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Abstract

Large language models have astounded the world with fascinating new capabilities.
However, they currently lack the ability to teach themselves new skills, relying
instead on large amounts of human-generated training data. We introduce SECToR
(Self-Education via Chain-of-Thought Reasoning), a proof-of-concept demonstra-
tion that language models can teach themselves new skills using chain-of-thought
reasoning. During the self-learning loop, SECToR asks models to solve addition
problems using chain-of-thought reasoning before training the next version of the
model to solve those same problems directly without using such reasoning. This
process often results in an improved model which can, when again augmented with
chain-of-thought reasoning, solve even harder problems than the original model,
allowing the self-learning loop to continue. Language models trained via SECToR
autonomously learn to add up to 29-digit numbers without access to any ground
truth examples beyond an initial supervised fine-tuning phase consisting only of
numbers with 6 or fewer digits. Our central hypothesis is that chain-of-thought
reasoning can act as a policy improvement operator, similarly to how Monte-Carlo
Tree Search is used in AlphaZero (Silver et al., 2017). We hope that this research
can lead to new directions in which language models can learn to teach themselves
without the need for human demonstrations.

1 Introduction

Large language models are currently trained on vast corpora of human-generated data (Vaswani
et al., 2023; Devlin et al., 2019; Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2022;
Touvron et al., 2023). While large language models have demonstrated many surprising capabilities,
the possibility of reaching superhuman performance is a challenging proposition when training solely
on existing data. In this paper, we ask whether large language models can autonomously teach
themselves new skills rather than solely depending on the availability of suitable data. A positive
answer to this question would open the door to a tantalizing possibility. Although the discovery of
scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022) for language models has created much
excitement for training increasingly larger language models, these models have already consumed a
significant fraction of the high-quality (textual) data on the internet. The issue of data exhaustion is
an active area of research (Villalobos et al., 2022), especially in light of results showing that repeated
training on the same data quickly leads to degeneration (Shumailov et al., 2023). If large language
models can effectively learn from data they themselves generate, this could usher in a new era of
scaling laws that are solely compute-driven, independent of how much data is available.

Self-training is not a novel concept in AI. For instance, AlphaZero achieved superhuman capabilities
in Go, Chess, and Shogi via self-play (Silver et al., 2017). Nevertheless, success with such a process
has not yet been demonstrated with language models. Recently, Wei et al. (2022) highlighted the
intriguing observation that language models often produce better results when prompted to use chain-
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Figure 1: SECToR begins with a supervised fine-tuning phase in which the model undergoes training with
curriculum learning, mastering simpler addition problems before progressing to more challenging ones. SECToR
begins self-training when it generalizes perfectly to N + 1 digit addition (after having been trained only on 1
through N digit addition) when equipped with chain-of-thought reasoning. Empirically, this occurred at 7 digits
for the 582M parameter model. During self-training, the training process largely mirrors the supervised training
phase, except that all training data is autonomously generated by the model using chain-of-thought reasoning
and self-consistency checks without any external verification of correctness (see Figure 12).

of-thought reasoning to solve the problem. This approach contrasts with the conventional method
where models are prompted to instantly generate an answer, without producing any intermediate
steps.

In this paper, we introduce SECToR (Self-Education via Chain-of-Thought Reasoning), which gives
a proof-of-concept that large language models can successfully teach themselves new abilities via
chain-of-thought reasoning, using addition as a benchmark task. Despite well-known difficulties for
language models to perform addition (Liu & Low, 2023; Nye et al., 2021; Lee et al., 2023), language
models trained via SECToR teach themselves to add numbers with up to 29-digits without access to
any ground-truth examples for numbers of length longer than 6 digits.

The observation that lies at the heart of SECToR is that chain-of-thought reasoning can be considered
a policy improvement operator: regardless of the quality of the underlying model (assuming it satisfies
some minimum size and training requirements), models that are prompted to use chain-of-thought
reasoning outperform directly sampling an answer from the model. SECToR uses this observation
to perform self-learning. During self-learning, SECToR prompts the model to use chain-of-thought
reasoning to generate solutions to problems that it could not otherwise solve without such reasoning.
Then, this same model is fine-tuned to generate these exact solutions, this time without using chain-
of-thought reasoning. This leads to an improved version of the model which can now directly solve
problems that the previous version of the model required using chain-of-thought reasoning to solve.
If this improved model, when again equipped with chain-of-thought reasoning, can solve a larger set
of problems than the original model could (even when equipped with chain-of-thought reasoning), the
self-learning process can continue. This procedure is highly similar to the procedure that AlphaZero
(Silver et al., 2017) used to reach superhuman performance in Chess, Go, and Shogi, except using
chain-of-thought reasoning in place of Monte-Carlo Tree Search as the policy improvement operator.

In the specific task of addition, SECToR begins with a pre-trained language model and then performs
an initial supervised fine-tuning period in which it learns to perform addition both with and without
using chain of thought reasoning but only for addition problems with a small number of digits. After
the initial supervised training phase, it then undergoes a self-training phase in which all training
data is model-generated, with zero access to ground-truth data. During each learning period, we
train the language model digit-by-digit using curriculum learning by requiring the model to perform
satisfactorily at 1 to N digit addition before introducing N+1 digit problems to the dataset. Examples
of each of these kinds of tasks are shown in Figure 2. This setup is analogous to prior work such as
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AlphaGo (Silver et al., 2016), where the model was initially trained on human-generated data before
undergoing self-training.

