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Abstract

The established redundancy in visual tokens within large vision—language models
(LVLMs) allows for pruning to effectively reduce their substantial computational
demands. Empirical evidence from previous works indicates that visual tokens in
later decoder stages receive less attention than shallow layers. Then, previous meth-
ods typically employ heuristics layer-specific pruning strategies where, although
the number of tokens removed may differ across decoder layers, the overall pruning
schedule is fixed and applied uniformly to all input samples and tasks, failing to
align token elimination with the model’s holistic reasoning trajectory. Cognitive
science indicates that human visual processing often begins with broad exploration
to accumulate evidence before narrowing focus as the target becomes distinct. Our
experiments reveal an analogous pattern in LVLMs. This observation strongly sug-
gests that neither a fixed pruning schedule nor a heuristics layer-wise strategy can
optimally accommodate the diverse complexities inherent in different inputs. To
overcome this limitation, we introduce Complexity-Adaptive Pruning (AutoPrune),
which is a training-free, plug-and-play framework that tailors pruning policies
to varying sample and task complexities. Specifically, AutoPrune quantifies the
mutual information between visual and textual tokens, and then projects this signal
to a budget-constrained logistic retention curve. Each such logistic curve, defined
by its unique shape, is shown to effectively correspond with the specific complexity
of different tasks, and can easily guarantee adherence to a pre-defined computa-
tional constraints. We evaluate AutoPrune not only on standard vision-language
tasks but also on Vision-Language-Action (VLA) models for autonomous driving.
Notably, when applied to LLaVA-1.5-7B, our method prunes 89% of visual tokens
and reduces inference FLOPs by 76.8%, but still retaining 96.7% of the original
accuracy averaged over all tasks. This corresponds to a 9.1% improvement over
the recent work PDrop (CVPR’2025), demonstrating the effectivenes. Code is
available athttps://github. com/AutoLab-SAI-SJTU/AutoPrune.

1 Introduction

Vision and Language Models (VLMs) have rapidly emerged as the backbone of modern multimodal
systems, powering tasks such as image captioning [} [2} 3], visual question answering (VQA) [4. 5]
and multimodal dialogue [6\ [7]. Recent extensions to embodied intelligence like the wildly deployed
autonomous driving system, exemplified by Vision—Language Action frameworks [8} |9, [LO], further
couple these perceptual capabilities with driving control, permitting end-to-end reasoning. However,
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tokenizing high-resolution images or video for LLMs yields excessively long visual sequences, which
in turn create memory and latency bottlenecks and make efficient pruning essential for real-time use.
Among the diverse methods aimed at boosting the efficiency of VLMs, training-free token pruning
stands out as a significant technique because of its simplicity [[11} 12} [13} 14} [15} 16} [17].

A review of related literature reveals a prevailing understanding that the informational contribution
of visual tokens substantially diminishes during the later stages of the VLM decoder [18]]. Existing
training-free token pruning methods reflecting this principle typically adhere to predetermined fixed
pruning schedules [19} [13]] or alternatively they employ layer specific heuristics [20, 21] yet without
explicit adherence to a global computational budget. However for reasoning intensive tasks which
necessitate iterative inference and dynamic cross modal fusion, such fixed pruning policies lack
adaptability and cannot meet the sample specific and task specific demands. Our experiments in
Sec. [3.2underscore this limitation showing that saliency patterns and consequently token importance
vary significantly with the input image and the posed query. While certain layer wise heuristics
attempt to prune tokens differently based on factors like decoder layer depth, their handcrafted nature
presents challenges as these designs often fail to guarantee adherence to a target token count or FLOPs
budget without extensive manual tuning nor do they provide robust evidence of generalizability across
diverse scenarios. This context therefore naturally motivates a critical question that “Is it feasible to
develop a pruning methodology that #& dynamically adjusts to the varying complexities of individual
samples and tasks while © readily adhering to a predefined computational budget and & concurrently
upholding principles of simplicity and broad generalizability?”

