LLM-based approaches on Jericho, achieving compa-
rable performance with RL-based SOTA, while reducing environment interactions required
by 100-800×.

2 BACKGROUND

Jericho Benchmark The Jericho benchmark (Hausknecht et al., 2019) remains an unsolved hard-
exploration problem, where the text-based game environments provide two fundamental chal-
lenges (Ammanabrolu & Riedl, 2021): (1) partial observability, requiring agents to construct models
of the world from local textual descriptions, and (2) combinatorial state-action spaces. For ex-
ample in Zork1, the game vocabulary has 697 words and up to five-word commands, resulting in
O(6975) = 1.64 × 1014 possible actions per step, though only a tiny fraction are grammatically
coherent and contextually relevant. As a result, RL approaches, with simple exploration strategies,
incur hundreds of thousands interactions to offset sample inefficiencies in exploration. This makes
Jericho an ideal testbed for evaluating whether agents learn by exploring, rather than brute-force
discovery.

Methods for Hard-Exploration Problems Go-Explore (Ecoffet et al., 2019) achieved break-
throughs in hard-exploration problems by maintaining an archive of discovered states as global
knowledge to (1) select promising states and (2) explore from the state. Algorithm 1 illustrates this
framework, contrasting the original Go-Explore (in gray) with our proposed approach GLoW (in
blue). The original algorithm uses novelty-based heuristics for state selection and random actions
for exploration. XTX (Tuyls et al., 2022) improves upon these with imitation learning for selec-
tion and DQN with curiosity rewards for exploration, while IGE (Lu et al., 2025) leverages LLM
inference for both phases. Our approach introduces two key innovations: (1) a trajectory frontier F
with LLM-based value decomposition for principled state selection, and (2) Multi-path Advantage
Reflection (MAR) for learning from local exploration. Appendix B provides a detailed compari-
son across Go-Explore variants. Beyond the Go-Explore family, MCTS-based methods like MC-
LAVE (Jang et al., 2021) and MC-DML (Shi et al., 2025) leverage tree search with language-driven
exploration and LLM priors respectively, though requiring 400,000+ interactions.

3 METHOD

In this section, we describe the dual-scale learning paradigm of GLoW’s textual world models.

2
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Algorithm 1 Go-Explore with GLoW
1: procedure GO-EXPLORE(s0, niter , n)
2: A ← {(s0, 0)} ▷ Archive of (state, score)
3: F ← ∅ ▷ Trajectory Frontier
4: for i = 1 to niter do
5: Go-Explore: snext ← select(A) ∝ 1

visits(s)α ▷ Novelty-based heuristics
6: GLoW: Wglobal ← gLLM(F) ▷ Principled value decomposition (Sec. 3.1)
7: snext ← alignLLM(A,Wglobal)
8: Go-Explore: τ ← explore(snext) ∝ Random ▷ No learning
9: GLoW:

10: for j = 1 to n do ▷ LLM agent with advantage-driven exploration (Sec. 3.2)
11: τj ← πexplore(snext,Wlocal, {τ1, . . . , τj−1},F)
12: Wlocal ← MAR({τ1, . . . , τj},F)
13: end for
14: Update A, F
15: end for
16: end procedure

3.1 GLOBAL WORLD MODEL FOR STATE SELECTION

The global world model extracts value signals from accumulated exploration trajectories. Unlike
traditional state-based archives, we maintain trajectories in a value-ranked frontier. The global world
model additionally maintains LLM-generated trajectory analysis.

Value-Ranked Trajectory Frontier As the source of value information, the global world model
maintains a trajectory frontier F = {τ1, τ2, ..., τk}, containing the k highest-value trajectories
discovered during exploration, ranked by a value function v : T → R. Each trajectory τi =
(si0, a

i
1, r

i
1, s

i
1, ..., a

i
T , r

i
T , s

i
T ) represents a complete episode generated by the exploration policy

πexplore defined by the LLM agent, where st ∈ S are states, at ∈ A are actions, and rt ∈ R are
rewards. For the trajectory value function v, we use the maximum cumulative reward achieved dur-
ing the episode, v(τi) = maxt∈[1,T ]

∑t
j=1 r

i
j . This is an effective choice for Jericho’s sparse reward

structure, where agents can encounter negative rewards or terminal failures. In contrast to state-only
representations, which lose the context of action and observation sequences, preserving complete
trajectories enables accurate credit assignment and value estimation in sparse-reward environments
where success depends on precise action sequences. For instance, in Zork1, progressing past the
troll requires first acquiring both the lantern and the sword before descending into the cellar, but
only entering the cellar yields a reward. Analyzing complete trajectories, which may each capture
different portions of these sequential dependencies, enables inferring across them that both items
are necessary despite the sparse feedback.

The frontier evolves progressively through iterative exploration. When exploration from selected
states (detailed in Section 3.2) produces trajectory τnew with value v(τnew), the frontier is updated:

Ft+1 = top-k(Ft ∪ {τnew}, v) (1)

This sliding window mechanism ensures the frontier maintains diverse high-value strategies, while
allowing newly discovered superior trajectories to replace outdated ones. For any state si, we can
derive the achieved value v(si) = maxτ∈F,si∈τ v(τ), representing the maximum value reached
from state si across all frontier trajectories. By tracking complete trajectories, the frontier serves as
both an estimator of achieved values and a repository of successful action sequences.

Motivation: Decomposing value for select and explore Inspired by UCB’s value decomposition
which balances exploitation with exploration bonus as:

V̄ (s) + c

√
log(N)

ns

where V̄ (s) is the empirical mean value and the second term is the exploration bonus based on visit
count ns, we annotate two types of values v and v′, corresponding to each term, by analyzing pat-
terns across all frontier trajectories F , to extract a set of critical global states with value annotations:

Wglobal = gLLM(F) = {(s1, v1, v′1), (s2, v2, v′2), . . . , (sk, vk, v′k)} (2)

3
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Here, each (si, vi, v
′
i) represents a critical global state, key semantic landmarks such as exploration

frontiers, bottlenecks, and milestones, identified from frontier analysis by a prompted LLM gLLM ,
where vi denotes the achieved value from si, while v′i reflects LLM’s estimate of future value po-
tential. Importantly, this potential value v′i cannot be derived from trajectory scores alone, requiring
LLM’s reasoning about why trajectories fail and what progress could be achieved by resolving cur-
rent bottlenecks. For instance, a state where multiple trajectories fail might have low achieved value,
but have high potential value when: (1) multiple high-value trajectories converge but fail to progress
further, suggesting unexplored regions beyond, (2) partial solution patterns indicate missing com-
ponents, or (3) environmental hints suggest valuable areas remain undiscovered. This implements
a semantic form of optimism under uncertainty (Auer, 2003; Brafman & Tennenholtz, 2003) where
UCB uses statistical bonuses while we derive optimistic values from LLM analysis of bottlenecks.
See Appendix E.1 for a full example of Wglobal generated for Zork1.