Task Type Example
Addition w/o CoT (fast) Q: 141 + 123 = ? A: 264.

Addition w/ CoT (slow) Q: 141 + 123 = ? A: The first number’s last digit is 1. The second
number’s last digit is 3. 1 + 3 = 4. The last digit of this sum is 4 so
our initial partial answer is 4. We can now recursively solve a smaller
problem. Removing the last digit from each number we have 14 and
12. The next subproblem is 14 + 12.

Figure 2: Examples of the two types of addition problems. One can view these two types as the analogues of
Type 1 (fast) and Type 2 (slow) reasoning (Kahneman, 2011).

A major challenge that has prevented past efforts of self-learning in language models from succeeding,
especially in arithmetic, is a phenomenon that we call error avalanching. During self-training, when
all training data is generated by the model itself, there is no guarantee that the data is correct. Error
avalanching occurs when small errors or inaccuracies in a model’s output compounds rapidly over
time, because each iteration of the model learns from the outputs of the previous model amplifies the
existing mistakes. If left unchecked, error avalanching leads to severe degradation of performance
within only a few iterations of self-training (see Figure 4). This is consistent with past attempts to get
language models to self-learn (for addition as well as other tasks) in which improvement stagnates in
only a few steps at most (Zelikman et al., 2022; Lewkowycz et al., 2022; Bai et al., 2022; Huang et al.,
2022; Jung et al., 2023). While error avalanching is a fundamental issue in any bootstrapped process,
SECToR manages to largely mitigate error avalanching via several forms of self-consistency checks
(Figures 4 and 5) that minimize the number of mistakes introduced to the dataset. Nevertheless,
SECToR does not continue ad infinitum, and training eventually terminates due to accumulated errors.
We return to this issue in the discussion.

Results. Our results indicate that the pre-trained 582M parameter ByT5 model (Xue et al., 2022),
after a supervised fine-tuning period that only provides examples for 1 to 6 digits, can teach itself
to perform up to 29-digit addition with 98+% accuracy – successfully undergoing 22 steps of self-
improvement in the process (Table 1). Additionally, a smaller training run with the 300M parameter
version of ByT5 showed similar positive results, successfully teaching itself to perform up to 24-digit
addition after a supervised learning phase that included examples of up to 8 digits (Appendix E).

2 Approach

2.1 Reasoning as A Policy Improvement Operator

The concept of a policy improvement operator plays a central role in reinforcement learning. In
reinforcement learning, a policy is the strategy by which an agent chooses its actions, given the
current state of the world. A policy improvement operator is a function that takes in an arbitrary
policy and returns an improved policy, which is closer to the optimal policy, with respect to a given
reward function. Many reinforcement learning algorithms, such as Q-learning or policy gradients, are
built around a policy improvement operator. A crucial property of a policy improvement operator
is that it can be used repeatedly —— if one continually applies a policy improvement operator to a
policy, it will eventually converge to the environment’s optimal policy.

In AlphaZero, Monte-Carlo Tree Search (MCTS) served as the policy improvement operator. Never-
theless, two-player zero-sum games are relatively simple, well-defined environments. In this paper,
we explore the hypothesis that reasoning can serve as a policy improvement operator, analogous
to how MCTS functions in AlphaZero, but for a broader range of environments. To complete the
analogy, we consider the language model’s conditional distribution over next token as the “policy,"
the previous context as the “environment.” The goal is for each version of the model to generate
the data upon which the next version of the model is trained using the policy improvement operator
(reasoning).
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While large language models have not yet been shown to possess a complete control of general
reasoning skills, Wei et al. (2022) showed that a method called “chain-of-thought reasoning” could
generate substantial performance improvements merely by asking models to think through a problem
step-by-step. In particular, Wei et al. (2022) noticed that often a model unable to solve a problem
without using reasoning was able to come up with the correct answer if allowed to reason through the
problem step-by step. One perspective on chain-of-thought reasoning is that the model is spending
computational resources at inference time to augment its own abilities. This is similar to how
AlphaZero spends compute to perform MCTS and augment its own game playing abilities. Given
that chain-of-thought reasoning can allow models to solve problems that they otherwise could not, it
is natural to ask whether repeated application of this method might allow models to self-improve far
beyond their original capabilities.

At a high level, SECToR uses chain-of-thought reasoning as a policy improvement operator to assist
the model in solving problems that it could not do without using the additional computation. It then
constructs a dataset of these new problem, solution pairs, which is then use to train the model to solve
these same problems without using chain-of-thought reasoning. The hope is that, having learned to
directly solve problems that the previous version of the model could only tackle with the additional
computational power of chain-of-thought reasoning, this improved model will be able to solve an
even larger set of problems when again augmented with chain-of-thought reasoning.

2.2 Error Avalanching

The approach of repeatedly training the model on its own utterances usually quickly results in a
phenomenon we call error avalanching. Consider a scenario where the model makes a small error
in one iteration. When this output is fed back into the model for the next round of training, the
error becomes part of the training data. As the model learns from this flawed data, the error may
be reinforced rather than corrected. In subsequent iterations, this error may compound leading to
increasingly inaccurate outputs. This is akin to an avalanche, where a small disturbance can trigger a
massive slide.

