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Abstract

In this paper, we refine the Berry—Esseen bounds for the multivariate normal approximation
of Polyak—Ruppert averaged iterates arising from the linear stochastic approximation (LSA)
algorithm with decreasing step size. We consider the normal approximation by the Gaussian
distribution with covariance matrix predicted by the Polyak-Juditsky central limit theorem and
establish the rate up to order n~/3 in convex distance, where n is the number of samples used in
the algorithm. We also prove a non-asymptotic validity of the multiplier bootstrap procedure for
approximating the distribution of the rescaled error of the averaged LSA estimator. We establish
approximation rates of order up to 1/4/n for the latter distribution, which significantly improves
upon the previous results obtained by Samsonov et al. (2024).

1 Introduction

In this paper we consider the Linear Stochastic Approximation (LSA) algorithm, a simple yet
foundational method with various applications in statistics and machine learning [16, 4, 21, 24|. The
LSA procedure addresses the problem of approximating the unique solution 6* to a linear system of
equations given by
A0* =D,

where A € R is a non-degenerate matrix. This approximation is based on a sequence of
observations {(A(Zy),b(Z))}ren, where A : Z — R and b : Z — R? are measurable mappings.
The sequence (Zy)ken consists of independent and identically distributed (i.i.d. ) random variables
defined on a measurable space (Z, Z) with distribution 7, satisfying E[A(Z;)] = A and E[b(Z;)] = b.
Often in the applications (Zg)ren are not independent and instead form a Markov chain, see
[12, 30, 55]. In this paper, we do not consider this setting and postpone it as a direction for a future
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work. Given a sequence of decreasing step sizes (ay)ren and an initialization 6y € R?, we define the

iterative estimates (fx)ren and their Polyak—Ruppert averaged counterparts (6,)n,en by
B n—1
Op = Op—1 — o (A(Zp)0h—1 —b(Zp)), k=1, Op=n"'> 0 n>1 (1.1)
k=0

The idea of using averaged estimates 6,, was proposed in the works of Ruppert [40] and Polyak
and Juditsky [36, 37]. Using the averaged iterates #,, instead of the last iterate ,, has been shown
to stabilize stochastic approximation procedures and accelerate their convergence. Moreover, it
is known (see [37]) that the estimator 6, is asymptotically normal under appropriate regularity
conditions on the step sizes (ax)ren and the noise observations (A (Zg))ken, that is,

V0, — 0%) S N(0,55) . (1.2)

The expression for ¥, is given below in Section 3.2 and corresponds to the preconditioned version
of the sequence 6}, which uses the optimal preconditioner A~1, see [18, 37].

Both asymptotic [37, 6] and non-asymptotic |25, 48, 29, 12] properties of the averaged LSA errors
0, — 0* attained lot of research interest. Many of the mentioned works primarily focus on providing
the moment bounds and concentration inequalities for the scaled estimation error /n(6,, — 6*). The
primary aim of these concentration bounds is to obtain results with explicit dependence on the
number of samples n, the problem dimension d, and other problem-specific quantities related to
A and the noise observations (A(Z;))ren. It is also important to study the rate of convergence
in (1.2) in a sense of appropriate distance between the probability distributions. Recent papers
consider approximation either in Wasserstein distance [47], class of smooth test functions [2], or in
convex distance [44, 41, 54]. The latter type of results can be directly applied when ensuring the
non-asymptotic validity of the confidence sets for 68*, and we follow the same direction in our paper.

The primary aim of the analysis of the approximation rate in (1.2) is the need to construct
confidence intervals for 8*. The principal difficulty is the fact that ¥, is unknown in practice, hence,
(1.2) can not be applied directly. Classical approaches suggest to approximate Y., directly based on
either plug-in estimates [8, 54|, or various modifications of batch-mean approach [8, 53, 26]. Typically
these methods constructs an estimator 3, of Yis0, and often provide non-asymptotic on the closeness
between 3, and Yoo. Yet the there are only asymptotic guarantees on coverage probabilities of 0*
with constructed confidence sets. The notable exceptions are recent works [41] and 54|, where the
authors provide non-asymptotic error bounds for coverage probabilities. The paper [41] considers
general LSA setting and multiplier bootstrap procedure adopted from [17], while the authors of [54]
considered a plug-in based approach for estimating ¥, and focused on the particular setting of the
temporal difference (TD) learning algorithm. In this paper we revisit the analysis of [41], derive the
error rates in coverage probabilities of order up to 1/4/n. Our contributions can be summarized as
follows:

e We refine the high-order moment bounds for y/n(6,, — 6*), improving the previous results of
[29] and [12]. Namely, our results yield, for p > 2, the bound

3/2
]El/p[Hé . Q*Hp] < \/i)v TrEoo 4 P /
n ~ \/ﬁ n5/6 i

provided that the step sizes aj are appropriately chosen. Note that the leading term of this
bound aligns with the moment bound for the Gaussian vector N(0, Xo).




e We establish a Berry-Esseen bound characterizing the rate of normal approximation in (1.2) in
a sense of convex distance (see Section 3.2) between distributions. We show the approximation
rate in (1.2) of order up to n=1/3 up to logarithmic factors in n. This convergence rate
improves the previous rate of order n~'/* obtained in [41] for the general LSA procedure, and
aligns with the rate achieved in [54| for the particular setting of the temporal difference (TD)
learning algorithm. Similar to [41] and [54], our proof approach builds upon the techniques
developed for nonlinear statistics in [44].

e We derive an approximation of the distribution of the scaled Polyak—Ruppert estimator
vn(6, — 6*) based on a multiplier bootstrap procedure. In particular, we show that the
coverage probabilities of the true value §* under the true distribution \/n(f, — *) can
be approximated by its bootstrap-based counterpart with a rate approaching n~1/2 up to
logarithmic factors in n. This rate is achieved for step sizes of the form oy = co/(k + ko)”
when v — 1. Our results provide an improvement over the existing non-asymptotic bounds
obtained in [41] for similar procedure. The main reason for this improvement is the observation
that the distribution of \/n(f, — 6*) can be effectively approximated by a normal distribution
N(0,%,,) with a suitably chosen covariance matrix 3, bypassing the direct approximation
with N (0, X). The obtained rate is in sharp contrast with [54] and other related works based
on direct approximating of the limiting covariance ¥ .

Notations. For matrix A € R%¢ we denote by ||A]| its operator norm. Given a sequence of
matrices {A}ren, A € R we use the following convention for matrix products: Hif:m Ay =
ApAp_1... A, where m < k. For symmetric and positive-definite matrix Q@ = Q" = 0, Q € R¥*¢,
and = € R? we define the corresponding norm ||z||g = /2 Qz, and define the respective matrix
@-norm of the matrix B € R by |B|g = sup, || Bz|lq/||z|lq- For sequences a, and by, we
write a,, < by, if there exist a constant ¢ > 0 such that a,, < ¢b, for any n € N. In the present text,
the following abbreviations are used: "w.r.t." stands for "with respect to", "i.i.d. " - for "independent
and identically distributed".

2 Related works

Asymptotic properties of Linear Stochastic Approximation (LSA) algorithms were studied in [37, 24,
6, 4]. These works established asymptotic normality and almost sure convergence under both i.i.d.
and Markovian noise. Non-asymptotic analyses of LSA (and of the non-linear setting, corresponding
to the SGD algorithm) have been carried out in [38, 32, 5, 25, 30|, where mean squared error
(MSE) bounds for LSA iterates and their Polyak-Ruppert averaged versions were obtained. Further
works [29, 13, 12] establish high-probability bounds (moment bounds or Bernstein-type bounds)
for the estimation error 6, — 6*. However, the concentration bounds for the LSA error given in
[29, 13, 12, 30] do not yield convergence rates of the rescaled error /n(#, — 6*) to the normal
distribution in Wasserstein or Kolmogorov distance.

Non-asymptotic convergence rates towards normality were investigated in [2] using Stein’s method
and measured in terms of the integral probability metric associated with smooth test functions
(smoothed Wasserstein distance). Recent advances include [47], which studied convergence rates
in Wasserstein distance for LSA with Markov observations. The bounds derived in these works
exhibit less favorable dependence on the trajectory length n than those presented here. Further,
[41] analyzed normal approximation rates for /n(6, — 6*) and obtained convex distance bounds



of order n=/4 for general LSA. This result was later improved by [54] for the specific setting of

the temporal difference (TD) learning algorithm. In this paper, we show that the actual rate of
normal approximation for LSA is also n~1/3 up to logarithmic factors, matching the result of [54]. A
detailed comparison with these works is provided in the discussion following Theorem 3.

The bootstrap approach [15] is one of the widely used methods for constructing confidence
intervals in parametric models. This method has been extensively studied theoretically; see [9, 10,
46, 20]. In these works, the validity of the bootstrap relies on Gaussian comparison techniques and
anticoncentration results, tailored to particular subclasses of convex sets (spherical or rectangular).
Bootstrap validity has also been analyzed in the context of spectral projectors of covariance matrices
[31, 23|. At the same time, extending classical bootstrap methods to online learning algorithms poses
considerable theoretical and practical challenges. In particular, the iterates {0 }ren generated by
the iterative scheme (1.1) are typically not stored in memory, making standard bootstrap methods
inapplicable. Instead, one can employ the multiplier bootstrap technique introduced in [17], designed
specifically for the iterates of Stochastic Gradient Descent (SGD). A non-asymptotic analysis of
this procedure was carried out in [41]|, which established approximation rates for the distribution
of \/n(6,, — 6*) of order up to n=*/* in convex distance. In this paper, we show that the actual
approximation rate can be significantly faster, up to n~'/2. However, the attempt in [39] to generalize
this procedure to the case of Markovian noise leads to an inconsistent method, as demonstrated in
[28, Proposition 1|. Thus, the question of appropriate generalizations of the multiplier bootstrap
approach to stochastic approximation algorithms with Markov data remains, to our knowledge, open.

Other methods for constructing confidence intervals, not based on the bootstrap approach, rely on
the direct estimation of the asymptotic covariance matrix ¥; see, e.g., [8, 27, 53|. In this approach,
the authors typically construct an estimator 3, of Yo and provide bounds on E[Hin — Yool|] with
explicit dependence on n. To our knowledge, within this approach there are no error bounds for the

coverage probabilities of 8* or error rates for approximating, for example, the distribution of the
true statistic v/n(6, — 0*) with N'(0,%,,).

3 Main results

We begin this section by specifying the set of assumptions that will be used for the non-asymptotic
central limit theorem for LSA iterates. To simplify notation and whenever clarity permits, we write
simply Ay = A(Zy) and by = b(Zy). Starting from equation (1.1), algebraic manipulations yield
the recurrence

Op — 0" = (I — apAy)(Op—1 — 0°) — ey, (3.1)

where we have introduced the noise term e = £(Zy), defined by

e(z) = A(2)0* —b(z), A(z)=A(z)—A, b(z)=b(z)—b.
The random variable £(Zy) corresponds to the noise measured at the solution #*. We introduce the
following assumptions on {Z;} and mappings A(-),b(:):

A 1. The sequence {Zy}ren consists of independent and identically distributed (i.i.d.) random
variables defined on a probability space (2, F,P) with common distribution .

A2 [,A(z)dn(z) = A and [,b(z)d7r(z) = b, with the matriv —A being Hurwitz. Moreover,
lelloo = sup,ez le(2)]] < 400, and the mapping z — A(z) is bounded, that is,

Ca = sup [[A(2)]| Vsup |A(2)]| < oo
ze”Z z€Z

4



Moreover, the smallest eigenvalue of the noise covariance matriz $e = [, e(z)e(z) " dn(z) is bounded
away from 0, that is,
)\min = /\min(Eg) >0.

The fact that the matrix —A is Hurwitz implies that the linear system Af = b has a unique
solution #*. Moreover, this fact is sufficient to show that ||I — ozA||Q 1 — aa for appropriately
chosen matrix Q@ = Q' > 0 and a > 0, provided that a > 0 is small enough. Precisely, the following
proposition holds:

Proposition 1 (Proposition 1 in [41]). Let —A be a Hurwitz matriz. Then for any P = PT = 0,
there exists a unique matric Q = QT = 0, satisfying the Lyapunov equation ATQ + QA = P.
Moreover, setting

_ Amin(P) _ Amin(P) el
a=er o ond Qe = 2l AT3 " Xin(P) (3.2)
where kg = Amax(Q)/Amin(Q), it holds for any a € [0, aso| that aa < 1/2, and

||I—aAHQ l—aa. (3.3)

Remark 1. One of the important particular examples of the LSA procedure is the setting of the
temporal difference (TD) learning algorithm [49, 50]. In the TD algorithm, we consider a discounted
MDP (Markov Decision Process) given by a tuple (S, A,P,r,v). Where S and A stand for state
and action spaces, and y € (0,1) is a discount factor, and we want to evaluate the value function
of a policy v(-|s), which is the distribution over the action space A at a fized state s € S. Many
recent contributions to the analysis of TD learning deal with the linear function approximation when
VV(s) ~ @' (5)0, where § € RY and ¢(s) : S — R? is a feature mapping. Under these conditions,
the problem of finding optimal approzimation parameters 0* is reduced to an instance of a linear
stochastic approzimation problem by the projected Bellman equation [52]. All the results given below
in Sections 3.1, 3.2 and 4 apply directly to the TD learning with linear function approzimation under
the generative model assumptions studied in [41/ and [54]. Namely, the assumptions A 1 and A 2 hold,
and Proposition 1 holds with Q =1 and P = A + AT, where A is a system matriz corresponding to
the projected TD learning equations, see [/1, Section 5].