Balancing Exploitation and Exploration in State Selection We maintain a state archive A =
{(si, score(si))} containing discovered states with their achieved scores. Given Wglobal, we select
the next exploration state snext by balancing achieved and potential values via LLM as shown in
Fig. 1-(a). We leverage alignLLM, an LLM-based state selection operation which evaluates how

Require: Frontier F , State archive A
Ensure: Selected state snext

1: Wglobal ← gLLM (F) where
Wglobal = {(s1, v1, v′1), . . . , (sk, vk, v′k)}

vi: achieved, v′i: potential
2: for each state s ∈ A do
3: score[s]← alignLLM (s,Wglobal)
4: end for
5: snext ← argmaxs∈A score[s]
6: return snext

Figure 1: (a) Select procedure in GLoW, (b) Illustration of selection with Global World Model

well each archived state s aligns with the high-value patterns identified in Wglobal using a prompted
LLM (see Appendix D.2 for the full prompt). Since Wglobal contains both achieved and potential
values for key frontier states, this alignment naturally balances exploitation (favoring states similar
to proven high-reward regions), with exploration (prioritizing states near identified bottlenecks with
high potential). Fig. 1-(b) illustrates selection in GLoW with the Global World Model where a new
trajectory (highlighted in gold) has been added to the frontier. Once a state is chosen, we replay
the stored sequence of actions to return to the state2, which becomes the starting point of the next
exploration phase, described in the following section.

3.2 LOCAL WORLD MODEL FOR EXPLORATION

In addition to the selection of states which align with exploration goals with high potential value,
exploration can be enhanced by learning which actions are likely to lead to further progress, which
is the objective of the local world model.

Motivation: From Q-values to Advantages for Exploration Existing LLM learning methods like
self-reflection can be viewed as estimating state-action values (Q-values) from single trajectories.
However, Q-value estimation from sparse rewards is notoriously high-variance (Sutton et al., 1999;
Schulman et al., 2017), and we observe the same challenge in LLM-based learning: inferences from
entire trajectories with sparse feedback are prone to incorrect causal attribution.

Drawing from RL theory, advantage functions A(s, a) = Q(s, a) − V (s) reduce variance by com-
paring actions to a baseline rather than estimating absolute values. Recent work on process reward
models (PRMs) further demonstrates that advantage-based rewards are more suited for exploration,

2Note that this assumes a deterministic environment. We discuss this limitation and possible stochastic
extensions in Appendix F.
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by better capturing progress signals than Q-values, which tend to exploit known strategies (Setlur
et al., 2025; Kazemnejad et al., 2025).

Multi-path Advantage Reflection (MAR) Inspired by TRPO (Schulman et al., 2015), which com-
putes robust advantage in sparse-reward setting over multiple rollouts from the same state, we pro-
pose Multi-path Advantage Reflection to compare multiple trajectories from the same starting state,
to produce pseudo-dense advantage signals from sparse environmental feedback. This effectively
densifies the reward signal by inferring intermediate advantages at key state-action pairs, providing
rich guidance for exploration where environmental rewards are insufficient.

Given a state s selected by the global world model, we perform iterative exploration by sampling n
trajectories sequentially: after each trajectory τi, we perform MAR to extract learnings that inform
the next trajectory τi+1, in the form of world representation Wlocal. This creates a sequence Ts =
{τ1, τ2, ..., τn} where each trajectory benefits from insights gained from previous attempts.

Require: Selected state snext, Frontier F , Ex-
ploration count n

Ensure: Trajectory set Ts
1: Ts ← ∅
2: Wlocal ← ∅
3: for i = 1 to n do
4: τi ← πexplore(snext,Wlocal, Ts,F)
5: Ts ← Ts ∪ {τi}
6: Wlocal ←MAR(Ts,F)

where Wlocal = {(s∗1, As∗1
), ..., (s∗k, As∗

k
)}

7: end for
8: return Ts

Figure 2: (a) Explore procedure in GLoW, (b) Illustration of exploration with Local World Model

Semantic Advantage Representation Concretely, MAR is an LLM operation taking the local ex-
ploration trajectories Ts and frontier trajectories F as inputs, and generating the structured textual
output Wlocal = {(s∗1, As∗1

), ..., (s∗k, As∗k
)}, where s∗1, ..., s

∗
k are critical states (typically 2-4) and

each As∗i
encodes semantic advantages. MAR features two design principles for enhancing the

accuracy of semantic advantage inference: 1) Multi-trajectory comparison enables LLM reasoning
to aggregate over divergent outcomes revealing good/bad actions, or consistent patterns confirming
reliable strategies, while focusing analysis on critical states where these signals are most informa-
tive. 2) The frontier trajectories (representing the best outcomes achieved so far) provide a stable
reference point, grounding the LLM’s evaluation of whether new trajectories constitute meaningful
progress. This implements a functional role analogous to a value baseline through context-based
reasoning rather than numerical subtraction.3

Unlike scalar advantages A(s, a), these semantic advantages capture progress signals not expressed
by sparse rewards, while serving an analogous functional role by guiding exploration policy through
Wlocal. We provide a full example of Wlocal generated for Zork1 in Appendix E.2.

Exploration Policy The local world model enhances the exploration phase by guiding a policy
defined by an LLM agent, as:

πexplore(a|st, ht) = AgentLLM(st, ht,Wlocal, Ts,F) (3)

where ht is the current trajectory history, Ts contains previous trajectories in the same exploration
phase, and the policy leverages both learned advantages from Wlocal and successful strategies from
frontier F . Fig. 2 illustrates exploration in GLoW with the local world model. Consider a trajectory
(gold) that reached the cellar but failed at the troll bottleneck without the sword. After analysis by
the global world model (Fig. 1), which identifies high v′ at the cellar state, this state becomes snext
(orange root, Fig. 2). The local world model drives multiple exploration attempts (purple paths),

3In Appendix A, we provide theoretical motivation showing how multi-trajectory comparison with a stable
reference can reduce variance in numerical advantage estimation. MAR applies these principles through LLM
reasoning rather than explicit numerical computation.
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where MAR identifies advantages for “taking sword” despite no immediate reward. This advan-
tage learning guides successful exploration through the troll bottleneck (rightmost path). Finally, to
address Jericho’s exponential action space, we implement a hybrid approach combining free gener-
ation with soft constraints given by valid actions from the Jericho environment (further details are
provided in Appendix D.4).

4 RESULTS

We evaluate GLoW on the Jericho benchmark suite. We next present baselines (Sec. 4.1), exper-
imental setup (Sec. 4.2), main results demonstrating the effectiveness of GLoW (Sec. 4.3), and
ablation studies (Sec. 4.4) isolating each module contribution. Lastly, we provide detailed analysis
of exploration dynamics in (Sec. 4.5).

4.1 BASELINES

We perform comprehensive comparison against baselines spanning RL-based, MCTS-based, and
LLM-based approaches. Furthermore, we compare with specialized methods for hard-exploration
problems in each type of baseline. All methods assume access to valid actions from Jericho.