Since humans excel at complex visuolinguistic reasoning, we tend to find the answer from neuro-
science first. The studies in which reveals that for clearly expressions (simple samples and tasks),
ventral visual stream and temporal-language areas rapidly converge on the referent, yielding single
sustained fixations [22} 23| 24]. In contrast, ambiguous or indirect descriptions (complex samples and
tasks) engage dorsolateral prefrontal and parietal networks, with the prefrontal cortex maintaining
competing hypotheses while the dorsal attention system drives iterative gaze shifts [25[26]. Mirroring
this exploration—exploitation cycle, our analysis of VLMs in Fig.|l|also proves that simple samples
and tasks induce a rapid collapse of cross-modal attention within early layers, whereas complex
samples and tasks sustain diffuse attention and exhibit pronounced inter-layer saliency fluctuations.
These observations demonstrate that fixed pruning schedules, whether aggressive or conservative,
cannot satisfy the varied demands of reasoning.

Leveraging these insights, our work primarily proposes Complexity-Adaptive Pruning (AutoPrune),
a framework that endows each input with an individualized pruning policy. To achieve this goal, we
believe the core challenge lies in quantifying sample complexity in a manner and representing the
latent thought process compatible with training-free deployment and adherence to a fixed computa-
tional budget. Drawing on neuroscientific evidence that tightly coupled cross-modal signals shorten
human reasoning paths, we measure the mutual information between early-layer visual and textual
tokens to identify input complexity. A high value implies a simple sample with an easily localized
answer, while a low value flags a complex sample requiring broader exploration. We map this scalar
complexity estimate onto logistic retention curves that mimic the human explore-commit-stabilise
pattern observed in eye-tracking studies. Each curve represents a distinct pruning policy, where the
values at different points along the curve dictate the degree of token pruning at varying depths of the
decoder. The curve’s slope and inflection point are modulated linearly by the mutual information
score, yielding aggressive front-loaded pruning for simple samples and conservative, late-onset
pruning for complex ones. To guarantee the pre-defined cost, we analytically integrate each curve,
rescaling it so that the area under the curve equals a user-specified token or FLOPs budget.

Due to its simple and plug-and-play architecture, our AutoPrune can be seamlessly integrated into a
variety of VLM and VLA models, including LLaVA-1.5 [27], LLaVA-NeXT [28]], and Senna [29]
for autonomous driving. Experiments on standard vision—language benchmarks, autonomous driving
scene understanding and planning demonstrate that AutoPrune consistently outperforms existing
training-free methods across a broad range of pruning ratios. For instance, when applied to LLaVA-
1.5-7B, AutoPrune prunes 89% of visual tokens and reduces inference FLOPs by 76.8%, but still
retaining 96.7% of the original accuracy averaged over all tasks. This corresponds to a 9.1%
improvement over the recent work PDrop (CVPR2025) [13].

Our contributions include: # We present a cognitive neuroscience—inspired analysis that system-
atically links sample and task complexity with token retention decay and inter-layer fluctuations



in cross-modal attention. © We propose AutoPrune, a training-free complexity-adaptive pruning
framework that computes mutual information from visual-textual attention and maps it to a budget-
constrained logistic retention schedule, assigning each sample and task a customized pruning curve
under any specified token or FLOPs budget. & We demonstrate the generality of our approach
by integrating AutoPrune into multiple VLM and VLA models and benchmarking against diverse
baselines. Extensive experiments show that our method consistently outperforms prior state-of-the-art
approaches across various tasks and reduction ratios.

2 Related Work

Vision-Language Models (VLMs). VLMs have achieved significant progress in integrating visual
and textual modalities, enabling sophisticated tasks such as image captioning [[1, 2| 3], visual question
answering (VQA) [4} 5], and multimodal dialogue [6 [7]. Their broad world knowledge has spurred
embodied applications and led to VLA models [8, 9], which add action generation for control, with
autonomous driving as a representative application. A typical design uses a visual encoder for features
and an LLM for multimodal reasoning and output. This pairing grants visual perception but expands
inputs into long token sequences. High resolution images [30] and video [31}32]] amplify memory
and latency. Consequently, optimizing the inference efficiency of these powerful models is a critical
prerequisite for their practical deployment in resource-constrained real-world scenarios. Among the
diverse methods aimed at boosting the efficiency of VLMs, token pruning stands out as a significant
technique, broadly divisible into training-based and training-free paradigms.

