

000 DUAL-SCALE WORLD MODELS FOR LLM AGENTS 001 002 TOWARDS HARD-EXPLORATION PROBLEMS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 LLM-based agents have seen promising advances, yet they are still limited in
012 “hard-exploration” tasks requiring *learning new knowledge through exploration*.
013 We present GLoW, a novel approach leveraging dual-scale textual world
014 models, maintaining a trajectory frontier of high-value discoveries at the global scale,
015 while learning from local trial-and-error in exploration through a Multi-path Ad-
016 vantage Reflection mechanism which infers advantage-based progress signals to
017 guide exploration. To evaluate our framework for hard-exploration, we tackle the
018 Jericho benchmark suite of text-based games, where GLoW achieves a new state-
019 of-the-art performance for LLM-based approaches. Compared to state-of-the-art
020 RL-based methods, our approach achieves comparable performance while requir-
021 ing 100-800 \times fewer environment interactions.¹
022

023 1 INTRODUCTION

024 While LLM agents (Yao et al., 2023; Sumers et al., 2024; Wang et al., 2024) excel at leveraging
025 vast pre-trained knowledge in tasks such as robotic planning, software engineering, and web au-
026 tomation (Ahn et al., 2022; Yang et al., 2024; 2025), they are reportedly limited in *hard-exploration*
027 *problems* (Sutton & Barto, 2018; Ecoffet et al., 2019). Hard exploration problems are typically
028 characterized by large state-action spaces, deceptive local optima, and sparse rewards. These fac-
029 tors often trap naive exploration in local optima, such that exploration fails to reach deeper states
030 with rewards. For LLM agents, such problems pose two central challenges: (1) Global learning, for
031 maintaining long-term knowledge of valuable discoveries during exploration, (2) Local trial-and-
032 error, for quickly refining exploration policies from sparse environmental feedback. Current LLM
033 agent approaches such as ReAct (Yao et al., 2023) or Reflexion (Shinn et al., 2023) support local
034 trial-and-error, but lack mechanisms for long-term knowledge accumulation. Consequently, LLM
035 agents fall short on hard-exploration tasks that humans can often solve effectively (Cui et al., 2025;
036 Phan et al., 2025).

037 In this work, we introduce **Global-Local World Models** (GLoW), a framework enabling effective
038 exploration in hard-exploration problems through dual-scale *textual world models* for global and
039 local learning. Rather than predicting transition dynamics, these world models encode structured
040 knowledge from exploration trajectories to guide the LLM agent. Our approach builds on the Go-
041 Explore (Ecoffet et al., 2019) algorithm, which achieves breakthroughs on hard-exploration prob-
042 lems by enhancing the exploration capabilities of RL and LLM-based agents (Lu et al., 2025). The
043 key idea of Go-Explore is to store discovered states into a *state archive*. Then, based on this archive,
044 Go-Explore decomposes hard-exploration into alternating between: (1) a *selection* phase, choosing
045 a *promising* state from the archive to return to, and (2) an *exploration* phase, to continue discov-
046 ering new states from the selected state. In its original implementation, Go-Explore used hand-
047 crafted heuristics for selection, and random action sampling for exploration, while later work, such
048 as IGE (Lu et al., 2025) improved selection to leverage LLM inference.

049 In this work, our core insight is that both selection and exploration require structured learning from
050 past exploration experiences, but at different scales: we first enrich beyond an archive of isolated
051 states, by additionally maintaining a trajectory frontier, which keeps the full temporal context of how
052 high value states were reached and why progress stalled, into a **global world model** for richer struc-
053 tured learning. This allows an LLM-based analysis across the frontier to infer high-value regions

¹Code will be open sourced after blind review

as well as bottleneck states with high future potential, enabling principled state selection in GLoW, beyond heuristic or LLM-internalized notions of interestingness. At the local scale, to guide exploration actions from the state, we draw insights that advantage-based rewards better capture progress signals than Q-values (Kazemnejad et al., 2025; Setlur et al., 2025): Our Multi-path Advantage Reflection mechanism explores multiple trajectories from the same starting state and leverages LLM reasoning to infer *intermediate advantages at key state-action pairs*. Through these advantage signals, the **local world model** enables controlled exploration under sparse environmental feedback.

To evaluate the capability of LLM agents in hard-exploration problems, we study the Jericho benchmark suite of text-based games (Hausknecht et al., 2019), where the SOTA methods have been RL-based solutions (Hausknecht et al., 2019; Ammanabrolu & Hausknecht, 2020; Guo et al., 2020) with ϵ -greedy or softmax exploration or MCTS-based exploration (Jang et al., 2021; Shi et al., 2025). However, they suffer from poor sample efficiency, relying on extensive trial-and-error which requires **hundreds of thousands** of environment interactions. Meanwhile, existing LLM agents have been insufficient to address the challenge of learning from exploration in Jericho games, showing limited performance compared to humans (Cui et al., 2025; Phan et al., 2025).

Through extensive experiments, we show that GLoW improves the performance of LLM-based agents while achieving orders of magnitude improvement in sample efficiency compared to RL baselines. Our contributions are summarized as follows:

- We propose GLoW, a novel LLM agent framework for hard-exploration problems through global-local world models.
- We conduct comprehensive comparisons with existing agent approaches (RL, MCTS, LLM) and ablation studies to validate components of our method.
- We achieve a new state of the art for LLM-based approaches on Jericho, achieving comparable performance with RL-based SOTA, while reducing environment interactions required by 100-800 \times .

2 BACKGROUND

Jericho Benchmark The Jericho benchmark (Hausknecht et al., 2019) remains an unsolved hard-exploration problem, where the text-based game environments provide two fundamental challenges (Ammanabrolu & Riedl, 2021): (1) partial observability, requiring agents to construct models of the world from local textual descriptions, and (2) combinatorial state-action spaces. For example in Zork1, the game vocabulary has 697 words and up to five-word commands, resulting in $O(697^5) = 1.64 \times 10^{14}$ possible actions per step, though only a tiny fraction are grammatically coherent and contextually relevant. As a result, RL approaches, with simple exploration strategies, incur hundreds of thousands interactions to offset sample inefficiencies in exploration. This makes Jericho an ideal testbed for evaluating whether agents learn by exploring, rather than brute-force discovery.

Methods for Hard-Exploration Problems Go-Explore (Ecoffet et al., 2019) achieved breakthroughs in hard-exploration problems by maintaining an archive of discovered states as global knowledge to (1) *select* promising states and (2) *explore* from the state. Algorithm 1 illustrates this framework, contrasting the original Go-Explore (in gray) with our proposed approach GLoW (in blue). The original algorithm uses novelty-based heuristics for state selection and random actions for exploration. XTX (Tuyls et al., 2022) improves upon these with imitation learning for selection and DQN with curiosity rewards for exploration, while IGE (Lu et al., 2025) leverages LLM inference for both phases. Our approach introduces two key innovations: (1) a trajectory frontier \mathcal{F} with LLM-based value decomposition for principled state selection, and (2) Multi-path Advantage Reflection (MAR) for learning from local exploration. Appendix B provides a detailed comparison across Go-Explore variants. Beyond the Go-Explore family, MCTS-based methods like MC-LAVE (Jang et al., 2021) and MC-DML (Shi et al., 2025) leverage tree search with language-driven exploration and LLM priors respectively, though requiring 400,000+ interactions.

3 METHOD

In this section, we describe the dual-scale learning paradigm of GLoW’s textual world models.

108 **Algorithm 1** Go-Explore with GLoW

```

109
110 1: procedure GO-EXPLORE( $s_0, n_{iter}, n$ )
111 2:    $\mathcal{A} \leftarrow \{(s_0, 0)\}$                                  $\triangleright$  Archive of (state, score)
112 3:    $\mathcal{F} \leftarrow \emptyset$                                  $\triangleright$  Trajectory Frontier
113 4:   for  $i = 1$  to  $n_{iter}$  do
114 5:     Go-Explore:  $s_{next} \leftarrow select(\mathcal{A}) \propto \frac{1}{visits(s)^\alpha}$            $\triangleright$  Novelty-based heuristics
115 6:     GLoW:  $W_{\text{global}} \leftarrow g_{\text{LLM}}(\mathcal{F})$                                  $\triangleright$  Principled value decomposition (Sec. 3.1)
116 7:      $s_{next} \leftarrow align_{\text{LLM}}(\mathcal{A}, W_{\text{global}})$ 
117 8:     Go-Explore:  $\tau \leftarrow explore(s_{next}) \propto \text{Random}$            $\triangleright$  No learning
118 9:     GLoW:
119 10:    for  $j = 1$  to  $n$  do                                 $\triangleright$  LLM agent with advantage-driven exploration (Sec. 3.2)
120 11:       $\tau_j \leftarrow \pi_{\text{explore}}(s_{next}, W_{\text{local}}, \{\tau_1, \dots, \tau_{j-1}\}, \mathcal{F})$ 
121 12:       $W_{\text{local}} \leftarrow \text{MAR}(\{\tau_1, \dots, \tau_j\}, \mathcal{F})$ 
122 13:    end for
123 14:    Update  $\mathcal{A}, \mathcal{F}$ 
124 15:  end for
125 16: end procedure

```

3.1 GLOBAL WORLD MODEL FOR STATE SELECTION

The global world model extracts value signals from accumulated exploration trajectories. Unlike traditional state-based archives, we maintain trajectories in a value-ranked frontier. The global world model additionally maintains LLM-generated trajectory analysis.

Value-Ranked Trajectory Frontier As the source of value information, the global world model maintains a trajectory frontier $\mathcal{F} = \{\tau_1, \tau_2, \dots, \tau_k\}$, containing the k highest-value trajectories discovered during exploration, ranked by a value function $v : \mathcal{T} \rightarrow \mathbb{R}$. Each trajectory $\tau_i = (s_0^i, a_1^i, r_1^i, s_1^i, \dots, a_T^i, r_T^i, s_T^i)$ represents a complete episode generated by the exploration policy π_{explore} defined by the LLM agent, where $s_t \in \mathcal{S}$ are states, $a_t \in \mathcal{A}$ are actions, and $r_t \in \mathbb{R}$ are rewards. For the trajectory value function v , we use the maximum cumulative reward achieved during the episode, $v(\tau_i) = \max_{t \in [1, T]} \sum_{j=1}^t r_j^i$. This is an effective choice for Jericho’s sparse reward structure, where agents can encounter negative rewards or terminal failures. In contrast to state-only representations, which lose the context of action and observation sequences, preserving complete trajectories enables accurate credit assignment and value estimation in sparse-reward environments where success depends on precise action sequences. For instance, in Zork1, progressing past the troll requires first acquiring both the lantern and the sword before descending into the cellar, but only entering the cellar yields a reward. Analyzing complete trajectories, which may each capture different portions of these sequential dependencies, enables inferring across them that both items are necessary despite the sparse feedback.