RL-Based Methods: DRRN (He et al., 2016) is a value-based RL approach for choice-based
games, learning Q-values for valid actions using GRU encoders and decoders trained via TD loss.
KG-A2C (Ammanabrolu & Hausknecht, 2020) is a on-policy RL agent that adapts Advantage Ac-
tor Critic (A2C) (Mnih et al., 2016), augmented by a dynamic knowledge graph as a state rep-
resentation that is learned during exploration. Similar to DRRN, RC-DQN (Guo et al., 2020) is
a DQN-based agent (Mnih et al., 2015), but leverages object-centric neural reading comprehen-
sion architectures (Seo et al., 2017) for computing Q-values from observations. eXploit-Then-
eXplore (XTX) (Tuyls et al., 2022) is the current state-of-the-art method in Jericho, implementing
Go-Explore with imitation learning on promising trajectories for state selection, and DQN with in-
trinsic curiosity reward for exploration. RL-based methods rely on million-scale interaction data to
learn, leveraging parallel environments for training, with the exception of RC-DQN which leverages
100,000 interactions.

MCTS-Based Methods: Monte Carlo Tree Search is widely adopted for large sequential decision-
making problems (Browne et al., 2012; Silver et al., 2016), which explores effectively by combining
random sampling and tree search. MC-LAVE (Jang et al., 2021) combines MCTS with language-
driven exploration, concentrating search effort on promising actions identified based on value es-
timates from semantically similar past actions. MC-DML (Shi et al., 2025) enhances MCTS by
incorporating LLMs as action priors in the PUCT algorithm (Silver et al., 2016), which balances
exploration and exploitation during tree search. The LLM is equipped with a cross-trial memory
mechanism, allowing it learn from past experiences such as death in Zork1. Both methods require
around 400,000 environment interactions to build comprehensive search trees.

LLM-Based Methods: ReAct (Yao et al., 2023) is the widely adopted standard LLM agent ap-
proach interleaving reasoning and acting. Reflexion (Shinn et al., 2023) is a multi-episode ap-
proach building on ReAct, incorporating self-reflection on each episode to guide future episodes.
In-context Reinforcement Learning (ICRL) (Song et al., 2025) is another multi-episode approach
leveraging in-context reinforcement learning, using cumulative history of past trajectories and re-
wards as context for future episodes. Intelligent Go-Explore (IGE) (Lu et al., 2025) implements
Go-Explore with LLMs, leveraging LLM-based state selection from a state archive, combined with
ReAct-based exploration. As LLM-based baseline methods were not originally applied on Jeri-
cho, we re-implement them for Jericho using the action generation approach with valid action soft-
constraint described in Sec. 3.2. All LLM-based approaches use 1,000 interactions to balance per-
formance and API cost. We provide details of LLM API usage and cost in Appendix C.1.

4.2 EXPERIMENTAL SETUP

Implementation Details Each method is evaluated over 3 random seeds, reporting mean and stan-
dard deviation of maximum achieved scores. ReAct performs 20 independent 50-step episodes.
Reflexion performs 20 trials of 50-step episodes, incorporating sliding-window memories from up

6
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to 10 previous attempts. Likewise, ICRL includes a sliding window of 10 previous trajectories as
in-context examples. IGE and GLoW adaptively alternate between state selection and 50-step ex-
ploration episodes within the total 1,000 step budget. We found 50 steps to be sufficient for baseline
agents, as they typically plateau early on puzzles or repetitive action loops before reaching this limit.
We use temperature 0.5 for all methods except IGE, which uses 0.3 following Lu et al. (2025). For
GLoW hyperparameters, n=3 exploration trajectories and k=5 trajectory frontier size is used.

Evaluation We evaluate on 10 games from the Jericho benchmark (Hausknecht et al., 2019), span-
ning different difficulty levels. Following the benchmark’s categorization, we test on possible
games (Pentari, Detective, Temple, Ztuu) featuring moderate puzzles and frequent rewards, diffi-
cult games (Zork1, Zork3, Deephome, Ludicorp) requiring more complex inventory management,
puzzle-solving and navigation, and extreme games (Enchanter) involving non-standard actions and
spell mechanics. We use the standard Jericho interface providing textual observations and access to
valid actions at each step. Unlike some prior work, we do not augment observations with explicit
“look” or “inventory” commands, instead allowing agents to learn these through play.

Games
RL-based MCTS-based LLM-based

DRRN KG-A2C RC-DQN XTX MC-LAVE MC-DML ReAct Reflexion ICRL IGE GLoW (Ours)

Steps 1,000,000 1,600,000 100,000 800,000 ∼400,000 ∼400,000 1000 1000 1000 1000 1000

Enchanter 20 12.1 20 52.0 – 20±0.0 46.7±9.4 48.3±9.4 43.3±8.5 50.0±7.1 61.7±20.1

Zork1 32.6 40.2±0.4 38.8 103.4±10.9 45.2 48.66±1.89 48.3±4.7 48.0±5.0 51.7±4.7 44.3±0.5 73.0±4.5

Zork3 0.5 0.0 2.83 4.2±0.1 – 3±0.0 3.0±0.0 2.7±0.5 3.0±0.0 3.7±0.9 4.3±0.9

Deephome 1 20±2.1 1 77.7±2.1 35 67±1.41 11.0±4.2 22.0±1.6 24.0±5.7 71.3±4.9 75.0±8.7

Ludicorp 13.8 19.8±1.0 17 78.8 22.8 19.67±1.7 19.7±0.9 21.7±1.2 32.0±7.1 28.3±11.3 73.7±11.0

Balances 10 10 10 24 10 10±0.0 10±0.0 10±0.0 11.7±2.4 10.0±0.0 16.7±2.4

Pentari 27.2 44±0.9 43.8 49.6 68 70±0.0 30.0±0.0 30.0±0.0 26.7±4.7 30.0±0.0 30.0±0.0

Detective 197.8 338±3.4 291.3 312.2 330 346.67±9.43 113.3±4.7 166.7±20.5 233.3±47.8 316.7±4.7 310.0±8.2

Temple 7.4 8 8 – 8±0.0 8±0.0 8.7±0.9 8.7±0.9 8±0.0 13.7±0.9 13.0±0.0

Ztuu 21.6 5±0.0 – – 7 23.67±1.9 18.7±2.4 18.3±2.6 16.7±4.1 15.0±9.1 29.3±4.0

Table 1: Comparison of RL-based, MCTS-based, and LLM-based methods on Jericho benchmark
games. We report mean ± standard deviation over 3 runs following prior works (Tuyls et al. (2022);
Shi et al. (2025)). Bold indicates best overall performance, and underline indicates second-best.
Steps shows total environment interactions. The color of game name indicates original game dif-
ficulty categories from Hausknecht et al. (2019): extreme, difficult, and possible. GLoW achieves
state-of-the-art among LLM-based approaches in 7/10 games, and is overall best among all com-
pared approaches in 3/10, second-best in 5/10.

4.3 MAIN RESULTS

We report our main results in Table 1. GLoW achieves a new state-of-the-art performance among
LLM approaches across 7 out of 10 games. On Zork1, a canonical game of the Jericho suite,
our method reaches a score of 73.0, a significant improvement over the next best LLM method
(ICRL at 51.7), and surpassing all compared approaches (with the exception of XTX), including RL
and MCTS baselines that use orders of magnitude more interactions. We observe the same strong
improvements over the closest LLM method in Ludicorp (73.7 vs. 32.0 for ICRL), Enchanter (61.7
vs. 50.0 for IGE), Ztuu (29.3 vs. 18.7 for ReAct), and Balances (16.7 vs. 11.7 for ICRL).

