
Generalizing Causal Effects from Randomized Controlled Trials to Target
Populations across Diverse Environments

Baohong Li 1 Yingrong Wang 1 Anpeng Wu 1 Ming Ma 2 Ruoxuan Xiong 3 Kun Kuang 1

Abstract
Generalizing causal effects from Randomized
Controlled Trials (RCTs) to target populations
across diverse environments is of significant prac-
tical importance, as RCTs are often costly and
logistically complex to conduct. A key chal-
lenge is environmental shift, defined as changes
in the distribution and availability of covariates
between source and target environments. A com-
mon approach addressing this challenge is to iden-
tify a separating set–covariates that govern both
treatment effect heterogeneity and environmen-
tal differences–and combine RCT samples with
target populations matched on this set. However,
this approach assumes that the separating set is
fully observed and shared across datasets, an as-
sumption often violated in practice. We propose a
novel Two-Stage Doubly Robust (2SDR) method
that relaxes this assumption by allowing the sep-
arating set to be observed in only one of the two
datasets. 2SDR leverages shadow variables to im-
pute missing components of the separating set and
generalize treatment effects across environments
in a two-stage procedure. We show the identifica-
tion of causal effects in target environments under
2SDR and demonstrate its effectiveness through
extensive experiments on both synthetic and real-
world datasets.

1. Introduction
Estimating treatment effects is crucial for informing whether
to apply a new policy or treatment in a given population
(the target population) (Hernán & Robins, 2020; Luo et al.,
2024). Randomized Controlled Trials (RCT) are generally
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considered the gold standard for estimating causal effects
of treatments (Imbens & Rubin, 2015; Hariton & Locascio,
2018). However, due to the long duration and high cost of
RCTs, it is often desired to generalize the treatment effect
estimates from existing RCTs to target populations across
different environments.

A major challenge in generalizing RCT findings across envi-
ronments is environmental shifts, defined as changes in the
distribution and availability of covariates between the RCT
sample and the target population (Kuang et al., 2018; 2020).
Such shifts cause RCT participants to no longer represent
the target population, thereby limiting the external validity
and generalizability of causal effect estimates from the RCT
(Nguyen et al., 2018; Colnet et al., 2024).

A common solution to addressing the challenge of environ-
mental shifts is to combine RCT data with observational
data from the target population, using a separating set for
adjustment. Compared to collecting new RCT data, obtain-
ing observational data from the target population is typically
more cost-effective and feasible. The separating set con-
sists of covariates that simultaneously affect both treatment
effect heterogeneity and environmental shifts. Prior work
has shown that the Target population Average Treatment
Effect (TATE) is identifiable with the separating set (Cole &
Stuart, 2010; Tipton, 2013; Kern et al., 2016; Egami & Hart-
man, 2021; Pearl & Bareinboim, 2022), and many methods
have been proposed to leverage the separating set for gen-
eralizing treatment effects from RCTs to target populations
(Stuart et al., 2011; Hartman et al., 2015; Lesko et al., 2017;
Dahabreh et al., 2019; Lee et al., 2023).

The limitation of this common approach is its reliance on the
assumption that the covariates shared across both datasets
fully contain the separating set–an assumption that is often
violated in real-world settings with environmental shifts.
When data from the RCT and the target population are col-
lected in different environments, it is challenging to ensure
complete alignment in the covariates measured, leading to
a missing covariates problem: certain covariates present
in one dataset may be entirely absent in the other. If these
missing covariates include variables from the separating set,
existing methods may fail to generalize treatment effects
accurately, as shown in prior studies (Nguyen et al., 2017;
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(a) (b)

Figure 1. (a) The causal graph for the problem setup. For clarity, we only present the causal graph for the observational data, while for the
RCT data, all edges pointing to T are removed because the treatment is randomly assigned. Suppose that the heterogeneous treatment
effect of T on Y is Y (1)− Y (0) = τ(X1, X2, X3), where τ(X1, X2, X3) is a function of X1, X2, and X3. {X1, X2, X3} is the set of
covariates affecting treatment effect heterogeneity. {X1, X3, X4} is the set of covariates affecting environmental shifts (pointing to R).
X2 is a covariate affecting neither treatment effect heterogeneity nor environmental shifts. Therefore, the separating set, which contains
all variables that simultaneously affect treatment effect heterogeneity and environmental shifts, is W = {X1, X3}. (b) Example data
for the problem setup, where Xc = {X1, X4, X5} is the set of common covariates observed in both datasets, Xm = {X3} is the set of
covariates missing in one of the datasets, Z = {X5} is the shadow variable set of Xm, which are correlated with the Xm but do not
directly influence environmental shifts, and X̃c = {X1, X4} denotes Xc \ Z.

Andrews & Oster, 2019; Colnet et al., 2022; Dahabreh et al.,
2023; Huang, 2024) and supported by our experiments.

We propose a solution to relax the assumption required
by the common approach. Specifically, we only require
variables from the separating set to be observed in only one
of the two datasets–either the RCT data or the observational
data from the target population, as illustrated in Figure 1.

In Setting 1, only the covariates from the target population
are available or used. The RCT data include all covariates
from the separating set, but some of these covariates are
missing in the target population data. For example, in eval-
uating the treatment effect of a new drug on AIDS, RCTs
typically collect various clinical variables rarely measured
in routine check-ups, such as the CD4 count, which is an
important treatment effect modifier and a variable in the
separating set. Since the new drug has not yet been publicly
used, the observational data from the target population lack
treatment and outcome information and only include basic
demographic covariates, such as gender and race, and omit
those rarely measured variables available in the RCT data
(Hammer et al., 1997; Prejean et al., 2008; Hall et al., 2008).

In Setting 2, the observational data from the target popula-
tion contain treatment and outcome information, along with
all covariates from the separating set. However, some of
these covariates are missing in the RCT data. For example,
when RCTs are conducted at small sites, limitations such
as long tracking periods, budget constraints, and lack of
equipment may result in insufficient covariate collection. In
contrast, when observational data from the target population
are collected at larger sites, treatment and outcome infor-
mation, along with more comprehensive covariates, can be

obtained through large-scale surveys or interviews (Collab-
oration, 2009; Resche-Rigon et al., 2013; Jolani et al., 2015;
Huang et al., 2023; Huang, 2024).

Given this relaxed assumption, our proposed method, Two-
Stage Doubly Robust (2SDR), leverages shadow variables
to impute the missing covariates and generalize treatment ef-
fects from RCTs to target populations across environments
via a two-stage procedure. In the first stage, we introduce a
feature selection method to identify shadow variables of the
missing covariates, enabling unbiased imputation of these
covariates in a doubly robust manner. In the second stage,
we apply a doubly robust approach to obtain an unbiased es-
timate of TATE. We show the identification of causal effects
in target environments under this approach and demonstrate
its effectiveness through extensive experiments on both syn-
thetic and real-world datasets.

In summary, the contributions of this paper are as follows:

• We propose a novel identification framework for the
generalizability of treatment effects from RCTs to tar-
get populations across diverse environments, relaxing
the assumptions in prior work.

• We develop a novel method for generalizing treatment
effects to target populations under environmental shifts,
ensuring an unbiased estimate of the TATE.

• We demonstrate the effectiveness of our method
through extensive experiments on synthetic data and
applications to two real-world datasets.
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2. Preliminaries
2.1. Problem Formulation

Throughout the paper, T denotes the binary treatment vari-
able, where ti = 1 indicates that unit i is assigned to the
treatment, and ti = 0 indicates otherwise. Y is the out-
come variable, and Y (t) denotes the potential outcome
under T = t (Rubin, 1974). X = {Xc,Xm} is the pre-
treatment covariates, where Xc denotes the common covari-
ates present in both datasets, and Xm denotes the covariates
missing in one of the two datasets. S is a binary variable
indicating in which dataset Xm is observable, where si = 1
indicates that Xm is observed in the RCT data, and si = 0
indicates otherwise. R is a binary variable indicating which
dataset a unit belongs to, where ri = 1 indicates that unit i
belongs to the RCT data, and ri = 0 indicates otherwise.