The frontier evolves progressively through iterative exploration. When exploration from selected states (detailed in Section 3.2) produces trajectory τ_{new} with value $v(\tau_{\text{new}})$, the frontier is updated:

$$\mathcal{F}_{t+1} = \text{top-}k(\mathcal{F}_t \cup \{\tau_{\text{new}}\}, v) \quad (1)$$

This sliding window mechanism ensures the frontier maintains diverse high-value strategies, while allowing newly discovered superior trajectories to replace outdated ones. For any state s_i , we can derive the achieved value $v(s_i) = \max_{\tau \in \mathcal{F}, s_i \in \tau} v(\tau)$, representing the maximum value reached from state s_i across all frontier trajectories. By tracking complete trajectories, the frontier serves as both an estimator of achieved values and a repository of successful action sequences.

Motivation: Decomposing value for *select* and *explore* Inspired by UCB’s value decomposition which balances exploitation with exploration bonus as:

$$\bar{V}(s) + c \sqrt{\frac{\log(N)}{n_s}}$$

where $\bar{V}(s)$ is the empirical mean value and the second term is the exploration bonus based on visit count n_s , we annotate two types of values v and v' , corresponding to each term, by analyzing patterns across all frontier trajectories \mathcal{F} , to extract a set of critical global states with value annotations:

$$W_{\text{global}} = g_{\text{LLM}}(\mathcal{F}) = \{(s_1, v_1, v'_1), (s_2, v_2, v'_2), \dots, (s_k, v_k, v'_k)\} \quad (2)$$

162 Here, each (s_i, v_i, v'_i) represents a critical global state, key semantic landmarks such as exploration
 163 frontiers, bottlenecks, and milestones, identified from frontier analysis by a prompted LLM g_{LLM} ,
 164 where v_i denotes the achieved value from s_i , while v'_i reflects LLM's estimate of future value potential.
 165 Importantly, this potential value v'_i cannot be derived from trajectory scores alone, requiring
 166 LLM's reasoning about why trajectories fail and what progress could be achieved by resolving current
 167 bottlenecks. For instance, a state where multiple trajectories fail might have *low achieved value*,
 168 but have *high potential value* when: (1) multiple high-value trajectories converge but fail to progress
 169 further, suggesting unexplored regions beyond, (2) partial solution patterns indicate missing components,
 170 or (3) environmental hints suggest valuable areas remain undiscovered. This implements a *semantic* form of optimism under uncertainty (Auer, 2003; Brafman & Tennenholtz, 2003) where
 171 UCB uses statistical bonuses while we derive optimistic values from LLM analysis of bottlenecks.
 172 See Appendix E.1 for a full example of W_{global} generated for Zork1.
 173

174 **Balancing Exploitation and Exploration in State Selection** We maintain a state archive $\mathcal{A} =$
 175 $\{(s_i, \text{score}(s_i))\}$ containing discovered states with their achieved scores. Given W_{global} , we select
 176 the next exploration state s_{next} by balancing achieved and potential values via LLM as shown in
 177 Fig. 1-(a). We leverage align_{LLM} , an LLM-based state selection operation which evaluates how

181 **Require:** Frontier \mathcal{F} , State archive \mathcal{A}
 182 **Ensure:** Selected state s_{next}
 183 1: $W_{global} \leftarrow g_{LLM}(\mathcal{F})$ where
 184 $W_{global} = \{(s_1, v_1, v'_1), \dots, (s_k, v_k, v'_k)\}$
 185 v_i : achieved, v'_i : potential
 186 2: **for** each state $s \in \mathcal{A}$ **do**
 187 3: $\text{score}[s] \leftarrow \text{align}_{LLM}(s, W_{global})$
 188 4: **end for**
 189 5: $s_{next} \leftarrow \arg \max_{s \in \mathcal{A}} \text{score}[s]$
 6: **return** s_{next}

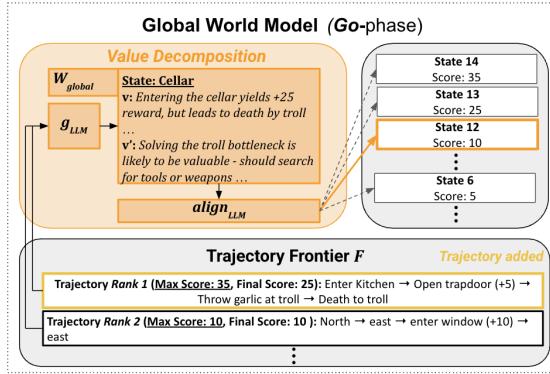


Figure 1: (a) Select procedure in GLoW, (b) Illustration of selection with Global World Model

192 well each archived state s aligns with the high-value patterns identified in W_{global} using a prompted
 193 LLM (see Appendix D.2 for the full prompt). Since W_{global} contains both achieved and potential
 194 values for key frontier states, this alignment naturally balances exploitation (favoring states similar
 195 to proven high-reward regions), with exploration (prioritizing states near identified bottlenecks with
 196 high potential). Fig. 1-(b) illustrates selection in GLoW with the Global World Model where a new
 197 trajectory (highlighted in gold) has been added to the frontier. Once a state is chosen, we replay
 198 the stored sequence of actions to return to the state², which becomes the starting point of the next
 199 exploration phase, described in the following section.

201 3.2 LOCAL WORLD MODEL FOR EXPLORATION

203 In addition to the selection of states which align with exploration goals with high potential value,
 204 exploration can be enhanced by learning which actions are likely to lead to further progress, which
 205 is the objective of the local world model.

206 **Motivation: From Q-values to Advantages for Exploration** Existing LLM learning methods like
 207 self-reflection can be viewed as estimating state-action values (Q-values) from single trajectories.
 208 However, Q-value estimation from sparse rewards is notoriously high-variance (Sutton et al., 1999;
 209 Schulman et al., 2017), and we observe the same challenge in LLM-based learning: inferences from
 210 entire trajectories with sparse feedback are prone to incorrect causal attribution.

211 Drawing from RL theory, advantage functions $A(s, a) = Q(s, a) - V(s)$ reduce variance by com-
 212 paring actions to a baseline rather than estimating absolute values. Recent work on process reward
 213 models (PRMs) further demonstrates that advantage-based rewards are more suited for exploration,

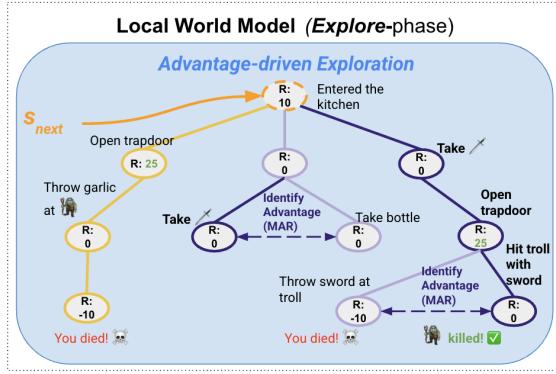
214
 215 ²Note that this assumes a deterministic environment. We discuss this limitation and possible stochastic
 216 extensions in Appendix F.

216 by better capturing progress signals than Q-values, which tend to exploit known strategies (Setlur
 217 et al., 2025; Kazemnejad et al., 2025).

219 **Multi-path Advantage Reflection (MAR)** Inspired by TRPO (Schulman et al., 2015), which com-
 220 putes robust advantage in sparse-reward setting over multiple rollouts from the same state, we pro-
 221 pose Multi-path Advantage Reflection to compare multiple trajectories from the same starting state,
 222 to produce pseudo-dense advantage signals from sparse environmental feedback. This effectively
 223 densifies the reward signal by inferring intermediate advantages at key state-action pairs, providing
 224 rich guidance for exploration where environmental rewards are insufficient.

225 Given a state s selected by the global world model, we perform iterative exploration by sampling n
 226 trajectories sequentially: after each trajectory τ_i , we perform MAR to extract learnings that inform
 227 the next trajectory τ_{i+1} , in the form of world representation W_{local} . This creates a sequence $\mathcal{T}_s =$
 228 $\{\tau_1, \tau_2, \dots, \tau_n\}$ where each trajectory benefits from insights gained from previous attempts.

229
 230
 231 **Require:** Selected state s_{next} , Frontier \mathcal{F} , Ex-
 232 ploration count n
 233 **Ensure:** Trajectory set \mathcal{T}_s
 234 1: $\mathcal{T}_s \leftarrow \emptyset$
 235 2: $W_{local} \leftarrow \emptyset$
 236 3: **for** $i = 1$ to n **do**
 237 4: $\tau_i \leftarrow \pi_{explore}(s_{next}, W_{local}, \mathcal{T}_s, \mathcal{F})$
 238 5: $\mathcal{T}_s \leftarrow \mathcal{T}_s \cup \{\tau_i\}$
 239 6: $W_{local} \leftarrow MAR(\mathcal{T}_s, \mathcal{F})$
 240 where $W_{local} = \{(s_1^*, A_{s_1^*}), \dots, (s_k^*, A_{s_k^*})\}$
 241 7: **end for**
 242 8: **return** \mathcal{T}_s



243 Figure 2: (a) Explore procedure in GLoW, (b) Illustration of exploration with Local World Model

244 **Semantic Advantage Representation** Concretely, MAR is an LLM operation taking the local ex-
 245 ploration trajectories \mathcal{T}_s and frontier trajectories \mathcal{F} as inputs, and generating the structured textual
 246 output $W_{local} = \{(s_1^*, A_{s_1^*}), \dots, (s_k^*, A_{s_k^*})\}$, where s_1^*, \dots, s_k^* are critical states (typically 2-4) and
 247 each $A_{s_i^*}$ encodes *semantic advantages*. MAR features two design principles for enhancing the
 248 accuracy of semantic advantage inference: 1) Multi-trajectory comparison enables LLM reasoning
 249 to aggregate over divergent outcomes revealing good/bad actions, or consistent patterns confirming
 250 reliable strategies, while focusing analysis on critical states where these signals are most informative.
 251 2) The frontier trajectories (representing the best outcomes achieved so far) provide a stable
 252 reference point, grounding the LLM’s evaluation of whether new trajectories constitute meaningful
 253 progress. This implements a functional role analogous to a value baseline through context-based
 254 reasoning rather than numerical subtraction.³

255 Unlike scalar advantages $A(s, a)$, these semantic advantages capture progress signals not expressed
 256 by sparse rewards, while serving an analogous functional role by guiding exploration policy through
 257 W_{local} . We provide a full example of W_{local} generated for Zork1 in Appendix E.2.