Notably, our implementation of baselines with hybrid action generation approach shows surprisingly
strong performance, whereas prior works reported near-zero scores for LLM agents on Jericho (Shi
et al., 2025; Cui et al., 2025; Phan et al., 2025). Our implementation enables ReAct, Reflexion
and ICRL to reach 48.3, 48.0, 51.7 on Zork1, respectively, and similarly on par with RL baselines
such as KG-A2C and RC-DQN across the board. While this reveals the sample efficiency of LLM
agents, these baselines still fall far short of more advanced exploration methods such as XTX and
MC-DML, demonstrating the necessity of effective exploration for LLM agents.

Next we compare GLoW against advanced exploration approaches. First, comparing with IGE
which is the most directly comparable to ours as an LLM-based Go-Explore method, GLoW sub-
stantially outperforms with better performance on 8 out of 10 games. GLoW also achieves com-
petitive performance with state-of-the-art RL and MCTS methods, XTX and MC-DML. We nearly
match the overall state-of-the-art XTX, which uses 800× more interactions, on both Deephome (75.0
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vs. 77.7) and Ludicorp (73.7 vs. 78.8), and notably surpass it on Enchanter (61.7 vs. 52.0). It also
outperforms MC-DML, which employs extensive MCTS-based exploration around 400× more inter-
actions, on most games including Zork1 (73.0 vs. 48.66), Deephome (75.0 vs. 67.0), and Ludicorp
(73.7 vs. 19.67). These results demonstrate that our dual-scale approach combining global world
models for value-based state selection, with advantage learning for exploration, enables significant
performance gains in LLM agents, competitive with sample-intensive RL approaches.

4.4 ABLATION STUDY

To validate the contribution of each component of GLoW, we perform systematic ablations and
report the results in Table 2.

Effectiveness of Local World Model We first analyze the efficacy of our local world model by
ablating MAR. We replace MAR by Reflexion, which performs the same multi-path exploration but
does not leverage our proposed advantage learning, instead performing single-trajectory reflection
on the latest trajectory. The results show that the performance drops significantly across most games,
demonstrating that MAR’s advantage-based formulation more effectively leverages multi-trajectory
information than Reflexion, improving exploration under sparse rewards.

Effectiveness of Global World Model Next, we analyze the effectiveness of the global world
model, which consists of the frontier of high-value trajectories, and the LLM-based value analy-
sis and alignment state selection. We first ablate the LLM-based value analysis Wglobal, leveraging
the raw frontier trajectories for state selection. The negative performance impact shows that, using
LLM to reason across the frontier trajectories to infer potential value is indeed effective. Next, we
ablate the trajectory frontier F altogether, such that it is not used for state selection or leveraged by
the exploration policy. This causes further decrease in performance, confirming the contribution of
the trajectory frontier in both phases.

Synergy of LWM and GWM Finally, we ablate all the above components together. The resultant
model is similar to IGE, with multi-path Reflexion for exploration. The results show that simply
adding multi-path reflection does not lead to a clear improvement over IGE, indicating that the
overall performance of GLoW comes from the complementary synergy of its components.

Ablation Variants Zork1 Zork3 Enchanter Deephome Ludicorp Balances

GLoW (Full) 73.0±4.5 4.3±0.9 61.7±20.1 75.0±8.7 73.7±11.0 16.7±2.4

✗ [Local WM] Multi-path Advantage Reflection (MAR) 70.0±13.6 4.3±0.5 51.7±9.4 56.7±21.7 54.7±22.4 11.7±2.4

✗ [Global WM] State selection with Wglobal 62.0±15.6 4.3±0.9 60.0±10.8 61.3±26.0 63.3±14.7 13.3±2.4

✗ [Global WM] Trajectory frontier F 61.7±1.9 4.0±0.8 53.3±10.3 57.7±23.3 63.3±12.3 11.7±2.4

✗ All above 51.3±5.2 4.3±0.9 51.7±9.4 56.0±21.2 22.0±0.8 10.0±0.0

Standard IGE 44.3±0.5 3.7±0.9 50.0±7.1 71.3±4.9 28.3±11.3 10.0±0.0

Table 2: Ablation study on GLoW components. We evaluate the contribution of: (1) Local world
model through MAR, (2) Global world model for state selection, (3) trajectory frontier F .

4.5 ANALYSIS

Controlling global vs. local focus with n exploration parameter We study the tradeoff between
local learning depth and global exploration coverage by varying n, the number of explorations per
selected state. Larger n enables MAR to learn from more trajectories, while smaller n increases state
selection frequency, helping escape local minima. With budget B=1000 and steps s=50, minimum
state selections is m = ⌊B/(s · n)⌋ − 1. With n=1, MAR is turned off. With n>1, MAR analyzes
n-1 local trajectories plus the global frontier trajectories.

Table 3 shows that extreme values of n generally yield suboptimal performance. When n=1, ef-
fectively disabling MAR, performance drops significantly on certain games like Ludicorp (34.0 vs
73.7 with n=3). Conversely, Deephome shows consistent improvement with increasing n, suggest-
ing it particularly benefits from deeper local exploration. The results demonstrate that moderate
increases in n improve performance across several games, consistent with our theoretical motiva-
tion (Appendix A) that MAR should benefit from multi-trajectory comparisons. However, setting
n=5 begins to degrade performance, as excessive commitment to individual exploration phases re-
duces minimum state selection frequency to just 3, increasing susceptibility to local optima. These
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Table 3: Controlling the focus on global (less explorations per state but more frequent state selec-
tion) vs local learning (more explorations per state). The results demonstrate n=3 exploration from
promising states strikes a good balance between the two.

Explorations
per State

Max. Steps per
Exploration Phase

Min. State
Selection Zork1 Zork3 Enchanter Deephome Ludicorp Balances

1 (no MAR) 50× 1 19 59.0±5.7 3.7±0.9 58.3±9.4 59.7±22.6 34.0±15.6 13.3±4.7

2 (MAR w/ 1) 50× 2 9 67.3±8.7 3.7±1.2 55.0±7.1 43.3±26.6 66.0±3.7 11.7±2.4

3 (MAR w/ 2) 50× 3 5 73.0±4.5 4.3±0.9 61.7±20.1 75.0±8.7 73.7±11.0 16.7±2.4

4 (MAR w/ 3) 50× 4 4 63.0±6.5 4.3±0.9 66.7±10.3 73.7±4.5 62.0±12.4 16.7±2.4

5 (MAR w/ 4) 50× 5 3 59.3±13.8 4.0±0.8 46.7±6.2 76.3±6.8 53.3±7.0 15.0±0.0

findings indicate that balancing global and local learning is crucial. We select n=3 as our default
parameter, as it achieves the best overall performance by providing sufficient trajectories for robust
advantage estimation while maintaining adequate state selection frequency to escape local minima.