For simplicity of exposition, we introduce our solution in
the context of generalizing an RCT to the target population
of one environment. However, our solution can be extended
to multiple target populations in various environments. In
Setting 1, the RCT data consists of nR independent random
tuples {xi, yi, ti, si = 1, ri = 1}nR

i=1 from all participants in
the RCT, denoted by R, while the observational data from
the target population consists of nO independent random
tuples {xi, si = 0, ri = 0}nO

i=1 randomly drawn from the
target population, denoted by O. In Setting 2, the RCT
data consists of {xi, yi, ti, si = 0, ri = 1}nR

i=1, while the
the observational data from the target population consists of
{xi, yi, ti, si = 1, ri = 0}nO

i=1. The total number of samples
in both datasets is denoted by n = nR + nO. In this paper,
we consider the non-nested trial design scenario, where the
two datasets are collected separately from different environ-
ments with environmental shifts, which is defined as follows
(Kuang et al., 2018; 2020; Dahabreh et al., 2020; 2021).

Definition 2.1. (Environmental Shifts.) Environmental
shifts refer to the shifts in the distribution and quantity of
covariates between Dataset R and Dataset O, i.e., P(X |
R = 1) ̸= P(X | R = 0), and Xm is unobserved in one of
the two datasets.

The specific scenarios of environmental shifts applicable to
this paper are discussed in Appendix B.

We are interested in estimating the average treatment effect
in the target population. This causal estimand is called the
Target population Average Treatment Effect (TATE) and is
defined as follows (Tipton, 2013; Kern et al., 2016).

Definition 2.2. (Target population Average Treatment
Effect.) τ = E[Y (1)− Y (0) | R = 0].

The TATE cannot be directly estimated using Dataset O,
as the values of the treatment are totally unobserved. For-
tunately, combining Dataset O with Dataset R makes the
TATE identifiable under certain assumptions.

2.2. TATE Identifiability Conditions

First, to ensure the identifiability of the average treatment
effect within Dataset R, we make the following assumptions
about R (Cole & Stuart, 2010; Stuart et al., 2011; Imbens &
Rubin, 2015; Colnet et al., 2022; Dahabreh et al., 2023).

Assumption 2.3. (Treatment randomization within the
RCT.) Y (1), Y (0) ⊥⊥ T | R = 1.

Assumption 2.4. (Positivity of trial treatment assign-
ment.) 0 < P(T = 1 | X, R = 1) < 1.

Assumption 2.5. (Positivity of trial participation.) 0 <
P(R = 1 | X) < 1.

Assumption 2.6. (Stable Unit Treatment Value Assump-
tion.) The distribution of the potential outcome of one unit
is independent of the treatment assignment of another unit.

Under the above assumptions, the average treatment effect
of Dataset R is identifiable. Next, we formally introduce the
conditions for the generalizability of the RCT estimates, i.e.,
the identifiability conditions of the TATE (Cole & Stuart,
2010; Tipton, 2013; Kern et al., 2016; Egami & Hartman,
2021; Pearl & Bareinboim, 2022).

Definition 2.7. (Separating Set.) A separating set is a
set that contains all variables that simultaneously affect
treatment effect heterogeneity and environmental shifts, i.e.,
Y (1)− Y (0) ⊥⊥ R | W.

Assumption 2.8. (Fully observability of the separating
set.) The covariates common to both datasets include all the
variables from the separating set, i.e., W ⊂ Xc.

Theorem 2.9. (Identification of the TATE.) Under Assump-
tions 2.3, 2.4, 2.5, 2.6, and 2.8, the TATE is identified as

τ =

∫
(E[Y (1) | W = w]− E[Y (0) | W = w])

dF (W = w | R = 0),

where F (W | R = 0) is the cumulative distribution func-
tion of W conditional onR = 0, and E[Y (t) | W = wi] =
E[Y | W = wi, T = t, R = 1].

Prior work proposes different ways to adjust for W based on
Theorem 2.9 (Hartman et al., 2015; Dahabreh et al., 2019;
Lee et al., 2023). However, because of environmental shifts,
it is difficult to ensure that all variables from the separating
set are observed in both datasets, making Assumption 2.8
violated and existing method ineffective (Nguyen et al.,
2017; Colnet et al., 2022; Dahabreh et al., 2023).

3. Extended TATE Identifiability Conditions
In this paper, we propose a novel TATE identifiability frame-
work that relaxes the requirement for the separating set to be
observable in both datasets to requiring it to be observable
in at least one. The key assumption is as follows:
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Assumption 3.1. (Partial observability of the separating
set.) All variables in the separating set are observable in at
least one of Dataset R or Dataset O, i.e., W ⊂ X.

To formalize this, we introduce an indicator variable S,
where S = 1 if the separating set is observed and S = 0
if it is missing. As illustrated in Figure 1, Assumption 3.1
indicates one of the following two settings:

• (Setting 1.) Dataset O has no treatment and outcome
information. The separating set is observed in Dataset
R, i.e., in Dataset R, S = 1, and in Dataset O, S = 0.

• (Setting 2.) Dataset O contains treatment and outcome
information. The separating set is observed in Dataset
O, i.e., in Dataset R, S = 0, and in Dataset O, S = 1.

In Setting 1, the relationship between S and R is S = R,
whereas in Setting 2, the relationship is S = 1− R. Both
settings are common in real-world scenarios (Hammer et al.,
1997; Prejean et al., 2008; Collaboration, 2009; Resche-
Rigon et al., 2013; Jolani et al., 2015), as illustrated by the
two examples provided in Section 1.

Assumption 3.2. (Shadow variable assumption.) Among
the common covariates Xc shared by datasets R and O,
there exists a set of covariates Z ⊂ Xc that satisfy the
following conditions: (1) Z is conditionally correlated with
Xm, i.e., Z ⊥̸⊥ Xm | X̃c, S = 1. (2) Z is conditionally
independent of S, i.e., Z ⊥⊥ S | Xm, X̃c, where X̃c denotes
the set difference Xc \ Z, i.e., Xc = {X̃c,Z}.

Assumption 3.2 requires that among the common covari-
ates, there exist shadow variables Z that are correlated with
the covariates Xm missing in one of the datasets but do
not directly influence environmental shifts (as indicated by
S); see, e.g., Z = {X5} in Figure 1. This assumption is
reasonable in many real-world settings, as not all observed
variables impact the environmental shifts. For example, in
studies of drug effects on AIDS, body weight can serve as
a shadow variable Z: it has been shown to be associated
with CD4 count (a missing covariate), but does not directly
influence RCT participant selection (Womack et al., 2007)
(measured by S). Moreover, this assumption is testable us-
ing observed data (d’Haultfoeuille, 2010; Miao et al., 2024;
Li et al., 2024b;c).

Theorem 3.3. (Extended TATE Identifiability Conditions.)
Under Assumptions 2.3, 2.4, 2.5, 2.6, 3.1, and 3.2, if the
completeness condition holds1, the TATE is identified as

τ =

∫
(E[Y (1) | X = x]− E[Y (0) | X = x])

dF (X = x | R = 0), (1)

1If for all square-integrable functions h(Xm,Xc),
E[h(Xm,Xc) | Xm,Xc, S = 1] = 0 almost surely if
and only if h(Xm,Xc) = 0 almost surely.

where F (X | R = 0) denotes the cumulative distribution
function of X conditional on R = 0

Proof. To prove the identifiability of Equation (1), we must
prove both F (X | R = 0) and E[Y (t) | X] are identifiable.

Step 1. Proof of the identifiability of F (X | R = 0).

Step 1.1. Proof in Setting 2 (separating set in O).

In Setting 2, all covariates X in Dataset O are observable.
Therefore, F (X | R = 0) is directly identifiable.

Step 1.2. Proof in Setting 1 (separating set in R).

In Setting 1, however, as the values of Xm are missing in
Dataset O, which may contain variables from the separating
set, P(X, R = 0) = P(Xm,Xc, R = 0) is not available.
Therefore, to prove the identifiability of F (X = x | R = 0),
we must prove P(Xm,Xc, R = 0) is identifiable.

Since S = R in Setting 1, we have P(Xm,Xc, R = 0) ≡
P(Xm,Xc, S = 0). We show that this distribution can
be identified using the shadow variables Z and common
covariates Xc. The corresponding lemmas are stated below,
with detailed proofs provided in Appendices D and E.

Lemma 3.4. Under Assumptions 2.5 and 3.2, P(Xm |
Xc, S = 0) is identified as

P(Xm | Xc, S = 0) =
OR(Xm,Xc) · P(Xm | Xc, S = 1)

E[OR(Xm,Xc) | Xc, S = 1]
,

(2)

where

OR(Xm,Xc) =
P(S = 0 | Xm,Xc)

P(S = 1 | Xm,Xc)

× P(S = 1 | Xm = 0,Xc)

P(S = 0 | Xm = 0,Xc)
. (3)

Here, OR(Xm,Xc) is the odds ratio function, and 0 is a ref-
erence value, which can be any other value within the value
range of Xm. The identification of Equation (2) requires
the identification of P(Xm | Xc, S = 1) and OR(Xm,Xc).
The former is directly identifiable in Dataset R. The latter
can be identified based on Lemma 3.5 below, with detailed
proofs provided in Appendix E.