We also consider the family of assumptions on the step sizes a. Namely, for p > 2 consider the
following assumptions A 3(p):

A 3 (p). The step sizes {ay}ren have a form oy = ko)

7, where y € (1/2;1) and cp € (0; o).
Assume additionally that

k+k

1/(1—) 2\ 1/
e ()" (k)
acoy acy

In our main results we often apply A 3(p) with p = logd. This particular choice of p imposes a
logarithmic dependence of kg upon the problem dimension d. This relaxes the polynomial bounds
on d, which were previously considered in [30]. At this stage we assume that k¢ is a fixed constant
that does not depend on time horizon n used in (1.1).



3.1 Moment bounds for Polyak-Ruppert averaged LSA iterates.

We first present results for the p-th norm of the averaged LSA error, that is, E/?[||0,, — 6||P], where
Oy, is given in (1.1). We first define the product of random matrices

k
Tk = [[(UT—ceAg) ,m <k, and Ty =1, m>k. (3.4)

l=m

Using the recurrence relation (3.1), we obtain the following decomposition of the LSA error:

k
ﬂ) él(gtr) — Flzk(eo - 9*) s é](ﬁfl) = — Zagrg_;,_l;kég . (35)

(=1

0 — 0% = 6" + 4

The term é(tr) above is a transient term, which reflects the forgetting of the initial error 6y — 6*,

while ég) is a fluctuation term. Controlling the p-th order moments of the transient component 9(“)
is essentially equivalent to bounding the p-th moment of the product of random matrices I';,.1. For
this purpose, we use techniques for proving the stability of products of random matrices from [22]
and [14]. We establish the following bound, which is referred to as the exponential stability of the
product of random matrices:

Lemma 1. Let p > 2 and assume A1, A2, A3(pVlogd). Then for any k <mn, 1 <m <k, it holds
that

k k
ax a
EY (| 7] < megn(l -5 < VRge exp{—%}:mj ac}

(1)

The proof of Lemma 1 is given in Section B. We further decompose 6,7 based on the perturbation-

(1)

expansion approach of [1], see also [12]. Namely, we notice that 6, satisfies the recurrence

5,(;') =(I- akAk)égl)l — aieg, with ééfl) = 0. Extracting its linear part, we represent 0~,(cﬂ) as

6" = O 4 g (3.6)

where the latter terms are defined by the following pair of recursions
JO = (1 o A) IO, — apey IO =0, (3.7)
HY = (1 - apAp) B, — 0, ALY, a7 =o. (3.8)

fl)

Here the term J ©) represents the leading (w.r.t. ay) part of the error é,(c . Informally, one can show

that EY2[|J7)12] < op/?, and similarly EV2[||H{”||2] < aj. Thus, J\” is a leading term of 6" in
(0)

terms of its moments, and H,
of scales.

is a remainder one, a phenomenon, that is referred to as a separation

The linear part J,go) plays an important role in our further analysis. In particular, we note that
the outlined representation of the last iterate error (3.5) implies that

n—1 n—1
* 1 (0) 1 *
0,, — 0*) = J H '+ — I'1..(60 —07) . 3.9
Vn( E k NG ];1 . \/ﬁkgo 1:k(0o ) (3.9)



The representation (3.9) plays a key role in our subsequent analysis of both the moment bounds
and Gaussian approximation for vn(6, — 0*). Indeed, this representation allows us to represent the
statistic f (0, — 0*), which is non-linear as a function of Z1, ..., Z,_1, as a sum of a linear statistic

f Sors J (© and a remainder non-linear part, which is of smaller scale. We further denote

n—1 k
_1 0 _ A
== ﬁVar [Z Jk ] ZQkZ Qk 5 Qz = Qy ZGZ-H] s Gm:k == H (I OégA) . (310)
k=1 =L {=m
We also define the sequence ¢,,n € N, as follows:
203/2
(1737/2),1&/2—1/2 ) 1/2 <7< 2/3;
3/2
On = conll/Oan ’ N = 2/3; (3.11)
3/2
o 2/3<y<1.

@y/2-Dn17?

As a first main result of this section, we obtain the following p-th moment bound with the leading
term given by the trace of the covariance matrix ¥,,. Precisely, the following bound holds:

Theorem 1. Let p > 2 and assume A1, A2, and A 3(pV logd). Then, it holds that

C VIrY, Ci5]|00 — 6*
1,1VP + A p) + 1,5/60 — 07| 7

Uplig. _ g*|p
BVP [ — 0717) <~ .

(3.12)

where we set

Al ~ Giap®? | Cigp™Pen | Crap
(n,p,7) = /2472 /2 n

and the constants {Cy;}2_,, depending on v, kg, a,Ca,co, ko and ||e|s, are given in Section 5.1, see
(5.5).

Remark 2. In order to study the scaling of the bound (3.12) with the problem dimension d, we
assume the natural scaling ||e||so < VdC., where C. is dimension-free. Then Theorem 1 implies that

BV (|7, —orp] < YV EEn | PPV gVl | pVd
n ~ \/ﬁ nl/2+7/2 nl/2 n

where < stands for constant not depending upon p,n, and d.

The proof of Theorem 1 is provided in Section 5.1. Note that the leading in n term of the above
bound appears with the coefficient +/Ir X,,, where X, is the variance of the linear statistic extracted
in the representation (3.9). It is possible to switch from the bound provided by Theorem 1 to the
moment bound with the leading term matching the CLT covariance given by

Yoo = AT AT, (3.13)
and X, is defined in A 2. Precisely, the following bound holds:
Corollary 1. Assume A1, A2, A3(pVlogd). Then, it holds that

Ci1v/PVTr Yo Cldf+A(ﬂ)(n )+ Cy5]/00 — 0" .
\/ﬁ n3/2 4 n

where the constant Cy is defined in (5.7).

EV? (|1, - 6°|”] < (3.14)



The proof of Corollary 1 is provided in Section 5.1. Optimizing the r.h.s. of (3.14) over ~, we
obtain that the optimal value is v = 2/3. This choice implies the moment bound

< VPVTIr S N p3/?
~ \/ﬁ nd/6 "’

where < stands for constant not depending upon n and p. The bound (3.15) improves upon previous
bounds of this type obtained in [29] and [12]. Both of these papers considered constant step-size
LSA. [12, Proposition 5| showed a bound of the form (3.15) with a residual term of order O (p?/n?/*).
The improvement in the dependence on n, compared to the latter paper, arises from the fact that
the authors used a summation by parts formula applied to ,, — #*, which yields a counterpart of
(3.9) with a different linear statistic identified as the leading term. [29, Theorem 2| obtained a
counterpart of (3.15) for one-dimensional projections of the error. Unlike typical results in linear
stochastic approximation, where stepsizes often decay as n=7 for v € (1/2,1), [29] requires a slower
rate of n~'/3, leading to a second-order term of order @(n~5/6), similar to (3.15).

EY? [0, — 6*|] (3.15)

3.2 Gaussian approximation for Polyak-Ruppert averaged LSA iterates.

In this section, we analyze the rate of Gaussian approximation for the statistic \/n(6,, — #*). The
result of Polyak and Juditsky [37] states that, under assumptions A 1-A 3, it holds that

Vn(f, — 0%) 5 N(0,55) | (3.16)

where the asymptotic covariance matrix ¥, is defined in (3.13). We are interested to quantify the
rate of convergence in (3.16) w.r.t. the available sample size n and other problem parameters, such
as dimension d. To measure the approximation quality, we use the convex distance, defined for a
pair of probability measures u, v on R¢ as

CM(u,v) = sup |u(B)—v(B),
BeConv(RY)

p

where Conv(R?) denotes the collection of all convex sets in R?. With a slight abuse of notation,
we write p©°"V(X,Y) for random vectors X and Y defined on the same probability space (2, F,P)
instead of their distributions under P whenever there is no risk of confusion.

Gaussian approximation with randomized concentration inequalities. To establish the
Gaussian approximation for \/n(f, — 6*), we consider it as a non-linear statistic of independent
random variables Zj, outlined in (1.1). Then we consider this statistic as a sum of a linear term and
a remainder term of smaller order in n. This framework is presented in [44], and we summarize
below the key results that will be later used to establish our findings. In this paragraph, we present

all results for statistics defined in terms of the random variables X1, ..., X,, rather than Z1,..., 2,
as used in the remainder of the paper.
Let X1,...,X, be independent random variables taking values in a measurable space X, and

consider a d-dimensional statistic T'= T'(Xq, ..., X},), which admits the decomposition T'=W + D,
where
n
W=> & D=DXy.. X,)=T-W. (3.17)
(=1
Here & = hy(Xy), and hy : X — R? are measurable functions. The term D represents a potentially
nonlinear component of the statistic 7', which is assumed to be small compared to W in an appropriate



sense. Assume that E[¢] = 0 and Y }_; E[§¢/] = Iz Define T,, = >, E[||&]|?]. Then, letting
n ~ N(0,14), [44, Theorem 2.1] yields that

pC™ (T, ) < 259"/, + 2E[|W[|D]] + 2 E[ll&c|lI|D — DO, (3.18)
=1

where DO = D(Xy,..., X¢—1,X), Xe41,...,Xy), and (X7{,...,X]},) is an independent copy of
(X1,...,Xp). One can modify the bound (3.18) for the setting when > j_, E[§&/] = ¥ = 0, see [44,
Corollary 2.3].

Gaussian approximation for the LSA algorithm. In the setting of linear stochastic approxi-
mation we use the decomposition (3.17), identify T = T(Z1,...,Zp—1) = ﬁE;l/Q(én — 0*), and
write

n—1 n—1 n—1
1 1 1
= =125 00, D= =223 B + = V23 Do — 6%). 1
k=1 k=1 k=0
Changing the order of summation, we get with @y defined in (3.10), that

n—1
1
W=-—2Y 2-1Y2Qs , (3.20)
Vi

i.e. W is a weighted sum of i.i.d. random vectors with mean zero and E[WW '] = I;. The
decomposition (3.19) and (3.20) allows to apply the general Gaussian approximation result of (3.18).
Application of the above result requires that the matrix ¥, is non-degenerate, which is guaranteed
by the following lemma:

Lemma 2. Let p > 2 and assume A1, A2, A3(p). Let also n > ko + 1. Then it holds that
15, — Eoo]] < Con? 1, (3.21)
where the constant Co is given in (5.34).
The proof of Lemma 2 is given in Section 5.5. With Lidskii’s inequality, we obtain that
Amin(En) > Amin(Beo) = [[Zoo — | -

Therefore, using Lemma 2, we can lower bound Apin(2,,), provided that n is large enough. This is
formalized in the following assumption:

A 4. The sample size n satisfies the conditions n > ko + 1 and n'=7 > 2Co/Amin(Eoo).
With the assumptions above, we obtain the following Gaussian approximation result.

Theorem 2. Assume A1, A2, A3(2Vlogd), A/4. Then, with n ~ N(0,1),

_ Coi C Co.al00 — 0%
Conv _ p* 1/2 < 2,1 2,2 2,41|Y0
p (\/ﬁ(en 0 )7 Zn 77) = \/ﬁ + /2 + C27390n + n )

where py, is defined in (3.11) and Ca1, Co2, Co3, Cou are constants defined in (5.8).




The constants Cp 9 — Cy 4 contain factors that scale as 1/(1 — ), and the result in the stated
form is not valid when setting v = 1. At the same time, following the technique of Shao and Zhang
[44, Theorem 3.4, it is possible to show that a counterpart of Theorem 2 holds when v =1, at the
cost of additional log n factors arising in the r.h.s. of the bound and under additional constraints on
the constant ¢y, which cannot be chosen too small in this case.

Remark 3. Under a natural scaling ||€||so < VdC., where C. is dimension-free, Theorem 2 implies
that

dz 32 dlog(d)||0y — 0%
+don + og(d)||0o | ’

Conv n o 172,y < 2
p (\/’ﬁ(@n 0 ))En 77) ~ \/ﬁ + TL'Y/Q n

where < stands for inequality up to a constant not depending upon n and d.

The proof of Theorem 2 is provided in Section 5.2. Note that the term C%/ﬁl above corresponds to

the summand Y, from (3.18), which is related with the sum of third moments of random vectors
forming the linear statistic W. The result of Theorem 2 shows, that the rate of normal approximation
of \/n(0, — 6*) by N(0,%,,) improves when the step sizes oy, are chosen to be less aggressive, that
is, when the power v approaches 1 in A 3. As already mentioned, constants Co 2 — Cg 4 scales with
1/(1 =), so the latter conclusion applies when the available number of observations n is large. This
aligns with the phenomenon, previously observed for the SGD algorithm [44], [45] and TD learning
[54].

Given the result of Theorem 2 and Lemma 2, it is possible to quantify the rate of convergence in
(3.16). Precisely, the following result holds.