5 RELATED WORKS

Go-Explore-based Methods Go-Explore (Ecoffet et al., 2019) enables effective exploration in
sparse-reward environments by decomposing exploration into state selection and exploration
IGE (Lu et al., 2025) adapts Go-Explore for LLMs, using LLM-based ”promisingness” for state
selection and ReAct for exploration. However, IGE’s limited exploration and ill-defined selection
criteria limit its effectiveness in complex environments like Jericho. Our work addresses these limi-
tations through principled value decomposition for selection, and multi-path advantage learning for
exploration.

Agents for Text-based Games RL approaches to Jericho include DRRN (He et al., 2016), KG-
A2C (Ammanabrolu & Hausknecht, 2020), and RC-DQN Guo et al. (2020), and the aforementioned
XTX, where all are sample-intensive, relying on hundreds of thousands of interactions. MCTS-
based methods like MC-LAVE Jang et al. (2021) and MC-DML Shi et al. (2025) leverage tree
search but still rely on a similar scale of interactions. We show that LLM agents can achieve compa-
rable performance to RL methods, while requiring orders of magnitude fewer interactions through
structured exploration and learning mechanisms.

Learning in LLM Agents Recent works have studied how LLMs can learn from experience. Reflex-
ion (Shinn et al., 2023) enables learning through self-reflection on failed attempts, while in-context
reinforcement learning (ICRL) (Song et al., 2025) leverages previous trajectories’ history as context.
However, these approaches struggle with sparse rewards due to noisy learning signals. Our MAR
mechanism addresses this challenge through multi-path advantage-based learning, providing more
robust learning signals.

World Models for LLM Agents While traditional world models in model-based RL focus on tran-
sition dynamics (Ha & Schmidhuber, 2018; Hafner et al., 2024), recent works adopt an expanded
paradigm of world models as mechanisms for implicit representations of task-relevant knowl-
edge Ding et al. (2025); Li et al. (2024). Li et al. (2024) formalize this notion through state ab-
straction theory Abel (2022), showing that effective LLM agents build goal-oriented abstractions
without recovering full dynamics. GLoW ’s dual-scale textual world models align with this view,
where the global world model extracts value decompositions across global discoveries, while the
local world model captures semantic advantage signals for exploration.

6 CONCLUSION

We introduce GLoW, a dual-scale world model framework to tackle hard-exploration problems.
GLoW leverages a global world model that enables principled decomposition of state values, and
a local world model that integrates trajectories from the same state as controlled exploration feed-
backs. Our approach achieves state-of-the-art performance among LLM methods on the challeng-
ing Jericho benchmark, while matching RL-based methods that require 800× more environment
interactions. By learning global value patterns across discoveries, and local progress signals from
multi-path exploration, GLoW overcomes a key limitation of LLM agents in hard-exploration tasks,
demonstrating a sample efficient yet high performance results.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details in the
paper. Algorithm 2 provides the complete pseudocode for GLoW, and hyperparameters are detailed
in Section 4.2 (n=3 exploration trajectories, temperature=0.5, k=5 frontier size, 1000 environment
steps). All prompts used for the global world model (Appendix D.1), LLM-based state selection
(Appendix D.2), MAR (Appendix D.3), and exploration policy (Appendix D.4) are provided in
full. Experiments use GPT-4.1-mini-2025-04-14 as the LLM backbone, reporting results
averaged over 3 random seeds with standard deviations. We implement all LLM baselines using
the same action generation approach (Section 3.2) for fair comparison. The Jericho benchmark is
publicly available, and we use the standard evaluation protocol from Hausknecht et al. (2019). Code
implementation will be publicly released upon publication.
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A THEORETICAL MOTIVATION FOR MULTI-PATH ADVANTAGE REFLECTION

A.1 VARIANCE REDUCTION THROUGH MULTI-TRAJECTORY COMPARISON

The design of MAR draws motivation from classical results on variance reduction in advantage
estimation. We present this theoretical background that inspired our approach, noting that MAR
implements these principles through LLM reasoning rather than explicit numerical computation.

Proposition 1. Consider n trajectories {τ1, ..., τn} starting from state s. For any state s∗ visited
by m ≤ n of these trajectories, an advantage estimate computed by averaging over m trajectory
outcomes has variance reduced by factor 1/m compared to a single-trajectory estimate, assuming
bounded variance across trajectories:

Var[Âmulti(s
∗)] ≤

Var[Âsingle(s
∗)]

m

Proof. For a trajectory j passing through state s∗ and taking action aj , let Rj(s
∗, aj) denote the

random variable representing the sum of future rewards from s∗ onward. This provides an unbiased
estimate of the true Q(s∗, aj).

The single-trajectory advantage estimate for action a is:

Âsingle(s
∗, a) = Rj(s

∗, a)− V̂ (s∗)

where V̂ (s∗) is an estimate of the state value. This estimate has high variance because it relies on a
single sample: Var[Âsingle(s

∗, a)] = Var[Rj(s
∗, a)] when V̂ (s∗) is held constant.

Now consider a multi-trajectory approach. From the m trajectories passing through s∗, let ma

denote the number of trajectories taking action a. Averaging outcomes yields an improved Q-value
estimate:

Q̂multi(s
∗, a) =

1

ma

∑
j:aj=a

Rj(s
∗, a)

Using basic properties of variance for independent random variables with equal variance σ2
a:

Var[Q̂multi(s
∗, a)] = Var

 1

ma

∑
j:aj=a

Rj

 =
1

m2
a

·ma · σ2
a =

σ2
a

ma

This shows variance reduction by factor ma for the Q-estimate. For the baseline, incorporating a
stable reference (such as outcomes from previously successful trajectories) rather than a fluctuating
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estimate further reduces variance. Under the assumption that this stable baseline has low variance
relative to the Q-estimate, the variance of the advantage estimate is dominated by the Q-component:

Var[Âmulti(s
∗, a)] ≈ Var[Q̂multi(s

∗, a)] =
σ2
a

ma
≤ σ2

a

1
= Var[Âsingle(s

∗, a)]

For any action with ma ≥ 1 samples, we achieve variance reduction by a factor of ma. □

A.2 CONNECTION TO MAR

The proposition above motivates why multi-trajectory comparison with a stable baseline can reduce
variance in advantage estimation. While not directly approximating the numerical quantity, MAR
operationalizes these principles through LLM reasoning rather than explicit numerical computation:

Multi-trajectory aggregation. Rather than computing the average 1
ma

∑
j Rj , MAR prompts the

LLM to reason across multiple trajectories from the same starting state, identifying consistent pat-
terns and divergent outcomes. This achieves a benefit analogous to variance reduction through
averaging, as the LLM can implicitly weigh evidence from multiple outcomes when inferring which
actions led to better progress.

Stable baseline via frontier. The frontier F serves an analogous role to the stable V̂ (s∗) in the
proposition. Like target networks in DQN (Mnih et al., 2015) that update periodically to provide
stable targets, F updates only when superior trajectories are discovered, providing a consistent ref-
erence point for the LLM’s evaluation of whether new trajectories constitute meaningful progress.

B ALGORITHMS

We provide the detailed overview of Go-Explore-based algorithms in Alg. 3, and the full algorithm
of GLoW in Alg. 2.

C CONTAMINATION CHECK

Table 4: Data contamination analysis: LLM accuracy (%) on navigation questions without seeing
gameplay.