Lemma 3.5. Under Assumptions 2.5 and 3.2, if the com-
pleteness condition holds, OR(Xm,Xc) is identified as

OR(Xm,Xc) = ÕR(Xm,Xc)/ÕR(Xm = 0,Xc), (4)

where

ÕR(Xm,Xc) =
OR(Xm,Xc)

E[OR(Xm,Xc) | X̃c, S = 1]
(5)
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is identified by

E[ÕR(Xm,Xc) | Xc, S = 1] =
P(Z | X̃c, S = 0)

P(Z | X̃c, S = 1)
. (6)

Since P(Xm | Xc, S = 0) is identifiable and P(Xm, S = 0)
is available from the observed data, P(Xm,Xc, S = 0) is
identified as

P(Xm,Xc, S = 0) = P(Xm | Xc, S = 0) ·P(Xc, S = 0),

which is equivalent to P(Xm,Xc, R = 0). Therefore,
F (X | R = 0) is also identifiable in Setting 1.

Step 2. Proof of the identifiability of E[Y (t) | X].

Step 2.1. Proof in Setting 1 (separating set in R).

In Setting 1, all covariates X in Dataset R are observable
and include all the variables from the separating set under
Assumption 3.1. Therefore, under Assumptions 2.3, 2.4,
2.5, and 2.6, E[Y (t) | X] is identified by E[Y (t) | X] =
E[Y | X, T = t, R = 1] based on Theorem 2.9.

Step 2.2. Proof in Setting 2 (separating set in O).

In Setting 2, to prove the identifiability of E[Y (t) | X], we
must prove the identifiability of P(X, T, Y (t) | R = 1).

Under Assumption 2.3, we have T ⊥⊥ Xm | R = 1. There-
fore, P(X, T, Y (t) | R = 1) is identified as

P(X, T, Y (t) | R = 1) = P(Xm | Xc, Y (t), R = 1)

× P(Xc, T, Y (t) | R = 1),

where P(Xc, Y (t), T | R = 1) is available in Dataset R,
and P(Xm | Xc, Y (t), R = 1) is identified by

P(Xm | Xc, Y (t), R = 1) = P(X, R = 1)

× P(Y (t) | X, R = 1)

P(Xc, Y (t), R = 1)
.

Here, P(Xc, Y (t), R = 1) is identifiable in Dataset R;
P(X, R = 1) ≡ P(X, S = 0) (because S = 1 − R in Set-
ting 2), which is identifiable based on Lemmas 3.4 and 3.5;
and P(Y (t) | X, R = 1) is identifiable under Assumption
3.1, where P(Y (t) | X, R = 1) = P(Y (t) | X, R = 0),
which is available in Dataset O.

Consequently, P(X, T, Y (t) | R = 1) and, thus, E[Y (t) |
X] are identifiable in Dataset R based on Theorem 2.9.

The overall process of the proof is illustrated in Figure 2.

Theorem 3.3 is sufficient for the estimation of the TATE.
However, in order to estimate the TATE in a doubly robust
manner, we further introduce the selection scores.

Figure 2. Proof process of Theorem 4.1.

Definition 3.6. (Selection scores.) The selection score of
S is πs(X) ≡ P(S = 1 | X), and the selection score of R
is πr(X) ≡ P(R = 1 | X).

Corollary 3.7. (Identification of the selection scores.) Un-
der Assumptions 2.3, 2.4, 2.5, 2.6, 3.1, and 3.2, πs(X) is
identified as

πs(X) =

(
1 + ÕR(Xm,Xc) · P(S = 0 | X̃c)

P(S = 1 | X̃c)

)−1

,

and πr(X) is identified as πr(X) = πs(X) in Setting 1 and
πr(X) = 1− πs(X) in Setting 2.

The detailed proof of Corollary 3.7 is in Appendix F.

4. Two-Stage Doubly Robust TATE Estimation
Based on Theorem 3.3 and Corollary 3.7, we propose a
novel Two-Stage Doubly Robust (2SDR) algorithm to esti-
mate the TATE. 2SDR consists of two stages:

• (Stage I.) Shadow variable selection and imputation of
the missing covariates.

• (Stage II.) Selection score and TATE estimation.

4.1. Stage I of 2SDR

4.1.1. SHADOW VARIABLE SELECTION

Theorem 3.3 and Corollary 3.7 indicate that identifying
the TATE and the selection score necessitates the shadow
variables Z. However, under Assumption 3.2, although Z
is included in the common covariates Xc, we do not know
which variables satisfy Assumption 3.2. Therefore, we first
propose automatically selecting the variables from Xc that
satisfy Assumption 3.2, i.e., selecting Z from Xc.

Assumption 3.2 consists of two testable sub-assumptions.
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Therefore, in the process of shadow variable selection,
2SDR conducts hypothesis testing on the variables in Xc to
eliminate those that do not pass the test, leaving the variables
that pass the test as the set of shadow variables.

To reduce the number of time-consuming hypothesis tests,
we first apply Adaptive Lasso (Zou, 2006) for a quick initial
screening of the variables in Xc, selecting those strongly
correlated with Xm, as Assumption 3.2(1) requires that Z
be conditionally correlated with Xm. The set of filtered
variables is denoted as Xf ⊂ Xc.

Next, we perform hypothesis testing for Assumption 3.2 on
the filtered variables. Assumption 3.2(1) involves only the
dataset where all the covariates are observable, so standard
conditional independence test methods with a reject thresh-
old α1 can be directly applied (Zhang et al., 2011; Sen et al.,
2017; Strobl et al., 2019; Zheng et al., 2024). However,
Assumption 3.2(2) involves both datasets, and the values
of Xm are missing in one of them. Therefore, we cannot
directly apply a standard conditional independence test to
verify this sub-assumption, but instead, we conduct the test
based on the following theorem (d’Haultfoeuille, 2010).
Theorem 4.1. (Hypothesis testing for Assumption 3.2(2).)
Suppose that P(Xm > 0) holds almost surely. Then, As-
sumption 3.2(2), i.e., Z ⊥⊥ S | Xm, X̃c, can be rejected if
and only if there exists no solution to the following equation
that belongs to (0, 1].

E

[(
S

Q(Xm, X̃c)
− 1

)
·
(

Z

X̃c

)]
= 0,

where Q is the unknown function to be solved for.

The proof of Theorem 4.1 can be found in Appendix A.3 of
d’Haultfoeuille (2010).

Based on Theorem 4.1, we solve for Q by minimizing the
following objective function:

ℓQ =
1

n

n∑
i=1

∥∥∥∥∥
(

si

Q(xm
i , x̃

f
i)

− 1

)
·

(
zci
x̃f
i

)∥∥∥∥∥ ,
where Q is constrained to the range (0, 1] by an activation
function, such as the sigmoid function, Zc ⊂ Xf denotes
the candidate shadow variables, and X̃f denotes the set
difference Xc \ Zc. If ℓQ converges to a value less than a
threshold α2, the candidate shadow variables pass the test.

To ensure that the completeness condition for the shadow
variables is satisfied, we aim to select d shadow variables
from Xf , where d equals the number of variables in Xm

(Miao et al., 2024). Therefore, we iterate through Xf , se-
lecting a candidate shadow variable in each iteration and
performing hypothesis testing. The loop continues until d
candidates pass the test, at which point the corresponding
shadow variables are selected, and the loop terminates.

Figure 3. Overview of 2SDR.

The time complexity of the shadow variable selection pro-
cess depends on the specific method used to test Assumption
3.2(1), which, in our implementation, is the Randomized
Conditional Independence Test (RCIT) (Strobl et al., 2019).
As a result, the time complexity of this process is O(np2),
where p is the number of variables in X. A detailed time
complexity analysis can be found in Appendix I.

4.1.2. IMPUTATION OF THE MISSING COVARIATES

Through the shadow variable selection process, we obtain
the set of shadow variables Z. Next, based on Theorem 3.3
and Corollary 3.7, we use Z to impute the missing values of
Xm in a doubly robust manner, as detailed below.