Because we ask the model to learn without giving it any access to the ground truth, it is important
to prevent this snowballing of errors, eventually derailing the training process. In past attempts to
use similar self-learning approaches, this phenomenon caused the training process to go awry within
just a few steps (Zelikman et al., 2022; Jung et al., 2023; Bai et al., 2022; Huang et al., 2022). In
order to mitigate the effects of error avalanching, SECToR utilizes several consistency checks largely
based on the following idea: we ask the model to generate a large number of “equivalent” variations
of any given question and then ask the model to (independently) solve each variation. If the answers
are largely consistent, we accept these answers into the training data. Otherwise, SECToR discards
the answers. These consistency checks are essential for SECToR to minimize the introduction of
incorrect data into the model’s self-training loop.

3 Experiments
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Figure 3: This figure describes the
generalization accuracy of mod-
els to N + 1 digit addition after
only training on up to N digit ad-
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we find that models show poor
length generalization on standard
(fast) addition. However, when
models use chain-of-thought rea-
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3.1 Setup

Addition is a fundamental task in mathematics, but one on which language models have historically
struggled to perform. As such, we use it as a toy dataset for evaluating self-learning. As addition can
be considered a simple form of problem-solving, a language model being able to teach itself addition
may indicate potential for applying general logic and reasoning to solve more complex problems.

We ask whether models can teach themselves how to add very large numbers after having been shown
only addition examples with substantially smaller numbers. In our setup, we consider only problems
of the form a+ b or a+ b+ 1, where a and b are guaranteed to have the same number of digits. a
and b are uniformly sampled among all integers with the proper number of digits. We train all models
on a cluster of 8 V100 GPUs with 32 GB of memory each. Prior work has indicated the importance
of proper tokenization for performing arithmetic (Liu & Low, 2023; Zhou et al., 2022). In order to
avoid any such issues, we use the ByT5 family, which operates on the raw character/byte value. A
detailed description of the hyperparameters used in training can be found in Appendix C.

3.2 Supervised Training

Without fine tuning, we find that the ByT5 models are quite poor at addition (Appendix D), which is
consistent with prior work on benchmarking addition. SECToR thus begins by performing an initial
supervised fine-tuning phase consisting of addition problems with only a small number of digits
before beginning the self-training loop. This process is described in Figure 1.

During this supervised training period, models are trained to perform addition both with and without
chain-of-thought reasoning. In contrast to the self-learning phase of training, all training examples
are generated programmatically by an external script during supervised learning. “Fast” addition
consists of asking models to immediately output the solution to the addition problem without using
any intermediate tokens to reason through the answer. In contrast, “slow” addition consists of asking
models to do a single simplification step of turning an N digit problem into an N − 1 digit problem
and a partial solution, similar to the method of teaching addition to schoolchildren. In this setup,
performing “slow” addition refers do performing a single step of simpliciation, not fully solving the
problem. Figure 2 depicts examples of both “fast” and “slow” addition. Training examples for each
type are prefixed with a special token depicting their type, so the model can differentiate between
the two. Learning both how to add numbers directly as well as via chain-of-thought addition can
be viewed as a similar idea to that of process supervision (Lightman et al., 2023), which recently
achieved state-of-the-art performance on the MATH dataset (Hendrycks et al., 2021).

The supervised training phase follows a curriculum learning schedule where a model must first
achieve sufficient accuracy on 1 through N digit addition before N + 1 digit examples are added to
the dataset, starting with N = 3. Accuracy is measured by computing an exact token match between
the gold reference text and the model output while sampling at temperature 0. Any answer that is
not in the correct format is automatically marked as incorrect. To prevent catastrophic forgetting
(McCloskey & Cohen, 1989), we mix examples from 1 through N digit addition while training the
model on N + 1 digit addition. Details of the precise composition of training examples are provided
in Section C. In Appendix K, we run an ablation to measure the effects of the curriculum as compared
to simply doing a single supervised tuning phase where we learn 1 to N digit addition jointly.

The supervised phase of training concludes when models exhibit length generalization to N + 1 digit
addition problems when performing “slow”, chain-of-thought augmented addition. In Appendix J,
we describe experiments regarding emergent properties of language models, suggesting that larger
models need a shorter supervised training period before exhibiting such generalization. This leads to
a hypothesis that a sufficiently large pre-trained language model might be able to forgo the supervised
training period entirely and begin self-training immediately, perhaps with only a few examples of
in-context demonstrations.

3.3 Self-Training

The second period of learning consists of self-training. The distinguishing feature of self-learning
is that all new training data in this phase is generated by the model itself without any external
verification of correctness. Aside from this important difference, self-training largely follows a
similar setup to that of the supervised learning period. Here, the goal is to ask whether the model can
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Figure 4: Simplify-then-guess asks the model to simplify the problem K times. After each simplification, the
model directly guesses the final solution without any further reasoning steps. These guesses are then aggregated
via majority vote to produce the final answer. Simplify-then-guess allows the model to balance the generalization
ability of slow, chain-of-thought reasoning, with a consistency check of having K separate guesses of the answer.

continue to teach itself skills even in the absence of human demonstrations, as is often the case in
reinforcement learning setups. However, unlike standard reinforcement learning, SECToR does not
give the model the privilege of querying the environment: models must learn entirely based on their
own conceptions of the environment without any grounding in the real world.