Game # Questions Accuracy (%)

Zork1 230 10.9
Zork3 194 8.2
Enchanter 239 9.2
Detective 66 9.1
Balances 54 1.9
Library 26 15.4
Pentari 70 1.4
Deephome 288 17.0
Temple 92 12.0
Ludicorp 320 19.7
Ztuu 71 9.9

To assess whether large language models have prior knowledge of Jericho games, we conducted
a data contamination analysis following the methodology of Tsai et al. (2025). We evaluate con-
tamination by testing whether models can navigate between locations without being shown any
gameplay. Specifically, we: (1) collect a walkthrough trajectory by executing up to 300 steps from
each game’s built-in Jericho walkthrough actions, (2) build a graph of locations and transitions from
this walkthrough, (3) generate navigation questions asking for paths between observed locations,
and (4) query the model with these questions without providing any context. Navigation questions
take the form: “In [GAME], what steps would you take to go to [LOCATION B] from [LOCATION

14
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Algorithm 2 GLoW: Global-Local World Models
1: procedure GLOW(s0, niter , n, k)
2: F ← ∅ ▷ Initialize frontier
3: A ← {(s0, 0)} ▷ Initialize state archive
4: for i = 1 to niter do
5: snext ← SELECTSTATE(F , A)
6: T ← EXPLORE(snext, F , n)
7: UPDATEARCHIVE(T , F , A, k)
8: end for
9: return argmaxτ∈F v(τ)

10: end procedure
11:
12: procedure SELECTSTATE(F , A)
13: Wglobal ← gLLM(F)
14: snext ← argmaxs∈A alignLLM(s,Wglobal) ▷ Select state based on decomposed value
15: return snext
16: end procedure
17:
18: procedure EXPLORE(s, F , n)
19: T ← ∅ ▷ Initialize trajectory set for current exploration phase
20: Wlocal ← ∅
21: for j = 1 to n do
22: τj ← πexplore(s,Wlocal, T ,F) ▷ Rollout full trajectory from s
23: T ← T ∪ {τj}
24: Wlocal ← MAR(T , F )
25: end for
26: return T
27: end procedure
28:
29: procedure MAR(T , F )
30: Wlocal ← fLLM(T ,F) ▷ Extract semantic advantages at key states
31: return Wlocal
32: end procedure
33:
34: procedure UPDATEARCHIVES(T , F , A, k)
35: for τ ∈ T do
36: F ← top-k(F ∪ {τ}, v) ▷ Update the trajectory frontier
37: for s′ ∈ τ do
38: A ← A∪ {(s′, score(s′))} ▷ Add states to state archive
39: end for
40: end for
41: end procedure

A]?” We evaluate responses using strict pattern matching with word boundaries, requiring the exact
sequence of navigation commands to appear consecutively in the model’s response.

Table 4 shows results of contamination checks for GPT-4.1-mini across 11 Jericho games. We
observe minimal contamination, with all games showing below 20% accuracy. Most games (8 out of
11) show less than 10% accuracy, consistent with random guessing or generic text adventure knowl-
edge. The slightly higher accuracies for Ludicorp (19.7%), Deephome (17.0%), and Library (15.4%)
likely reflect the model providing common navigation commands (e.g., ”go south”) that occasionally
match by chance. Even famous games like Zork1 (10.9%) show accuracy near chance level, while
less-known games like Balances (1.9%) and Pentari (1.4%) show essentially no prior knowledge.
These low accuracy rates, combined with the model’s generic responses that lack game-specific de-
tails, indicate that our experimental results reflect genuine exploration and reasoning capabilities
rather than memorized solutions.

C.1 LLM API COST

We use gpt-4.1-mini-2025-04-14 for all LLM components ($0.40/$1.60 per million in-
put/output tokens). Per-run costs of all LLM-based approaches with 1,000 environment steps range

15
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Algorithm 3 Go-Explore-based Algorithms
1: procedure GO-EXPLORE-FAMILY(s0, niter)
2: A ← {(s0, 0)} ▷ Archive of (state, score)
3: F ← ∅ ▷ Trajectory Frontier
4: for i = 1 to niter do

— Go Phase (State Selection) —
5: Go-Explore A: snext ∼ Uniform(A) ▷ Random sampling
6: Go-Explore B: snext ∼ P (s) ∝ 1

visits(s)α ▷ Novelty
7: Go-Explore C: snext ∼ P (s) ∝ domain(s) ▷ Domain heuristics
8: XTX: snext ← ImitationLearning(T ) ▷ Imitation learning
9: IGE: snext ← LLM.SelectPromising(A) ▷ Ill-defined promising-ness

10: GLoW: Wglobal ← gLLM(F) ▷ Principled value decomposition (Sec. 3.1)
11: snext ← alignLLM(A,Wglobal)
12:

— Explore Phase —
13: Go-Explore: τ ← RandomActions(snext) ▷ No learning
14: XTX: τ ← DQN(snext) ▷ DQN with curiosity reward
15: IGE: τ ← ReAct(snext) ▷ Standard LLM agent
16: GLoW:
17: for j = 1 to n do ▷ LLM agent with advantage-driven exploration (Sec. 3.2)
18: τj ← πexplore(snext,Wlocal, {τ1, . . . , τj−1},F)
19: Wlocal ← MAR({τ1, . . . , τj},F)
20: end for
21: F ← top-k(F ∪ {τ1, . . . , τn}, v) ▷ Update trajectory frontier
22:

— Archive Update —
23: for each state s′ in τ do
24: if IsNotRedundant(s′,A) then ▷ Domain-specific novelty
25: A ← A∪ {s′}
26: end if
27: end for
28: end for
29: end procedure

from $1 to $7, maintaining practicality for research iteration. For experiments with stronger LLMs,
we use gpt-4.1-2025-04-14 for all LLM components ($2.00/$8.00 per million input/output
tokens). Per-run costs range from $7.5 to $45.00, demonstrating that while stronger models increase
costs by 5-6×, the relative efficiency of our approach remains consistent with ∼40% fewer tokens
than ICRL, while achieving superior performance.

Table 5: Comparison of LLM API costs with GPT-4.1-mini. We report average the token consump-
tion and costs across 6 games (Zork1, Zork3, Deephome, Ludicorp, Detective, Temple).

Method Input tokens Output tokens Total tokens Avg. cost/run

ICRL 17.6M 43.1K 17.6M $7.10
GLoW 10.9M 115.1K 11.0M $4.54
Reflexion 7.2M 50.6K 7.3M $2.98
IGE 3.9M 44.1K 3.9M $1.61
ReAct 2.6M 35.5K 2.6M $1.08

Table 6: Comparison of LLM API costs with GPT-4.1. We report the average token consumption
and costs across the same 6 games.

Method Input tokens Output tokens Total tokens Avg. cost/run

ICRL 22.4M 55.1K 22.5M $45.24
GLoW 13.3M 126.2K 13.4M $27.58
Reflexion 9.9M 62.5K 10.0M $20.31
IGE 4.9M 64.2K 5.0M $10.33
ReAct 3.5M 58.2K 3.5M $7.45
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D PROMPTS

We present the full prompts used in GLoW. Our prompts rely solely on simple instructions and
structured output formats without requiring few-shot exemplars, enabling the method to generalize
across diverse game scenarios.