First, we estimate the odds ratio function using Equations (3)
and (4). Specifically, we begin by employing kernel density
estimation (Silverman, 2018) to estimate f(Z | X̃c, S =

1) and f(Z | X̃c, S = 0), where f(Z | X̃c, S) is the
probability density function of Z conditional on X̃c and
S. Then, we estimate ÕR(Xm,Xc) by minimizing the
following objective function:

ℓ
ÕR

=
1

n

∑
i:si=1

(
ÕR(xm

i ,x
c
i )−

f̂(zi | x̃c
i, si = 0)

f̂(zi | x̃c
i, si = 1)

)2

,

where f̂(Z | X̃c, S) denotes the estimated probability den-
sity functions. Subsequently, we obtain the estimated odds
ratio function ÔR(Xm,Xc) using Equation (4).

Next, we learn a function ψ(Xc) to estimate E[Xm |
Xc, S = 0] using a doubly robust method (Miao & Tch-
etgen Tchetgen, 2016; Kennedy, 2023) by minimizing the
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following objective function:

ℓψ =
1

n

n∑
i=1

(ψ(xc
i )− x̂m

i )
2
,

where x̂m
i denotes the doubly robust estimate of E[Xm |

Xc = xc
i , S = 0], detailed as follows.

x̂m
i = si · ŵi ·

(
xm
i − δ̂(xc

i )
)
+ δ̂(xc

i ).

Here, wi = 1/π̂s(xi), where π̂s is the estimate of πs, and δ̂
is the regression-based estimate of E[Xm | Xc = xc

i , S =
0].

Based on Corollary 3.7, π̂s is obtained by

π̂s(X) =

(
1 + ÕR(Xm,Xc) · 1− γ̂(X̃c)

γ̂(X̃c)

)−1

,

where γ̂ is the estimate of P(S = 1 | X̃c), obtained by
minimizing the following objective function:

ℓγ =− 1

n

n∑
i=1

(1− si) · log(1− γ(x̃c
i )) + si · log(γ(x̃c

i )).

Based on Equation (2), δ̂ is obtained by minimizing the
following objective function:

ℓδ =
1

n

∑
i:si=1

δ(xc
i )−

OR(xm
i ,x

c
i ) · θ̂ (xc

i )

OR
(
θ̂ (xc

i ) ,x
c
i

)
2

,

where θ̂ is the estimate of E[Xm | X̃c, S = 1], obtained by
minimizing the following objective function:

ℓθ =
1

n

∑
i:si=1

(θ(xc
i )− xm

i )
2
.

Consequently, we can use the estimate of E[Xm | X̃c, S =

0], i.e., ψ̂(Xc) to impute the missing values of Xm.

The proposed doubly robust imputation model is consistent,
as guaranteed by the following theorem.

Theorem 4.2. Under Assumptions 2.3, 2.4, 2.5, 2.6, 3.1,
and 3.2, the doubly robust imputation model ψ̂ is consistent
if the ÕR(Xm,Xc) model is correctly specified and either
the regression model of the missing covariates Xm or the
selection score model of S is correctly specified.

The proof of Theorem 4.2 is provided in Appendix G.

4.2. Stage II of 2SDR

In the first stage, we impute the missing values of Xm,
making all the covariates in both datasets fully observable.

This enables us to perform a doubly robust estimation of the
TATE (Dahabreh & Hernán, 2019; Dahabreh et al., 2019).

τ̂ =
1

nR

nR∑
i=1

nR
nO

1− π̂r(xi)

π̂r(xi)

(
ti · (yi − µ̂1(xi))

ζ(xi)

)

− 1

nR

nR∑
i=1

nR
nO

1− π̂r(xi)

π̂r(xi)

(
(1− ti) · (yi − µ̂0(xi))

1− ζ(xi)

)

+
1

nO

nO∑
i=1

(µ̂1(xi)− µ̂0(xi)) ,

Here, ζ(X) = P(T | X) is the propensity score, which
is a constant under Assumption 2.3; π̂r is the estimate of
πr and can be directly obtained from the first stage, i.e.,
π̂r = π̂s for Setting 1 and π̂r = 1 − π̂s for Setting 2; and
µ̂0 and µ̂1 are the estimates of E[Y | X, T = 0, S = 1]
and E[Y | X, T = 1, S = 1], respectively, obtained by
minimizing the following objective functions:

ℓµ0
=

1

nR

nR∑
i=1

((1− ti) · (µ0(xi)− yi))
2
,

ℓµ1 =
1

nR

nR∑
i=1

(ti · (µ1(xi)− yi))
2
.

The proposed doubly robust TATE estimation model is con-
sistent, as guaranteed by the following theorem.

Theorem 4.3. Under Assumptions 2.3, 2.4, 2.5, 2.6, 3.1,
and 3.2, if the imputation model is consistent, the TATE esti-
mator τ̂ is consistent if the ÕR model is correctly specified
and either the regression model of the outcome Y or the
selection score model of S is correctly specified.

The proof of Theorem 4.3 is provided in Appendix H.

5. Experiments
5.1. Experimental Setup

In our experiments, we compared the proposed method with
the following baselines: (1) The average treatment effect ob-
tained directly from the RCT data (RCT), (2) Inverse Proba-
bility of Sampling Weighting (IPSW) (Cole & Stuart, 2010),
(3) Calibration Weighting (CW) (Hartman et al., 2015), (4)
G-formula (Dahabreh et al., 2019), (5) Augmented IPSW
(AIPSW) (Dahabreh et al., 2019), and (6) Augmented CW
(ACW) (Lee et al., 2023), along with their versions incor-
porating data imputation (Hughes et al., 2019; Mayer et al.,
2023), denoted by their name with the ‘Imp’ subscript.

We conducted experiments on both synthetic and real-world
datasets, with each experiment repeated 20 times. We re-
port the mean and standard deviation (std) of the Mean
Absolute Error (MAE) between the TATE estimates and
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Table 1. TATE estimation results (MAE) on the low-dimensional synthetic dataset (mean±std), with bold values indicating the best
performance.

nR = 2000, nO = 10000 nR = 1000, nO = 10000 nR = 500, nO = 10000

METHODS SETTING 1 SETTING 2 SETTING 1 SETTING 2 SETTING 1 SETTING 2

RCT 1.640±1.084 1.751±0.913 1.685±1.047 1.803±1.223 2.260±1.313 2.037±1.461
IPSW 6.460±0.301 6.564±0.375 7.034±0.212 6.842±0.129 6.999±0.152 7.066±0.167
CW 2.062±1.551 2.197±1.075 2.566±1.860 2.789±1.215 4.982±2.765 4.540±2.154
G-FORMULA 0.663±0.260 0.659±0.266 0.720±0.263 0.692±0.377 1.145±0.814 0.834±0.710
AIPSW 0.663±0.261 0.660±0.265 0.720±0.264 0.692±0.377 1.145±0.815 0.834±0.710
ACW 0.662±0.260 0.659±0.266 0.720±0.263 0.693±0.377 1.145±0.814 0.833±0.709
IPSWImp 6.350±0.159 6.458±0.188 6.829±0.126 6.887±0.194 6.910±0.101 6.924±0.103
CWImp 2.020±1.569 2.006±1.020 2.410±1.235 2.453±0.917 3.794±3.436 3.108±2.322
G-FORMULAImp 0.539±0.305 0.815±0.310 0.614±0.355 0.998±0.450 0.961±0.625 1.787±0.946
AIPSWImp 0.539±0.303 0.829±0.306 0.614±0.355 1.084±0.453 0.960±0.625 1.792±0.949
ACWImp 0.539±0.306 0.816±0.310 0.614±0.356 0.998±0.451 0.961±0.625 1.789±0.947
2SDR 0.268±0.212 0.284±0.224 0.423±0.264 0.431±0.296 0.533±0.387 0.489±0.327

the ground truth values. In each experiment, we randomly
split the dataset into training, validation, and test sets with
a 60/20/20 ratio. Implementation details of the proposed
method, as well as the software and hardware we used, are
provided in Appendix J.

The source code of 2SDR is available at https://github.
com/ZJUBaohongLi/2SDR.

5.2. Experiments on Synthetic Datasets

5.2.1. DATASETS

To evaluate the effectiveness of the proposed method in both
cases, we generated datasets based on Setting 1 to simulate
the case where the values of Xm are missing in Dataset
O and Setting 2 to simulate the case where the values of
Xm are missing in Dataset R. The detailed data generation
process is in Appendix K.

In general, due to the high cost of RCTs, nR is typ-
ically much smaller than nO (Kohavi & Longbotham,
2011; Kallus et al., 2018). Therefore, in order to eval-
uate the robustness of the proposed method with small-
scale RCT data, we fixed nO to 10000 while setting nR =
{500, 1000, 2000} to compare the performance of 2SDR
with the baselines across different RCT scales.