Token Pruning. In pursuit of task-optimized efficiency, one prominent line of research focuses on
training-based pruning methodologies. These approaches necessitate supplementary training or fine-
tuning stages to instill task-specific pruning behaviors, potentially enhancing performance metrics on
target applications [11} 133134, [12] [35]. Training-free pruning avoids retraining and can be applied
directly to pretrained models [[18]]. Methods are commonly grouped by pruning stage. Pre decoder
pruning selects a subset of visual tokens with unsupervised similarity or lightweight scores before the
LLM, as in TopV [36] and FasterVLM [19]]. Intra decoder pruning removes tokens during inference
across LLM layers using preset layerwise schedules or attention statistics, as in PyramidDrop [[13]]
and ZipVL [14]. Despite their appeal and diverse application points (pre- or intra-decoder), a critical
unresolved shortcoming persists in existing training-free methods. Specifically, regardless of the
pruning stage, the vast majority employ fixed pruning policies [[L1} 12, |13, {14} [15 [16} [17]. The
rigidity of such static approaches proves problematic. Our experimental observations within VLMs
reveal that, even for the same input image, the pattern of token importance varies dynamically across
decoder layers depending on the specific question posed. Consequently, a fixed pruning policy is
inherently ill-suited to adapt to these variations that are contingent on both input query and processing
depth within decoder, underscoring the need for more adaptive, context-aware pruning strategies.

3 Method

3.1 Preliminaries

We cast token pruning as a constrained optimisation problem whose decision variables specify 1) how
many visual tokens survive in each transformer block, 2) how to select specific tokens for retention,
and 3) how to revive discarded tokens. All three decisions are optimised jointly under a global
constraint on total computation. Concretely, we denote the token-allocation policy as ¢ specifying the
number of tokens preserved at each layer 4, the token-selection policy as 7 governing token retention,
and the token-revival policy as p dictating how discarded tokens are revived and remapped. For a
data distribution D and task loss ¢, the expected loss is defined as:

L(&ﬂﬂp) = E(V,T,y)NDZ(ya fe(VaT;Eaﬂ-vp))a (1)
where V € RMX4 and T € RV+*4 gre the image and text tokens, y is the ground-truth, and fy is
the vision—language model. We aim to minimise £ subject to a global compute budget ¢y ax:

L

min £(§,7T,p) s.t. Zci (fap) < Cmax;, (2)
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where ¢; (£, p) measures the computational cost incurred by pruning and potential revival at layer .



Figure 1: Layer-wise Visual-Textual Interaction Patterns. By visualizing cross-modal attention
at layers 2, 4, 8 and 16 of the VLM, we observe that for tasks requiring only object identification,
attention rapidly converges on the salient region and remains stable, whereas for reasoning-intensive
tasks attention shifts progressively across layers.

We focus on optimizing the token-allocation policy &, which governs how many tokens are preserved
at each layer. Prior approaches fall into two camps: 1) a uniform pruning schedule applied identically
across all tasks, which cannot adapt to varying visual-textual demands, and 2) per-layer schemes that
tune pruning independently but lack a mechanism to enforce a global compute budget, often resulting
in insufficient pruning and limited speedup. In contrast, our method dynamically allocates token
budgets in a global manner which rigorously satisfying the overall computation constraint, thereby
unifying adaptability and acceleration.

3.2 Neuroscience Inspiration and Analysis

Neuroscientific research [22] 23] [26]] shows that the neural resources engaged in visuolinguistic
processing scale with task complexity. When the text unambiguously specifies a target (simple tasks),
object-selective regions in the ventral visual stream cooperate with temporal-language areas to form a
rapid, stable representation, and attention remains anchored to the relevant image region. Indirect
or ambiguous links (complex tasks) elicit additional activity in dorsolateral prefrontal and parietal
control networks, the prefrontal cortex maintains competing interpretations while the dorsal attention
system reallocates gaze among candidate referents. Eye-tracking corroborates this shift, revealing
single, sustained fixations in simple conditions but iterative scans in complex ones, which provides
evidence of top-down guidance by language riven inference.

Guided by these neuroscience cognitive insights, we conduct a fine-grained analysis of cross-modal
attention in vision-language models. As illustrated in Fig.[T] we analyze the model’s behavior on
both simple and complex tasks and identify two key findings.