3.3.1 Generating New Addition Examples

The self-training phase requires the model being able to generate both “fast” and “slow” styles of
addition for numbers larger than it has seen in training. This is possible largely due to the observation
that the reasoning capabilities of models generalize exceptionally well to longer addition lengths
beyond what was seen during training. Figure 3 shows that the 582M parameter model begins to
generalize to novel digit lengths after training only on 1 through 4 digit addition and reaches almost
perfect generalization accuracy to N + 1 digit addition after training on 1 through 6 digit addition.
Similar results can be obtained for the 300M parameter model, albeit with a longer supervised training
period (see Appendix J for a longer discussion on emergence). This generalization capabilities form
the heart of how language models are able to perform self-learning with SECToR.

As described in Section 3.2, the curriculum learning setup requires that models successfully learn
both fast and slow styles of 1 through N digit addition before engaging in learning N + 1 digit
addition. Additionally, the precondition for ending the supervised phase of learning and beginning
self-training is that models achieve near-perfect generalization accuracy on slow, chain-of-thought
augmented N + 1 digit addition. This precondition immediately suggests a method of generating
training examples for “slow” N + 1 digit addition: simply directly sampling from the model using
greedy decoding. Generating “fast” style training examples is a more complex process. Figure
3 shows that longer after models generalize using chain-of-thought, generalization without such
reasoning remains poor. To generate solutions to N+1 digit addition problems, SECToR uses a novel
decoding method called simplify-then-guess which utilizes a model’s abilities to perform both fast
and slow addition for 1 through N digit addition (Figure 4). Simplify-then-guess is inspired by the
approaches of least-to-most prompting (Zhou et al., 2023) and self-consistency (Wang et al., 2023b).
In least-to-most prompting, models are prompted to decompose problems into simpler sub-problems
before solving each one in sequence. Simplify-then-guess follows a similar process, but adds in a built
in self-consistency check inspired by Wang et al. (2023b). After each simplification of the problem,
simplify-then-guess asks the model to directly guess the final solution without using any further
reasoning steps. The final answer is a majority vote over all intermediate guesses. For example, if a
model is tasked with solving an 8-digit addition problem, it will first simplify the problem into a 7
digit addition problem before taking its first guess of a solution. It then repeats this process with the
7-digit problem it just generated, and so on. This process is described in Figure 4.

The primary advantage of simplify-then-guess over least-to-most prompting, is that with least-to-most
prompting, a single error at any point in the process corrupts the entire solution. In contrast, simplify-
then-guess has a built-in error check in that, because the accuracy of each “guess” is unaffected by
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any reasoning errors that occur after the guess is made. This error reduction is critical for mitigating
error avalanching. In SECToR, simplify-then-guess generates K separate guesses for an addition
problem by applying between 1 and K simplification steps before fast adding the remaining addition
problem. It then takes a majority vote between the generated guesses to construct a final guess for the
answer. In this paper, we use K = 5, which was found to be a good balance between computational
speed and accuracy.

3.4 Commutativity Checks

Figure 5: Generating training data for N + 1 digit “fast” addition via directly sampling from the model (via
Fast Addition) leads to extremely high error rates. Generating training data purely using chain-of-thought
reasoning to simplify a problem (Simplify Only) fares better, but not as well as simplify-then-guess, which
utilizes a model’s ability to perform both fast and slow types of addition. This error is then further reduced
by a self-consistency check based on commutativity. Error rate when generating new “slow” addition training
examples is substantially lower, both before and after using the commutativity self-consistency check due to the
observation that models exhibit strong length generalization when equipped with chain-of-thought reasoning.

Nevertheless, simplify-then-guess alone is not enough to mitigate error avalanching. We perform an
additional self-consistency check based on commutativity. Specifically, we ask the model to solve
independently (via simplify-then-guess) both a problem a+ b and its twin b+ a. If the generated
solutions are not equal, we discard these problems from the dataset. For fast-type addition problems,
this check requires that a problem and its twin have answers that are identical, as measured by an
exact string match. For slow-type addition problems, this commutativity check is slightly more
difficult due to the observation that the chain-of-thought reasoning utterance for A + B is not the
same as the answer for B +A. Instead, SECToR checks that the answers generated by simplifying
for one step, followed by immediately fast adding the subproblem emit identical answers for both a
problem and its commutative twin.

3.5 Results

We report the results for a single training run for the 582M parameter model. A similar training run
with the 300M parameter model in described in Appendix E. Additional replication experiments are
included in Appendix F. The 582M model began self training after 6 digits (Figure 10). Self learning
terminated after successfully learning up to 28 digit addition problems, having failed to successfully
learn continue the training loop with 29 digit addition. Figure 6 describes the generalization accuracy
of the 582M parameter model over the course of training. Table 1 reports the addition accuracies
achieved by the final version of the model. We conduct a more careful analysis errors of the model in
Appendix I.

Length 1-29 30 31 32 33 34 35+
Accuracy (%) 98-100 88 79 52 26 2 0

Table 1: Accuracy (out of 100 examples) of the final checkpoint of the 582M model after training. For example,
this table shows that the post-training 582M model can add 30 digit numbers with 88% accuracy without using
any chain-of-thought reasoning.
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Figure 6: This figure describes the training run of the 582M parameter model. Each row label N denotes a model
which has completed training on 1 through N digit addition. The shaded regions depict a model’s generalization
accuracy beyond N -digits, measured up to a maximum of N + 8 digits. Blue represents accuracy without using
chain-of-thought reasoning, while the red allows it. Model accuracy both with and without chain-of-thought
continues to grow after self-training begins at 7 digits, despite no additional external data being provided after
that point. By the end of self-training, the model is capable of accurately adding 30 digit numbers even without
using chain-of-thought reasoning.