To evaluate the performance of the proposed method in the
case of a larger number of covariates, we also generated
a high-dimensional dataset. The detailed data generation
process can be found in Appendix K.

5.2.2. RESULTS

We report the TATE estimation results under different RCT
scales in Table 1, with the following observations and con-
clusions: (1) As the RCT scale decreases, the TATE estima-
tion error increases for all methods. However, 2SDR always

achieves the best performance across all RCT scales, demon-
strating its robustness. (2) In Setting 1, the performance of
the baselines using imputation is better than that without
imputation. However, in Setting 2, the regression-based
baselines, including doubly robust ones, fail to produce
better estimates using imputation. This observation can be
attributed to the fact that, in Setting 1, the regression process
involves the fully observed covariates from the RCT data,
and the imputation error only affects the prediction based
on the imputed covariates from the observational data. In
contrast, in Setting 2, the regression process involves im-
puted covariate values from the RCT data, accumulating
imputation errors, and introducing bias into the regression
model. On the other hand, 2SDR performs well in both set-
tings because it selects shadow variables and uses them to
obtain unbiased imputation. (3) The doubly robust baselines
do not perform better, as both the selection scores and out-
come estimates are biased when variables in the separating
set are missing. In contrast, 2SDR ensures that both the
selection score and outcome estimate are unbiased, leading
to its superior performance.

Additional experimental results, including results on the
high-dimensional dataset, a comparison of the imputation
accuracy between the proposed method and the baselines
using imputation, the hyperparameter analysis, and the ro-
bustness analysis of the proposed method when Assumption
3.2 is violated, are presented in Appendix L.

5.3. Experiments on Real-World Datasets

5.3.1. DATASETS

To validate the effectiveness of the proposed method in real-
world applications, we conducted experiments on two real
datasets, the AIDS Clinical Trial Group (ACTG) and Jobs
Training Partnership Act (JTPA) datasets, with the ACTG
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Table 2. TATE estimation results (MAE) on real-world datasets
(mean±std scaled by 103), with bold values indicating the best
performance.

METHODS ACTG JTPA

RCT 0.032±0.016 1.366±0.709
IPSW 640.4±98.80 1.064±0.519
CW 0.367±0.044 9.749±0.759
G-FORMULA 0.035±0.024 2.247±0.965
AIPSW 27.91±15.78 2.249±0.966
ACW 0.035±0.024 2.245±0.966
IPSWImp 656.5±159.1 1.230±0.688
CWImp 0.340±0.036 8.904±1.305
G-FORMULAImp 0.037±0.026 2.229±1.553
AIPSWImp 14.97±6.543 2.230±1.554
ACWImp 0.037±0.026 2.229±1.553
2SDR 0.011±0.010 0.992±0.490

dataset corresponding to Setting 1 and the JTPA dataset to
Setting 2, detailed as follows.

The ACTG dataset. The RCT data in this dataset is from
the ACTG 175, which aimed to investigate the treatment
effect of a specific drug on the CD4 count of AIDS patients.
The dataset contains covariates such as age, gender, weight,
race, and pre-treatment CD4 count (Hammer et al., 1997).
Following Cole & Stuart (2010); Dahabreh et al. (2023),
we aim to generalize the results from the ACTG 175 trial
to the target population of individuals infecting HIV in the
United States in 2006 (Prejean et al., 2008; Hall et al., 2008).
In contrast to the ACTG 175, the age and pre-treatment
CD4 count are missing in the target population, aligning
with Setting 1. Since there is no ground-truth TATE in the
original observational data from the target population, we
cannot evaluate the performance of the TATE estimation
results. Therefore, we randomly selected 558 individuals
from the ACTG 175 who were either under 30 or over 50
years old and omitted their age, pre-treatment CD4 count,
and post-treatment CD4 count to serve as the observational
data from the target population, with the remaining 1581
individuals forming the RCT data.

The JTPA dataset. The national JTPA study, which was
conducted from 1987 to 1989, aimed to assess the effective-
ness of job training programs in helping individuals find em-
ployment and increase their earnings (Doolittle & Traeger,
1990; Bloom et al., 1993). Following Huang (2024), we
selected data from the site of Coosa Valley, Georgia, from
the original JTPA trial as the RCT data, with their years of
education and high school or equivalency diploma status
omitted. The data from the remaining 15 sites were used
as the observational data from the target population. The
RCT data contains 788 individuals, and the observational
data contains 5314 individuals.

5.3.2. RESULTS

We report the TATE estimation results on the two real-world
datasets in Table 2, with the following observations and
conclusions: (1) On the ACTG dataset, the performance of
all baselines is even worse than using the ATE obtained di-
rectly from the RCT data. This is because the pre-treatment
CD4 count, which significantly impacts the outcome, is
missing in the observational data from the target population.
As a result, methods that fail to impute the missing pre-
treatment CD4 count values accurately are highly biased.
(2) Similarly, on the JTPA dataset, due to the absence of
the years of education in the RCT data, which significantly
impacts the outcome, the majority of the baseline models
exhibit substantial bias when estimating the TATE, perform-
ing even worse than using the ATE obtained directly from
the RCT data. (3) 2SDR achieves the best performance on
both real-world datasets, demonstrating its practical value
in real-world scenarios.

6. Conclusion
In this paper, we focus on the problem of generalizing treat-
ment effects from RCTs to target populations across dif-
ferent environments. To tackle the challenges of selection
bias and missing covariates posed by environmental shifts,
we propose a novel TATE identifiability framework that
relaxes the assumptions made in prior work. Based on
this theoretical foundation, we propose a novel doubly ro-
bust TATE estimation method, 2SDR, which effectively
addresses these challenges. Extensive experimental results
on synthetic and real-world datasets demonstrate the effec-
tiveness of the proposed method and its practical value in
real-world applications. The main limitation of 2SDR is
that when the dimension of the covariates is extremely high,
the shadow variable selection process in the first stage be-
comes time-consuming. Additionally, if the number of the
partially observable covariates exceeds that of the common
covariates shared by both data, it becomes challenging to
ensure the validity of Assumption 3.2. In future work, we
will explore using dimensionality reduction methods, such
as representation learning, to address the above limitation.
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A. Related Work
RCTs have been widely used to study the effects of new interventions in a wide range of disciplines (Fisher, 1949; Wu
& Hamada, 2011; Xiong et al., 2024a;b). Recently, many studies have aimed to generalize treatment effects from RCTs
to target populations by combining RCT data with observational data from the target population to estimate the TATE.
Prior work show that the TATE can be identified by a separating set (Cole & Stuart, 2010; Tipton, 2013; Kern et al., 2016;
Egami & Hartman, 2021; Pearl & Bareinboim, 2022). The separating set is a set of variables affecting both treatment effect
heterogeneity and environmental shifts. Many approaches are proposed to adjust for the separating set through different
technologies for generalizing treatment effects from RCTs to target populations (Stuart et al., 2011; Pearl & Bareinboim,
2011; O’Muircheartaigh & Hedges, 2014; Hartman et al., 2015; Lesko et al., 2017; Buchanan et al., 2018; Dahabreh &
Hernán, 2019; Dahabreh et al., 2019; Lee et al., 2023; Li et al., 2024a). For example, Cole & Stuart (2010); Stuart et al.
(2011) proposed first estimating the selection score, i.e., P(R = 1 | X), and then using it to reweight the RCT samples in
order to adjust for X. Hartman et al. (2015) proposed the Calibration Weighting (CW) method, which learns a sample weight
matrix that constrains the covariate distribution in the RCT data to align with that of the observational data from the target
population. The sample weight matrix simulates the selection score and avoids issues arising from model misspecification.
Dahabreh & Hernán (2019); Dahabreh et al. (2019) proposed a regression-based method, G-formula, and a doubly robust
method, Augmented IPSW (IPSW), to adjust for the covariates more effectively. Lee et al. (2023) also proposed a doubly
robust version of CW, Augmented CW (ACW), to enhance the robustness of the estimation.

All the above methods assume that the covariates shared by both groups contain the separating set. However, in real-world
scenarios under environmental shifts, it is challenging to ensure that the covariates collected in both groups are exactly the
same, leading to the missing covariates problem—where certain covariates present in one group are entirely absent in the
other. If the missing covariates include variables from the separating set, previous methods may fail to perform as expected.
Recently, several sensitivity analysis methods were proposed to detect whether the fully observed covariates contain all
the variables from the separation set (Nguyen et al., 2017; Andrews & Oster, 2019; Colnet et al., 2022; Dahabreh et al.,
2023; Huang, 2024). However, to the best of our knowledge, no existing work can identify and estimate the TATE when the
separating set is observable in only one of the two datasets.