Theorem 3. Assume A1, A2, A3(2Vlogd), A/4. Then, withn~ N(0,1),
Coy

Con n Cop

bo—0l, G
\/’TL n'Y/2

nl=7

P (V0 — 6%), 2) <

+ Co30n +

where the constant Cg is given in (5.13).

The proof of Theorem 3 is provided in Section 5.2.

Discussion. The bound established in Theorem 3 achieves the optimal normal approximation
error rate of n~1/3 for Polyak-Ruppert averaged estimates. This optimal rate is attained using step
sizes oy, = co/(k 4 ko)?/3, corresponding to the decay exponent v = 2/3 in (3.22).

This n~1/3 rate aligns with recent results for policy evaluation in reinforcement learning. Wu et
al. [54] established the same convergence rate for the temporal difference (TD) learning algorithm.
Their analysis employs step sizes scaling as cg/ k%/3, which is consistent with the optimal choice
predicted by Theorem 3. Related work Wu et al. [55] studies TD learning under Markov noise,
achieving a slightly slower rate of n=1/4 (up to logarithmic factors) in convex distance. Another
relevant contribution is provided by Srikant [47], who analyzed temporal-difference learning with
Markov noise and established a convergence rate of n=/6 in Wasserstein distance for the step sizes
o, = ¢o/k*/3. Applying the relation between convex distance and Wasserstein distance [33, Eq. (3)],
this bound translates to a convergence rate of order n~'/12 in convex distance.

The fastest known rate for p“°™ (\/n(6,, — 6*), Eéézn) in the general LSA problem is n~'/* and
is due to [41]. Our rate improvement compared to this work is achieved through a tighter analysis
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of the normal approximation with A/(0,3;,), which is carried out in Theorem 2. We then estimate
pCO (N(0,2,),N(0,34)) using the Gaussian comparison inequality [3, 11]. The authors of [41]
used a different error decomposition for the statistic v/n(f, — 6*) based on the summation by parts
representation [29, 12|, with a linear statistic with covariance matrix Y. This approach avoids the
Gaussian comparison step but induces a slower approximation rate compared to Theorem 3.

Several related studies |2, 44, 45| have investigated the normal approximation problem (3.16)
for stochastic gradient descent (SGD) algorithms targeting strongly convex objective functions. We
provide a comparative analysis of these results relative to our LSA framework. Anastasiou et al. |2]
studied both SGD setting and LSA with symmetric positive-definite system matrix A = A" > 0,
achieving normal approximation rates of order n=1/2 for integral probability metrics djg) induced by
twice-differentiable test functions. Precise definition of dp) is given in Section A. This result has two
important limitations. First, the relation between the Kolmogorov distance and djy metric (see e.g.
[19, Proposition 2.1]) suggests that the rate n~'/2 translates to the one of n=/¢ when considering
the Kolmogorov distance. Hence, the implied rate in convex distance is not faster than n~/6, which
is substantially slower than the n~'/? rate achieved in (3.22). Second, a detailed examination of [2,
Theorem 4| reveals that their bound depends on a quantity p(n,t) which scales, in notations of the
current paper, with the sample size n and the step-size exponent ~. It is not clear that this term
can be uniformly bounded independently of n, suggesting that the convergence rate in a sense of d[y
is actually slower than n=1/2, depending upon 7.

Shao and Zhang [44] developed the SGD counterpart of our result of Theorem 2. Their analysis
focused on Gaussian approximation with the normal distribution A(0,%,,) from (3.10), rather than
N(0,X). These results were further developed in Sheshukova et al. [45], where the authors shown
a counterpart of Theorem 3 with a convergence rate of order n~'/* when setting v = 3 /4. This rate
is slower than the one corresponding to the LSA setting. This gap arises from the nonlinearity of
SGD recursions, which introduces an additional error term in the r.h.s. of (3.18).

3.3 Lower bounds for the LSA algorithm.

Lower bounds for the convex distance p“°" (y/n(6,, — 6%), E}X/fn) were studied in [45] for the setting

of SGD algorithm. The particular instance of this algorithm, which covers also to the LSA setting,
can be written as follows. Consider the simplest 1-dimensional LSA problem with A =1, b =0,
that is, simply the equation

0=0.

and Ay =1, by ~ N(0,1) for any k& € N. Here 8* = 0. The corresponding sequence of LSA updates
can be written as follows:
Op+1 = Ok — ag(Ok + Egv1), k>0,

where ) € R, ap = co(1 + k)77, 1/2 <y < 1, and & = —by, are i.i.d. standard gaussian random
variables. Then [45, Proposition 1] shows that for large enough n it holds that

0(77 CO)
nt—7

P (V6 — 6%),N(0,1)) > : (3.23)
where C'(, ¢p) is a constant that depends upon +, ¢g. This result implies that the rate of convergence
in Theorem 3 is optimal for v € [2/3, 1), since the term n(l:fv dominates the r.h.s. in this regime.
Similar result for TD learning was shown in [54]. However, to the best of our knowledge, there is no
matching lower bound for the setting when v € (1/2,2/3).

11



4 Multiplier bootstrap for LSA

To perform statistical inference with the Polyak-Ruppert estimator 8,,, we propose an online bootstrap
procedure that recursively updates the LSA estimate and a set of randomly perturbed LSA trajectories
using the same set of noise variables Zj. The proposed method follows the procedure outlined in [17].
This approach does not rely on the asymptotic distribution of the error /n(#, — 6*) and does not
require approximation of the covariance matrix ¥, which is known to be computationally expensive
8]

We describe the suggested procedure as follows. We assume that on the same probability space
(Q, F,P) where the sequence {Zj }ren is defined, we can construct M € N sequences of i.i.d. random
variables {wi}, 1 <k<nand1l</{¢< M, which are independent of {Zj}rcny. We assume that
E[wf] = 1, Var[wf] = 1, and E[Jwf, — 1|3] = m3 < co. Using these weight sequences, we recursively
update M randomly perturbed LSA estimates according to:

0 = 00" — apwl {A(Z)0 —b(Zk)}y, k>1, 095 =46,

, (4.1)
e D D1 e I

These weights add additional random perturbations to the LSA process (1.1). We set 2" =
{Zi}1<0<n—1 and use the notation P* = P(:|2""!) and E® = E(-|2"!) for the corresponding
conditional probability and expectation. We refer to them as the "bootstrap world" probability and
expectation, respectively. We adopt the shorthand notation 92 for 92’1

The fundamental principle behind (4.1) is that the conditional distribution of the perturbed
bootstrap samples \/n(62 — 6,,) given the observed data Z"~! (the "bootstrap world" distribution)
approximates the distribution of the target quantity v/n(f, — 6*). Specifically, [17] established that

sup  [P°(v/n(6° —6,) € B) —P(v/n(6,, — 6*) € B)| = 0 (4.2)

BeConv(RY)
in P-probability as n — oo. We refer to this result as the asymptotic validity of the procedure (4.1)
and aim to quantify the rate in (4.2). While no closed-form expression exists for P?(y/n(62 —0,,) € B),
this probability can be approximated numerically via (4.1) by simulating a sufficiently large number

M of perturbed trajectories. Standard Monte Carlo theory (see, e.g., [43, Section 5.1]) indicates
that this approximation achieves accuracy of order M —1/2_ Consider the following assumption:

A 5. The step size offset kg satisfies

coh(n 8 C2 co/Rgeh colo n
kg > max{2h( ) Ca FQ, mmo{l Qoo Aa(02\£273) @ ’ rronng{l E;})}

where h(n) is defined as

2
8Ca /Ro(1+21log(10n3d
h(n) := K Al 1S el ”) 1 . (4.3)

Additionally, the sample size n must be sufficiently large such that

S$V2el2.C3/Tog (100 8J<2.C3 log (10dn)
Vn 3n '

The condition A 5 ensures that the initial step sizes are not too large, which is crucial for the
bootstrap approximation to be valid. We now present the main theoretical result of this section.
Our analysis focuses on polynomially decaying step sizes 7, = co/(ko +n)” with decay exponent

v € (1/2,1).

)\min(zoo) Z
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Theorem 4. Assume A1, A2, A3(og(5n3)Vlogd), A4, A5. Then with P — probability at least
1 —1/n it holds that

AV
+ Ay 30, + n7 ,

7] 0 0 Cy4l|00 — 0F|| + A471 A4’2
sup  |PP(v/n(0° — 6,) € B) — P(/n(0, — 0*) € B)| < | \/ﬁH +—
BeConv(R9) n

where Cy is a constant and {Ay;}%, are polynomials in log(n) that are defined in Section 5.3, see
(5.28).

Proof. We provide here a high-level overview of the proof and refer the reader to Section 5.3 for a
detailed exposition. The main ingredient of the proof is a Gaussian approximation via the randomized
concentration inequalities approach [44]. The latter is carried out both for \/n(6,, — *) under P and
for /n(02 —6,,) under P°. These two results are then combined using a suitable Gaussian comparison
inequality. The main steps of the proof are outlined in the diagram presented below: The principal

Gaussian approximation

Real world: /ni(f, — 60%) < under P s N(0,%)
Gaussian
Gaussian approximation comparison
Bootstrap world: /n(62 — 6,,) under P* N(0,%P)

question that arises here is related with the choice of the approximating normal distribution ¥ and
its bootstrap counterpart X°. In the earlier work [41], the authors used ¥ = Y. As indicated by
Theorem 2 and Theorem 3, this does not appear to be an optimal choice, as it fails to provide an
approximation rate faster than n~/3—at least when v € (2/3;1)—due to the lower bound (3.23).
At the same time, \/n(6,, — 0*) can be approximated by N(0,Y,) at a rate approaching 1/y/n. This
is the reason why we use X = ¥, in the present paper. The second principal difficulty in the proof is
more technical and is related to the fact that applying a randomized concentration approach under
PP requires a representation

V(@ —6,) =W+ Db (4.4)

where WP is a linear statistic with EP[IWP{IWP}T] =: ¥:2. Since we aim to prove Gaussian approxi-
mation under PP, by "linear statistic" we mean linearity in the bootstrap weights wy. In addition to
(4.4), we need to ensure that EEL is "close" to ¥, in an appropriate sense. We provide a detailed
exposition, together with the definition of the statistics WP, DP, and %P, in Section 5.3.1. O

The terms {Ay;}%_; exhibit similar behavior as the constants from Theorem 2 and scale with
the factor 1/(1 —~y). Thus the special setting of v = 1 requires separate treatment and is not covered
by Theorem 4 in the present form. Similarly to Theorem 2, we expect that in the particular setting
of v = 1, the conclusion of Theorem 4 is still valid, probably with additional logn factors appearing
in the r.h.s. and given additional constraints on cy.

Remark 4. Assuming a natural scaling ||€]|lco < VdC., where C. is dimension-free, Theorem
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writes as

o _ d? + d3/2/log(d
sup [PV — 8,) € B) — P(n(fn — 0*) € B)| < & og(dn)
BeConv(R4) \/ﬁ

d®?logn + vdlog®' n
+
n'Y/2

3/2
+dip + LR,

Discussion. The direct counterpart of Theorem 4 with the slower approximation rate (with
order up to order n~'/4 up to logarithmic factors in n) was obtained in [41]. The main reason
for improvement in the current paper is the choice of the approximating matrix ¥ in Section 4.
The authors in [41] used ¥ = 3, contrary to the choice ¥ = ¥, employed in Theorem 4. To our
knowledge, the closest result to ours is the one of [54]. In this paper within the plug-in methods the
authors obtain an estimator /E\]n of the asymptotic covariance ¥, and provide high-probability error

bounds
1

pConv(\/,ﬁ(én _ 0*)7/\/(0, in)) S W 5

which is attained when the step size exponent v = 2/3. Theorem 4 provides approximation of order
up to 1/4/n when v — 1.

5 Proofs

5.1 Proofs of Section 3.1

In this section we provide additional details on the perturbation-expansion technique [1, 12]. Recall

that we can represent the fluctuation component of the error GI(CH) defined in (3.5) as 9,9) =J ,E,O) +H ,S,O)

where the terms J]go) and H ,20) are given in (3.7) and (3.8), respectively. The term H Igo) can be

further expanded. One can check with simple algebra that for any L € N the term H, 150) can be
decomposed as

L
2 =37+ 8" (5.1)
(=1
where the terms J,EZ) and H ’ge) are given by the following recurrences:
IO = (1= pA) I — A (2) 05V I =0,
() (0) A (0) () (52)
H"' = (1—-oA(Zy)Hy ) — apA(Zy)J, 2, , Hy’ =0.
(£+1)/2

It is possible to show that, under assumptions A1, A2, and A3, it holds that El/p[HJ,gz) IP] < cpay, ,
and similarly El/p[HHg)Hp] < Cga,(fﬂ)m, where the constant ¢, can depend upon d, p, and problem-
related quantities, but not upon k. Thus the expansion depth L in (5.1) controls the desired
approximation accuracy. Our analysis of the p-th moment of the last iterate error 0y — 6* will not
require the expansion (3.6). At the same time, more delicate bounds for EY/?]||8,, — 6*|P] will require
to use (3.6) and (5.1) with L = 2. We recall the p-th moment bound of last iterate, adapted from
[41, Proposition 4|.
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Proposition 2. Let p > 2 and assume A1, A2, and A 3(pVlogd). Then for any1 <k <n-—1, it
holds that

k
a
EYP[)|6, — 6*]|P] < /kqellfo — 67| H(l - 5(1@) + Copy/ay, , where Co = V6el|e|l o/ Ko /a -

(=1

Now we provide moment bounds for the terms Jg), H,gé), te{0,...,L}.
Lemma 3. Let p > 2. Assume A1, A2, and A3(pVlogd). Then for any £ € {0,1,2} it holds that

]El/p[HJlgf)Hp] < CgJué)pZ+1/2al(€€+1)/2

9

EVP| HO|P] < 1O pt+1/20 {41/

)

where the constants Cé‘]’e), C:(,)H’Z) satisfy the recurrence
1/2 1/2 1/2
o) _ AV3g llelloe gy _ 2V0Rg Ca gy oo _ 126G ¢ g
3 - a1/2 » 3 - a1/2 3 » 3 - a 3 .