4 Related Work

Teaching Transformers Arithmetic. While many attempts have been made to teach large language
models to perform addition, to our knowledge, none have demonstrated that language models do so
by teaching themselves. Lee et al. (2023) found significant challenges with length generation with
transformers with very few parameters. Liu & Low (2023) fine-tuned the LLAMA family of models
(Touvron et al., 2023), successfully teaching the models 8-digit addition using a supervised fine-
tuning, while methods such as Zhou et al. (2022) try to teach addition via in-context learning instead
of fine-tuning. Nye et al. (2021) augments language models with the ability to emit intermediate
computations to a temporary “scratchpad,” allowing the model to perform up to 10-digit addition,
whereas (Jelassi et al., 2023) shows that language models can add better when their architecture is
modified to use relative position embeddings.

Self-Learning in Language Models. Prior approaches have been tried to perform self-learning in
language models. For example, StAR (Zelikman et al., 2022) generates additional data for training
by asking models to give rationales for a correct question-answer pair where none exist. It then
trains again on those self-generated rationales and demonstrates improved performance on several
reasoning-based benchmarks. Impossible distillation (Jung et al., 2023) takes an off-the-shelf LLM
and then distills a high-quality dataset by filtering its generations. It then undergoes a self-distillation
phase where it does the same process on its own generations, before undergoing one further phase
of self-improvement. Huang et al. (2022) use a similar approach of chain-of-thought reasoning and
self-consistency checks to improve at several reasoning datasets using very large models. However,
the above methods fail to mitigate error avalanching in the training process, resulting in only a few
steps of self-improvement before the process terminates.

Many other methods rely on self-improvement via methods other than updating the weights. Methods
such as Voyager (Wang et al., 2023a) exploit the powerful in-context learning abilities of large
language models to self-learn Minecraft abilities. Reflexion (Shinn et al., 2023) uses a similar
approach to improve accuracy on the HumEval coding benchmark. SwiftSage (Lin et al., 2023) uses
a similar idea of “fast-and-slow” thinking, but does not perform the self-learning loop of fine-tuning a
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model on its own generations. RAP (Hao et al., 2023) incorporates search into the decoding process.
Self-debug (Chen et al., 2023) teaches a model to debug its own generated coding mistakes.

Error Avalanching. Much work has also been done on the difficulties of self-training, especially in
language models. Shumailov et al. (2023) give both theoretical and empirical evidence that models
repeatedly trained on their own outputs, without any filtering mechanisms, quickly degenerate into
nonsense because of error avalanching. SECToR mitigates this by using chain-of-thought reasoning
and self-consistency checks minimize the number of errors that accrue in the training process. Zhang
et al. (2023b) coins the term hallucination snowballing, which can be viewed as a specific form of
error avalanching in the context of generating factual content. Dziri et al. (2023) give some theoretical
justification that errors may snowball exponentially. Wang et al. (2023b) used self-consistency to
improve reasoning by sampling various independent methods of solving the problem before using a
majority-vote system among the sampled solutions to construct the final answer.

5 Discussion

We demonstrate that chain-of-thought reasoning can serve as a policy improvement operator and
show a proof-of-concept demonstration that language models can teach themselves addition. In
contrast to prior efforts in which self-improvement fails after only a few steps at most, models trained
with SECToR manage to stay on pace for over twenty steps. Nevertheless, numerous avenues remain
unexplored in the context of self-learning with language models.

Limitations. While SECToR demonstrates the possibility of self-learning in addition with language
models, it is far from showing that models can self-learn in general. A natural question is whether
methods like SECToR can generalize to more complex tasks, such as multiplication or perhaps
even general mathematics or programming. Secondly, models trained with SECToR do not improve
forever. We speculate that a larger model, or a stronger consistency check, might allow for the models
to continue improving beyond 29 digits. Finally, while SECToR is data efficient, it is highly compute
inefficient, requiring a large amount of compute to generate the next iteration’s training data. We
leave the development of more efficient methods for SECToR to future work.

Safety. While SECToR is merely a proof-of-concept demonstration of the possibility of self-learning
in language models, this line of research brings both tremendous opportunities as well as potential
risks. One risk is that self-learning may amplify preexisting biased or erroneous information in the
model during the self-training loop. This is not a concern when considering purely objective domains
such as addition, but may be an issue if self-learning is more broadly applied to other domains with
less objectivity. Additionally, as models gain proficiency in autonomous learning, the boundaries of
their capabilities may become less and less predictable, raising questions of how such models can be
controlled and used in a safe manner. Alleviating these concerns is an important direction for future
research.
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A Approach

A.1 Reasoning as A Policy Improvement Operator

The concept of a policy improvement operator plays a central role in reinforcement learning. In
reinforcement learning, a policy is the strategy by which an agent chooses its actions, given the
current state of the world. A policy improvement operator is a function that takes in an arbitrary
policy and returns an improved policy, which is closer to the optimal policy, with respect to a given
reward function. Many reinforcement learning algorithms, such as Q-learning or policy gradients, are
built around a policy improvement operator. A crucial property of a policy improvement operator
is that it can be used repeatedly —— if one continually applies a policy improvement operator to a
policy, it will eventually converge to the environment’s optimal policy.