Task-Sample Adaptive Token Number Decay. Fig.|l|(left) demonstrates that in simple tasks and
samples (here in this example, “task” indicates the asked question, “sample” denotes the input image),
where the referring expression unambiguously identifies the target, cross-modal attention outside
the relevant region collapses within the first few layers. At that stage, only tokens corresponding to
the target remain active. In contrast, as shown in Fig. [[[(right) , for complex tasks and samples that
demand non-trivial visual inference, attention over image tokens decays gradually and remains widely
dispersed in the initial layers, indicating the model’s uncertainty about where pertinent evidence
resides. Hence, simple tasks and samples permits aggressive pruning at shallow depths, whereas
reasoning-intensive prompts benefit from postponing token removal until deeper layers. These
findings motivate a task-adaptive pruning policy that dynamically models global token trajectories,
preserving a wide set of tokens when alignment is ambiguous and confidently discarding irrelevant
tokens at shallow depths when alignment is clear. However, as discussed before, existing methods
cannot simultaneously capture both the gloabl token trajectories and the compute budget, limiting
their ability to reconcile adaptivity with efficiency.

Inter-Layer Saliency Position Variation. In simple tasks, cross-modal attention converges by an
early layer and remains stable thereafter (Fig. [T] left), indicating that further exploratory inference
provides no additional benefit. In complex tasks, the saliency of individual visual tokens varies across
layers. Specifically, as shown in Fig. [I(right line 1), the model initially attend to a chalkboard, shift
focus to surrounding regions in intermediate layers, and return to the true target by layer 16. These
fluctuations reveal an intrinsic search mechanism that probes alternative regions under weak initial



cues and progressively refines attention as higher-order features emerge. In summary, for simple
tasks, aggressive pruning can be applied once attention has converged, for complex tasks, maintaining
a larger token set across layers is essential to support ongoing inference and resolve ambiguity.

These findings indicate that effective pruning must follow a dynamically modeled, globally coherent
trajectory. However, existing approaches either lack a mechanism to capture such dynamics or fail to
achieve global pruning trajectory. Our framework employs complexity-aware pruning that adapts to
each sample, task, and layer saliency position variation to produce a dynamic, globally consistent
trajectory within a fixed computational budget.

3.3 Complexity-Adaptive Pruning

Then the next questions are: (1) how to formulate a reliable indicator for assessing the sample and
task complexity? and (2) how to translate this indicator into a policy that is not only formally simple
but also allows for straightforward management of the overall computational budget? In pursuing an
answer, we again drew inspiration from neuroscience.

Neuroscientific evidence indicates [37] that in semantically congruent audiovisual contexts informa-
tion flow from early visual areas to language integration regions is both stronger and more direct,
reflecting enhanced bidirectional coupling. In incongruent contexts higher order regions such as the
prefrontal cortex are recruited to resolve the mismatch, which attenuates direct exchange between
lower level sensory areas. This contrast implies that the extent of information exchange in the initial
layers can serve as a proxy for complexity. To quantify this, for the first question above, we
compute the mutual information between visual tokens and textual tokens. Specifically, high mutual
information denotes a direct, “simple” task that allows aggressive pruning, whereas low mutual
information signifies an indirect, “complex” task that demands conservative token retention.

Extensive eye-tracking and electroencephalography researches [25, 38|39} |40]] show that, in the
image-based question-answering tasks, the time course of human fixations is well described by a
logistic (S-shaped) curve. Specifically, an initial epoch of broadly distributed gaze is followed by
a steep rise in target-fixation probability once task-relevant evidence exceeds a cognitive threshold,
after which fixations stabilise on a small region of the scene. This explore—commit—stabilise pattern
appears in purely visual settings and in cross-modal variants that combine visual scenes with spoken
or multisensory cues, indicating a modality-general principle of attention allocation. Inspired by
this finding, for the second question above, we define a logistic retention function that emulates
a human-like, iterative inspection process, applying aggressive early pruning in simple tasks with
strong alignment to isolate key tokens and reserve budget for deeper analysis, whereas in complex
tasks we prune conservatively at first to avoid discarding critical information prematurely. Besides the
neurological explanation, we select the logistic function due to its inherent simplicity and the facility
with which its shape can be modulated by adjusting hyperparameters. These hyperparameters can be
efficiently derived from the indicator we introduce. As illustrated in Fig.[2] steeper slopes indicate
lower mutual information and correspond to lower sample scores, thereby validating our method.

Subsequently, we elaborate on these two essential components.