258 **Exploration Policy** The local world model enhances the exploration phase by guiding a policy
 259 defined by an LLM agent, as:

$$\pi_{explore}(a|s_t, h_t) = \text{Agent}_{LLM}(s_t, h_t, W_{local}, \mathcal{T}_s, \mathcal{F}) \quad (3)$$

260 where h_t is the current trajectory history, \mathcal{T}_s contains previous trajectories in the same exploration
 261 phase, and the policy leverages both learned advantages from W_{local} and successful strategies from
 262 frontier \mathcal{F} . Fig. 2 illustrates exploration in GLoW with the local world model. Consider a trajectory
 263 (gold) that reached the cellar but failed at the troll bottleneck without the sword. After analysis by
 264 the global world model (Fig. 1), which identifies high v' at the cellar state, this state becomes s_{next}
 265 (orange root, Fig. 2). The local world model drives multiple exploration attempts (purple paths),

266
 267 ³In Appendix A, we provide theoretical motivation showing how multi-trajectory comparison with a stable
 268 reference can reduce variance in numerical advantage estimation. MAR applies these principles through LLM
 269 reasoning rather than explicit numerical computation.

270 where MAR identifies advantages for “taking sword” despite no immediate reward. This advantage learning guides successful exploration through the troll bottleneck (rightmost path). Finally, to
 271 address Jericho’s exponential action space, we implement a hybrid approach combining free generation
 272 with soft constraints given by valid actions from the Jericho environment (further details are
 273 provided in Appendix D.4).
 274

276 4 RESULTS

277 We evaluate GLoW on the Jericho benchmark suite. We next present baselines (Sec. 4.1), experimental setup (Sec. 4.2), main results demonstrating the effectiveness of GLoW (Sec. 4.3), and ablation studies (Sec. 4.4) isolating each module contribution. Lastly, we provide detailed analysis of exploration dynamics in (Sec. 4.5).
 278

283 4.1 BASELINES

284 We perform comprehensive comparison against baselines spanning RL-based, MCTS-based, and LLM-based approaches. Furthermore, we compare with specialized methods for hard-exploration problems in each type of baseline. All methods assume access to valid actions from Jericho.
 285

286 **RL-Based Methods:** **DRRN** (He et al., 2016) is a value-based RL approach for choice-based games, learning Q-values for valid actions using GRU encoders and decoders trained via TD loss.
 287 **KG-A2C** (Ammanabrolu & Hausknecht, 2020) is a on-policy RL agent that adapts Advantage Actor Critic (A2C) (Mnih et al., 2016), augmented by a dynamic knowledge graph as a state representation that is learned during exploration. Similar to DRRN, **RC-DQN** (Guo et al., 2020) is a DQN-based agent (Mnih et al., 2015), but leverages object-centric neural reading comprehension architectures (Seo et al., 2017) for computing Q-values from observations. **eXploit-Then-Explore (XTX)** (Tuyls et al., 2022) is the current state-of-the-art method in Jericho, implementing Go-Explore with imitation learning on promising trajectories for state selection, and DQN with intrinsic curiosity reward for exploration. RL-based methods rely on million-scale interaction data to learn, leveraging parallel environments for training, with the exception of RC-DQN which leverages 100,000 interactions.
 288

300 **MCTS-Based Methods:** Monte Carlo Tree Search is widely adopted for large sequential decision-making problems (Browne et al., 2012; Silver et al., 2016), which explores effectively by combining 301 random sampling and tree search. **MC-LAVE** (Jang et al., 2021) combines MCTS with language- 302 driven exploration, concentrating search effort on promising actions identified based on value 303 estimates from semantically similar past actions. **MC-DML** (Shi et al., 2025) enhances MCTS by 304 incorporating LLMs as action priors in the PUCT algorithm (Silver et al., 2016), which balances 305 exploration and exploitation during tree search. The LLM is equipped with a cross-trial memory 306 mechanism, allowing it learn from past experiences such as death in Zork1. Both methods require 307 around 400,000 environment interactions to build comprehensive search trees.
 308

309 **LLM-Based Methods:** **ReAct** (Yao et al., 2023) is the widely adopted standard LLM agent approach interleaving reasoning and acting. **Reflexion** (Shinn et al., 2023) is a multi-episode approach building on ReAct, incorporating self-reflection on each episode to guide future episodes.
 310 **In-context Reinforcement Learning** (ICRL) (Song et al., 2025) is another multi-episode approach 311 leveraging in-context reinforcement learning, using cumulative history of past trajectories and 312 rewards as context for future episodes. **Intelligent Go-Explore (IGE)** (Lu et al., 2025) implements 313 Go-Explore with LLMs, leveraging LLM-based state selection from a state archive, combined with 314 ReAct-based exploration. As LLM-based baseline methods were not originally applied on Jeri- 315 cho, we re-implement them for Jericho using the action generation approach with valid action soft- 316 constraint described in Sec. 3.2. All LLM-based approaches use 1,000 interactions to balance per- 317 formance and API cost. We provide details of LLM API usage and cost in Appendix C.1.
 318

320 4.2 EXPERIMENTAL SETUP

321 **Implementation Details** Each method is evaluated over 3 random seeds, reporting mean and stan- 322 dard deviation of maximum achieved scores. ReAct performs 20 independent 50-step episodes.
 323 Reflexion performs 20 trials of 50-step episodes, incorporating sliding-window memories from up

324 to 10 previous attempts. Likewise, ICRL includes a sliding window of 10 previous trajectories as
 325 in-context examples. IGE and GLoW adaptively alternate between state selection and 50-step ex-
 326 ploration episodes within the total 1,000 step budget. We found 50 steps to be sufficient for baseline
 327 agents, as they typically plateau early on puzzles or repetitive action loops before reaching this limit.
 328 We use temperature 0.5 for all methods except IGE, which uses 0.3 following Lu et al. (2025). For
 329 GLoW hyperparameters, $n=3$ exploration trajectories and $k=5$ trajectory frontier size is used.

330 **Evaluation** We evaluate on 10 games from the Jericho benchmark (Hausknecht et al., 2019), span-
 331 ning different difficulty levels. Following the benchmark’s categorization, we test on *possible*
 332 games (Pentari, Detective, Temple, Ztuu) featuring moderate puzzles and frequent rewards, *diffi-*
 333 *cult games* (Zork1, Zork3, Deephome, Ludicorp) requiring more complex inventory management,
 334 puzzle-solving and navigation, and *extreme games* (Enchanter) involving non-standard actions and
 335 spell mechanics. We use the standard Jericho interface providing textual observations and access to
 336 valid actions at each step. Unlike some prior work, we do not augment observations with explicit
 337 “look” or “inventory” commands, instead allowing agents to learn these through play.

Games	RL-based				MCTS-based		LLM-based				
	DRRN	KG-A2C	RC-DQN	XTX	MC-LAVE	MC-DML	ReAct	Reflexion	ICRL	IGE	GLoW (Ours)
Steps	1,000,000	1,600,000	100,000	800,000	~400,000	~400,000	1000	1000	1000	1000	1000
Enchanter	20	12.1	20	<u>52.0</u>	—	20 \pm 0.0	46.7 \pm 9.4	48.3 \pm 9.4	43.3 \pm 8.5	50.0 \pm 7.1	61.7\pm20.1
Zork1	32.6	40.2 \pm 0.4	38.8	103.4\pm10.9	45.2	48.66 \pm 1.89	48.3 \pm 4.7	48.0 \pm 5.0	51.7 \pm 4.7	44.3 \pm 0.5	<u>73.0\pm4.5</u>
Zork3	0.5	0.0	2.83	<u>4.2\pm0.1</u>	—	3 \pm 0.0	3.0 \pm 0.0	2.7 \pm 0.5	3.0 \pm 0.0	3.7 \pm 0.9	4.3\pm0.9
Deephome	1	20 \pm 2.1	1	77.7\pm2.1	35	67 \pm 1.41	11.0 \pm 4.2	22.0 \pm 1.6	24.0 \pm 5.7	71.3 \pm 4.9	<u>75.0\pm8.7</u>
Ludicorp	13.8	19.8 \pm 1.0	17	78.8	22.8	19.67 \pm 1.7	19.7 \pm 0.9	21.7 \pm 1.2	32.0 \pm 7.1	28.3 \pm 11.3	<u>73.7\pm11.0</u>
Balances	10	10	10	24	10	10 \pm 0.0	10 \pm 0.0	10 \pm 0.0	11.7 \pm 2.4	10.0 \pm 0.0	<u>16.7\pm2.4</u>
Pentari	27.2	44 \pm 0.9	43.8	49.6	<u>68</u>	70\pm0.0	30.0 \pm 0.0	30.0 \pm 0.0	26.7 \pm 4.7	30.0 \pm 0.0	30.0 \pm 0.0
Detective	197.8	<u>338\pm3.4</u>	291.3	312.2	330	346.67\pm9.43	113.3 \pm 4.7	166.7 \pm 20.5	233.3 \pm 47.8	316.7 \pm 47	310.0 \pm 8.2
Temple	7.4	8	8	—	8 \pm 0.0	8 \pm 0.0	8.7 \pm 0.9	8.7 \pm 0.9	8 \pm 0.0	13.7\pm0.9	<u>13.0\pm0.0</u>
Ztuu	21.6	5 \pm 0.0	—	—	7	<u>23.67\pm1.9</u>	18.7 \pm 2.4	18.3 \pm 2.6	16.7 \pm 4.1	15.0 \pm 9.1	29.3\pm4.0

351 Table 1: Comparison of RL-based, MCTS-based, and LLM-based methods on Jericho benchmark
 352 games. We report mean \pm standard deviation over 3 runs following prior works (Tuyls et al. (2022);
 353 Shi et al. (2025)). **Bold** indicates best overall performance, and underline indicates second-best.
 354 Steps shows total environment interactions. The color of game name indicates original game dif-
 355 ficulty categories from Hausknecht et al. (2019): *extreme*, *difficult*, and *possible*. GLoW achieves
 356 state-of-the-art among LLM-based approaches in 7/10 games, and is overall best among all com-
 357 pared approaches in 3/10, second-best in 5/10.

4.3 MAIN RESULTS

360 We report our main results in Table 1. GLoW achieves a new state-of-the-art performance among
 361 LLM approaches across 7 out of 10 games. On Zork1, a canonical game of the Jericho suite,
 362 our method reaches a score of 73.0, a significant improvement over the next best LLM method
 363 (ICRL at 51.7), and surpassing all compared approaches (with the exception of XTX), including RL
 364 and MCTS baselines that use orders of magnitude more interactions. We observe the same strong
 365 improvements over the closest LLM method in Ludicorp (73.7 vs. 32.0 for ICRL), Enchanter (61.7
 366 vs. 50.0 for IGE), Ztuu (29.3 vs. 18.7 for ReAct), and Balances (16.7 vs. 11.7 for ICRL).