We also state here the lemma, which is instrumental for our further results and bounds ||Qy|| for
matrices @y defined in (3.10).

Lemma 4. Assume A1, A2, and A 3(2V log(d)). Then, for any ¢ € {1,...,n— 1},

n—1

1/2
1Qell < > (1G]l < Ca, where Cy = kg~ (co+ -

(1379. (5.4)

=t
Moreover, 27;11 1G5 < (14 ko)7Cy/co.

Proof of Theorem 1. We first define the constants outlined in the statement of the theorem:

cciCa
vI=7
VEQe(l + ko) 2

co (eo + a(l —7)

, C173 = CéJ’Z) + C:(}H’Z) s (5.5)

C171 = 60e s C172 = \/%

Ci4=60C4le]|c , C1 5 =1+

Combining the representations (3.5) and (3.6), we get

n—1

n—1 n—1
0, —0* =nt Z I.6(00 — 6%) + n~! Z J,go) +nt Z H,io) ) (5.6)
k=1 k=1 k=1

Now we proceed with different terms in (5.6) separately. Applying Lemma 25, we obtain that

n—1
6o — 6*||C
EYP[||n! E :F1;k(90 — ")) < HOnHLB _
k=0
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Now we proceed with the term n=t> 7] ! J(O = -—n"130 ! Quey, where Qg is defined in (3.10).
Applying the version of Rosenthal mequahty due to Pinelis [35 Theorem 4.1|, we get

-1
IEl/PHTf1 nz: Qued|P < CROSJPI/Q{/Tr En}1/2 4 CRos,2 pEl/p[maXISESn |Qeee||?]
= n]- 2 M

n

where Cros,1 = 60e and Cros2 = 60 are constants from [35]. Applying Lemma 4, we get that
|Qel| < C4, where Cy is defined in (5.4). Hence,

-1
El/pHn_InZQgEng < CRos,lpl/QETr En}l/Q N CR0572pC4H5Hoo ‘
- nl/2 n

/=1

Now we proceed with the next-order terms in n corresponding to n~! 22;11 ngo). Note that
ngo) = J(l) + H(l) where J,gl) and H]gl) are given by J,gl) = — Zle agGm:kAgJ!@l and H,gl) =

—Z —1 OmIm1: kJ7(n)-

EVPI| D |P] < BYP[I2 7] + BVP HP |P) < (€ + P20l

Applying Lemma 3 and Minkowski’s inequality, we obtain that

which implies that

n—1
WTE S B < (G0 + IS ol < ) e,
k=1 k=1

where the sequence ¢y, is defined in (3.11). It remains to proceed with » % Ji (1) Note that

1 n—1

3
|

k
ZO%G@H kAZJg 1= ZQ@AN@ 1
1 —1 =1 =1

b
Il

Using the fact that Q@Agje(i)l is a martingale-difference w.r.t. Fy_1 = o(Zs: s < ¢ — 1), we obtain,
applying Burkholder’s inequality [34, Theorem 8.6] and Lemma 3,

n 3 n— /2
1 ) 1/2 C(JO)C4CA])3/2 Z :10[2 1
L)) 0] < (Z B |QiAWIP) <5 {Ein o)
k=1
_ NGien c4 Ca p*?
- V1= n(1+7)/2
It remains to combine the above bounds in (5.6). O

Proof of Corollary 1. First, we define the constant Cy outlined in the statement:
Ci11C

C = TEOJ ) (5.7)

where the constant Co is introduced in Lemma 2. Using that for a > 0, b > 0, va+b =

Va(l+b/a) < \/a+b/(2y/a) and Lemma 2, we get

[T (S — Soo)| dCan2 !
\/Tr (3n) < \/Tr (Boo) + 2Tt (5o0) < VT (Yoo) + m .

The proof is concluded using Theorem 1. O
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5.2 Proofs of Section 3.2

We first define the constants outlined in the statement of the theorem:

Co1 = 259d3/QC‘”2usuooc4 , (5.8)
211/20 C C -
Cop = d'/? A1/§ 0 sellel 424 2C; 1H€HOOC4 \/% Cs 7
o vVI—n
Co3 = \/E(27/2C6_1/2C§]72) + 27/2cg1/2C§H,2)) ’
— 2(1 + ko)’y 4
Cou = d/2C57Crs + 242220 e Cr(1 4+ ———
. o e Co IellocCr(1 aco(l — 7)) ’

Proof of Theorem 2. Recall that we use the representation \/71251/2(@1 —0*) =W + D, where

n—1 n—1
I - 0 0)
szznl/ZEjJ,g),D: 1/2§jH( LS V2N Tyk(fo — 67) .
\/ﬁ k=1 \/> k=1 f k=0

Alternative representation for W is given in (3.20). Recall that we write n for a random vector with
standard normal distribution 7 ~ N(0,1;) under P. Then, setting

n—1
1
&= —=(En) Qe Tu =D E[l&],
Vi 2
we obtain from [44, Theorem 2.1]:
B n—1
PO (VS 2 (0, — 0%),m) < 259d"20, 4+ 2B[|W D]+ 2D E[l&ID - DY (5.9)
=1
Note that Lemma 6 and Lemma 4 imply ||&]] < —= C_1/2H5H00C4. Hence,
n—1
Yo < =G el Y Bl = =i el (5.10)
N 1 vn

To proceed with the second term in (5.9), we use the representation for the statistic D from (3.19):

n—1 n—1
1 1
D=—=2"23" 1" + —=5;Y2 3 Tr(bo — 67) -
\/ﬁ k=1 \/ﬁ k=0

Lemma 5 implies that

E Iy —6%) .

Using the representation H Igo) = J,gl) +J 152) + H ’gz) and Minkowski’s inequality,
EV?[ IIZ:H Il <E[ HZJ I°] +E[ HZJk 1] +E[ IIZH 7]
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Applying Lemma 3 with p = 2 and Minkowski’s inequality, we get

n—1 n—1
_ 2 — J,2 3/2 J2
n 1/2E1/2[”Z J/E; )HQ] <n 1/22(:% )25/2ak/ §25/2C:(,) )%7
k=1 k=1

where the function ¢, is defined in (3.11). Similarly, it holds that

n—1 n—1
n’1/2IE1/2[|| ZHIS‘Q)H2] < p 12 Z 25/2C§H’2)ai/2 < 25/2C;(3H’2)s0n .
k=1 k=1

Rewrite the sum of J]gl):

n—1 n—1 k n—1
n~1/2R1/2 [|| Z J£1)||2] — n1/2R1/2 [|| Z EaeGéﬂ:k-&Né@lHQ] — n-1/2R1/2 [H Z QeAeJé%llQ] '
k=1 k=1 ¢=1 =1

Since QeAyJ (8)1 is a martingale-difference sequence, Lemma 4 and Burkholder’s inequality [34,

Theorem 9.1| imply

n—1 n—1 n—1
_ ~ _ ~ 1/2 _ 1/2
n V2EY2(| ST QA a2 17 < 202 (3D BN A 1) < 22 ea (DD ENIY 1P
=1 /=1 /=1

Now we use Lemma 3 and get:

n—1
n—1/2||E1/2 [Z J]gl)m < 992p71/2 C4C§J’0)
=1

_2Ca c4c§;”‘”\@n_7 /2
T Vi '

o

Combining the above bounds with E[[|W||?] = d we obtain:

2924112 G CaCy " /el o d"?||0y — 0°|

e v o€ e + S
(5.11)
To derive a bound for the third term in (5.9), we introduce the following notations:
n—1 n—1
i - 0 0,i i - i
DY =n 23w — BP), DY =023 (T~ T (00 - 6%) .
k=1 k=1

Hence, one can check that

D —D® =x712(pW 4 p{iy .

Thus, combining Lemma 4, Lemma 7, Lemma 8 with Minkowski’s inequality, we get

E[lgill10 = DD|] < n=/2C5 lellooCa (EV2[ID7] +EV2[|I DS )

_ 0y — 0* s acyy, 1
< el (12 her [T - 25+ Lvaics)
m=1
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Hence, using Lemma 25, we finish the proof:

nl o lleleeCa2Cs 0o — 6% [leflocC 2 (1+4k)
E[||&| | D — DO + 2 T (eo + Y (512
S Ellelip - POl < g s S+ o R Gy
The proof follows from (5.10), (5.11), (5.12) by rearranging the terms. O

We now state the technical lemmas that we use in the proof of Theorem 3.

Lemma 5. Let p > 2. Assume A1, A2, A3(pVlogd), A4. Then, it holds that
EVP| HZ DB —0")|[P] < 1|60 — 6| Cu 5,

where the constant Cy 5 is given in (5.5).

Lemma 6. Let p > 2. Assume A1, A2, A3(pVlogd), A4. Then it holds that

Amin (22
Amin(Zn) > Co, where Cg = mméoo) .
Now we introduce the vector (Z1, ..., Z!,_;) an independent copy of (Z1, ..., Z,_1), and introduce
the following notation for £ < m:
@ _ Com, if i & [¢,m],
N Do (Zas oo Zi1, 20 Zirs -y Zm), if 0 € [6,m)]
g _ 7, if k<,
INZ1, o 251, 2] Zin, o Zy), iR >
(i) _ H;ﬁé), if k <1,
k HY(Z1,..., 200, 7), Ziss, ... Zk) it k>

n—1
D — n—1/227;1/2 Z ngo,i) 71/22 1/2 ZF i (6 — 6%)
k=1

Here D@, 1 <i < n—1,is a counterpart of D with Z; substituted with Z!. In order to control
E[||D — D®||?], we use the following two auxiliary lemmas.

Lemma 7. Assume A1, A2, A3(2Vlogd) and A 4. Then it holds that

. i1 ac,
EV?| HIZPM—F“ o0 - o0)) < 102 e Tl - 20
m=1

where C7 = Ca ke (co +2/((1 —7)a)).
Lemma 8. Assume A1, A2, A3(2Vlogd) and A4. Then it holds that

- i C
n PR Z HPI < ZE Ve,

where Cg 1s given by

o 2 \*? (10) | ((10) 2
Cs = ke Hg‘OOCA<CO+CL(1—’y) +2Ca rQe(C57 +C5 )| ¢ 0+a(1—'y) .
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Proof of Theorem 3 We first introduce the constant

3v/dCy
O D) o
Applying the triangle inequality,
pConV(\/ﬁ(én - 9*)7 2(1)(/)277) < pCOHV(\/ﬁ(é’n - 9*), E}/QC) + pCOHV(Z;L/2C, EééQn) 7 (5.14)

where 1, ~ N(0,14). Then the first term in r.h.s. is controlled with Theorem 2, and it remains to
upper bound pconV(Eéé%, E}/ 2{ ). Towards this aim, we apply the Gaussian comparison inequality

of [11, Theorem 1.1], see also [3]. Assumption A4 and Lemma 2 imply that

C

—-1/2 -1/2 —1 o e

1
< —.
-2

On the other hand, the following bound holds:

Tr (222,52 — 1) < Cod
o e = A2 (Seo)n2-m)

min

Hence, applying [11, Theorem 1.1], we get

3C Vd
Conv (x21/2 » §11/2 2
by > <
P (27¢, ec™n) < 2 min (Xoo) nt=77

and it remains to substitute this bound into (5.14).