D.1 FRONTIER TRAJECTORY ANALYSIS

Analysis (gLLM) Prompt

Analyze these successful game trajectories to identify patterns and
strategy:

{For each trajectory in F:}
Trajectory N (Peak: X, Final: Y):
[score] action -> observation (reward: +/-N if non-zero)
[score] action -> observation
...

Based on these trajectories, provide a strategic analysis:

1. FRONTIER & EXPLORATION STATUS:
- What areas/locations have been successfully reached?
- What remains unexplored or inaccessible?

2. GAME CHECKPOINTS & PROGRESS:
- What are the key milestones/checkpoints identified?
- What items or abilities unlock new areas?
- What phase of the game are we in?

3. BOTTLENECKS & CHALLENGES:
- Where do trajectories commonly get stuck?
- What obstacles block further progress?
- What resources or knowledge are we missing?

4. REWARD STRUCTURE:
- When and how are points earned?
- What actions yield the highest rewards?
- Are there patterns to the scoring?

5. NEXT INVESTIGATION GOALS:
- What specific objectives should we pursue?
- Which unexplored areas are most promising?
- What items or states do we need to reach?

Provide a concise strategic summary focusing on actionable
insights.

D.2 STATE SELECTION

State Selection (alignLLM) Prompt

=== STRATEGIC GAME ANALYSIS ===
{Analysis of frontier trajectories Wglobal}
==================================================

Based on the above analysis, select the state from the archive
that:
- Best aligns with the identified investigation goals
- Can help overcome identified bottlenecks

17
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- Explores promising frontiers
- Has potential for high rewards based on patterns

Current state archive:

0: [Score: X, Steps: Y, Visits: Z]
Observation: {state observation}
Inventory: {state inventory}

1: [Score: X, Steps: Y, Visits: Z]
Observation: {state observation}
Inventory: {state inventory}

...

Choose state index (0-N).
Respond in JSON format:
{
"thought": "Your reasoning about which state best aligns with the

strategic goals",
"index": <number>
}

D.3 MULTI-PATH ADVANTAGE REFLECTION (MAR)

The MAR prompt generates Wlocal as described in Section 3.2, identifying critical decision points
and their associated advantages from multiple exploration trajectories. The prompt incorporates
three inputs: (1) the global trajectory frontier containing highest-value trajectories that serve as
value baselines, (2) local exploration attempts from the current phase showing different outcomes
from the same starting state, and (3) previous Wlocal outputs when available, enabling cumulative
learning within the exploration phase.

By comparing outcomes across these trajectory sources, MAR produces Wlocal = {(s∗i , As∗i
)}ki=1,

identifying where specific actions provide clear advantages. This semantic representation captures
causal relationships (e.g., “taking the lamp enables combat in darkness”) rather than strictly scalar
values, enabling the exploration policy to leverage both statistical patterns from trajectory compari-
son and LLM reasoning about game mechanics at critical states.

Wlocal Generation Prompt (MAR)

Review these exploration attempts and identify KEY STATE
ADVANTAGES:

{Previous Wlocal from earlier iterations, if any}

{Global frontier trajectories F}

{Local exploration trajectories from state s}

Analyze all trajectories and identify ADVANTAGES at KEY STATES:

For each important location/state observed across ALL attempts,
list:
- STATE: [description of state/location]
- ADVANTAGES discovered:
• [specific action] → [specific benefit/outcome] (score impact if

clear)
• [what to avoid] → [consequence] (score impact if clear)
• [optimal sequence] → [why it’s better]

18
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Example format:
STATE: At the house entrance with lamp
- ADVANTAGES:
• "go east" → finds sword (enabled +15 points later)
• "open mailbox first" → gets crucial map (+5 immediate)
• avoid "go upstairs" early → wastes moves in empty attic (-7

overall)

Focus on:
1. States that appear across multiple attempts (to see different
outcomes)
2. Critical decision points where scores diverged significantly
3. Action sequences that consistently led to success or failure
4. Items or information that enabled later progress

Provide 2-4 KEY STATES with their discovered advantages.
Be specific about actions, items, and locations from the actual
game.

D.4 EXPLORATION POLICY IN GLOW

The prompt for the exploration policy in GLoW is shown below. We instruct the LLM to use a JSON
output format with reasoning and action fields.

Hybrid Action Space While previous works use either constrained selection from valid actions in
RL agents (Hausknecht et al., 2019; Ammanabrolu & Hausknecht, 2020; Tuyls et al., 2022) or pure
free-form generation in LLM agents such as ReAct, we provide the valid actions to the LLM as a soft
constraint, while still allowing free-form generation. This avoids failure modes of both approaches,
where constrained selection can harm action diversity, while pure generation can produce many
invalid actions. As shown in Section 4.2, this hybrid approach, which we use consistently across
both GLoW as well as all LLM baselines, significantly improves the base LLM performance with
only a lightweight prompt and no few-shot examples.

System Prompt

You are exploring a text adventure game. Your goal is to make
progress and increase your score.

Generate actions that explore new possibilities and make progress.

Respond in JSON format:
{
"thought": "Your reasoning about what to try",
"action": "the exact command to execute"
}

User Prompt (at initial step)

{Context includes: WLocal, global frontier trajectories F, previous
exploration trajectories, and the current trajectory.}
==================================================

Step 1:
Observation: {current observation}
Score: {current score}
Valid actions: {comma-separated list of valid actions}

What is your next move?
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User Prompt (subsequent steps)

Step {N}:
Observation: {current observation}
Score: {current score}
Valid actions: {comma-separated list of valid actions}

What is your next move?

E QUALITATIVE EXAMPLES

E.1 GLOBAL WORLD MODEL

Global World Model Example (Zork1)

Strategic Analysis of Game Trajectories

==================================================

1. FRONTIER & EXPLORATION STATUS

Successfully Reached Areas:
- Starting point: Mailbox and House exterior (north, south, east,
west of house)
- Forest Path and Clearing with grating
- Up a Tree (bird’s nest with egg and leaflet)
- Behind House (window entry)
- Kitchen and Living Room inside the house
- Attic (Trajectory 1)
- Cellar and Troll Room (Trajectory 1 & 2)

Unexplored or Inaccessible Areas:
- Upstairs beyond the dark staircase (pitch black, dangerous)
- West door with gothic lettering (nailed shut)
- Crawlway south in cellar and forbidding hole west in Troll Room
- Steep metal ramp in cellar (unclimbable)
- Chasm area (Trajectory 1 ends in death)
- Any further passages beyond troll or trap door

==================================================

2. GAME CHECKPOINTS & PROGRESS

Key Milestones:
- Obtaining jewel-encrusted egg and leaflet from mailbox/tree
- Using egg and leaflet in grating to unlock cellar access
- Entering house via window and acquiring items (food, garlic,
water, lantern, sword, rope, knife)
- Opening trap door and descending into cellar
- Defeating or engaging troll in cellar

Items/Abilities Unlocking New Areas:
- Egg + Leaflet → Grating → Cellar entrance
- Lantern (turned on) → Safe navigation in dark cellar
- Sword (elvish, glowing) → Combat with troll
- Rope and knife (potential utility, not fully leveraged yet)
- Food, garlic, water (likely survival or puzzle items)