In AlphaZero, Monte-Carlo Tree Search (MCTS) served as the policy improvement operator. Never-
theless, two-player zero-sum games are relatively simple, well-defined environments. In this paper,
we explore the hypothesis that reasoning can serve as a policy improvement operator, analogous
to how MCTS functions in AlphaZero, but for a broader range of environments. To complete the
analogy, we consider the language model’s conditional distribution over next token as the “policy,"
the previous context as the “environment.” The goal is for each version of the model to generate
the data upon which the next version of the model is trained using the policy improvement operator
(reasoning).

While large language models have not yet been shown to possess a complete control of general
reasoning skills, Wei et al. (2022) showed that a method called “chain-of-thought reasoning” could
generate substantial performance improvements merely by asking models to think through a problem
step-by-step. In particular, Wei et al. (2022) noticed that often a model unable to solve a problem
without using reasoning was able to come up with the correct answer if allowed to reason through the
problem step-by step. One perspective on chain-of-thought reasoning is that the model is spending
computational resources at inference time to augment its own abilities. This is similar to how
AlphaZero spends compute to perform MCTS and augment its own game playing abilities. Given
that chain-of-thought reasoning can allow models to solve problems that they otherwise could not, it
is natural to ask whether repeated application of this method might allow models to self-improve far
beyond their original capabilities.

At a high level, SECToR uses chain-of-thought reasoning as a policy improvement operator to assist
the model in solving problems that it could not do without using the additional computation. It then
constructs a dataset of these new problem, solution pairs, which is then use to train the model to solve
these same problems without using chain-of-thought reasoning. The hope is that, having learned to
directly solve problems that the previous version of the model could only tackle with the additional
computational power of chain-of-thought reasoning, this improved model will be able to solve an
even larger set of problems when again augmented with chain-of-thought reasoning.

A.2 Error Avalanching

The approach of repeatedly training the model on its own utterances usually quickly results in a
phenomenon we call error avalanching. Consider a scenario where the model makes a small error
in one iteration. When this output is fed back into the model for the next round of training, the
error becomes part of the training data. As the model learns from this flawed data, the error may
be reinforced rather than corrected. In subsequent iterations, this error may compound leading to
increasingly inaccurate outputs. This is akin to an avalanche, where a small disturbance can trigger a
massive slide.

Because we ask the model to learn without giving it any access to the ground truth, it is important
to prevent this snowballing of errors, eventually derailing the training process. In past attempts to
use similar self-learning approaches, this phenomenon caused the training process to go awry within
just a few steps (Zelikman et al., 2022; Jung et al., 2023; Bai et al., 2022; Huang et al., 2022). In
order to mitigate the effects of error avalanching, SECToR utilizes several consistency checks largely
based on the following idea: we ask the model to generate a large number of “equivalent” variations
of any given question and then ask the model to (independently) solve each variation. If the answers
are largely consistent, we accept these answers into the training data. Otherwise, SECToR discards
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the answers. These consistency checks are essential for SECToR to minimize the introduction of
incorrect data into the model’s self-training loop.
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B Additional Related Work

B.1 Chain Of Thought Reasoning

Chain of thought reasoning was introduced by Wei et al. (2022) as a method of improving performance
in solving reasoning problems. Since then, this method has been expanded upon and found to improve
performance across many domains (Wu et al., 2023; Zhang et al., 2023a; Feng et al., 2023; Yao et al.,
2023; Lightman et al., 2023).

B.2 Self-Training

AlphaZero was one of the original works demonstrating the concept of self-learning, whereupon
the training process employed Monte-Carlo Tree Search (MCTS) as a policy improvement operator.
Specifically, AlphaZero used MCTS to improve upon the original policy of the game, before distilling
this improved policy into the original policy. Coulom (2007) proved that, regardless of the quality of
the original policy, running MCTS would provide a policy that was closer to the Nash equilibrium of
the game. However, AlphaZero required access to a perfect simulator of the environment in order
to perform MCTS. AlphaZero’s followup work, MuZero (Schrittwieser et al., 2020), removed the
requirement of direct access to a simulator by learning a model of the world, but MuZero still required
continual query access to the true simulator to ensure that this world model remained accurate
during training. While a simulator is easily accessible for such small, constrained environments, it is
often not possible for general domains in the real world, where environments may be ill-defined or
otherwise difficult to accurately simulate (e.g. real-world robotics, writing a Pulitzer Prize winning
novel). It remains an open question whether an analogue policy improvement operator exists for a
broader class of environments. Additionally, while MCTS is a powerful tool for learning in board
games, it is not a general policy improvement operator. SECToR builds upon this prior work and can
be used to train models to perform up to 30-digit addition without any queries to the ground truth
world model after the initial self-training period.
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C Hyperparameters

All models are fine-tuned using the Adam optimizer (Kingma & Ba, 2015) and the DeepSpeed library
(Aminabadi et al., 2022) with a constant learning rate of 10−4. We used a batch size of 2048 for
our experiments with the 300M parameter model and 1024 for the 582M parameter model, which
were the maximum possible sizes that fit in memory given our computational resources. Furthermore,
we used 16-bit training via bfloat16 to conserve memory. The entire training process for the 582M
parameter model took around 24 hours on a cluster of 8 V100s.