5.3 Proofs of Section 4

5.3.1 Preliminary steps for Gaussian approximation under PP

We first identify the linear (W®) and non-linear (DP) parts of the error decomposition (4.4). We
start from the decomposition

9}3 — Qk = (I — akkak)(eg,l — kal) — ak(wk — 1)&:k, (5.15)

where we have set

€ = Ak(ek_l - 9*) + €k - (5.16)

To simplify the notation, we omit the bootstrap replication index, which is implicit in the sequel.
Expanding the recurrence above till k = 0, and using the fact that 65 = 6, we obtain from (5.15)

that
k

O — Ok = — > ap(wy — TP 1480 -
=1

where we have defined, similarly to (3.4), the product of random matrices

k
e, = H(I—agngg),mSk:, and TP, =1, m>k. (5.17)

l=m
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Proceeding as in (3.7), we consider the decomposition 6’2 — 0, = J,Eb’o) + H,gb’o), where we have set
TPV = (- apAr) Y — an(wi — 1), | I =0, (5.18)
B = (I - apwpAr) HYY — ap(wy, — DARI) | HPY = 0. (5.19)

The idea of the decomposition (D.2)-(D.3) is similar to the one outlined before in (3.7)-(3.8), since

the statistic J, ,Eb’o) is linear when considered under P° (that is, when we consider only the randomness
due to the bootstrap weights (wy)). With the decomposition (D.2)-(D.3), we get by averaging the
iterates

-1
- 1 bo) . 1 X 4 (b0)
Vi —0,) ==Y I+ =S HP? (5.20)
\/ﬁ \/ﬁ k=1

k=1

Unfortunately, the representation (5.20) does not exactly match the one for /n(f,, — 6*) outlined in
(3.19). Indeed, the latter one shows that /(8 —0*) = S5 W +S52D, and E[SY *WW T {xy/*1 7] =
Y. At the same time, simple calculations show that

n—1

bO
Var nZJ7

=1

??‘

This issue is due to additional term Ay(6y—1 — 6*) arising in the definition of £ in (5.16). In order
to overcome this problem, we further represent J,ib’ ) = ZZ 0 ka ) where

k k
J/S)do) =- Z ag(we — 1)Gry1ker, J,ﬁf’l’”) = - Z ag(we — 1) Loy — Gegrk)er,
=1 =1
. k
‘]152’0) = - Z ag(we — DT py1.6A0(00—1 — 0%),
=1

(5.21)

It is easily seen that >0~} J(b 0 — " Hwe — 1)Qqeg, where (Qy) is defined in (3.10), moreover,

P

1 b,0
¥ = Varb[\/ﬁ Z J( ) Z Qeeve] Q) , and E[XP]

Later we show that J,Sf;’o), t = 1,2 are negligible relative to the leading term J,gbdo)

the "bootstrap-world" 7 decomposition

Vi = 0n) = (£)V2WP + (£2)/2D°

. Now we rely on

where we have set

Wb:n-1/2<22>-1/22J<b°> Zsk, where & = n~Y2(25) 7V (wy, — 1)Quex, (5.22)
k=1

n—1
Db = 1/2( ij Z JE0 4 1n ZH,E,b’O)> . (5.23)
k::l
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In this decomposition, WP is the linear part whereas DP is the nonlinear part. With these notations
and preliminary results, we are in a position to provide the proof of Theorem 4. Some proofs of
technical lemmas are postponed to the appendix.

The following decomposition allows us to formalize the structure outlined in the sketch of proof
given in Section 4:

sup  [P°(v/n(8° —6,) € B) —P(v/n(6,, —0*) € B)| < Ty + To + T3 ,

BeConv(R%)
where

Ti:= sup |[P(vVn(B, —6") € B) — P(SY/?) € B,
BeConv(R%)

Ty = sup |P(E71L/277 €B) - Pb((EEL)I/Qn € B)} )
BeConv(R4)

Ty:= sup |P°(v/n(62 —0,) € B) - P°((2)*n e B)|,
BeConv(R%)

and n ~ N(0,T) under P and P®. Our next objective is to obtain bounds on these three terms.
For the term T, it suffices to apply Theorem 2. Consider now T5. In this case, we are comparing
two centered Gaussian distributions that differ in their covariance matrices. We begin by applying
Pinsker’s inequality to bound the total variation distance, which itself serves as an upper bound for
the convex distance, using |11, Theorem 1.1]:

3Vd, - _
[V (0, 21) = N (0, Za) rv < == 15 EESRSIC T

Applying the inequality above yields

7, <3V
2 Amin(zn)

Bounding T therefore boils down to obtain a high-probability bound for [|£2 — %,,||. Such bound
follow from the matrix Bernstein inequalities, developed in [51]. Detailed argument is given below.

The main technical challenge arises in controlling the term T3, which requires decomposing the
quantity H lgb,o) in a manner analogous to the decomposition in (5.1). It is worth noting, however,

that once again, the quantities introduced and the method used to derive the bounds are markedly
70)

=5 — Zall.

different than the ones used in Section 5.1. Along the lines of (5.2), we expand H. ]ib as follows:

L
O — 0 =20+ > I+ HPE, (5.24)
j=1

k k
J;Eb’o) = — Zae(we — D110, J;Eb’J) =- Z oy (we — 1)F£+1:kA4J(E’f_1), j e L]
=1 =t (5.25)

k
qHP = > olwe - DRy Al
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Fd)

Similar to Section 5.1, we will establish upper bounds on the p-th moments under PP of P

H ,gb’] ), j € 10; L] and &,. However, the proofs differ significantly from the previous case, which relied
heavily on the exponential stability of products of random matrices I';,., (see Lemma 1). The proof
strategy consists of two steps. First, we define certain events in the ’original world’ under which the
various quantities of interest can be controlled. Second, we show that these events occur with high
probability—specifically, of order 1 — ¢/n, for an appropriately chosen ¢ > 0. We define first:

n—1

O = ({110x — 0% < gk, [16o — 6%],7) } ,
k=1

where we have set

k
g(k,t,n) = Jrget H(l - %Oég) + 2elog(5n)Cao/ay
(=1

Applying Proposition 2 with for 2 < p < log(5n?) and then Lemma 24, we get that for every fixed
ke [l;n—1],

P (10 = 0%l = g(k, |60 = 0[[,n)) < o5 -
By the union bound, we obtain that P(€2;) > 1 —1/(5n). We may show that

Lemma 9. Under the assumptions of Theorem 4, on the event 1, it holds for any £ > 1 that
|&¢|| < Co, where Cg = ||g]|oo + 2¢ Ca Ca + /Hge® Ca [|60 — 6% -

Similarly, we introduce the following event

k
Q=) {Itual<a [T0-5)}.
1<m<k<n j=m

Using the exponential stability of I',.; (see Lemma 1) with p = log(5n?®) and Lemma 24, we get
that with probability at least 1 — 1/(5n3),

k k
1Tkl < Cy H (1 — %) < C exp{—g Z ag} where C; = ,/HQ62 )
f=m {=m

By the union bound, we get P(Q2) > 1 —1/(5n). It is also required to consider

n n—1
Qg = ({ller > Tegr — Gerrn)er|l < Curv/aglog(sn)}
(=1 k=t

Here again, we may show that P(Q3) > 1 —1/(5n). A detailed proof is given in Lemma 13. On the
event ﬂle Q;, we derive below bounds for J,?f, i = 1,2, defined in (5.21).

Lemma 10. Under the assumptions of Theorem /4, on the event Qs3, it holds that

by —1/2N"""1 7b0y2771/2 log (5m) _ lelloor/c0Ca7
{E°[||n Zkzl‘]k,l 1177 <Cuo 2 , where Cig = T—r
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Lemma 11. Under the assumptions of Theorem 4, on the event £y N Qo, it holds

(B [[ln1/2 Z 1/2 Ci1,1log(5n) n Cr12(1 + ko)¥/?(|60 — 67|
= n,y/z \/ﬁ 1)

where we have defined

2 N —1/2 1/2 o 2 3/2
) , C1172 = 2\/§C CaCrge“(co+ ——— .
PO Ve 0 ¢ <ot ir—))

We introduce an additional event, which is essential for establishing exponential stability of the
bootstrap world random matrix product I'® , defined in (5.17).

Ciig = V2Ca C1e(00 +

n n—h—1 m-+h m-+h
Q= ﬂ {l Z ap(Ag— A)|| <2Ca{ Z a?}lﬂ log (10n°d) } (5.26)
h=1 m=0 {=m+1 l=m+1

Here again, we may show that P(€24) > 1 — 1/(5n). The proof is a straightforward application of
matrix Bernstein inequality; details are given in Lemma 14.

Under the event 1 N Qs Ny, we can provide bounds to the terms appearing in the expansion
of H](-b’o), given in (5.25).

Lemma 12. Under the assumptions of Theorem 4, on the event Q1 N Qo N Qy, for j, L € {0,1,2} it
holds that

/ b,J,j) , bH,L) (L
(R[22 < a2 PP < CBY ol

k
where ng ‘i’J) CngIf ) satisfy the recurrence
bao)  2vV3CoCy bJj) 2V3 b,J, 1) bH,L 4\f
ngl ) - T y Cgll]) == \/» C( I CA Cl ) ngvl ) = = f 12 1 CA C3

We may now proceed to the proof of the theorem.

Proof of Theorem 4. We start with T5. We first show that the bootstrap word covariance Elfl
approximates ¥,,. More precisely, set Ci5 = 2||¢]|2,C3 and consider the event

Q5 {sz E H < fC15\/10g 10dn C1510g 10dn)}
3n ’

It is shown in Lemma 15 that P(25) > 1 — 1/5n and in Lemma 16, that Apin(2r) > Amin(Xs0)/2.
Combining these two results, we then get that on the event (s,

3vd <\fC15\/log (10dn) CL, log 10dn)>

Vn 3n

Finally, we consider T3. As emphasized in the preliminaries of the proof, we again invoke the
approach of [44], where W (defined in (5.22)) plays the role of the linear term and D’ (defined in
(5.23)) that of the nonlinear remainder. [44, Theorem 2.1| shows that

Ty < 259d"/2Y° + 2B°(|| WP D°|] + 2 > E(I|¢(1[| D° — D>|l, (5.27)
/=1
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where TP = S VE[||€P(|%], and ¢P is defined in (5.22). It follows Lemma 4 and Lemma 16 that

1€B1 < 2 Amin (E0)} 2 |we = 1]]|Qelllelloo < lwe = 1]||ellocCa/ (v Cr6v/n).
Since by construction E[||WP|?] = 327_, E°[[|¢p]*] = d and EP[Jw — 1]°] = mg for all £, we get:
C mallellooCa ||
Th < m3H5||oo 45 Eb &
To proceed with the second term in (5.27), first note that
E[[WPIDPII] < {EP[IWP(P]H/2{ES [IIDP ]} = a2 {EP [ DP|P] /2 .

We use the expression of DP given in (5.23) and further expand H]ib’o) = 22- J,Eb’j) + H,Eb’2), using

7=1
(5.24) with L = 2. Lemmas 10 and 11 provide bounds for {EP[||n=1/2 nl J,E£ 2] }1/2, j=1,2.
. Finally, Lemma 12 show that

Lemma 18 give the bound for {]Eb[Hf S Jb 112 ]}1/2

:?
I

nglli2) 3/2<C(bH2)

1
! H\FZ‘]’EZH WST el < i,
Eb P2 1/2
{E*fll—= EZI 22|12 V/,

k=1

By combining the inequalities above, we obtain

d'/?1og(5n
B w2 10°) < T80 ¢y 4 €+ i)
n12Cg
d1/2(1 + ko) V2|0 — 6%]|Cy1 2 N d/? (Cb32) | b))
1/2(:1/2 cl/2 12,1 12,1 )¥n -
16

Cauchy-Schwarz inequality and Lemma 20 imply the bound for the third term in (5.27):

. . 1 1
E°[[|€P][1D° — DI] < {EP[|l€P*]}/*(EP (| D° — D>|IP[}? < ~ Calleloov/exi log(5n)Cap -
n \/Clﬁ
Thus, it holds that
n—1 1 \/%
E°[|€P]||| D® — DP||] < n /21 Cullelloo—=C
; liisalll II<n Og(n)\/c—16 allelloo 7= L3
— 160 — 6*]]
+n" T ———=—Cyle 007C20,2 :
e Calleloe =2
By collecting the inequalities derived above, we ultimately obtain the final bound.
log(5n) (1 + ko)/? 1 1
Ts=Cia— "+ Cla— 75—+ Caspn + C4,4% +Cas

25



where the constants C4 1, C42, C4 3, are given by:

— — C —
Ca1 = 2dY/2C3"*(Cio + Cir1 + Cis) +2C0Callelloc 1 l/j/Q Coo, Cup=2d"2C;1"*Chia,

Ca = 2d"2Cr2(CHT? + €M) | Cuy = 259m3Cry 2 e]|ooCa , Cas =

2 Co
——Clle]loo—75C20,2 -
Vv Cis 1 —n/2

Rearranging the terms above yields the statement with the expressions As 1 to Ay 4 and Cy4 given by

2 Co
G =Cou+ ——=Cllefoo—75C20,2 , 5.28
Se=Cillelo =273 (5.29)
3v/2v/dCy5+/log (10d
Ay =Cop + V2VdCys y/log (10dn) +Cya s
2Cq
A472 = C2,2 + C471 log(5n) + C472(1 + ko)’Y/z y
Ayz=Co3+Cyg3,
3v/dCy51og (10dn)
AV .
6Cg
O]
Lemma 13. Under the assumptions of Theorem 4, P(23) > 1 —1/(5n)
Proof. The proof follows from Lemma 17 and union bound. O

Lemma 14. Under the assumptions of Theorem 4, P(24) > 1 —1/(5n)

Proof. To show that P(24) > 1 —1/(5n), we fix h € [1,n] and m € [0,n — h — 1], and define the

random variable
m-+h

To=| > oe(A—A).