Current Phase: Early-to-mid game - exploration of house and
cellar, initial combat encounters
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==================================================

3. BOTTLENECKS & CHALLENGES

Common Stuck Points:
- Combat with troll (Trajectories 1 & 2 end in death or near death)
- Navigating dark areas without proper light (pitch black upstairs)
- Attempting risky actions (jumping over chasm leads to death)
- Locked or barred doors (gothic door, trap door closing behind
player)

Obstacles Blocking Progress:
- Physical barriers (nailed door, barred trap door)
- Hostile NPC (troll)
- Environmental hazards (darkness, chasm)
- Limited inventory or missing key items

Missing Resources/Knowledge:
- Effective combat strategy or stronger weaponry to defeat troll
safely
- Means to reopen or bypass barred trap door
- Safe traversal methods for chasm or dark upstairs
- Possible puzzle solutions involving rope, knife, or other items

==================================================

4. REWARD STRUCTURE

When Points Are Earned:
- +5 for taking the egg
- +10 for acquiring food and water items in kitchen
- +25 for entering cellar (significant milestone)
- +5 for moving north from troll room to passage
- -10 on death and respawn (penalty)

Highest Reward Actions:
- Descending into cellar (+25)
- Collecting key items early (+5 to +10)
- Progressing past major checkpoints

Scoring Patterns:
- Early exploration yields small incremental rewards
- Major area transitions yield large rewards
- Death penalizes score, encouraging cautious play

==================================================

5. NEXT INVESTIGATION GOALS

Specific Objectives:
- Develop reliable strategy to defeat or bypass troll without dying
- Investigate use of rope and knife for puzzles or combat
- Explore crawlway south and forbidding hole west in troll room
- Find safe method to cross or bypass chasm
- Attempt to open or circumvent nailed gothic door

Most Promising Unexplored Areas:
- Crawlway south and forbidding hole west in cellar/troll room
- Upstairs dark staircase (with lantern or other light source)
- Beyond barred trap door if it can be reopened
- Areas beyond chasm once safe crossing method found
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E.2 LOCAL WORLD MODEL

Local World Model Example (Zork1)

Based on detailed exploration attempts, here are KEY STATES with
discovered advantages:

==================================================

STATE: The Troll Room
Small room with passages east/south, hole west; troll blocks all
exits; sword glows

ADVANTAGES:
- "hit troll with sword" → kills troll, clears all exits for
exploration (score: 40)
- "take axe" after troll death → obtains valuable weapon for later
puzzles
- avoid engaging without glowing sword → likely failure
- optimal: kill troll first, then take axe (mandatory to proceed)

==================================================

STATE: Maintenance Room (Flood Control Dam #3)
Room with colored buttons, tool chests, wrench, screwdriver,
toothpaste, leaking pipe

ADVANTAGES:
- "take wrench, screwdriver, tube" → essential tools for
environment interaction
- "push blue button" → triggers leak, raises water level to access
new areas
- "push red button" → toggles lights, affects water level
- avoid throwing lantern → breaks critical light source
- optimal: collect tools → manage buttons → control water without
drowning

==================================================

STATE: Temple / Torch Room / Dome Room / Altar
Large temple with inscriptions; dome with railing; rope for
descent; ivory torch; brass bell; gold coffin

ADVANTAGES:
- "take ivory torch" → stable light for deeper cave exploration
- "take bell" → key item for spirit/wraith interaction
- "ring bell at Entrance to Hades" → paralyzes wraiths, enables
passage
- "blow out candles" → enables safe descent or passage
- optimal: acquire torch → bell → sceptre → manipulate altar →
control spirits

==================================================

STATE: East-West Passage / Chasm Area
Narrow passage with stairs; chasm with paths; multiple routes
(north/east/west/up/down)

ADVANTAGES:
- "east" then "north" → leads to Reservoir South and further areas
- "tie rope to railing" → enables safe descent into lower levels
- avoid getting stuck in loops → wastes moves
- optimal: explore chasm edges → use rope for vertical → access
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Dome/Torch

==================================================

Cross-Cutting Insights:
- Inventory Management: Strategic dropping/picking essential for
critical artifacts
- Light Preservation: Maintaining lantern/torch crucial for dark
exploration
- Combat Readiness: Glowing sword indicates combat opportunity
(essential for progress)

F ASSUMPTION OF ENVIRONMENT DETERMINISM

Our implementation assumes deterministic environments, which is leveraged by the state restoration
mechanism which replays actions to return to a selected state. This limits applicability in stochas-
tic environments where action replay may not return to the intended state. Our trajectory-based
design facilitates intuitive extensions to such settings, where a potential approach is framing state
restoration as a goal-reaching problem guided by replay trajectories.

We note that the MAR component naturally handles stochasticity since it samples multiple explo-
ration paths from a selected state and performs inference over the paths as a set, enabling the LLM-
based analysis to reflect on observed stochastic variations.

G SCALING WITH STRONGER LLMS

Games
RL LLM-based

GPT-4.1 mini GPT-4.1

XTX ReAct Rfl ICRL IGE GLoW ReAct Rfl ICRL IGE GLoW

Steps 800K 1K 1K 1K 1K 1K 1K 1K 1K 1K 1K

Enchanter 52.0 46.7±9.4 48.3±9.4 43.3±8.5 50.0±7.1 61.7±20.1 38.3±2.4 58.3±2.4 45±7.1 68.3±18.4 98.3±4.7

Zork1 103.4±10.9 48.3±4.7 48.0±5.0 51.7±4.7 44.3±0.5 73.0±4.5 45.0±0.0 54.3±4.5 48.0±2.8 86.7±24.1 103.0±6.8

Zork3 4.2±0.1 3.0±0.0 2.7±0.5 3.0±0.0 3.7±0.9 4.3±0.9 3.3±0.5 2.7±0.5 3.0±0.8 3.0±0.0 5.0±0.0

Deephome 77.7±2.1 11.0±4.2 22.0±1.6 24.0±5.7 71.3±4.9 75.0±8.7 32.3±19.6 22.3±1.7 34.7±18.7 82.0±8.6 114.7±27.8

Ludicorp 78.8 19.7±0.9 21.7±1.2 32.0±7.1 28.3±11.3 73.7±11.0 31.0±2.8 29.0±0.8 31.7±0.5 89.0±7.8 79.0±16.8

Balances 24 10±0.0 10±0.0 11.7±2.4 10.0±0.0 16.7±2.4 18.3±2.4 18.3±2.4 16.7±2.4 16.7±2.4 26.7±2.4

Table 7: Results comparing GPT-4.1 mini and GPT-4.1 on Extreme/Difficult games. XTX (best RL
method) is shown for reference.

To validate that GLoW generalizes across model capabilities, we evaluated with GPT-4.1 on the 6
Extreme/Difficult games. GLoW with GPT-4.1 surpasses XTX on 5 out of 6 games while using
800× fewer interactions, showing that GLoW is robust across LLMs.

H LLM USAGE

We utilized Claude for minor grammar and language edits in paper writing.
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