This work also complements the recent literature on treatment effect estimation and parameter inference for panel data with
nonrandom missingness (Xiong & Pelger, 2023; Duan et al., 2024a). In our setting, covariates form partially observed
matrices in either the RCT or observational data, and the missingness is affected by experimental shifts. This is closely
related to Duan et al. (2024b), which transfers information across panels under general missingness–conceptually similar to
our use of 2SDR to transfer information from RCT to observational data.

B. Discussion on the Scenarios of Environmental Shifts Applicable to This Paper
The applicable scenarios of environmental shifts for this paper can be summarized as follows:

• Shifts in covariates. As stated in Definition 2.1, the original definition of environmental shifts in this paper is covariate
shifts, i.e., P(X | R = 1) ̸= P(X | R = 0).

• Shifts in both the outcome and covariates. Although this is not explicitly stated in Definition 2.1, due to the fact that
some covariates may be causes of the outcome, the distribution of the outcome will also shift along with the distribution
of such covariates, i.e., P(Y | R = 1) ̸= P(Y | R = 0), or alternatively, P(X, Y | R = 1) ̸= P(X, Y | R = 0).

• Shifts in the conditional distribution of the outcome. Given that Y (t) ⊥⊥ R | X holds under Assumption 3.1,
we have P(Y | X, R = 1) = P(Y | X, R = 0). Therefore, our problem setting essentially assumes the absence of
Y | X shifts. However, for the common covariates Xc shared by the two datasets, there still exist Y | Xc shifts, i.e.,
P(Y | Xc, R = 1) ̸= P (Y | Xc, R = 0). Assumption 3.2 required by the proposed 2SDR is still satisfied under Y | X
shifts, and therefore, 2SDR can address Y | Xc shifts. However, existing methods rely on Assumption 2.8, which
requires that Y (t) ⊥⊥ R | Xc holds. Under Y | Xc shifts, Assumption 2.8 does not hold, and thus, in contrast to 2SDR,
previous methods cannot address Y | Xc shifts.

C. Proof of Theorem 2.9
Proof. Under Assumptions 2.3, 2.4, and 2.6, we have E[Y (t) | W, R = 1] = E[Y | W, T = t, R = 1].

From Definition 2.7, we obtain E[Y | W, T,R = 1] = E[Y | W, T ] = E[Y | W, T,R = 1] under Assumption 2.5.
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Therefore, based on Definition 2.2, we have

τ =

∫
(E[Y (1) | W = w, R = 0]− E[Y (0) | W = w, R = 0]) dF (W = w | R = 0)

=

∫
(E[Y (1) | W = w]− E[Y (0) | W = w]) dF (W = w | R = 0).

D. Proof of Lemma 3.4
Proof. First, substituting Equation (3) into Equation (2) yields

P(Xm | Xc, S = 0) =

P(S=0|Xm,Xc)
P(S=1|Xm,Xc) ·

P(S=1|Xm=0,Xc)
P(S=0|Xm=0,Xc) · P(X

m | Xc, S = 1)

E
[
P(S=0|Xm,Xc)
P(S=1|Xm,Xc) ·

P(S=1|Xm=0,Xc)
P(S=0|Xm=0,Xc)

∣∣∣Xc, S = 1
] .

Under Assumptions 2.5 and 3.2, we have

E
[
P(S = 0 | Xm,Xc)

P(S = 1 | Xm,Xc)
· P(S = 1 | Xm = 0,Xc)

P(S = 0 | Xm = 0,Xc)

∣∣∣∣Xc, S = 1

]
=
∑
xm

P(S = 0 | Xm = xm,Xc)

P(S = 1 | Xm = xm,Xc)
· P(S = 1 | Xm = 0,Xc)

P(S = 0 | Xm = 0,Xc)
· P(Xm = xm | Xc, S = 1)

=
∑
xm

P(S = 0 | Xm = xm,Xc)

P(S = 1 | Xm = xm,Xc)
· P(S = 1 | Xm = 0,Xc)

P(S = 0 | Xm = 0,Xc)
· P(S = 1 | Xm = xm,Xc)

P(S = 1 | Xc)
· P(Xm = xm | Xc)

=
P(S = 1 | Xm = 0,Xc)

P(S = 0 | Xm = 0,Xc) · P(S = 1 | Xc)
·
∑
xm

P(S = 0 | Xm = xm,Xc) · P(Xm = xm | Xc)

=
P(S = 1 | Xm = 0,Xc)

P(S = 0 | Xm = 0,Xc) · P(S = 1 | Xc)
·
∑
xm

P(S = 0,Xm = xm | Xc)

=
P(S = 1 | Xm = 0,Xc)

P(S = 0 | Xm = 0,Xc)
· P(S = 0 | Xc)

P(S = 1 | Xc)
.

Therefore, we have

P(S=0|Xm,Xc)
P(S=1|Xm,Xc) ·

P(S=1|Xm=0,Xc)
P(S=0|Xm=0,Xc) · P(X

m | Xc, S = 1)

E
[
P(S=0|Xm,Xc)
P(S=1|Xm,Xc) ·

P(S=1|Xm=0,Xc)
P(S=0|Xm=0,Xc)

∣∣∣Xc, S = 1
]

=

P(S=0|Xm,Xc)
P(S=1|Xm,Xc) ·

P(S=1|Xm=0,Xc)
P(S=0|Xm=0,Xc) · P(X

m | Xc, S = 1)

P(S=1|Xm=0,Xc)
P(S=0|Xm=0,Xc) ·

P(S=0|Xc)
P(S=1|Xc)

=
P(S = 0 | Xm,Xc) · P(S = 1 | Xc) · P(Xm | Xc, S = 1)

P(S = 1 | Xm,Xc) · P(S = 0 | Xc)

=
P(S = 0 | Xm,Xc) · P(S = 1,Xc) · P(Xm | Xc, S = 1)

P(S = 1 | Xm,Xc) · P(S = 0,Xc)

=
P(S = 0 | Xm,Xc) · P(Xm,Xc, S = 1)

P(S = 1 | Xm,Xc) · P(S = 0,Xc)

=
P(S = 0 | Xm,Xc) · P(Xm,Xc)

P(S = 0,Xc)

= P(Xm | Xc, S = 0).

Consequently, the right-hand side of Equation (2) equals the left-hand side, which proves the correctness of Equation (2).
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E. Proof of Lemma 3.5
Proof. First, substituting Equation (5) into Equation (4) yields

OR(Xm,Xc)

=
OR(Xm,Xc) · E[OR(Xm,Xc) | X̃c, S = 1]

OR(Xm = 0,Xc) · E[OR(Xm,Xc) | X̃c, S = 1]

=
OR(Xm,Xc)

OR(Xm = 0,Xc)
,

where OR(Xm = 0,Xc) = 1, obtained by substituting Xm = 0 into Equation (3).

Therefore, the right-hand side of Equation (4) equals the left-hand side, which proves the correctness of Equation (4).

Next, under Assumptions 2.5 and 3.2, we have

P(S | Xm,Xc) = P(S | Xm, X̃c).

Therefore, according to Equation (3), we have

OR(Xm,Xc) = OR(Xm, X̃c).

Based on the proof in Appendix D, we have

E[OR(Xm,Xc) | X̃c, S = 1] =
P(S = 1 | Xm = 0, X̃c)

P(S = 0 | Xm = 0, X̃c)
· P(S = 0 | X̃c)

P(S = 1 | X̃c)
.