l=m+1

We first control its variance. By standard matrix inequalities, we have:
m+h B ~ m—+h B B m—+h
max (H Y. AFE[(Ar—A)A - AT | Y afE[(Ar—A)T (A A)] ||> <Ci ). af,
f=m+1 lt=m+1 l=m+1

and note that for each ¢, the operator norm satisfies |[(A; — A)(A, — A)T|| < C%. Applying the
matrix Bernstein inequality [51], we obtain that with probability at least 1 — §/n?,

m-+h
2n2d mt1 Ca o2n2d
T, < Ca |2 2] mt log [ =—= ) .
-t 5%1% Og< 0 >+ 3 Og( 0 )

The remainder of the proof follows by setting § = 1/(5n) and applying a union bound over all valid
pairs (h,m), along with the inequality HBH%2 < kgl|BJ|?, which holds for any matrix B € R™*?. [

Lemma 15. Under the assumption of Theorem 4, P(Q5) > 1 —1/(5n), where C15 = 2|¢||%, C3.
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Proof. Introduce a random matrix Uy = Q(ee, — X.)Q, . Note that E[U] =0 and B — %, =
1 Z Ug Moreover, Lemma 4, A1, and A 2 imply that

1Tell < (Nlel3 + 1121CE < 2[lel|3Ch = Cus -

Hence, the matrix Bernstein inequality [51, Theorem 6.1.1] implies
n—1 ntQ
P (1125 = Sall 2 £) =PI Uil = nt) < 2dexp( — 5o | -
120 = Zull 2 (H; el 2 nt) < 2dexp 2C2, + 2Cy5t/3

Equivalently (see e.g. |7, Theorem 2.10]), with probability at least 1 — 4, it holds that

IS x| < V2Ci5/10g (24/9) | Cis log (2d/6)

vn 3n

To complete the proof it remains to take 6 = 1/(5n). O
Lemma 16. Under the assumption of Theorem 4, on the event Q25 it holds that

)\min (Eoo)

)\mm(E ) > C16 y where C16 = 4

Proof.  Using Lidskii’s inequality for Hermitian matrices, we get that
)\mln(EZ) Z Amin(zn) + )\min(zz - En) 2 )\min(zn) - ”22 - 2n”

Hence, on the event 25, we get that

b v/2C154/1og (10dn) C15log (10dn)
)\min(zn) > )\min(zn) \F 3n .

Under A5, the sample size n is chosen large enough so that

)\mln(z ) > )\mln( n) - )\mm(zoo)/4

From (3.21), using again Lidskii’s inequality this time with 3, and X, we know that under A 3,
Amin(Zn) = Amin(Xs0)/2. The proof follows. O

Lemma 17. Under the assumptions of Theorem 4, For each £ € {1,...,n — 1}, it holds that

n—1

1
P(HW > Cerrn — Graa)edl| > 10g(5n)C17\/07z> Sk

k={

where we have defined

9 1/2
Cir = 2BV Ca lellaCarlf* (0 )
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Lemma 18. Under the assumptions of Theorem 4, conditionally on the event Qq, it holds

{Eb = ZJbl 1/2 Cis

where the constant Cig is defined as follows

_2V3 2 [co
CIS_WCA(CO_‘_CLO—’)’)) 1_7C1C9.

Let w] be a copy of w; independent from wy, ..., w,_;. Introduce the following notation for ¢ < m:
b, — F?:m’ lf’L ¢ [gamL
tm T2 (we,. .., w1, W wit1,. .., wy), ifi€[¢,m]
(b,£,i) J;ib,’,f), if k<1,
Jem " =9 (bo) , . .
; T, (W1, Wi 1, W Wi, wg), i k>
(b,,3) H]E,bz), if k<1,
Hk T = (b g) ’ . .
Hk (wl,... wi,l,wi,le,...,wk), lfk’>Z
b ,0, (b,0, — (b,0,
Z T+ = Z Tz Z !
k:
For simplicity we introduce the following constants:
16 2) 1 16
Yy =co+—, = 1 . 5.29
5.29 CO+a(1—'y) » L5.29 1—ac0( +aco(1—’y)) (5.29)
Lemma 19. Under the assumptions of Theorem /4, let w, be a copy of w; independent from
Wi, W, ..., Wy_1. Lhen on the event Qqy it holds that
{E°I ISH 1 SHbOl)H V2 <012 /aiCa
n k=1 n k=1 B Z

where the constant Cyg is given by

Cio = Ca Ca(C37” + CHTICH, + CA(CH))/2CoCiCy -

Lemma 20. Under the assumptions of Theorem /4, conditionally on g, it holds that

ail|fo — 67|

{E°[|| DP — DP*||*}1/? < —= /& log(5n)Ca0,1 + Cao 2

f vnoo
where the constant Coq is given by
G 22 | Gy 2v2C Cang el Gty  V2rge*Ci Ca
DTG VG VCis P VCis(1 —a/2)?
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5.4 Proofs on products of random matrices

We first introduce some notations and definitions. For a matrix B € R¥? we denote by (o4(B))%,
its singular values. For ¢ > 1, the Shatten g-norm of B is denoted by || B||q = {Zgzl of(B)}!/9. For
¢,p > 1 and a random matrix X we write ||X||,, = {E[[|X[|5]}'/?. We use a result of [22], sharpened
in [12].

Lemma 21 (Proposition 15 in [12]). Let {Y,}sen be an independent sequence and P be a positive
definite matriz. Assume that for each ¢ € N there exist my € (0,1) and a, > 0 such that |[E[Y,]||% <
1 —my and ||[Ye — E[Y¢]||lp < o almost surely. Define Zy = le:o Y, =YirZ; 1, fork > 1 and
starting from Zy. Then, for any 2 < q <p and k > 1,

k
1Zk)12, < kp [0 = me+ (0 = 1)o}) || P22 P2
(=1

[ (5.30)

where kp = A (P)Amax(P).
Now we aim to bound T',,.;; defined in (3.4) using Lemma 21. Set Y, =1— ayA; ¢ > 1, and

Y, = 1. Applying the bound (3.3), we get ||IE[YAH2Q =|1- O[gAHé <1 — aay. Further, assumption
A 2 implies that almost surely,

1Yo —E[Ydllg = arlAs — Allg < ary/g Ca = ba -

Therefore, (5.30) holds with m, = acy and oy = bgay. As ||T||, = d'/P, we obtain the following
corollary.

Corollary 2. Assume A1 and A 2. Then, for any ay € [0,ax], 2<q <p, and 1 < m < k, it holds

k
EY4 I kl|] < Dk llpg < vAQd'? [T (1 — ace + (0 = 1)bga?) ,

l=m
where oo was defined in (3.2), and bg = /kg Ca.

Proposition 3. Assume A1, A2, A3(og(5n?)Vlogd), A4, A5. Then on the set Qy defined in
(5.26), it holds for any 0 < m < k < n, that

k

{EPITaalP} < Goop{ =T D2 ar} Co=rgf%e.
l=m+1

Lemma 22. Assume A1, A2, A3(log(5n?)Vlogd), A4, A5. Then on the event Qy, defined in
(5.26), with h = h(n) defined in (4.3), it holds for any m € [0;n — h — 1], that

m+h
1/2 a
(B a1} < oxp{=F 30 e},
l=m+1
where anH:erh is defined in (5.17).
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5.5 Proof of Lemma 2

Before proceeding with the actual proof, we introduce a decomposition of X, — ¥ that forms the
backbone of the argument. This decomp051t10n is built upon non-trivial identities involving both

Q: — A~! and the cumulative sum > 7~} Qt ~1), as outlined and established in [54, pp. 26-30).
B ~ n—1
Q—A =8 —A'Gpp, Si = Z (o — j)Gryi:j—1 (5.31)
j=t+1
n—1 n—1
Z(Qt ~A ) =-A"" Z Gy (5.32)
t=1 j=1

In the following, we will require a bound on the operator norm of the matrix Sy, which is provided
below:

Lemma 23. Assume A 1 to 3 with p =2V log(d). Let co € (0,a00] and t € N. Then

|Sell < /EgCas(t + ko)t

where Cag is given by

Cos = ?7 exp <aco + 2(1‘1? 7)) (2(1(1?70_1—7 <max{1, P(z4)} (ago + :L‘w) +/

and zy = 1, ¢(x) = 2T exp(—x).

Since Yoo = A7'E. AT, elementary manipulations with ¥,, — £ imply the following equality:

n—1 _

En_zoo: %Z(Qt_A %Z A_l)T
t=1 t=1
Dy
n—1
+ = (Q—ATHD(Qs )T ——%a (5.33)
t=1

Do

The decomposition (5.33) is crucial to obtain the convergence rate of ¥,, — ¥,. The proof would
follow from estimating D; and D, separately by expressions of order nY~!. For simplicity, we
introduce the following notation:

m

G =D (C+ko) T, k<m.
l=k

Proof of Lemma 2. We first provide an expression for the constant Cs:

Co = [|Booll +

2172 roC )y Co3)? NkollX 4ko|| A || Co:
|| oconm 1, [Zelng (Cas) follPell  AKQIAYl|Cos )y
0

2y —1 aco — (acy/2)? acy
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Using (5.33), we get
1
IZn = Zeoll <~ Zeoll + [1D1] + ([ Dl -
We first bound D;. The operator norms of both terms are equal because one is a transposed version

of another, so it is sufficient to bound only one of them. Note that G.;,, Q¢, A, A~ commute as
polynomials in A. Now we use (5.32) and obtain

n—1

II*Z( —ATHZAT = - IZGUZ AT = Hn’lEooZGlgll <n 1IIEOoIIHZGuH

t=1

Lemma 4 directly implies the bound for D;:

[Zeclll 2521 Gl _ [8ocll RGCa1 + o) _ 2'm7 [8 | /RGCs
- < .

neo - Co

n—1
1 ~_ ~_
EHZ(Qt —ATHE AT <
=1

Hence,

21+7nv_1H2aﬂL/ﬁQC4

D] < (5.35)
co
We now consider Dy. Using (5.31), we get
n—1 n—1 n—1 n—1
n~t Z Qi — (@ - AN =0 558 0 Y AT [[U- ok A)S AT [JA- kAT
t=1 t=1 k=t k=t
Doy Daa
n—1 n—1 n—1 n—1
—n DY AT [0 - arA)BS -0 Sm AT [T - arA) T
t=1 k=t t=1 k=t
Do3 D2y
Lemma 23 reveal an evident bound for || Da1||:
—1 = T -1 = 2 ,2(y—1) 1) [RAI (C23)2
[ Da1]| = [In Zstzést | <n 1%l Z“Q (Ca3)7t < o1 (5.36)
t=1 t=1
Note that
n—1n—1 ac n—1 ac
0 0 N
ZHGM P < ho 3 TTO— %20k + o)1) < g 3 (1 — %0 n — 14 o) 1)
t=1 k=t t=1
The bound for ||Daz|| follows from the above inequality:
Dael < 11l G al? < 7 el el < 1 el Eeoll
- > — n—til = aco(n + ko)™ — (aco/2)%(n + ko) =27 — aco — (acy/2)?
(5.37)
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Since Do3 = D, we concentrate on ||Das||. Lemma 23 and Lemma 25-i imply the following bound:

n—1 n—1 n—1 n—1
1Daall = 0" D S AT [T = A) T <7V ZATT Y IS [T — and)T
t=1 k=t t=1 k=t
n—1 _
_ 2k0||AXw]|C
< n Y AS|| Y Rg(t + ko) Cos/RG H 1 @ (s + ko)) < 200 2FQllAZec ][ Co
=1 k=t+1 aco
Hence, _
_14rol||AY||C
|Dasl] + | Daal] < n20-D Hi@lAZcCos (5.39)
acy
The needed result follows from (5.35), (5.36), (5.37), (5.38). O

5.6 Technical Lemmas

Lemma 24 (Lemma 1 in [41]). Fiz § € (0,1/e?) and let Y be a positive random variable, such that
EYP[YP] < Cy + Cop for any 2 < p < log (1/5). Then it holds with probability at least 1 — ¢, that

Y <eCi +eCsylog(1/6) .
Lemma 25. The following statement holds:

(1)  Letb>0 and (ax)r>0 be a non-increasing sequence such that cg < 1/b. Then

Za] H (1—ayb) = i{l—ﬁ(l—alb)} :

I=j+1 =1

(i)  Letb >0 and ap = (lefilgo)w ~v € (0,1), such that co < 1/b and ké_7 > %. Then for any
€ (1,4] it holds that

b 6
q—1
g oz;]H 1—a@b)§5 .
j=1  f=j+1

(ii))  Let b,co, ko >0 and cp = co(£ + ko)™ for v € (1/2,1) and ¢ € N. Assume that beg < 1 and
ké_v > %. Then, for any ¢,n € N, £ < n, it holds that

n—1 k

1
E Qy ||(1—b0é])§00+ﬁ
k=t j=0+1 v

Proof. Lemma 25-i follows from Lemma 24 in [14]|. Lemma 25-ii follows from Lemma 33 in [42]. (iii)
is elementary. O

Lemma 26 (Lemma 36 in [42]). For any A >0, any 1 <i<n—1, and v € (1/2,1) it holds