367 Notably, our implementation of baselines with hybrid action generation approach shows surprisingly
 368 strong performance, whereas prior works reported near-zero scores for LLM agents on Jericho (Shi
 369 et al., 2025; Cui et al., 2025; Phan et al., 2025). Our implementation enables ReAct, Reflexion
 370 and ICRL to reach 48.3, 48.0, 51.7 on Zork1, respectively, and similarly on par with RL baselines
 371 such as KG-A2C and RC-DQN across the board. While this reveals the sample efficiency of LLM
 372 agents, these baselines still fall far short of more advanced exploration methods such as XTX and
 373 MC-DML, demonstrating the necessity of effective exploration for LLM agents.

374 Next we compare GLoW against advanced exploration approaches. First, comparing with IGE
 375 which is the most directly comparable to ours as an LLM-based Go-Explore method, GLoW sub-
 376 stantially outperforms with better performance on 8 out of 10 games. GLoW also achieves com-
 377 petitive performance with state-of-the-art RL and MCTS methods, XTX and MC-DML. We nearly
 378 match the overall state-of-the-art XTX, which uses 800 \times more interactions, on both Deephome (75.0

378 vs. 77.7) and Ludicorp (73.7 vs. 78.8), and notably surpass it on Enchanter (61.7 vs. 52.0). It also
 379 outperforms MC-DML, which employs extensive MCTS-based exploration around 400× more interactions,
 380 on most games including Zork1 (73.0 vs. 48.66), Deephome (75.0 vs. 67.0), and Ludicorp
 381 (73.7 vs. 19.67). These results demonstrate that our dual-scale approach combining global world
 382 models for value-based state selection, with advantage learning for exploration, enables significant
 383 performance gains in LLM agents, competitive with sample-intensive RL approaches.

384 4.4 ABLATION STUDY

385 To validate the contribution of each component of GLoW, we perform systematic ablations and
 386 report the results in Table 2.

387 **Effectiveness of Local World Model** We first analyze the efficacy of our local world model by
 388 ablating MAR. We replace MAR by Reflexion, which performs the same multi-path exploration but
 389 does not leverage our proposed advantage learning, instead performing single-trajectory reflection
 390 on the latest trajectory. The results show that the performance drops significantly across most games,
 391 demonstrating that MAR’s advantage-based formulation more effectively leverages multi-trajectory
 392 information than Reflexion, improving exploration under sparse rewards.

393 **Effectiveness of Global World Model** Next, we analyze the effectiveness of the global world
 394 model, which consists of the frontier of high-value trajectories, and the LLM-based value analy-
 395 sis and alignment state selection. We first ablate the LLM-based value analysis W_{global} , leveraging
 396 the raw frontier trajectories for state selection. The negative performance impact shows that, using
 397 LLM to reason across the frontier trajectories to infer potential value is indeed effective. Next, we
 398 ablate the trajectory frontier \mathcal{F} altogether, such that it is not used for state selection or leveraged by
 399 the exploration policy. This causes further decrease in performance, confirming the contribution of
 400 the trajectory frontier in both phases.

401 **Synergy of LWM and GWM** Finally, we ablate all the above components together. The resultant
 402 model is similar to IGE, with multi-path Reflexion for exploration. The results show that simply
 403 adding multi-path reflection does not lead to a clear improvement over IGE, indicating that the
 404 overall performance of GLoW comes from the complementary synergy of its components.

Ablation Variants	Zork1	Zork3	Enchanter	Deephome	Ludicorp	Balances
GLoW (Full)	73.0±4.5	4.3±0.9	61.7±20.1	75.0±8.7	73.7±11.0	16.7±2.4
✗ [Local WM] Multi-path Advantage Reflection (MAR)	70.0±13.6	4.3±0.5	51.7±9.4	56.7±21.7	54.7±22.4	11.7±2.4
✗ [Global WM] State selection with W_{global}	62.0±15.6	4.3±0.9	60.0±10.8	61.3±26.0	63.3±14.7	13.3±2.4
✗ [Global WM] Trajectory frontier \mathcal{F}	61.7±1.9	4.0±0.8	53.3±10.3	57.7±23.3	63.3±12.3	11.7±2.4
✗ All above	51.3±5.2	4.3±0.9	51.7±9.4	56.0±21.2	22.0±0.8	10.0±0.0
Standard IGE	44.3±0.5	3.7±0.9	50.0±7.1	71.3±4.9	28.3±11.3	10.0±0.0

415 Table 2: Ablation study on GLoW components. We evaluate the contribution of: (1) Local world
 416 model through MAR, (2) Global world model for state selection, (3) trajectory frontier \mathcal{F} .

417 4.5 ANALYSIS

418 **Controlling global vs. local focus with n exploration parameter** We study the tradeoff between
 419 local learning depth and global exploration coverage by varying n , the number of explorations per
 420 selected state. Larger n enables MAR to learn from more trajectories, while smaller n increases state
 421 selection frequency, helping escape local minima. With budget $B=1000$ and steps $s=50$, minimum
 422 state selections is $m = \lfloor B/(s \cdot n) \rfloor - 1$. With $n=1$, MAR is turned off. With $n>1$, MAR analyzes
 423 $n-1$ local trajectories plus the global frontier trajectories.

424 Table 3 shows that extreme values of n generally yield suboptimal performance. When $n=1$, ef-
 425 fectively disabling MAR, performance drops significantly on certain games like Ludicorp (34.0 vs
 426 73.7 with $n=3$). Conversely, Deephome shows consistent improvement with increasing n , suggest-
 427 ing it particularly benefits from deeper local exploration. The results demonstrate that moderate
 428 increases in n improve performance across several games, consistent with our theoretical motiva-
 429 tion (Appendix A) that MAR should benefit from multi-trajectory comparisons. However, setting
 430 $n=5$ begins to degrade performance, as excessive commitment to individual exploration phases re-
 431 duces minimum state selection frequency to just 3, increasing susceptibility to local optima. These

432 Table 3: Controlling the focus on global (less explorations per state but more frequent state selec-
 433 tion) vs local learning (more explorations per state). The results demonstrate n=3 exploration from
 434 promising states strikes a good balance between the two.

Explorations per State	Max. Steps per Exploration Phase	Min. State Selection	Zork1	Zork3	Enchanter	Deephome	Ludicorp	Balances
1 (no MAR)	50×1	19	59.0 ± 5.7	3.7 ± 0.9	58.3 ± 9.4	59.7 ± 22.6	34.0 ± 15.6	13.3 ± 4.7
2 (MAR w/ 1)	50×2	9	67.3 ± 8.7	3.7 ± 1.2	55.0 ± 7.1	43.3 ± 26.6	66.0 ± 3.7	11.7 ± 2.4
3 (MAR w/ 2)	50×3	5	73.0 ± 4.5	4.3 ± 0.9	61.7 ± 20.1	75.0 ± 8.7	73.7 ± 11.0	16.7 ± 2.4
4 (MAR w/ 3)	50×4	4	63.0 ± 6.5	4.3 ± 0.9	66.7 ± 10.3	73.7 ± 4.5	62.0 ± 12.4	16.7 ± 2.4
5 (MAR w/ 4)	50×5	3	59.3 ± 13.8	4.0 ± 0.8	46.7 ± 6.2	76.3 ± 6.8	53.3 ± 7.0	15.0 ± 0.0

442 findings indicate that balancing global and local learning is crucial. We select $n=3$ as our default
 443 parameter, as it achieves the best overall performance by providing sufficient trajectories for robust
 444 advantage estimation while maintaining adequate state selection frequency to escape local minima.
 445

446 5 RELATED WORKS

447 **Go-Explore-based Methods** Go-Explore (Ecoffet et al., 2019) enables effective exploration in
 448 sparse-reward environments by decomposing exploration into state selection and exploration
 449 IGE (Lu et al., 2025) adapts Go-Explore for LLMs, using LLM-based “promisingness” for state
 450 selection and ReAct for exploration. However, IGE’s limited exploration and ill-defined selection
 451 criteria limit its effectiveness in complex environments like Jericho. Our work addresses these
 452 limitations through principled value decomposition for selection, and multi-path advantage learning for
 453 exploration.

454 **Agents for Text-based Games** RL approaches to Jericho include DRRN (He et al., 2016), KG-
 455 A2C (Ammanabrolu & Hausknecht, 2020), and RC-DQN Guo et al. (2020), and the aforementioned
 456 XTX, where all are sample-intensive, relying on hundreds of thousands of interactions. MCTS-
 457 based methods like MC-LAVE Jang et al. (2021) and MC-DML Shi et al. (2025) leverage tree
 458 search but still rely on a similar scale of interactions. We show that LLM agents can achieve comparable
 459 performance to RL methods, while requiring orders of magnitude fewer interactions through
 460 structured exploration and learning mechanisms.

461 **Learning in LLM Agents** Recent works have studied how LLMs can learn from experience. Reflexion
 462 (Shinn et al., 2023) enables learning through self-reflection on failed attempts, while in-context
 463 reinforcement learning (ICRL) (Song et al., 2025) leverages previous trajectories’ history as context.
 464 However, these approaches struggle with sparse rewards due to noisy learning signals. Our MAR
 465 mechanism addresses this challenge through multi-path advantage-based learning, providing more
 466 robust learning signals.

467 **World Models for LLM Agents** While traditional world models in model-based RL focus on transition
 468 dynamics (Ha & Schmidhuber, 2018; Hafner et al., 2024), recent works adopt an expanded
 469 paradigm of world models as mechanisms for implicit representations of task-relevant knowledge
 470 Ding et al. (2025); Li et al. (2024). Li et al. (2024) formalize this notion through state abstraction
 471 theory Abel (2022), showing that effective LLM agents build goal-oriented abstractions
 472 without recovering full dynamics. GLoW’s dual-scale textual world models align with this view,
 473 where the global world model extracts value decompositions across global discoveries, while the
 474 local world model captures semantic advantage signals for exploration.

475 6 CONCLUSION

476 We introduce GLoW, a dual-scale world model framework to tackle hard-exploration problems.
 477 GLoW leverages a global world model that enables principled decomposition of state values, and
 478 a local world model that integrates trajectories from the same state as controlled exploration feed-
 479 backs. Our approach achieves state-of-the-art performance among LLM methods on the challenging
 480 Jericho benchmark, while matching RL-based methods that require 800x more environment
 481 interactions. By learning global value patterns across discoveries, and local progress signals from
 482 multi-path exploration, GLoW overcomes a key limitation of LLM agents in hard-exploration tasks,
 483 demonstrating a sample efficient yet high performance results.