Mutual Information for Cross-Modal Alignment. To translate the qualitative insights from our
neuroscientific analysis into a quantitative signal that can steer pruning, we require a scalar measure of
how tightly a textual prompt constrains the visual scene. Mutual information naturally fulfils this role
because it captures the reduction in visual uncertainty provided by the text and is directly computable
from cross-modal attention. Specifically, we quantify the mutual information [41] between the visual
tokens V and textual tokens T by

I(V,T) ii (01, 85) 1 p(vt) 3)
) = p(vi, t5) 108 ————=,
p b M p(vi) p(t;)
—1j—
where IV, and N; denote the numbers of visual and textual tokens, respectively. We estimate the joint
and marginal probabilities by interpreting the transformer’s softmax-normalized attention weights o;;
(from text token ¢; to visual token v;) as probabilities p(v; | ;) under a uniform text prior, yielding

1 1
p(vi,t;) = N aji, pvi) = Zp(vivtj% p(ty) = —- 4



This approach leverages the fact that attention’s softmax outputs form a valid distribution [42, 43]],
allowing direct computation of mutual information from the attention maps.

As shown in Fig. 2] a large value of I(V, T) indicates that the textual prompt sharply constrains the
space of plausible visual interpretations, allowing the model to confidently localize the relevant region
early and perform aggressive front-loaded pruning of non-essential visual tokens ( ).
Conversely, a small mutual information means weak or indirect correspondence, so the network must
preserve multiple visual hypotheses across layers, leading to a gradual, unstable reduction of attention
(blue curve) [44,45]]. Thus, mutual information provides a principled scalar proxy for task-specific
text—vision alignment, guiding the pruning schedule introduced in this work.

Budget-Constrained Logistic Retention. For a question—answer pair ¢, the policy is defined as,
Ninit
falz) = )
a(@) 1+ exp(kq(z — 27))
where Niyit is the initial token count, k controls the steepness of the retention decay, and z denotes
the layer at which the retention rate falls to half of Nj,;;.

Practical deployment requires an fixed compute budget C\,,,x, prior methods approximate this cost by
reporting the average per-layer token number [20}[13]]. Based on their method and to meet requirement
of compute budget we integrate f(x) over the depth domain [0, L],

Fy(z) = /fq(x) dr = Nipit |(z —zg) — k:i ln(l + ekq(z_’”g)) 6)
q

and compute the area Iy = Fq(L) — F,(0). We then renormalise the curve by

r _ Cmax/Iq
fal@) = 1+ exp(kq (z — 7)) ™

so that fOL fq(m) dx = Cmax. This procedure
preserves the shape of curve while guarantee-
ing identical computational complexity across
tasks. Since network layers are discrete, and
token counts must be integer-valued. We there- 0s
fore evaluate fq(i) at each layer ¢ € {0,...,L}
to the nearest integer, and adjust a global scale
factor s until 7[5 - fq ()| =~ cmax with bi-
nary search. The same procedure applies when
the budget is expressed in FLOPs rather than
token counts. Let ¢(x) denote the per-layer cost o

incurred by retaining fq(x) tokens. Replacing

B Hard (5<0.3)
Medium (0.3 <5<1)
Easy(s=1)

Retention Ratio

0.0

token number by fOL ¢(fq(2)) da and rescaling ; ; P
as above yields a schedule that respects any de-

sired FLOPs target. Figure 2: Logistic retention curves on the

Dynamic Logistic Pruning Policy. We treat TextVQA dataset. Each curve corresponds to a
the mutual information between visual and tex- QA pair, and is parameterized by the mutual infor-
tual tokens as a measure of alignment strength mation between visual and textual tokens. Sam-
that distjnguishes Simp]e tasks from Comp]ex ples/Tasks exhibiting lower mutual information
ones. When mutual information is high, indicat- show more conservative retention.

ing strong correspondence between modalities,

we configure the logistic retention function to decline rapidly in the early layers, enabling the model
to prune surplus tokens in easy tasks ( ). Conversely, when mutual information is low,
signifying weaker alignment, we maintain a prolonged plateau in the logistic curve and defer its sharp
descent until later layers, thereby preserving a higher token budget to safeguard critical evidence in
demanding tasks (blue curve).