Substituting the above three equations into Equation (5) yields

ÕR(Xm,Xc)

=
OR(Xm, X̃c)

P(S=1|Xm=0,X̃c)

P(S=0|Xm=0,X̃c)
· P(S=0|X̃c)

P(S=1|X̃c)

=
P(S = 0 | Xm, X̃c) · P(S = 1 | X̃c)

P(S = 1 | Xm, X̃c) · P(S = 0 | X̃c)

=
P(S = 0 | Xm,Xc) · P(S = 1 | X̃c)

P(S = 1 | Xm,Xc) · P(S = 0 | X̃c)
.
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Therefore, under Assumptions 2.5 and 3.2, we have

E[ÕR(Xm,Xc) | Xc, S = 1]

= E

[
P(S = 0 | Xm,Xc) · P(S = 1 | X̃c)

P(S = 1 | Xm,Xc) · P(S = 0 | X̃c)

∣∣∣∣∣Xc, S = 1

]

= E

[
P(S = 0 | Xm,Xc) · P(S = 1 | X̃c)

P(S = 1 | Xm,Xc) · P(S = 0 | X̃c)

∣∣∣∣∣Xc

]

=
∑
xm

P(S = 0 | Xm = xm,Xc) · P(S = 1 | X̃c)

P(S = 1 | Xm = xm,Xc) · P(S = 0 | X̃c)
· P(Xm = xm | Xc)

=
P(S = 1 | X̃c)

P(S = 0 | X̃c)
·
∑
xm

P(S = 0 | Xm = xm,Xc)

P(S = 1 | Xm = xm,Xc)
· P(Xm = xm | Xc)

=
P(S = 1 | X̃c) · P(S = 0 | Xc)

P(S = 0 | X̃c) · P(S = 1 | Xc)

=
P(S = 1, X̃c) · P(S = 0, X̃c,Z)

P(S = 0, X̃c) · P(S = 1, X̃c,Z)

=
P(Z | X̃c, S = 0)

P(Z | X̃c, S = 1)
.

Consequently, the right-hand side of Equation (6) equals the left-hand side, which proves the correctness of Equation (6).

Equation (6) is a Fredholm integral equation of the first kind, with ÕR(V,U) to be solved for. Based on Theorem 1
from Miao et al. (2024) and Lemma 3.4, Equation (6) has a unique solution under Assumptions 2.5 and 3.2. Therefore,
OR(Xm,Xc) is identifiable.

F. Proof of Corollary 3.7
Proof. From Equation (3), it follows that

P(S = 1 | X) =

(
1 + OR(Xm,Xc) · P(S = 0 | Xm = 0,Xc)

P(S = 1 | Xm = 0,Xc)

)−1

.

The identifiability of this equation depends on the identifiability of OR(Xm,Xc) and P(S = 1 | Xm = 0,Xc), both of
which can be identified with Z under Assumptions 2.3, 2.4, 2.5, 2.6, 3.1, and 3.2.

First, under Assumptions 2.5 and 3.2, we have

P(S = 1 | Xm = 0,Xc) =

1 +
P(S = 0 | X̃c)

P(S = 1 | X̃c) · OR(Xm,Xc)

ÕR(Xm,Xc)

−1

.

The correctness of the above equation is guaranteed by substituting Equations (3) and (5) and the corresponding equation of
E[OR(Xm,Xc) | X̃c, S = 1] in Appendix E into its right-hand side, which equals the left-hand side.

Next, based on Lemma 3.5, OR(Xm,Xc) and ÕR(Xm,Xc) are identifiable under Assumptions 2.3, 2.4, 2.5, 2.6, 3.1, and
3.2, which consequently ensures the identifiability of P(S = 1 | Xm = 0,Xc).

With both P(S = 1 | Xm = 0,Xc) and OR(Xm,Xc) identified, P(S = 1 | X) is identifiable.

Moreover, P(R = 1 | X) is identified as

P(R = 1 | X) =

{
P(S = 1 | X) for Setting 1
1− P(S = 1 | X) for Setting 2

since R = S in Setting 1, and R = 1− S in Setting 2.
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G. Proof of Theorem 4.2
Proof. We only need to prove the unbiasedness of ψ̂, and then the consistency of ψ̂ in large samples holds under the
conditions specified in Newey & McFadden (1994); Miao & Tchetgen Tchetgen (2016).

Step 1. Unbiasedness of the odds ratio model.

Given the conditions specified in Silverman (2018), f̂(Z | X̃c, S) is a consistent estimate of P(Z | X̃c, S).

Therefore, based on Equation (6), if the ÕR model is correctly specified, the following equation holds.

E

[
ÕR(Xm,Xc)− f̂(Z | X̃c, S = 0)

f̂(Z | X̃c, S = 1)

]
= 0.

Therefore, the unbiasedness of the ÕR model holds, and thus the unbiasedness of the odds ratio model also holds based on
Equation (4).

Step 2. Unbiasedness of the doubly robust imputation model.

To prove the unbiasedness of ψ̂(Xc), we need to prove that E
[
ψ̂(Xc)−Xm

]
= 0 holds.

Under Assumption 3.2, it reduces to proving that the following equation holds.

E
[
ψ̂(Xc)−Xm

]
= E

[(
S ·

(
Xm − δ̂(Xc)

π̂s(X)

)
+ δ̂(Xc)

)
−Xm

]

= E
[(

1− S

π̂s(X)

)
·
(
δ̂(Xc)−Xm

)]
= E

[
E
[(

1− S

π̂s(X)

)
·
(
δ̂(Xc)−Xm

)∣∣∣∣X̃c,Xm

]]
= E

[(
1− P (S | X)

π̂s(X)

)
· E
[(
δ̂(Xc)−Xm

)∣∣∣X̃c,Xm
]]

= 0.

We provide proofs for the following two cases.

(1) The regression model of the missing covariates is correctly specified while the selection score model is not. In this
case, as the regression model of Xm is correctly specified, θ̂(Xc) is an unbiased estimate of E

[
Xm | X̃c, S = 1

]
. Therefore,

given the unbiasedness of the odds ratio model, based on Equation (2), the unbiasedness of δ̂(Xc) holds. Consequently,
E
[
δ̂ (Xc)−Xm | X̃c,Xm

]
= 0 holds, and thus the unbiasedness of ψ̂(Xc) holds.

(2) The selection score model is correctly specified while the regression model of the missing covariates is not. In this
case, as the selection score model of S is correctly specified, γ̂(X) is an unbiased estimate of P(S | X̃c). Therefore, given
the unbiasedness of the odds ratio model, based on Corollary 3.7, the unbiasedness of π̂s(X) holds under Assumptions 2.3,
2.4, 2.5, 2.6, 3.1, and 3.2. Consequently, 1− P(S|X)

π̂s(X) = 0 holds, and thus the unbiasedness of ψ̂(Xc) holds.

H. Proof of Theorem 4.3
Proof. When either π̂r(X) or µ̂t(X) is consistent, the consistency theory of the doubly robust TATE estimator in large
samples has already been established in Little & Rubin (2019). Therefore, we focus on proving the consistency of π̂r(X)
and µ̂t(X) here.

(1) Under Assumptions 2.3, 2.4, 2.5, 2.6, 3.1, and 3.2, if the selection score model of S and the ÕR model are correctly
specified, π̂s(X) is consistent, as proved in Appendix G. Since π̂r(X) equals π̂s(X) or 1− π̂s(X) based on Corollary 3.7,
π̂r(X) is also consistent.

(2) Given that the imputation model is consistent, if the outcome regression model is correctly specified, µ̂t(X) estimated
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using the imputed data still maintains consistency under the conditions specified in Newey & McFadden (1994); Little &
Rubin (2019).

Therefore, at least one of π̂r(X) and µ̂t(X) is consistent, and thus τ̂ is consistent.

I. Time Complexity Analysis of the Shadow Variable Selection Process in Stage I of 2SDR
In Setting 1, where the values of Xm are missing in Dataset O, the time complexity of the initial screening procedure is
O(nR · k2) (Zou, 2006), where k = p− d is the number of variables in Xc, and p is the number of variables in X; the time
complexity of the test for Assumption3.2(1) is O(nO · p2 + nR · p2) (Strobl et al., 2019); and the time complexity of the
test for Assumption3.2(2), which uses the mini-batch stochastic gradient descent method for optimization, is O(nR · k2)
(Bottou et al., 1991). Similarly, in Setting 2, where the values of Xm are missing in Dataset R, the time complexity of the
initial screening procedure is O(nO · k2); the time complexity of the test for Assumption3.2(1) is O(mp2 + np2); and the
time complexity of the test for Assumption3.2(1) is O(nO · p2 + nR · p2). As a result, the time complexity of the entire
shadow variable selection process is O(np2) ≡ O(nO · p2 + nR · p2).

The time complexity may vary depending on the chosen method for testing conditional independence. Our approach is
flexible and can incorporate any Conditional Independence Testing (CIT) method, with the specific choice of method
depending on its characteristics and the practical context (Li & Fan, 2020; Zheng et al., 2024).

J. Experimental Details
J.1. Software and Hardware Used

Software used: Python 3.9 with PyTorch 1.13.0.

Hardware used: Windows 11 operating system with a 13th Gen Intel(R) Core(TM) i7-13700K CPU and an NVIDIA
GeForce RTX 3080 GPU (with CUDA version 12.1).