486 REPRODUCIBILITY STATEMENT
487

488 To ensure reproducibility of our results, we provide comprehensive implementation details in the
489 paper. Algorithm 2 provides the complete pseudocode for GLoW, and hyperparameters are detailed
490 in Section 4.2 ($n=3$ exploration trajectories, temperature=0.5, $k=5$ frontier size, 1000 environment
491 steps). All prompts used for the global world model (Appendix D.1), LLM-based state selection
492 (Appendix D.2), MAR (Appendix D.3), and exploration policy (Appendix D.4) are provided in
493 full. Experiments use GPT-4.1-mini-2025-04-14 as the LLM backbone, reporting results
494 averaged over 3 random seeds with standard deviations. We implement all LLM baselines using
495 the same action generation approach (Section 3.2) for fair comparison. The Jericho benchmark is
496 publicly available, and we use the standard evaluation protocol from Hausknecht et al. (2019). Code
497 implementation will be publicly released upon publication.

498 REFERENCES
499

500 David Abel. A theory of abstraction in reinforcement learning, 2022. URL <https://arxiv.org/abs/2203.00397>.

501 Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
502 Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
503 Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally
504 Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
505 Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
506 Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
507 Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
508 Zeng. Do as i can, not as i say: Grounding language in robotic affordances, 2022. URL <https://arxiv.org/abs/2204.01691>.

509 Prithviraj Ammanabrolu and Matthew Hausknecht. Graph constrained reinforcement learning for
510 natural language action spaces. In *International Conference on Learning Representations*, 2020.
511 URL <https://openreview.net/forum?id=B1x6w0Etwh>.

512 Prithviraj Ammanabrolu and Mark Riedl. Modeling worlds in text. In *Thirty-fifth Conference on
513 Neural Information Processing Systems Datasets and Benchmarks Track (Round 1)*, 2021. URL
514 <https://openreview.net/forum?id=7FHnnENUG0>.

515 Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. *J. Mach. Learn. Res.*,
516 3(null):397–422, March 2003. ISSN 1532-4435.

517 Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm for near-
518 optimal reinforcement learning. *J. Mach. Learn. Res.*, 3(null):213–231, March 2003. ISSN
519 1532-4435. doi: 10.1162/153244303765208377. URL <https://doi.org/10.1162/153244303765208377>.

520 Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
521 Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
522 A survey of monte carlo tree search methods. *IEEE Transactions on Computational Intelligence
523 and AI in Games*, 4(1):1–43, 2012. doi: 10.1109/TCIAIG.2012.2186810.

524 Christopher Cui, Xingdi Yuan, Ziang Xiao, Prithviraj Ammanabrolu, and Marc-Alexandre Côté.
525 Tales: Text-adventure learning environment suite. *arXiv preprint arXiv:2504.14128*, 2025. URL
526 <https://arxiv.org/abs/2504.14128>.

527 Jingtao Ding, Yunke Zhang, Yu Shang, Yuheng Zhang, Zefang Zong, Jie Feng, Yuan Yuan,
528 Hongyuan Su, Nian Li, Nicholas Sukiennik, Fengli Xu, and Yong Li. Understanding world or
529 predicting future? a comprehensive survey of world models. *ACM Comput. Surv.*, 58(3), September
530 2025. ISSN 0360-0300. doi: 10.1145/3746449. URL <https://doi.org/10.1145/3746449>.

531 Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Go-explore:
532 a new approach for hard-exploration problems. *CoRR*, abs/1901.10995, 2019. URL <http://arxiv.org/abs/1901.10995>.

540 Xiaoxiao Guo, Mo Yu, Yupeng Gao, Chuang Gan, Murray Campbell, and Shiyu Chang. Interactive
 541 fiction game playing as multi-paragraph reading comprehension with reinforcement learning. In
 542 Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020 Confer-
 543 ence on Empirical Methods in Natural Language Processing (EMNLP)*, pp. 7755–7765, Online,
 544 November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.
 545 624. URL <https://aclanthology.org/2020.emnlp-main.624/>.

546 David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In
 547 S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
 548 *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,
 549 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf.

550 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
 551 through world models, 2024. URL <https://arxiv.org/abs/2301.04104>.

552 Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan.
 553 Interactive fiction games: A colossal adventure. In *AAAI 2020*, October 2019.
 554 URL <https://www.microsoft.com/en-us/research/publication/interactive-fiction-games-a-colossal-adventure/>. ArXiv.

555 Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
 556 reinforcement learning with a natural language action space. In Katrin Erk and Noah A. Smith
 557 (eds.), *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
 558 (Volume 1: Long Papers)*, pp. 1621–1630, Berlin, Germany, August 2016. Association for Com-
 559 putational Linguistics. doi: 10.18653/v1/P16-1153. URL <https://aclanthology.org/P16-1153/>.

560 Youngsoo Jang, Seokin Seo, Jongmin Lee, and Kee-Eung Kim. Monte-carlo planning and learning
 561 with language action value estimates. In *International Conference on Learning Representations*,
 562 2021. URL https://openreview.net/forum?id=7_G8JySGecm.

563 Amirsossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
 564 Aaron Courville, and Nicolas Le Roux. VinePPO: Refining credit assignment in RL training
 565 of LLMs. In *Forty-second International Conference on Machine Learning*, 2025. URL
 566 <https://openreview.net/forum?id=Myx2kJFzAn>.

567 Zichao Li, Yanshuai Cao, and Jackie CK Cheung. Do LLMs build world representations? prob-
 568 ing through the lens of state abstraction. In *The Thirty-eighth Annual Conference on Neural
 569 Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=1zfzjYuWgY>.

570 Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
 571 foundation models. In *The Thirteenth International Conference on Learning Representations*,
 572 2025. URL <https://openreview.net/forum?id=apErWGzCAA>.

573 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
 574 Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
 575 tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
 576 Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
 577 forcement learning. *Nature*, 518(7540):529–533, February 2015. ISSN 00280836. URL
 578 <http://dx.doi.org/10.1038/nature14236>.

579 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
 580 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 581 learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), *Proceedings of The 33rd
 582 International Conference on Machine Learning*, volume 48 of *Proceedings of Machine Learning
 583 Research*, pp. 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
 584 <https://proceedings.mlr.press/v48/mnih16.html>.

585 Long Phan, Mantas Mazeika, Andy Zou, and Dan Hendrycks. Textquests: How good are llms at
 586 text-based video games?, 2025. URL <https://arxiv.org/abs/2507.23701>.

594 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 595 policy optimization. In Francis Bach and David Blei (eds.), *Proceedings of the 32nd International*
 596 *Conference on Machine Learning*, volume 37 of *Proceedings of Machine Learning Research*, pp.
 597 1889–1897, Lille, France, 07–09 Jul 2015. PMLR. URL <https://proceedings.mlr.press/v37/schulman15.html>.

599 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 600 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

602 Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
 603 flow for machine comprehension. In *International Conference on Learning Representations*,
 604 2017. URL <https://openreview.net/forum?id=HJ0UKP9ge>.

606 Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
 607 Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
 608 process verifiers for LLM reasoning. In *The Thirteenth International Conference on Learning*
 609 *Representations*, 2025. URL <https://openreview.net/forum?id=A6Y7AqlzLW>.

610 Zijing Shi, Meng Fang, and Ling Chen. Monte carlo planning with large language model for text-
 611 based game agents. In *The Thirteenth International Conference on Learning Representations*,
 612 2025. URL <https://openreview.net/forum?id=r1KcapkzCt>.

614 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
 615 Reflexion: language agents with verbal reinforcement learning. In A. Oh, T. Nau-
 616 mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neu-*
 617 *ral Information Processing Systems*, volume 36, pp. 8634–8652. Curran Associates, Inc.,
 618 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf.

620 David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
 621 Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
 622 Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lilli-
 623 crap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
 624 game of go with deep neural networks and tree search. *Nature*, 529:484–503, 2016. URL <http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html>.

626 Kefan Song, Amir Moeini, Peng Wang, Lei Gong, Rohan Chandra, Yanjun Qi, and Shangtong
 627 Zhang. Reward is enough: Llms are in-context reinforcement learners, 2025. URL <https://arxiv.org/abs/2506.06303>.

630 Theodore Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas Griffiths. Cognitive architectures
 631 for language agents. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 632 <https://openreview.net/forum?id=1i6ZCvflQJ>. Survey Certification.

633 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning: An Introduction*. The MIT Press,
 634 second edition, 2018. URL <http://incompleteideas.net/book/the-book-2nd.html>.

637 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
 638 methods for reinforcement learning with function approximation. In S. Solla, T. Leen, and
 639 K. Müller (eds.), *Advances in Neural Information Processing Systems*, volume 12. MIT Press,
 640 1999. URL https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

642 Chen Feng Tsai, Xiaochen Zhou, Sierra S. Liu, Jing Li, Mo Yu, and Hongyuan Mei. Can large
 643 language models play text games well? current state-of-the-art and open questions, 2025. URL
 644 <https://arxiv.org/abs/2304.02868>.

646 Jens Tuyls, Shunyu Yao, Sham M. Kakade, and Karthik R Narasimhan. Multi-stage episodic control
 647 for strategic exploration in text games. In *International Conference on Learning Representations*,
 2022. URL <https://openreview.net/forum?id=Ek7PSN7Y77z>.

648 Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Ji-
 649 akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
 650 large language model based autonomous agents. *Frontiers of Computer Science*, 18(6), March
 651 2024. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL <http://dx.doi.org/10.1007/s11704-024-40231-1>.

652 John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
 653 and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
 654 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
 655 <https://openreview.net/forum?id=mXpq6ut8J3>.

656 Ke Yang, Yao Liu, Sapana Chaudhary, Rasool Fakoor, Pratik Chaudhari, George Karypis, and
 657 Huzefa Rangwala. Agentoccam: A simple yet strong baseline for LLM-based web agents. In
 658 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=oWdzUpOlkX>.

659 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 660 ReAct: Synergizing reasoning and acting in language models. In *International Conference on
 661 Learning Representations (ICLR)*, 2023.

662 A THEORETICAL MOTIVATION FOR MULTI-PATH ADVANTAGE REFLECTION

663 A.1 VARIANCE REDUCTION THROUGH MULTI-TRAJECTORY COMPARISON

664 The design of MAR draws motivation from classical results on variance reduction in advantage
 665 estimation. We present this theoretical background that inspired our approach, noting that MAR
 666 implements these principles through LLM reasoning rather than explicit numerical computation.