15 2
Layer Index

We implement this effect by letting both the slope & and the inflection point xy depend linearly on
the mutual information. Concretely, we set

kq = kO - VIC[(V7 T)7 xg =x0 + qu(V,T), (8)



where ko,7, 8 > 0 and x is the given params. Hence, a small I,(V,T) produces a larger slope
k4 and a higher z3, thereby retaining more tokens prior to the inflection point to avoid prematurely
discarding critical information. In contrast, a large I,(V, T') reduces the number of tokens preserved
before x(, enabling the model to repeatedly concentrate its computations on the most salient features.

3.4 Theoretical Analysis of Computational Complexity

To evaluate the efficiency of our pruning algorithm, we derive its overall time complexity as
O(Nh Ny N, + N, log(N,)L + LN, log(Nv)) ~ O(Nh N NV), C)

where NV}, N; and N, denote the numbers of attention heads, textual tokens and visual tokens, respec-
tively, and L is the number of layers. The first term Ny, Ny N, corresponds to mutual-information
estimation, the second term N, log(N ) L reflects the generation of the logistic function and normal-
ization, and the third term L N, log(N, ) captures per-layer token sorting. None of these operations
depends on feature dimension d (e.g. d = 4096), and under typical settings (N, = 32, Ni, IV, =~
several hundred, L = 32) the additional overhead is negligible compared with overall inference cost.

4 Experiments

We evaluate our framework across a diverse suite of vision—language benchmarks, comparing it
against state-of-the-art token pruning methods on a single NVIDIA Tesla A100 GPU. Tab. [I{reports
results on multi-modal tasks commonly employed in previous token pruning studies. Tab. 2|assesses
the generalizability of our work by applying our AutoPrune to other VLMs. Furthermore, we
demonstrate the generalizability of AutoPrune to embodied robots for autonomous driving (Tab. [3).
Notably, the core AutoPrune pipeline and even hyper-parameters remains unaltered when applied to
the embodied task, thereby clearly and fairly demonstrating the broad applicability of our work.

4.1 Results with LLaVA

We evaluate our AutoPrune integrated into LLaVA-1.5-7B [27]] on five standard vision-language
benchmarks, including MME [46]], MMB [47]], ScienceQA (SQA) [48]], GQA [49], and TextVQA [50].
As shown in Tab. [T} our AutoPrune consistently outperforms all competitors across the entire sparsity
spectrum and exhibits graceful degradation as the visual token budget diminishes. At an aggressive
pruning rate of 89% (retaining only 64 tokens), AutoPrune maintains 96.7% of the full-model
accuracy, whereas the strongest baseline (PDrop [13] in CVPR’2025) achieves only 87.6%. Under
moderate pruning (78% removal, 128 tokens), AutoPrune preserves 98.1% of original performance,
compared to 95.6% for PDrop and under 93% for other methods. At a pruning level of 66% removal
(192 tokens), AutoPrune achieves virtually lossless performance by maintaining 99.0% accuracy
while reducing FLOPs by over 57%. These results demonstrate that our complexity-adaptive pruning
schedule not only attains the highest absolute accuracy at all pruning levels but also minimizes
performance degradation as the token budget decreases.

4.2 Results with LLAVA-NeXT

To validate the generality of our approach, we evaluate its performance on LLaVA-NeXT-7B [28]] as
detailed in Tab. 2] utilizing three distinct token budgets (640, 320, and 160). For equitable comparison,
all methods are benchmarked on datasets employed in prior work [19], encompassing VQAY? [52]],
GQA [49], TextVQA [50], POPE [53]], and MME [46]. When retaining 320 tokens, our method
maintains a relative performance retention of 98.2%, outperforming all compared methods. Under
the most stringent budget of 160 retained tokens, our approach preserves 94.9% of its original
performance, exceeding the nearest competitor FasterVLM (86.7%) by more than five percentage
points. These results affirm the robustness of our pruning strategy across diverse token budgets.
Consequently, our method proves efficacy in maintaining high performance with different VLMs.

4.3 Validating Generality for Autonomous Driving Scene Understanding and Planning

To assess the generalization abilities of our pruning strategy, we conduct a comparative study on
scene understanding and driving planning tasks. This evaluation utilized the Senna model [[10] and its



Table 1: Comparison of our methods with other training-free token pruning methods. “Avg.tokens”
refers to the average number of tokens that will be retained. Ratio represents the average percentage
of performance maintained at the corresponding reduction ratio.