During the supervised training phase, when learning how to add 1 through N digits, we generated
10000 unique examples for N -digit chain-of-thought addition and 1000 unique examples for chain-
of-thought addition for each digit from 1 - N to reduce catastrophic forgetting. For fast addition
problems, we would generate 30000 unique examples for N digit addition and 3000 unique examples
for all smaller numbers.

During the self-training phase, all numbers were reduced by a factor of 10, since it was substantially
more costly to generate training data during this regime. If there are not enough unique training
examples to satisfy these conditions1, then we duplicate the problems until there are a minimum of 1

3
of the size of the data otherwise required.

Models were allowed to proceed to N + 1 digit addition when they have achieved sufficient perfor-
mance on 1 through N digit addition. Satisfactory performance is defined as achieving at least 75%
accuracy length N addition problems without using chain-of-thought reasoning and 100% accuracy
(on length N addition problems) when using chain-of-thought reasoning on a held out test set of size
128 of each type of problem. SECToR does not require perfect accuracy on fast addition problems
because SECToR’s built in self-consistency checks are more robust to errors of this kind than with
errors in the chain-of-thought reasoning process.

1There are only 100 unique 1-digit addition problems.
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D Out of Box Accuracy of ByT5 models on Addition

To defend against the possibility that the ByT5 models secretly already know how to perform addition
before SECToR, we evaluate the out-of-box accuracy of these models on simple addition. Table 2
shows that models have little-to-no ability to perform addition out of the box.

Model Size \ Addition Length 1 2 3 4
300M 0.015 0.004 0.0 0.0
582M 0.04 0.005 0.002 0.0
1.23B 0.0 0.005 0.0 0.0
3.74B 0.0 0.002 0.0 0.0

Table 2: Out-of-the-box addition accuracy (with no fine-tuning) of the ByT5 Xue et al. (2022) family of models.
All accuracies are measured using 1000 randomly generated addition problems.

All models were prompted with 10 correct examples of addition with the specified number of digits
before being asked to complete the 11th problem. An example prompt is pasted in its entirety below.

10 + 97 = 107
17 + 82 = 99
21 + 68 = 89
35 + 29 = 64
75 + 68 = 143
10 + 28 = 38
48 + 60 = 108
88 + 46 = 134
83 + 49 = 132
11 + 62 = 73
25 + 24 =

20



E Results with the 300M ByT5 Model

The 300M model began self training after 8 digits. The training run is described in Figure 11. Its
last saved checkpoint was after successfully learning up to 24 digit addition problems, having failed
to successfully learn continue the training loop with 25 digit addition. Figures 7 and 8 describe the
generalization accuracies of the 300M parameter model over the course of training. Table 3 reports
the addition accuracies achieved by the final version of the model. Note that even though the model
was unable to continue training on the 25-digit iteration of learning, its previous checkpoint is still
able to do addition problems larger than 24 digits with reasonable accuracy.

Length 1-19 20 21 22 23 24 25 26 27+
Accuracy (%) 98-100 95 98 98 99 98 91 33 0

Table 3: Accuracy (out of 100 examples) of the final checkpoint of the 300M model after training. For example,
this table shows that the post-training 300M model can add 24 digit numbers with 98% accuracy without any
chain-of-thought reasoning.
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Figure 7: This figure describes the generalization accuracy of the model’s addition capabilities over the course
of training over the training run of the 300M model. Blue lines indicate the supervised training phase, while red
lines indicate the self-training phase. We can see that even at the end of training, models do not show much
generalization in their addition capabilities without using chain of thought.
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Figure 8: This figure describes the generalization accuracy of the model’s addition capabilities over the course
of training over the training run of the 300M model. Blue lines indicate the supervised training phase, while red
lines indicate the self-training phase. While initially, models show little generalization to lengths greater than
than what they have seen in training, models quickly learn to generalize well beyond their training distribution
using chain-of-thought, allowing them to continue teaching themselves addition problems beyond what they
have seen before.
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F Control Experiments

A control experiment with the 582M parameter model had a supervised training phase of 1 through 5
digits and a self-learning phase of 6 through 21 digits. The training run is depicted in Figures ??, ??
and ??.

+0 +1 +2 +3 +4
Generalization beyond training

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Addition Accuracy w/o CoT (582M)

3

6

22

Di
gi

ts

+0 +1 +2 +3 +4
Generalization beyond training

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Addition Accuracy w/ CoT (582M)

3

6

22

Di
gi

ts

23



3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Addition Problem Length

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

To
ta

l T
ra

in
in

g 
E

xa
m

pl
es

 S
ee

n

1e6 Learning Trajectory of the 582M ByT5 Model

Self-training
Supervised training

24



G Similarities Between AlphaZero’s MCTS and Simplify-then-guess

Simplify-then-guess also has spiritual similarities to how AlphaZero often does not perform MCTS
to the end of the game, instead terminating search after a certain depth and returning the output of the
value network. The analogy for simplify-then-guess is that SECToR runs K steps of simplification (i.e.
search) before taking a guess at the answer (i.e. querying the value network) instead of simplifying all
the way to 1-digit addition (i.e. running MCTS to the end of the game). This takes direct advantage
of the inductive curriculum-style training in which a model learns to add 1 to N digit numbers before
being asked to generate training data for N + 1 addition numbers.
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H Future Directions

H.1 Self-learning vs. Learning to Self-Learn.