667 **Proposition 1.** Consider n trajectories $\{\tau_1, \dots, \tau_n\}$ starting from state s . For any state s^* visited
 668 by $m \leq n$ of these trajectories, an advantage estimate computed by averaging over m trajectory
 669 outcomes has variance reduced by factor $1/m$ compared to a single-trajectory estimate, assuming
 670 bounded variance across trajectories.

$$671 \text{Var}[\hat{A}_{\text{multi}}(s^*)] \leq \frac{\text{Var}[\hat{A}_{\text{single}}(s^*)]}{m}$$

672 **Proof.** For a trajectory j passing through state s^* and taking action a_j , let $R_j(s^*, a_j)$ denote the
 673 random variable representing the sum of future rewards from s^* onward. This provides an unbiased
 674 estimate of the true $Q(s^*, a_j)$.

675 The single-trajectory advantage estimate for action a is:

$$676 \hat{A}_{\text{single}}(s^*, a) = R_j(s^*, a) - \hat{V}(s^*)$$

677 where $\hat{V}(s^*)$ is an estimate of the state value. This estimate has high variance because it relies on a
 678 single sample: $\text{Var}[\hat{A}_{\text{single}}(s^*, a)] = \text{Var}[R_j(s^*, a)]$ when $\hat{V}(s^*)$ is held constant.

679 Now consider a multi-trajectory approach. From the m trajectories passing through s^* , let m_a
 680 denote the number of trajectories taking action a . Averaging outcomes yields an improved Q-value
 681 estimate:

$$682 \hat{Q}_{\text{multi}}(s^*, a) = \frac{1}{m_a} \sum_{j:a_j=a} R_j(s^*, a)$$

683 Using basic properties of variance for independent random variables with equal variance σ_a^2 :

$$684 \text{Var}[\hat{Q}_{\text{multi}}(s^*, a)] = \text{Var} \left[\frac{1}{m_a} \sum_{j:a_j=a} R_j \right] = \frac{1}{m_a^2} \cdot m_a \cdot \sigma_a^2 = \frac{\sigma_a^2}{m_a}$$

685 This shows variance reduction by factor m_a for the Q-estimate. For the baseline, incorporating a
 686 stable reference (such as outcomes from previously successful trajectories) rather than a fluctuating

702 estimate further reduces variance. Under the assumption that this stable baseline has low variance
 703 relative to the Q-estimate, the variance of the advantage estimate is dominated by the Q-component:
 704

$$705 \text{Var}[\hat{A}_{\text{multi}}(s^*, a)] \approx \text{Var}[\hat{Q}_{\text{multi}}(s^*, a)] = \frac{\sigma_a^2}{m_a} \leq \frac{\sigma_a^2}{1} = \text{Var}[\hat{A}_{\text{single}}(s^*, a)]$$

707 For any action with $m_a \geq 1$ samples, we achieve variance reduction by a factor of m_a . \square

710 A.2 CONNECTION TO MAR

712 The proposition above motivates why multi-trajectory comparison with a stable baseline can reduce
 713 variance in advantage estimation. While not directly approximating the numerical quantity, MAR
 714 operationalizes these principles through LLM reasoning rather than explicit numerical computation:

715 **Multi-trajectory aggregation.** Rather than computing the average $\frac{1}{m_a} \sum_j R_j$, MAR prompts the
 716 LLM to reason across multiple trajectories from the same starting state, identifying consistent pat-
 717 terns and divergent outcomes. This achieves a benefit analogous to variance reduction through
 718 averaging, as the LLM can implicitly weigh evidence from multiple outcomes when inferring which
 719 actions led to better progress.

720 **Stable baseline via frontier.** The frontier \mathcal{F} serves an analogous role to the stable $\hat{V}(s^*)$ in the
 721 proposition. Like target networks in DQN (Mnih et al., 2015) that update periodically to provide
 722 stable targets, \mathcal{F} updates only when superior trajectories are discovered, providing a consistent ref-
 723 erence point for the LLM’s evaluation of whether new trajectories constitute meaningful progress.

725 B ALGORITHMS

727 We provide the detailed overview of Go-Explore-based algorithms in Alg. 3, and the full algorithm
 728 of GLoW in Alg. 2.

731 C CONTAMINATION CHECK

733 Table 4: Data contamination analysis: LLM accuracy (%) on navigation questions without seeing
 734 gameplay.

736 Game	737 # Questions	738 Accuracy (%)
738 Zork1	739 230	740 10.9
739 Zork3	740 194	741 8.2
740 Enchanter	741 239	742 9.2
741 Detective	742 66	743 9.1
742 Balances	743 54	744 1.9
743 Library	744 26	745 15.4
744 Pentari	745 70	746 1.4
745 Deephome	746 288	747 17.0
746 Temple	747 92	748 12.0
747 Ludicorp	748 320	749 19.7
748 Ztuu	749 71	750 9.9

748 To assess whether large language models have prior knowledge of Jericho games, we conducted
 749 a data contamination analysis following the methodology of Tsai et al. (2025). We evaluate con-
 750 tamination by testing whether models can navigate between locations without being shown any
 751 gameplay. Specifically, we: (1) collect a walkthrough trajectory by executing up to 300 steps from
 752 each game’s built-in Jericho walkthrough actions, (2) build a graph of locations and transitions from
 753 this walkthrough, (3) generate navigation questions asking for paths between observed locations,
 754 and (4) query the model with these questions without providing any context. Navigation questions
 755 take the form: ‘In [GAME], what steps would you take to go to [LOCATION B] from [LOCATION

756 **Algorithm 2** GLoW: Global-Local World Models

```

757 1: procedure GLoW( $s_0, n_{iter}, n, k$ )
758 2:    $\mathcal{F} \leftarrow \emptyset$                                  $\triangleright$  Initialize frontier
759 3:    $\mathcal{A} \leftarrow \{(s_0, 0)\}$                        $\triangleright$  Initialize state archive
760 4:   for  $i = 1$  to  $n_{iter}$  do
761 5:      $s_{\text{next}} \leftarrow \text{SELECTSTATE}(\mathcal{F}, \mathcal{A})$ 
762 6:      $\mathcal{T} \leftarrow \text{EXPLORE}(s_{\text{next}}, \mathcal{F}, n)$ 
763 7:      $\text{UPDATEARCHIVE}(\mathcal{T}, \mathcal{F}, \mathcal{A}, k)$ 
764 8:   end for
765 9:   return  $\arg \max_{\tau \in \mathcal{F}} v(\tau)$ 
766 10: end procedure
767 11:
768 12: procedure SELECTSTATE( $\mathcal{F}, \mathcal{A}$ )
769 13:    $W_{\text{global}} \leftarrow g_{\text{LLM}}(\mathcal{F})$ 
770 14:    $s_{\text{next}} \leftarrow \arg \max_{s \in \mathcal{A}} \text{align}_{\text{LLM}}(s, W_{\text{global}})$        $\triangleright$  Select state based on decomposed value
771 15:   return  $s_{\text{next}}$ 
772 16: end procedure
773 17:
774 18: procedure EXPLORE( $s, \mathcal{F}, n$ )
775 19:    $\mathcal{T} \leftarrow \emptyset$                                  $\triangleright$  Initialize trajectory set for current exploration phase
776 20:    $W_{\text{local}} \leftarrow \emptyset$ 
777 21:   for  $j = 1$  to  $n$  do
778 22:      $\tau_j \leftarrow \pi_{\text{explore}}(s, W_{\text{local}}, \mathcal{T}, \mathcal{F})$            $\triangleright$  Rollout full trajectory from  $s$ 
779 23:      $\mathcal{T} \leftarrow \mathcal{T} \cup \{\tau_j\}$ 
780 24:      $W_{\text{local}} \leftarrow \text{MAR}(\mathcal{T}, \mathcal{F})$ 
781 25:   end for
782 26:   return  $\mathcal{T}$ 
783 27: end procedure
784 28:
785 29: procedure MAR( $\mathcal{T}, \mathcal{F}$ )
786 30:    $W_{\text{local}} \leftarrow f_{\text{LLM}}(\mathcal{T}, \mathcal{F})$            $\triangleright$  Extract semantic advantages at key states
787 31:   return  $W_{\text{local}}$ 
788 32: end procedure
789 33:
790 34: procedure UPDATEARCHIVES( $\mathcal{T}, \mathcal{F}, \mathcal{A}, k$ )
791 35:   for  $\tau \in \mathcal{T}$  do
792 36:      $\mathcal{F} \leftarrow \text{top-}k(\mathcal{F} \cup \{\tau\}, v)$            $\triangleright$  Update the trajectory frontier
793 37:     for  $s' \in \tau$  do
794 38:        $\mathcal{A} \leftarrow \mathcal{A} \cup \{(s', \text{score}(s'))\}$            $\triangleright$  Add states to state archive
795 39:     end for
796 40:   end for
797 41: end procedure

```

794 A]?" We evaluate responses using strict pattern matching with word boundaries, requiring the exact
795 sequence of navigation commands to appear consecutively in the model's response.

796 Table 4 shows results of contamination checks for GPT-4.1-mini across 11 Jericho games. We
797 observe minimal contamination, with all games showing below 20% accuracy. Most games (8 out of
798 11) show less than 10% accuracy, consistent with random guessing or generic text adventure knowl-
799 edge. The slightly higher accuracies for Ludicorp (19.7%), Deephome (17.0%), and Library (15.4%)
800 likely reflect the model providing common navigation commands (e.g., "go south") that occasionally
801 match by chance. Even famous games like Zork1 (10.9%) show accuracy near chance level, while
802 less-known games like Balances (1.9%) and Pentari (1.4%) show essentially no prior knowledge.
803 These low accuracy rates, combined with the model's generic responses that lack game-specific de-
804 tails, indicate that our experimental results reflect genuine exploration and reasoning capabilities
805 rather than memorized solutions.