Method \ Present at \Avg. tokens MME MMB SQA GQA TextVQA Ratio FLOPs
LLaVA-1.5-7B \NeurIPS’24\ 576 1862 64.7 69.5 619 582 100% 100%
ToMe [15] arXiv'22 192 1563 60.5 652 543 521 89.9% 44.3%
FastV [18] ECCV’24 192 1612 61.2 67.3 527 525 90.6% 45.7%
SparseVLM [20]| arXiv’'24 192 1721 625 69.1 57.6 563 955% 46.3%
PDrop [13] CVPR’25 192 1797 633 69.2 573 565 96.8% 43.9%
Ours - 192 1832 649 69.6 604 57.7 99.0% 42.9%
ToMe [15] arXiv'22 128 1343 533 59.6 524 49.1 81.1% 35.1%
FastV [18] ECCV’24 128 1490 56.1 60.2 49.6 50.6 83.9% 36.8%
SparseVLM [20]| arXiv’24 128 1696 60.0 67.1 56.0 549 93.0% 37.3%
PDrop [13] CVPR’25 128 1761 61.6 684 57.1 56.6  95.6% 35.1%
Ours - 128 1785 64.3 69.7 599 574 98.1% 33.7%
ToMe [15] arXiv'22 64 1138 437 50.0 48.6 453 70.5% 25.7%
FastV [18] ECCV’24 64 1256 48.0 51.1 46.1 478 73.7% 27.9%
SparseVLM [20]| arXiv’'24 64 1505 562 622 527 51.8 859% 28.2%
PDrop [13] CVPR’25 64 1561 58.8 69.0 47.5 506 87.6% 25.5%
Ours - 64 1745 63.6 69.6 57.7 571 96.7% 23.2%

Table 2: Comparison of different pruning methods on LLaVA-NeXT-7B. Performance data for
the compared methods are drawn from prior publications. For methods where results on LLaVA-
NeXT were not provided in existing literature, we have reproduced their experiments and present a
comparative analysis against our approach in the supplementary materials.

Method Presentat  Tokens VQAY? GQA TextVQA POPE MME  Ratio

LLAVA-NeXT-7B  NeurIPS’24 2880 81.2 62.9 59.6 86.3 1513.8 100.0%
FastV [18] ECCV’24 640 78.9 60.4 58.4 83.1 14773  97.0%
SparseVLM [20] arXiv’24 640 78.2 59.1 56.2 809 14563 94.9%
VisionZip [17] CVPR’25 640 79.2 60.1 58.5 82.2 1468.4  96.7%

FasterVLM [51] arXiv’24 640 79.8 61.6 59.3 859 1480.7 98.6%

Ours — 640 80.5 62.6 59.6 86.7 1515.7 99.7%
FastV [18] ECCV’24 320 71.9 559 55.7 717 12829  87.7%
Sparse VLM [20] arXiv’'24 320 71.4 56.5 52.4 73.5 13427  87.9%
VisionZip [17] CVPR’25 320 74.2 58.1 55.3 75.0 13488 90.5%
FasterVLM [51] arXiv’24 320 75.7 58.4 57.6 804 1370.1 93.3%
Ours — 320 78.9 61.3 59.5 85.6 1471.6 98.2%
FastV [18] ECCV’24 160 61.8 49.8 51.9 51.7 10795 74.7%
Sparse VLM [20] arXiv’'24 160 62.2 50.2 45.1 546 1167.1 74.9%
VisionZip [17] CVPR’25 160 67.3 54.3 54.7 594 12397 82.3%
FasterVLM [51] arXiv’'24 160 70.6 54.7 56.0 729  1226.0 86.7%
Ours - 160 76.4 594 57.2 814 14570 94.9%

associated customized nuScenes dataset. The official task adopts "Planning Accuracy" as the official
evaluation metric. Tab. [3|reports performance retention when applying different pruning techniques
to the Senna VLA model [10]. Notably, our method is applied to autonomous driving without
any hyper-parameter tuning. As detailed in Tab. 3] our method consistently surpass all competing
methods across these diverse pruning ratios. For instance, at a 25% token retention level, our approach
achieved a remarkable 111.23% relative accuracy, outperforming not only PyramidDrop at 98.89%
but also the original unpruned model. These findings strongly suggest that our pruning strategy
effectively preserves essential visual information even within challenging, large-scale real-world
scenes. An intriguing observation emerged as our pruned model occasionally outperformed the full
model, indicating the potential presence of detrimental noisy visual tokens in VLAs trained on sparse,
large-scale datasets. We intend to investigate this compelling finding in future research.