While SECToR is a process by which models teach themselves new concepts, they arguably do not
learn to teach themselves new concepts. In our experiments, SECToR provides scaffolding around
the model which, while never performing any aspect of addition, assists the language model in
learning. For example, SECToR stops fine tuning once accuracy hits a certain threshold and this
threshold was not chosen by the model itself. One can imagine using ideas from recent work, such as
Toolformer, to give a language model access to tools or API commands that allow it to fine tune itself
and add datapoints to the dataset. If successful, one could imagine a process analogous to SECToR,
except that the process would consist solely of sampling from the model and executing the generated
commands with no additional assistance. If so, one could imagine a model learning to teach itself a
wide variety of concepts, including those in which it has to self-discover the learning process, as well
as the new concepts itself.

H.2 Grounding.

Grounding is an area of active discussion in the research community, with many criticizing language
models for their perceived lack of grounding in the real world. Some have suggested that future
models may need to be embodied to effectively learn in the real world (Marcus, 2018; Bender &
Koller, 2020; Tamari et al., 2020; Bisk et al., 2020). We believe our results with SECToR raise
the possibility that large language models can succeed without grounding in domains that benefit
from the existence of very strong self-consistency checking (e.g., mathematics, programming, etc.).
While the model in the present paper is arguably grounded in true arithmetic during the supervised
training phase, during the self-training phase, of which the majority of training occurs, models trained
with SECToR receive no information from the external world and are, in this sense, ungrounded.
Nevertheless, they manage to teach themselves addition problems that are orders of magnitude
larger than they have ever seen during supervised fine-tuning. Might it be possible for models to
bootstrap their learning in other domains without access to an incremental source of external signal
or grounding?
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I Error Analysis

In this section, we examine what types of errors the models make on addition. We evaluate the final
successful model checkpoint of the 582M parameter model on 30 digit addition. Note that as per
Section 3.5, this is beyond what the model has ever seen during training, including self-training.
Nevertheless, Table 1 suggests that models can generalize to perform such addition even without
using chain-of-thought reasoning.

We plot the accuracy of the model on 30 digit addition against the number of carries required to
perform such addition. Surprisingly, we notice little correlation between the number of carries a
model must perform and its overall accuracy, suggesting that models are not simply learning to solve
the “easy” addition problems.
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Figure 9: Model accuracy on 30 digit addition against the number of carries required. We observe little
relationship between accuracy either the total number of carries required (left) or the longest streak of carries in
a problem (right).
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J Emergence Experiments
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Figure 10: This figure describes how much training data was generated/consumed over the course of the training
run of the 582M model.
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Figure 11: This figure describes how much training data was generated/consumed over the course of the training
run of the 300M model.

While the 300M and 582M parameter ByT5 models required an initial supervised learning phase
before being able to begin self-learning, we note that there seems to be an inverse correlation between
the size of the model and the length of the supervised training period, both in terms of the maximum
length of addition problems seen as well as the total training examples. For examples, Figure 11
shows that the 300M model required almost 4 million training examples of up to length 8 before
generalizing sufficiently well to begin training. In contrast, Figure 10 shows that the 582M model
required only 0.5 million training examples of up to length 6 before generalizing. We hypothesize
that a sufficiently large model might be able to forgo the supervised training phase entirely and begin
self-training immediately out of the box, possibly with the assistance of in-context learning.

Additionally, while simplify-then-guess outperforms generic “simplification” for generating new
N + 1 digit examples (Figure 5), we find that “simplify + commutativity” rivals (and sometimes
outperforms) simplify-then-guess combined with commutativity in the 582M parameter model, even
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though it does not in the 300M parameter model. We speculate that this may be due to the errors in
the simplification process being less correlated than errors in the simplify-then-guess process, but
lead such speculation to future work.
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K Importance of Curriculum Learning

A natural question is how important the curriculum learning where the model is required to success-
fully learning 1 through N digit addition before N + 1 digit examples are added in the training step.
We run an ablation where we train a 582M parameter ByT5 model on 1 through 6 digit addition
in a single supervised fine-tuning step, instead of via the curriculum learning setup done in Sec-
tion 3.5. We find that this model, when properly trained generalizes to up to 9 digit (slow) addition
perfectly, suggesting that curriculum learning is the primary reason why SECToR is able to perform
self-learning. Nevertheless, this ablation does not mean that that SECToR is able to run without some
form of curriculum learning because a priori, one would have no way of knowing precisely what
number of digits were sufficient to generalize other than empirical experiments. Additionally, during
the self-training process, curriculum learning is essential by design, as one requires a model capable
of performing 1 through N digit addition to generate the training data for N + 1 digit addition.
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L Additional Figure On Self-Learning

Modelt
167 + 708 = [ CoT . . . ] A: 875

714 + 263 = [ CoT . . . ] A: 977

Solve problems using
CoT reasoning

Modelt+1

Train model to generate
these solutions without
using CoT reasoning.
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9401 + 5804 =?
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Figure 12: To perform self-learning, SECToR asks models to solve addition problems using chain-of-thought
reasoning by decomposing the problem step-by-step. It then trains the next version of the model to solve those
same problems directly without using chain-of-thought reasoning. This process often results in an improved
model which can often solve even harder problems than original model, allowing the self-learning loop to
continue.
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