-1 1 1 1 oAl 1.
K At ey | o Ltexp{i5 b amaay D) . F 4T < 5
Zexp - (] -1 ) = 1 oy . A’l—’Y 1

L+ ga=et s if APt >

2
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6 Conclusion

In this paper, we have obtained a novel bound for the Gaussian approximation of the distribution
of the Polyak—Ruppert averaged LSA iterates in the sense of convex distance. Compared to the
previous analysis established in [41], the fastest achievable rate of normal approximation has been
improved from n=/%4 to n=1/3. We also derived a bootstrap-based approximation for the distribution
Vn(0,, — 0*) with an error of order up to 1/y/n. Importantly, this result does not rely on the
Gaussian approximation with the limiting covariance matrix oo. Among further directions, we list
the generalization of the randomized concentration approach of [44] to the Markov setting, which
enables the analysis of stochastic approximation problems with Markov noise. Current approaches
[47, 55, 42| rely on versions of the Berry—Esseen inequalities for martingales, which require additional
step size constraints and introduce extra logn factors. Another research direction would be to tighten
the lower bound (3.23) in the regime where the step size exponent v € (1/2,2/3). Establishing a
counterpart of (3.23) with the term n~7/2 would imply the optimality of the rate n~'/3 in Theorem 3.
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A Definitions of integral probability metrics

In this section we closely follow the exposition outlined in [19]. Consider two R%-valued random
variables X and Y. The integral probability metric [56], associated with a class of test functions
H={h:R?—= R:E[|h(X)|] < oo, E[|R(Y)]|] < o0}, is defined as

An(X,Y) = sup [E[A(X)] ~ EIn(Y )]

Different choices of the function class H induce different probability metrics. We consider the
following important examples:

Hi = {1(—oom]x-x(—oomgs U= (u1,...,uq) € R%}
HConv - {1Ba B e COHV(Rd)}
Hw ={h:R* =R, |l <1}
Hipy = {h: RIS R, he C™ HRY) with |h[; <1for 1 < j<m},
Ih(2)~h ()l

z=yll
the Lipschitz constant, C"™~!(R?) represents the space of (m — 1)-times continuously differentiable

functions, and the seminorm |h|; is defined as

where Conv(R?) denotes the collection of all convex subsets of R?, [|A||Lip = sup,., is

oh
hlj=_~ max |

S lloo -
7,1,...7’ij€{17...7d} 6ui1 et aul]

Thus, for each m € N, the function class H,, consists of functions whose partial derivatives up to
order m are uniformly bounded.

These function classes generate well-established probability metrics in the literature. The class
‘H induces the classical Kolmogorov metric between distributions [56], while Hoony generates the
convex distance p©™ defined for a pair of probability measures , v on R? as

CW(pv) = sup |u(B) - v(B),
BeConv(RY)

p

which is the primary focus of this paper. The class Hyy yields the Wasserstein-1 distance, and the
classes H |, define the smoothed Wasserstein metrics of order m. We denote the corresponding
metrics as dg, p©, dy, and dpy), Tespectively.

An important hierarchy exists among these metrics: for any pair of random vectors X and Y,

we have
dK(Xa Y) < pCOHV(X7 Y):

since every rectangular set is convex, implying Hx C Hcoony.-Other relations among these metrics
are substantially more intricate. For instance, when Y is a multivariate normal vector, it is
well-established (see, e.g., [33]) that

pCOIlV(X7y> < C\/ dW(X7 Y) )

where the constant C' depends explicitly on the covariance matrix of the vector Y. This inequality
serves as the theoretical basis for comparing the bounds provided in Theorem 3 with the results
obtained in [47].
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B Proofs of Section 3.1

Proof of Lemma 1. Note that A3(p V logd) implies for all ¢ that

1—aap+ (p— 1)bha? <1— L

To finish the proof we combine the latter inequality with Corollary 2. O
Proof of Proposition 2. Using the decomposition (3.5), we obtain that, with p > 2, it holds

k
EVP[10 — 6*117] < EYP[IIT 1 {60 — 6" HIPT + E2[11 Y aTorvanes ] (B.1)
j=1

and we bound both terms separately. Applying Lemma 1, we get for 2 < p < log (5n?):

k
a
EYPIC1 {60 — 0"} 7] < Agelldo — 0*[| TT(L = ) -

(=1

Now we proceed with the second term in (B.1). Applying Burholder’s inequality [34, Theorem 8.6],
we obtain that

Eo ) p/27\ 1/2 by 1/2
<Zj:1 aj||Fj+1;k6j|| ) <p (ijl ajIE p[||rj+1;k5j||l’]>

/| IIZ Lljrag 1 < p (E2/p

koo, b acp \ /% (@
<pyhgellelle( Do of TT 1-=57)) < Capvr,
1=j+1
where in (a) we additionally applied Lemma 25-ii. O

) _

Proof of Lemma 3. First, we derive a bound for J(O Z? 100Gy which is a sum of

independent random vectors, satisfying ||ayGei1.xe0] < amQ H] 1 (1 —aja a)l/?

applying the Pinelis inequality [35, Theorem 3.5], we obtain that, for any ¢ > 0,

lle]loo- Hence,

k k
2
P(HJ;E;O)H >1t) < QGXP(—M) ,  where o} = Kkglle|l% g o H (1—aja) < ager
k /=1 j=0+1

and ¢; = 24rk¢|le||% /a. Thus, applying [12, Lemma 7], we obtain that, for p > 2, it holds

p
7 [1101°] < 27 ypyarver .

and the bound for J,E,O) follows. Now we bound J,EZ) by induction. Using the equation (5.2), J]ge),
£ > 1, can be represented as

T = Zam mth AU
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Note that amGpt1: kJ( 1) is a martingale-difference sequence w.r.t. the filtration F,, = 0(Zs: 1 <
s <'m). Hence, Burkholder’s inequality [34, Theorem 8.6 implies that

k ~ 1/2 B k
EVP[ 1) < p(z E2/P (||t G A T~ ”np]) < Cap™V2C (ST a2 Grn)®)

m=1 m=1

(a) 1 2V6. /R
< Cp C:(}J,e 1) NG QPL]HQ“/E@H)/Q 7

where in (a) we used Lemma 25. Now we prove the bound for H g). Recall that ngg) =

— Z 1ol dm ) " Since [r1:x and J%) are independent for all m, the desired result fol-

lows from Lemma 3, Lemma 25, and Minkowski’s inequality:
EV2(|H P < Z BV [|| Ty 1.5 ||PJEMP[ || TS0 2] < frgeCl O ptHi/? Z (€+3)/2 H &ae
(Sb) CéH»f)pﬁﬂ/zal(erl)/? 7

where in (a) we used the moment bound for Jr(,f), and in (b) we used Lemma 25. O

Proof of Lemma 4. Using the triangle inequality we get:

n—1 k
acy ._
Q]| < O%Z IGeskll < vEG Y ow J] (1- 703 7)
k={ j=0+1
The rest of the proof follows from Lemma 25. 0
C Proofs of Section 3.2
Proof of Lemma 5. Applying Minkowski’s inequality and Corollary 2,
n—1 n—1 k a
EVPIIY Tuall] < ZE”” [Twkll”) < 1+ rge Y [J( - J
k=0 k=0 k=1 (=1

ko)
Thus, applying Lemma 25, Zk 1 K (1= < (1+000) (co—i—a(1

2_7) ), and the statement follows. [

Proof of Lemma 6. Decomposing ¥,, = Yo + (X, — ¥) and then applying Lidskii’s inequality, we
obtain Amin(Xr) > Amin(Xec) — [|Xn — Xoc|. The conclusion follows from Lemma 2 and A 3, which
imply [, — Soo|| < Con?~! < Amin{Zec) O

Proof of Lemma 7. First, we rewrite the sum:

n—1 n—1
> T - Z aiT1:i-1(A(Zi) = A(Z))Disan = D1 (A(Zi) — A(Z) D ailigaik -
k=1 k=i
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Hence, it holds that

n—1

IIZ T = TEDN < Ca T[> il -

k=i

Lemma 1 implies that El/Q[HFl;i,lH | < yF eH ~1 (1 = aay,/2). On the other hand, combining
Minkowski’s inequality with Lemma 25, we obtain

k
= ”ZO‘Z al?] < e S ] (1 - a0y/2) < JRge(eo + 7).

k=1 m=1+1

To finish the proof, it remains to notice that I'1.;—; is independent from I';1 .. O

Proof of Lemma 8. First, note that ngo) — H,go’i) =0, if k < i. On the other hand, for k > i we get

k
0 0, 0 0,3 r 0 0,
H,g ) H/,(C ) = Fi+1:k<HZ‘( ) Hi( )) - Z ajl—‘j+1ikAj(Jj(7)l - J;—l)) :
() Jj=i+1 .
1 T2(k)

Introduce &} = £(Z!) and A} = A(Z]). Then, for £ > i+ 1: Jéo) Jéo i) = ;Git1.0-1(€; — €;). Thus,
since Tz(i) = 0, we obtain that

n—1 n—1 k n—1 n—1

k . _
E Tz( ) = g E L1k ApiGigrp—1(g] — &) = E ai(i ) AjGisg—(e — i) -
k=i k=it+1j=i+1 R -

U;

Note that U; is a reverse martingale-difference sequence with respect to the filtration F;; =
O'(Zi, Z{, Zj, Zj+1, ey Zn—l)- Hence,

n—1 n—1
- , 1/2
BV a2 37 U] =02 (3 EIIP)
(=i+1 j=it+1
For simplicity we set wp.m = [[}2,(1 — acy/2). Applying Corollary 2 and Lemma 25, we obtain

2
92 2
B [10517] < o (moelella Ca ) | L ausens | 0 < a? (noelella Caler + o 25)) wisnon

Ry,

Thus, it holds that

1271, —1/2 = 2 /2 Ru,feo+ a(12—v)
E [Hn Z U]H ] — 1/2\/071RU alzuﬂ‘lj S 77,1/2 \/OTZ

(=i+1 Jj=t
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(k)

The recurrent rule (3.8) implies the following representation for 7}
T = Ty (—ai (A — ADHY, — as(A; — AT .
Therefore, Lemma 3 together with a;_1 < 2¢; implies that
/2 [HTfk)”Q] <2Ca \/%euiﬂzka?/z(cg]’o) + CéH’O)) .

Thus, using Lemma 25, we get

E'/? HE:T(]C H <2Ca /K equka/(C(JO)jLCHO Zazulﬂk
k=i k=i

o2 (H,0) 2
2Ca /Eqge +G5 + ).
It remains to note that
n—1 ) n—1 n—1
S w00 =S ey = S 1)
k=1 k=1 k=i
and use Minkowski’s inequality. O

D Proofs of Section 4

Proof of Lemma 9. Writing, &, = €+ Ay(fy—1 — 6*), the proof follows from the definition of €; and
Ab. O

Proof of Lemma 10. Applying Lemma 17, we get

n—

1
EbH Vi Z Terl? =n~'E| Zae we—1) Y (Tesrk — Gerrp)ee)* = ! Z Hazz Leirr — Geprn el
/=1 k=¢ (=1

n—1

C
n”" log?(5n)Ct [lel|3 Zae < log?(5m) 2CTrlE S

(1—7y)n7
O
Proof of Lemma 11. First we rewrite the sum and obtain
n—1 k
o ZJ,':SHQ —Ebll O an(we = 1) Ag(1 — 67|
\F k=1 (=1
n—1 n—1
*Z%IIZFHMAAGL/ =P <~ C Z%HZFM k21601 — 677 .
/=1 k=¢ /=1
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Hence, using Lemma 1 and Lemma 25 with b = a/2, we get that on the event {2, it holds that

n—1 n—1 k

1 n—1 B N
B I <t R (e X IT (= %) 1001 - P
k=1

=1  k=lj=(+1

_ 2
1CAC2(00+ 2”94 = 6|7

Using an elementary inequality (a 4 b)? < 2a? + 2b?, we get that on the event €, it holds

Z 16—y — 672 < Z{%Qe‘ineo — 6 H ) + 8¢? log? (5n) Caaur—1 }
2Kkge (1 + k‘()) co + a(1—) 1_7
< hd ( u 7)) 60 — 6*]|* + 8e? log? (Em)Czcoi .
Co Y
It remains to combine the above bounds. O

Proof of Lemma 12. We start from the decomposition
9}3 - Qk = (I - akkak)(Oz_l - 9k—1) - ak(wk - 1)§k. (Dl)

Expanding the recurrence above till £ = 0, and using the fact that 68 = 0y, we get running the

recurrence (D.1), that
k

9;2 — 0 = — Z ay(wp — 1)F?+1:k<§g .
l=n+1

Hence, proceeding as in (3.7), we obtain the representation

Jlgb’o) = (I — OzkAk) J]gi?) — ak(wk — 1)6~k , Jéb’o) =0, (D.2)

HP = (1 - agupAy) H>Y — ag(wy, — 1) ALY H}

Hence, using Lemma 9 together with the definition of J b’O, we obtain that

50, b il b 12C2C2
EP(72°117) = afITeranéel® < anC3CT D a7 J] (1 - ace/2) < ap % .