J.2. Implementation Details

In the experiments conducted on the low-dimensional synthetic datasets and the real-world datasets, we used Elastic Nets
(Zou & Hastie, 2005) for continuous variable estimation and logistic regression for binary variable estimation. In the
experiments conducted on the high-dimensional synthetic dataset, neural networks were employed for these tasks, using the
Adam optimizer (Kingma & Ba, 2015) with the initial learning rate being 0.003. We used cross-validation to determine the
hyperparameters. Based on Theorem 3.3, for the methods involving imputation, during the cross-validation process on the
datasets under Setting 2, we evaluated the performance of the models trained on the RCT training set not only on the RCT
validation set but also on the validation set from the observational data from the target population to ensure the accuracy of
the imputation.

K. Data Generation Process for the Synthetic Datasets
K.1. Data Generation Process for the Low-Dimensional Datasets

We first used a simulation framework similar to that in Colnet et al. (2022) to generate the covariates. Specifically, we
generated X2 ∼ N (0, 1) and generated X1, X3, X4, and X5 as

X1, X4 ∼ N
((

0
0

)
,

(
1 0.8
0.8 1

))
and

X3, X5 ∼ N
((

0
0

)
,

(
1 0.8
0.8 1

))
.

Next, to simulate environmental shifts between the RCT data and the observational data from the target population, we
generated R using the following logit model:

logit(P(R = 1 | X1, X3, X4)) = −0.5X1 + 0.5X3 − 0.3X4,
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Table 3. TATE estimation results (MAE) on the high-dimensional synthetic dataset (mean±std), with bold values indicating the best
performance.

METHODS SETTING 1 SETTING 2

RCT 5.049±2.166 5.623±2.284
IPSW 8.530±3.741 9.412±4.631
CW 74.47±48.95 66.51±31.88
G-FORMULA 0.670±0.365 0.686±0.462
AIPSW 0.664±0.367 0.686±0.476
ACW 0.668±0.366 0.685±0.460
IPSWImp 8.173±3.752 9.533±3.296
CWImp 79.23±64.57 9.859±6.671
G-FORMULAImp 0.612±0.366 1.518±0.750
AIPSWImp 0.598±0.376 4.542±3.860
ACWImp 0.612±0.365 1.518±0.751
2SDR 0.433±0.291 0.461±0.276

where ϵs ∼ N (0, 1).

In Setting 1, the set of observable covariates in the RCT data is {X1, X3, X4, X5}, while the set of observable covariates
in the observational data from the target population is {X1, X4, X5}, with X2 being unobservable in both datasets. In
Setting 2, the set of observable covariates in the RCT datas is {X1, X4, X5}, while the set of observable covariates in the
observational data is {X1, X3, X4, X5}.

For the RCT data, we randomly generated T ∼ B(0.5), where B(·) denotes the Bernoulli distribution. In contrast, for the
observational data from the target population, all values of T were set to 0.

Finally, we generated Y as

Y =

5∑
i=1

5Xi + T · (5X1 + 5X2 − 3X3) + ϵy,

where ϵy ∼ N (0, 1).

K.2. Data Generation Process for the High-dimensional Dataset

The generation ofR and Y in the high-dimensional dataset followed the same process as in the low-dimensional datasets, with
a slight modification in the generation of the covariates. Specifically, we first generated X1 ∼ N (0, I20), X2 ∼ N (0, I5),
and X5 ∼ N (0, I10), where Ie denotes the identity matrix with e rows and e columns. Subsequently, we generated X3 and
X4 as

X3 = X5A,

X4 = X1B,

where A is a 10× 5 matrix with each element sampled from N (0, 1), and B is a 20× 10 matrix with each element sampled
from N (0, 1).

In the high-dimensional dataset, we set nR = 2000 and nO = 10000. The final dataset contains 50 covariates, including 5
partially observable, 5 completely unobservable, and 40 fully observable variables.

L. Supplementary Experimental Results
L.1. Experimental Results on the High-Dimensional Synthetic Dataset

We report the TATE estimation results on the high-dimensional synthetic dataset in Table 1. It can be observed that, although,
like all the baselines, the performance of 2SDR gets worse compared to the results on the corresponding low-dimensional
dataset, it still achieves the best performance, demonstrating its effectiveness in handling high-dimensional data.
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Table 4. TATE estimation results (MAE) of 2SDR under different degrees of violation of Assumption 3.2 (mean±std).

DEGREES CASE 1 CASE 2

SEVERE 0.355±0.319 0.383±0.280
SLIGHT 0.311±0.293 0.341±0.281
NONE 0.268±0.212 0.268±0.212

Table 5. Imputation error (MSE) on different datasets (mean±std), with bold values indicating the better performance.

DATASETS BASELINE 2SDR

LOW-DIM2000 SETTING 1 0.684±0.027 0.509±0.008
LOW-DIM1000 SETTING 1 0.694±0.044 0.552±0.038
LOW-DIM500 SETTING 1 0.786±0.060 0.555±0.037
LOW-DIM2000 SETTING 2 0.386±0.013 0.230±0.009
LOW-DIM1000 SETTING 2 0.397±0.019 0.245±0.011
LOW-DIM500 SETTING 2 0.447±0.023 0.310±0.057
HIGH-DIM SETTING 1 0.900±0.020 0.418±0.186
HIGH-DIM SETTING 2 0.986±0.034 0.651±0.044
ACTG 1.897±0.180 0.454±0.032
JTPA 2.130±0.111 0.992±0.032

L.2. Robustness Analysis when Assumption 3.2 Is Violated

To evaluate the robustness of 2SDR when the core assumption required by it—Assumption 3.2—is violated, we modified
the synthetic datasets to no longer satisfy Assumption 3.2 and conducted experiments on them to observe the performance
of 2SDR. Specifically, we modified the synthetic datasets to simulate the following cases:

• Case 1: Assumption 3.2(2) is violated. We changed the coefficient of X5 on R from 0 (indicating no violation of the
assumption, represented by ’None’) to {0.1 (indicating a slight violation of the assumption, represented by ’Slight’),
0.3 (indicating a severe violation of the assumption, represented by ’Severe’)} to introduce weak dependence between
the shadow variable and environmental shifts.

• Case 2: Assumption 3.2(2) is violated. We reduced the correlation coefficient between X5 and X3 from 0.8 (None) to
{0.3 (Slight), 0.1 (Severe)}, so that the shadow variable only has a weak predictive ability for the missing covariate.

As shown in Table 4, while the performance of 2SDR deteriorates when Assumption 3.2 is violated, it does so progressively
as the degree of violation increases. The results demonstrate that 2SDR maintains a certain level of robustness even when
Assumption 3.2 is not satisfied.

L.3. Imputation Accuracy Analysis

To evaluate the imputation accuracy of 2SDR, we compare the imputation error (Mean-Square Error, MSE) of 2SDR with
that of the baselines performing imputation based on E[Xm | Xc, S = 1], as reported in Table 5. The results show that
an increase in the dimensionality of the data and a decrease in the RCT scale lead to an increase in the imputation error.
However, 2SDR consistently outperforms the baseline on all datasets, demonstrating its superior imputation accuracy.

L.4. Hyperparameter Analysis

In the shadow variable selection process of the first stage of 2SDR, we introduce two hyperparameters, α1 and α2, as the
reject thresholds in hypothesis testing. In the experiments on the synthetic datasets under Setting 1, we varied their values
to investigate the impact of different thresholds on the accuracy of the selected shadow variables, considering different
sample sizes and dimensionalities. We report the number of times the selected shadow variables were correct within the 20
repetitions of each experiment under different thresholds, as shown in Figure 4.

From the results, we have the following observations and conclusions: (1) In the experiments on the low-dimensional data,
changes in α1 have little to no impact on the accuracy of shadow variable selection, while changes in α2 have a significant
impact. A decrease in α2 leads to the incorrect exclusion of variables that satisfy Assumption 3.2, resulting in the failure to
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Figure 4. The number of times the shadow variables selected by 2SDR were correct within the 20 repetitions of each experiment on
different synthetic datasets under Setting 1 varied with different thresholds.

select correct shadow variables. (2) In the experiments on the high-dimensional data, changes in α1 also have a significant
impact on the accuracy of shadow variable selection, similar to α2. It demonstrates that the conditional independence test
becomes more challenging as the dimensionality of the covariates increases. (3) As the sample size decreases, the accuracy
of shadow variable selection also declines, indicating that both hypothesis tests require a sufficient sample size.
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