806 **C.1 LLM API COST**

807 We use gpt-4.1-mini-2025-04-14 for all LLM components (\$0.40/\$1.60 per million in-
808 put/output tokens). Per-run costs of all LLM-based approaches with 1,000 environment steps range

Algorithm 3 Go-Explore-based Algorithms

```

810
811 1: procedure GO-EXPLORE-FAMILY( $s_0, n_{iter}$ )
812 2:    $\mathcal{A} \leftarrow \{(s_0, 0)\}$                                  $\triangleright$  Archive of (state, score)
813 3:    $\mathcal{F} \leftarrow \emptyset$                                  $\triangleright$  Trajectory Frontier
814 4:   for  $i = 1$  to  $n_{iter}$  do
815     — Go Phase (State Selection) —
816     5:       Go-Explore A:  $s_{next} \sim \text{Uniform}(\mathcal{A})$            $\triangleright$  Random sampling
817     6:       Go-Explore B:  $s_{next} \sim P(s) \propto \frac{1}{\text{visits}(s)^\alpha}$      $\triangleright$  Novelty
818     7:       Go-Explore C:  $s_{next} \sim P(s) \propto \text{domain}(s)$            $\triangleright$  Domain heuristics
819     8:       XTX:  $s_{next} \leftarrow \text{ImitationLearning}(\mathcal{T})$            $\triangleright$  Imitation learning
820     9:       IGE:  $s_{next} \leftarrow \text{LLM.SelectPromising}(\mathcal{A})$            $\triangleright$  Ill-defined promising-ness
821    10:      GLoW:  $W_{\text{global}} \leftarrow g_{\text{LLM}}(\mathcal{F})$            $\triangleright$  Principled value decomposition (Sec. 3.1)
822    11:       $s_{next} \leftarrow \text{align}_{\text{LLM}}(\mathcal{A}, W_{\text{global}})$ 
823
824    12: — Explore Phase —
825    13:       Go-Explore:  $\tau \leftarrow \text{RandomActions}(s_{next})$            $\triangleright$  No learning
826    14:       XTX:  $\tau \leftarrow \text{DQN}(s_{next})$            $\triangleright$  DQN with curiosity reward
827    15:       IGE:  $\tau \leftarrow \text{ReAct}(s_{next})$            $\triangleright$  Standard LLM agent
828    16:       GLoW:
829    17:         for  $j = 1$  to  $n$  do           $\triangleright$  LLM agent with advantage-driven exploration (Sec. 3.2)
830    18:            $\tau_j \leftarrow \pi_{\text{explore}}(s_{next}, W_{\text{local}}, \{\tau_1, \dots, \tau_{j-1}\}, \mathcal{F})$ 
831    19:            $W_{\text{local}} \leftarrow \text{MAR}(\{\tau_1, \dots, \tau_j\}, \mathcal{F})$ 
832    20:         end for
833    21:          $\mathcal{F} \leftarrow \text{top-}k(\mathcal{F} \cup \{\tau_1, \dots, \tau_n\}, v)$            $\triangleright$  Update trajectory frontier
834    22: — Archive Update —
835    23:   for each state  $s'$  in  $\tau$  do
836    24:     if  $\text{IsNotRedundant}(s', \mathcal{A})$  then           $\triangleright$  Domain-specific novelty
837    25:        $\mathcal{A} \leftarrow \mathcal{A} \cup \{s'\}$ 
838    26:     end if
839    27:   end for
840    28: end for
841    29: end procedure

```

from \$1 to \$7, maintaining practicality for research iteration. For experiments with stronger LLMs, we use `gpt-4.1-2025-04-14` for all LLM components (\$2.00/\$8.00 per million input/output tokens). Per-run costs range from \$7.5 to \$45.00, demonstrating that while stronger models increase costs by 5-6x, the relative efficiency of our approach remains consistent with ~40% fewer tokens than ICRL, while achieving superior performance.

Table 5: Comparison of LLM API costs with GPT-4.1-mini. We report average the token consumption and costs across 6 games (Zork1, Zork3, Deephome, Ludicorp, Detective, Temple).

Method	Input tokens	Output tokens	Total tokens	Avg. cost/run
ICRL	17.6M	43.1K	17.6M	\$7.10
GLoW	10.9M	115.1K	11.0M	\$4.54
Reflexion	7.2M	50.6K	7.3M	\$2.98
IGE	3.9M	44.1K	3.9M	\$1.61
ReAct	2.6M	35.5K	2.6M	\$1.08

Table 6: Comparison of LLM API costs with GPT-4.1. We report the average token consumption and costs across the same 6 games.

Method	Input tokens	Output tokens	Total tokens	Avg. cost/run
ICRL	22.4M	55.1K	22.5M	\$45.24
GLoW	13.3M	126.2K	13.4M	\$27.58
Reflexion	9.9M	62.5K	10.0M	\$20.31
IGE	4.9M	64.2K	5.0M	\$10.33
ReAct	3.5M	58.2K	3.5M	\$7.45

864

D PROMPTS

865

866

We present the full prompts used in GLoW. Our prompts rely solely on simple instructions and structured output formats without requiring few-shot exemplars, enabling the method to generalize across diverse game scenarios.

867

868

869

D.1 FRONTIER TRAJECTORY ANALYSIS

870

871

872

873

Analysis (g_{LLM}) Prompt

874

Analyze these successful game trajectories to identify patterns and strategy:

875

876

877

{For each trajectory in \mathcal{F} :

878

Trajectory N (Peak: X, Final: Y):
 [score] action -> observation (reward: +/-N if non-zero)
 [score] action -> observation
 ...

879

880

881

Based on these trajectories, provide a strategic analysis:

882

883

884

1. FRONTIER & EXPLORATION STATUS:

885

- What areas/locations have been successfully reached?
- What remains unexplored or inaccessible?

886

887

2. GAME CHECKPOINTS & PROGRESS:

888

889

890

- What are the key milestones/checkpoints identified?
- What items or abilities unlock new areas?
- What phase of the game are we in?

891

892

893

894

3. BOTTLENECKS & CHALLENGES:

895

896

897

898

- Where do trajectories commonly get stuck?
- What obstacles block further progress?
- What resources or knowledge are we missing?

899

900

901

902

4. REWARD STRUCTURE:

903

905

906

- When and how are points earned?
- What actions yield the highest rewards?
- Are there patterns to the scoring?

5. NEXT INVESTIGATION GOALS:

907

908

909

910

911

912

913

914

915

916

917

Provide a concise strategic summary focusing on actionable insights.

D.2 STATE SELECTION

State Selection ($align_{LLM}$) Prompt

==== STRATEGIC GAME ANALYSIS ===

{Analysis of frontier trajectories W_{global} }

=====

Based on the above analysis, select the state from the archive that:

- Best aligns with the identified investigation goals
- Can help overcome identified bottlenecks

```

918
919     - Explores promising frontiers
920     - Has potential for high rewards based on patterns
921
922     Current state archive:
923
924     0: [Score: X, Steps: Y, Visits: Z]
925         Observation: {state observation}
926         Inventory: {state inventory}
927
928     1: [Score: X, Steps: Y, Visits: Z]
929         Observation: {state observation}
930         Inventory: {state inventory}
931
932     ...
933
934     Choose state index (0-N).
935     Respond in JSON format:
936     {
937         "thought": "Your reasoning about which state best aligns with the
938         strategic goals",
939         "index": <number>
940     }
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

```

D.3 MULTI-PATH ADVANTAGE REFLECTION (MAR)

The MAR prompt generates W_{local} as described in Section 3.2, identifying critical decision points and their associated advantages from multiple exploration trajectories. The prompt incorporates three inputs: (1) the global trajectory frontier containing highest-value trajectories that serve as value baselines, (2) local exploration attempts from the current phase showing different outcomes from the same starting state, and (3) previous W_{local} outputs when available, enabling cumulative learning within the exploration phase.

By comparing outcomes across these trajectory sources, MAR produces $W_{\text{local}} = \{(s_i^*, A_{s_i^*})\}_{i=1}^k$, identifying where specific actions provide clear advantages. This semantic representation captures causal relationships (e.g., “taking the lamp enables combat in darkness”) rather than strictly scalar values, enabling the exploration policy to leverage both statistical patterns from trajectory comparison and LLM reasoning about game mechanics at critical states.

W_{local} Generation Prompt (MAR)

```

955     Review these exploration attempts and identify KEY STATE
956     ADVANTAGES:
957
958     {Previous  $W_{\text{local}}$  from earlier iterations, if any}
959
960     {Global frontier trajectories  $\mathcal{F}$ }
961
962     {Local exploration trajectories from state  $s$ }
963
964     Analyze all trajectories and identify ADVANTAGES at KEY STATES:
965
966     For each important location/state observed across ALL attempts,
967     list:
968     - STATE: [description of state/location]
969     - ADVANTAGES discovered:
970         • [specific action] → [specific benefit/outcome] (score impact if
971             clear)
972             • [what to avoid] → [consequence] (score impact if clear)
973             • [optimal sequence] → [why it's better]

```

```

972
973     Example format:
974     STATE: At the house entrance with lamp
975     - ADVANTAGES:
976         • "go east" → finds sword (enabled +15 points later)
977         • "open mailbox first" → gets crucial map (+5 immediate)
978         • avoid "go upstairs" early → wastes moves in empty attic (-7
979             overall)
980
981     Focus on:
982     1. States that appear across multiple attempts (to see different
983         outcomes)
984     2. Critical decision points where scores diverged significantly
985     3. Action sequences that consistently led to success or failure
986     4. Items or information that enabled later progress
987
988     Provide 2-4 KEY STATES with their discovered advantages.
989     Be specific about actions, items, and locations from the actual
990         game.
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

```

990 D.4 EXPLORATION POLICY IN GLoW

991
992 The prompt for the exploration policy in GLoW is shown below. We instruct the LLM to use a JSON
993 output format with reasoning and action fields.

994 **Hybrid Action Space** While previous works use either constrained selection from valid actions in
995 RL agents (Hausknecht et al., 2019; Ammanabrolu & Hausknecht, 2020; Tuyls et al., 2022) or pure
996 free-form generation in LLM agents such as ReAct, we provide the valid actions to the LLM as a soft
997 constraint, while still allowing free-form generation. This avoids failure modes of both approaches,
998 where constrained selection can harm action diversity, while pure generation can produce many
999 invalid actions. As shown in Section 4.2, this hybrid approach, which we use consistently across
1000 both GLoW as well as all LLM baselines, significantly improves the base LLM performance with
1001 only a lightweight prompt and no few-shot examples.