Table 3: The performance retention ratio on the nuScenes scene understanding and planning tasks.
Language-based data and baseline model come from Senna [10]].

Retention 26/128 (20%)  32/128 (25%) 38/128 (30%)  45/128 (35%) 51/128 (40%)
FasterVLM [51]] 55.05% 52.81% 47.19% 45.50% 49.43%
Sparse VLM [20] 84.29% 93.83% 95.52% 97.76% 101.13%
PyramidDrop [13] 94.94% 98.89% 96.07% 98.29% 100.55%
Ours 96.63 % 111.23% 106.75 % 105.06 % 104.51%

Table 4: Impact of different indicators for complexity and pruning schedules.

Metric TextVQA GQA Curve TextVQA GQA
64 128 64 128 64 128 64 128
Static Logistic 55.1 559 556 57.6 Linear 54.1 555 527 549
Cosine Similarity 55.8 567 56.1 579 Tanh 56.6 569 552 575
Average Attention 562 569 56.7 584 Exponential 56.1 56.6 542 56.3
Mutual information 57.1 574 57.7 59.9 Logistic 571 574 577 59.9
(a) Different indicators for complexity (b) Different pruning schedule curves

4.4 Ablation Studies

Different Visual-Textual Relationship Indicators. We evaluate three distinct indicators to quantify
the strength of visual-textual correlation, including our proposed mutual information (MI), the
average cross-attention magnitude, and the cosine similarity between visual and text embeddings.
The empirical results presented in Tab.[d(a) reveal that our mutual information approach, which draws
inspiration from cognitive science, achieves better average accuracy. This outcome substantiates the
superior effectiveness of mutual information in guiding token retention strategies.

Impact of Pruning Schedule Curve. To specifically isolate the impact of different scheduling
functions, we incorporated four canonical curves namely linear, logistic (sigmoid), hyperbolic
tangent (tanh), and exponential into our AutoPrune framework. We then evaluate their respective
performances on the GQA [49]] and TextVQA [50] datasets. The results, presented in Tab. Ekb),
indicate that the logistic curve yields superior performance compared to the other scheduling functions.
This finding further corroborates the previously discussed cognitive science principles, underscoring
the efficacy of the logistic function in modeling attentional allocation.

Due to space limitations, additional analysis including 1) comparison with more methods, 2) on other
benchmarks, and 3) adaptations with flash-attention, are presented in the supplementary materials.

5 Conclusion and Limitation

In conclusion, this paper address the computational burden of long visual sequences in VLMs by
introducing Complexity-Adaptive Pruning (AutoPrune), a novel training-free framework. Inspired
by cognitive neuroscience, AutoPrune quantifies sample and task complexity via mutual informa-
tion between early visual and textual tokens, mapping this to individualized, budget-constrained
logistic retention curves that dictate token pruning across decoder layers. Our extensive evaluations
demonstrate that AutoPrune offers a simple, generalizable, and highly effective solution for enabling
efficient real-time multimodal reasoning and embodied intelligence. Our investigation reveals a
nuance in attention distribution, a limitation also observed in related studies. While token importance
generally decreases with decoder depth, our findings (Fig.[I)) show deeper layers can occasionally
retain more critical tokens than shallower ones. Although our work advances depth-aware pruning,
further refinement is needed for strategies to dynamically match this variable importance distribution
across network depth. We leave this in future research.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer to Sec.[I]
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Sec.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Please refer to Sec.[3]

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Sec. 4]

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15



Answer:
Justification: Code and raw results will be publicly available upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Sec.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The running results are consistent and there is no statistical error.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This paper provides sufficient information on the computer resources, please
see Sec.[d]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and we confirm that the research
conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to Sec.[I]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The assets used in this paper are credited and the license is respected.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Code and raw results will be publicly available upon acceptance and we will
include details about training, license, limitations, etc.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research in this paper does not involve crowdsourcing nor research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research in this paper does not involve crowdsourcing nor research with
human subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We have reviewed the LLM policy and we confirm that the core method
development in this research does not involve LL.Ms as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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