1002 System Prompt

```

1003
1004     You are exploring a text adventure game. Your goal is to make
1005         progress and increase your score.
1006
1007     Generate actions that explore new possibilities and make progress.
1008
1009     Respond in JSON format:
1010     {
1011         "thought": "Your reasoning about what to try",
1012         "action": "the exact command to execute"
1013     }
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

```

1015 User Prompt (at initial step)

```

1016     {Context includes:  $W_{Local}$ , global frontier trajectories  $\mathcal{F}$ , previous
1017         exploration trajectories, and the current trajectory.}
1018     =====
1019
1020     Step 1:
1021     Observation: {current observation}
1022     Score: {current score}
1023     Valid actions: {comma-separated list of valid actions}
1024
1025

```

```

1026
1027 User Prompt (subsequent steps)
1028 Step {N}:
1029 Observation: {current observation}
1030 Score: {current score}
1031 Valid actions: {comma-separated list of valid actions}
1032
1033 What is your next move?
1034
1035
1036
```

E QUALITATIVE EXAMPLES

E.1 GLOBAL WORLD MODEL

Global World Model Example (Zork1)

Strategic Analysis of Game Trajectories

1. FRONTIER & EXPLORATION STATUS

Successfully Reached Areas:

- Starting point: Mailbox and House exterior (north, south, east, west of house)
- Forest Path and Clearing with grating
- Up a Tree (bird's nest with egg and leaflet)
- Behind House (window entry)
- Kitchen and Living Room inside the house
- Attic (Trajectory 1)
- Cellar and Troll Room (Trajectory 1 & 2)

Unexplored or Inaccessible Areas:

- Upstairs beyond the dark staircase (pitch black, dangerous)
- West door with gothic lettering (nailed shut)
- Crawlway south in cellar and forbidding hole west in Troll Room
- Steep metal ramp in cellar (unclimbable)
- Chasm area (Trajectory 1 ends in death)
- Any further passages beyond troll or trap door

2. GAME CHECKPOINTS & PROGRESS

Key Milestones:

- Obtaining jewel-encrusted egg and leaflet from mailbox/tree
- Using egg and leaflet in grating to unlock cellar access
- Entering house via window and acquiring items (food, garlic, water, lantern, sword, rope, knife)
- Opening trap door and descending into cellar
- Defeating or engaging troll in cellar

Items/Abilities Unlocking New Areas:

- Egg + Leaflet → Grating → Cellar entrance
- Lantern (turned on) → Safe navigation in dark cellar
- Sword (elvish, glowing) → Combat with troll
- Rope and knife (potential utility, not fully leveraged yet)
- Food, garlic, water (likely survival or puzzle items)

Current Phase: Early-to-mid game - exploration of house and cellar, initial combat encounters

1080 =====

1081

1082 **3. BOTTLENECKS & CHALLENGES**

1083

1084 **Common Stuck Points:**

1085 - Combat with troll (Trajectories 1 & 2 end in death or near death)

1086 - Navigating dark areas without proper light (pitch black upstairs)

1087 - Attempting risky actions (jumping over chasm leads to death)

1088 - Locked or barred doors (gothic door, trap door closing behind

1089 player)

1090 **Obstacles Blocking Progress:**

1091 - Physical barriers (nailed door, barred trap door)

1092 - Hostile NPC (troll)

1093 - Environmental hazards (darkness, chasm)

1094 - Limited inventory or missing key items

1095 **Missing Resources/Knowledge:**

1096 - Effective combat strategy or stronger weaponry to defeat troll

1097 safely

1098 - Means to reopen or bypass barred trap door

1099 - Safe traversal methods for chasm or dark upstairs

1100 - Possible puzzle solutions involving rope, knife, or other items

1101 =====

1102 **4. REWARD STRUCTURE**

1103

1104 **When Points Are Earned:**

1105 - +5 for taking the egg

1106 - +10 for acquiring food and water items in kitchen

1107 - +25 for entering cellar (significant milestone)

1108 - +5 for moving north from troll room to passage

1109 - -10 on death and respawn (penalty)

1110 **Highest Reward Actions:**

1111 - Descending into cellar (+25)

1112 - Collecting key items early (+5 to +10)

1113 - Progressing past major checkpoints

1114 **Scoring Patterns:**

1115 - Early exploration yields small incremental rewards

1116 - Major area transitions yield large rewards

1117 - Death penalizes score, encouraging cautious play

1118 =====

1119 **5. NEXT INVESTIGATION GOALS**

1120

1121 **Specific Objectives:**

1122 - Develop reliable strategy to defeat or bypass troll without dying

1123 - Investigate use of rope and knife for puzzles or combat

1124 - Explore crawlway south and forbidding hole west in troll room

1125 - Find safe method to cross or bypass chasm

1126 - Attempt to open or circumvent nailed gothic door

1127 **Most Promising Unexplored Areas:**

1128 - Crawlway south and forbidding hole west in cellar/troll room

1129 - Upstairs dark staircase (with lantern or other light source)

1130 - Beyond barred trap door if it can be reopened

1131 - Areas beyond chasm once safe crossing method found

1132

1133

1134 E.2 LOCAL WORLD MODEL
 1135

1136
 1137 **Local World Model Example (Zork1)**

1138 Based on detailed exploration attempts, here are KEY STATES with
 1139 discovered advantages:
 1140

1141 =====

1142 **STATE: The Troll Room**

1143 *Small room with passages east/south, hole west; troll blocks all
 1144 exits; sword glows*

1145
 1146 **ADVANTAGES:**

1147 - "hit troll with sword" → kills troll, clears all exits for
 1148 exploration (score: 40)
 1149 - "take axe" after troll death → obtains valuable weapon for later
 1150 puzzles
 1151 - avoid engaging without glowing sword → likely failure
 1152 - optimal: kill troll first, then take axe (mandatory to proceed)

1153 =====

1154 **STATE: Maintenance Room (Flood Control Dam #3)**

1155 *Room with colored buttons, tool chests, wrench, screwdriver,
 1156 toothpaste, leaking pipe*

1157
 1158 **ADVANTAGES:**

1159 - "take wrench, screwdriver, tube" → essential tools for
 1160 environment interaction
 1161 - "push blue button" → triggers leak, raises water level to access
 1162 new areas
 1163 - "push red button" → toggles lights, affects water level
 1164 - avoid throwing lantern → breaks critical light source
 1165 - optimal: collect tools → manage buttons → control water without
 drowning

1166 =====

1167 **STATE: Temple / Torch Room / Dome Room / Altar**

1168 *Large temple with inscriptions; dome with railing; rope for
 1169 descent; ivory torch; brass bell; gold coffin*

1170
 1171 **ADVANTAGES:**

1172 - "take ivory torch" → stable light for deeper cave exploration
 1173 - "take bell" → key item for spirit/wraith interaction
 1174 - "ring bell at Entrance to Hades" → paralyzes wraiths, enables
 1175 passage
 1176 - "blow out candles" → enables safe descent or passage
 1177 - optimal: acquire torch → bell → sceptre → manipulate altar →
 control spirits

1178 =====

1180 **STATE: East-West Passage / Chasm Area**

1181 *Narrow passage with stairs; chasm with paths; multiple routes
 1182 (north/east/west/up/down)*

1183
 1184 **ADVANTAGES:**

1185 - "east" then "north" → leads to Reservoir South and further areas
 1186 - "tie rope to railing" → enables safe descent into lower levels
 1187 - avoid getting stuck in loops → wastes moves
 - optimal: explore chasm edges → use rope for vertical → access

1188

1189 Dome/Torch

1190

1191

1192

Cross-Cutting Insights:

1193

- Inventory Management: Strategic dropping/picking essential for critical artifacts
- Light Preservation: Maintaining lantern/torch crucial for dark exploration
- Combat Readiness: Glowing sword indicates combat opportunity (essential for progress)

1194

1195

1196

1197

1198

1199

1200

F ASSUMPTION OF ENVIRONMENT DETERMINISM

1201

1202

Our implementation assumes deterministic environments, which is leveraged by the state restoration mechanism which replays actions to return to a selected state. This limits applicability in stochastic environments where action replay may not return to the intended state. Our trajectory-based design facilitates intuitive extensions to such settings, where a potential approach is framing state restoration as a goal-reaching problem guided by replay trajectories.

1203

1204

We note that the MAR component naturally handles stochasticity since it samples multiple exploration paths from a selected state and performs inference over the paths as a set, enabling the LLM-based analysis to reflect on observed stochastic variations.

1205

1206

1207

G SCALING WITH STRONGER LLMs

1208

1209

1210

1211

Games	RL		LLM-based								
			GPT-4.1 mini				GPT-4.1				
	XTX	ReAct	Rfl	ICRL	IGE	GLoW	ReAct	Rfl	ICRL	IGE	GLoW
Steps	800K	1K	1K	1K	1K	1K	1K	1K	1K	1K	1K
Enchanter	52.0	46.7 \pm 9.4	48.3 \pm 9.4	43.3 \pm 8.5	50.0 \pm 7.1	61.7 \pm 20.1	38.3 \pm 2.4	58.3 \pm 2.4	45 \pm 7.1	68.3 \pm 18.4	98.3 \pm 4.7
Zork1	103.4 \pm 10.9	48.3 \pm 4.7	48.0 \pm 5.0	51.7 \pm 4.7	44.3 \pm 0.5	73.0 \pm 4.5	45.0 \pm 0.0	54.3 \pm 4.5	48.0 \pm 2.8	86.7 \pm 24.1	103.0 \pm 6.8
Zork3	4.2 \pm 0.1	3.0 \pm 0.0	2.7 \pm 0.5	3.0 \pm 0.0	3.7 \pm 0.9	4.3 \pm 0.9	3.3 \pm 0.5	2.7 \pm 0.5	3.0 \pm 0.8	3.0 \pm 0.0	5.0 \pm 0.0
Deephome	77.7 \pm 2.1	11.0 \pm 4.2	22.0 \pm 1.6	24.0 \pm 5.7	71.3 \pm 4.9	75.0 \pm 8.7	32.3 \pm 19.6	22.3 \pm 1.7	34.7 \pm 18.7	82.0 \pm 8.6	114.7 \pm 27.8
Ludicorp	78.8	19.7 \pm 0.9	21.7 \pm 1.2	32.0 \pm 7.1	28.3 \pm 11.3	73.7 \pm 11.0	31.0 \pm 2.8	29.0 \pm 0.8	31.7 \pm 0.5	89.0 \pm 7.8	79.0 \pm 16.8
Balances	24	10 \pm 0.0	10 \pm 0.0	11.7 \pm 2.4	10.0 \pm 0.0	16.7 \pm 2.4	18.3 \pm 2.4	18.3 \pm 2.4	16.7 \pm 2.4	16.7 \pm 2.4	26.7 \pm 2.4

1225

Table 7: Results comparing GPT-4.1 mini and GPT-4.1 on Extreme/Difficult games. XTX (best RL method) is shown for reference.

1226

1227

To validate that GLoW generalizes across model capabilities, we evaluated with GPT-4.1 on the 6 Extreme/Difficult games. GLoW with GPT-4.1 surpasses XTX on 5 out of 6 games while using 800x fewer interactions, showing that GLoW is robust across LLMs.

1228

1229

1230

1231

H LLM USAGE

1232

1233

1234

We utilized Claude for minor grammar and language edits in paper writing.

1235

1236

1237

1238

1239

1240

1241