=1 =1  j=0+1 N——

(512

Assume now that the bound on J P71 has a form {Eb[HJ T2 < C(bJJ 2 J/2 Then, using
the martingale property of JP w”, we write that

k k
, g1 C(bJa-D)
E[l7271%) = > af BT esrrAe )P < (CH3) 1Y Z ct I (1 —aar/2)*.
=1 = =41
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Hence, applying Lemma 25 we get

b,j i+1 , ~(b,J,j—1 12
E°[|7071P) < o™ (€Y V)P CR

Gk

and, thus, the moment bound for J;;’j is proved. Moreover, using the definition of H ,I:’L and
Minkowski’s inequality, we obtain that

k k
b,L (2 b,L bJ L) Lts
(BP[|HP P2 < CAZae T8l V2 B[ TEE %) 2 < Ca € CSZ% IT - ?)
/=1 /=1 t=¢+1
LD/ (bJ,L)~ 48
ciyit
and the moment bound for H E’L follows. O

Proof of Lemma 17. For any matrix-valued sequences (Uy)nen, (Vi)neny and any M € N, it holds

that:
;ﬁUk_;ﬁle Z( H V) Up — Vi) (HU) (D.4)

k=1 “j=k+1

Using (D.4) and changing the order of summation, we get

n—1 n—1 n—1
a0 (TCoyrk — Gearwee = e Y (a5 Y Gian) (Aj — A)Tepr a6 - (D.5)
k=¢ j=t+1  k=j
Uj
Applying Lemma 4, we get |a; ZZ;; Gkl = [|Q;]] < C4, hence, |Uj|| < 2C4Ca ||Togr:—1]|-
Consider the sigma-algebras
o(Zs:m<s<k), ifm<k,
Fmk = .
{0,7}, otherwise.

Note that U; is a martingale-difference sequence w.r.t. the filtration Fyi1.041 € Fyy1042 € ... C
Fit1:2n, thus Burkholder’s inequality [34, Theorem 8.6] implies

n—1 n—1 n—1
El/Pm Z Uij] Sp( Z EZ/pHUij)l/z < 2p\/&CE Ca C4( Z Ez/pHFEJrlzjlep)l/z.
j=0+1 j=t+1 j=0+1

Applying now Lemma 1 together with the fact asoa < 1/2, we get

n—1 n—1 7—1 n—1 i
Qy Z Ez/pHFHl;j—al < Z ke’ H (1- %) < (8/7)kge? Z ay H (1-— aaTm)
j=l+1 j=0+1 t=0+1 7=t t=0+1
2 (8/7)kge? (co + 2)
- ¢ a(l=v)/
In (a) we additionally used Lemma 25 with b = a/2. It remains to combine the above bounds in
(D.5). To conclude the proof, we need to apply Lemma 24 with p = log(5n?). O
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Proof of Lemma 18. First we rewrite the expression using the recurrent formula for J,S -1 proven in
Lemma 12 and swapping the order of summation:

1 n—1 n—1 k 1
Eb[”ﬁztﬂ:’lm = —E°[I >0 awlwe — D Ar T |1?) = Za?Eb | ZFeH KA
k=1 k=1 /(=1
n—1 n—1
< RS0 Y Tl PR IEP) £ 0t O e+ ZEb
=1 k=t

Here in (a) we applied Lemma 1 and Lemma 25 with b = a/2. Now we will provide a bound for
EP [HJ;;%HQ] using a technique similar to the written above. Lemma 12 and Lemma 9 imply that

—1 -1 —1
b,0 ~
EP[72001%]) = B2 aj(wy — DT p10-185)1%] 2042\|Fg+1e PP < Resd af T (1-
j=1 7j=1 7j=1 t=j+1
Therefore, we obtain using Lemma 25:
12
E°[|725%]1%] < c2c9a47
Introduce the constant
2 2 ¢ 12
C3,=03C2 c—=.
18 A 1(Co+a(1—fy)) 1-77a
Now we obtain that
1 n—1 C2 n—1
bry_—_ b,112 ~18 01 _ y v
Bl = 3 A < - Yk < Chn
k=1 k=1
which concludes the proof. O

Proof of Lemma 19. First, note that Hlib’o) — ngb’o’i) = 0if k < ¢. On the other hand, for k > 7 we
get

k
b7 b7 g b; ,Z' b XA
P = P = Ty (Y — HP) = 37 a0y A = J20)

T+

Tk

For simplicity we introduce v, = H?Zm(l — aa;/8). Consider Tl(k). Note that the following
decomposition holds:

T = T8, (—oi(ws — w) HY — ci(w; — wh) JEY)

Hence, we get

_ (b,J, (b,H
1/2||ZT 1] < CsCan™2y/ai(C51” + CBYY) Z%mm
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Recall the definition of ngg, Cglgg (5.29). Therefore, Lemma 25 and Lemma 4 imply that

o = ok _ b,J,0 b,H,0) ~(1
E®[n 1/2|]ZT1( )H] <CCan 1/2\/07i(C§2,1 )+C§2,1 ))Cé.gg-
k=i

Consider TQ(k). First, we note that
b,0 b, -
Je(—’l) Je( ?Z) = (W] — wi)Tiy1:0-18; -

Thus, we rewrite the sum and get

n—1 n—1 n—1
k ~
ZTQ( ) = Z ai(wg — 1)(w§ — wi) Zagr?+1:kAgFi+1;g,1€i .
k=i (=it+1 k=t
Up
Note that Uy is a martingale-difference sequence w.r.t. the filtration Fp = o(W;, W/, Wy, ..., Wy_1)
Minkowski’s inequality and Proposition 3 reveal that
n—1
1
(B[ D el ByilP]32 < €l Cs
k={
Therefore, we obtain
/—1
1
E*[|[T]]°] < a?(C§9Cs)* Ca CICE I (1 —aay/2).
Jj=i+1
Hence, we get using Lemma 4:
n—1 J4
(k 1 1 1
°[ Z T71P] < i(Ci9Ca)* CA CICE Yy [T (1 - aey/2) < ai(C]139Cs)? Ci CICICE -
(=i j=itl
Now we combine the obtained bounds with Minkowski’s inequality and finish the proof:
n—1 —
b,0 (b,0,
ES Y -5 B < 3 ) ZT IPJ}7? < VaiCus
k=1 = 7j=1 =
where we have set
Cro = Ca Co(C57Y + BTN, + Ca(Cl20)Y2CaCi Gy .
O

Proof of Lemma 20. Applying Minkowski’s inequality we obtain that

{Eb[HDb _ Db,i|’2]}1/2 \FF{Eb || Z J(bO kal(JZ )H ]}1/2

n—l n—1
1 b,0) bOz) 12 1 b (b,0) bOz 12
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Consider the first term. Note that
J;g?{o) J,ﬁblo D = q(wh — wi) (Cigrk — Giprk)ei

Thus, using the definition of 25 we get

H Z (i = TN < wf = wilCrry/ai log(5m)

Hence, it holds that
n—1
{EP (Y — T2 32 < Vatizy/aglog(sn) .
k=1

On the other hand, we obtain the following representation for J,gbz’o) — J,gbg’o’i):

J]g;,o) — J;E;E)g’o’i) = a;(w; — w;)Tiy1.6A4(0i—1 — 0%) .

Introduce the following notation
k

Uk = H (1—-aa;/2).

j=m
Therefore, applying Minkowski’s inequality, Lemma 4, Lemma 25 and using the definition of €1, we
obtain the following:

n—1
{E°]] Z i = I IPTIY? < VG Ca Y oty “ouvi-allfo — 0% + 2elog(5n)rg ”lell oo /i)
k=i
V2i262C1 Ca |00 — 0%
< Q A= a/2)? C%Q +2v2eC; Ca /@ngaHonggg log(5n)/a;
Hence, applying Lemma 19 and gathering similar terms the proof follows. O

E Proofs of products of random matrices
Proof of Proposition 3. Our proof relies on the auxiliary result of Lemma 22 below together with
the blocking technique. Indeed, let us represent

k—m=Nh+r,

where r < h and h = h(n) is a block size defined in (4.3). Then we obtain, using the independence
of bootstrap weights wy,11, ..., wk, that

{E° T 1P} 2 < F{Eb[\lf allB]?

_FH{E ||Fm+1+(] 1)hm+1+]h||Q}
J=1

1/2 1/2
PLRPIITS 1wl B] Y

k k
a
< \/%exp{—% E Oée}{Eb HF +1+Nh: kHQ]} exp{z Z ag} )
f=m4+1 {=m+1+Nh:k
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In the last inequality we applied Lemma 22 to each of the blocks of length h in the first bound. It
remains to upper bound the residual terms. Since the remainder block has length less then h, we
have due to (E.5) (which holds according to A 5), that

k

a [075°) ]
enly Y adson{thse,
l=m+1+Nh:k

where the last inequality is due to Proposition 1. Next,

k

(B w1 2 < ko JT (BN — avweAg)| 2]}/
l=m+1+Nh:k
k
< kg H {EP[1 + 2ay|wy| Ca +a?w? CA]}/2 .
l=m+1+Nh:k

Since E[|w|] < EY2[w?] = {(E[w])? + Var[wg]}l/2 = /2, we get from previous bound

k
1/2
{EPIITE, 1 vl /% < KQ H (14 2V2ay Ca +2af C3)Y/?
(=m+14Nh:k
k

h
< kgexp{V2Ca Z o} < kgexp{v2Ca %} < kge,

t=m+1+Nh:k 0

where in the last line we additionally used A5 and the inequality

i h ko+h bt ko)t — kY h
Z ozg<Zag<CO/ x 7 da::co( + 01) 0 SCOF . (E.1)
t=m+1+Nh =1 ko -7 0

O
Proof of Lemma 22. Let h € N be a block length given in (4.3). Then the product Fl;nJrl:erh writes
as

m-+h m-+h m-+h
T tmen =1— > wAr—S+R=T- > aA- > aA,-A)-S+R, (B2
f=m-+1 L=m+1 l=m+1
where S = ZZS#_H ag(wp — 1)Ay is a linear statistics in {wg}?:ﬁﬂ, and the remainder R collects
the higher-order terms:

h r
R = Z(—l)r Z H OéluwluAlu .

r=2 (i1 ey ) €l u=1

with l, = {(i1,...,4,) € {m+1,...,m+h}" : i3 <--- <i,}. We first consider the contracting part
in matrix @-norm. Indeed, applying (3.3), we obtain that

m-+h =~ 19 m~+h
=, aAlg<i—ad " a, (E.3)
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The definition of block size h combined with an integral bound (E.1) guarantees that that Z’Z:;: o <

Qo, Where a is defined in (3.2). Thus, we get from (E.3) that the following bound holds

h A h
IT— 0" Al <1—(a/2) X700 o

Now we need to estimate the remainders in the representation (E.2). On the set €4, it holds that

e A = 1/2
I alAc=A)llg <2Ca yrg{ > af}*log(10n’d) .
{=m-+1
Moreover, it is straightforward to check that
m+h
E°(S[I3] < Carg > af .
{=m-+1

In order to bound the remainder term R, we note that for any i € {1,...,n}, E®[lw;,|] < v/2, and

h h—2
h T T T h r r r
E°[|Rllq] < vFg Y <r>am+12 20y <200, CaRQ Y (T . 2) al 272 Cn
r=2 r=0
< O‘?nﬂhz C?A vVEQ exp{\/iham_ﬂ CA} < afnﬂhz C2A VEQe .

To complete the proof it remains to set the parameter h in such a way that we can guarantee the
following;:

m+h m+4-h
Cavrg{ Y af}'(1+2log(10n%d)) + a2, .11 Ch Jrge < & T (E.4)
l=m+1 f m+1

Now it remains to ensure that our choice of h satisfies
h 1/2 h
{CA\/ A g} / (14 2log(10n3d)) < &30 ) o
2 m+h
m+1h CA VEQe < § 2 pmmy1 e -
Using an integral bound, we get

m-+h

h+ 1) — = 217 —1 227
Z O{[> m+k30+ + ) (m+k’0+ ) ZCo(m—Fko—f—l)li’Y( )h ZC()( )h7
Pt 1—~ (m+ko+1) (m + ko)
(E.5)
Similarly, one can check that
T, Smt k)T = (m+ ko + R, h h
Z o =6 <c —— <c
t=m+1 2y-1 (m + ko)(m + ko + h)*Y (m + ko)
(E.6)

Hence, taking into account (E.5) and (E.6), the inequality (E.4) would follow from the bounds

m-h 1/2 aco(2—27
{CA \/HQ{Ze —’T—n+1 aj} / (1 +2log(10n’d)) < 0(8 ) (m+hk0)v

2 2 acp(2-2Y) b
am-‘,—lh CA \/ Q€ < 8 (m—+ko)?
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Note that the latter inequalities follow from A 5. Thus, all previous inequalities will be fulfilled.
Hence, the following holds:

m+h
1/2
{EPUITS: o 21} S 1= (a/4) D7
l=m+1
and the statement follows from an elementary inequality 1 4+ x < e”. O

F Proof of Lemma 2

Proof of Lemma 23. We follow the approach of [54, pp. 25-26]. By the definition of Sy

n—1
Sy = Z (ap — Oéj) Gt+1:j—1,
Jj=t+1
we have
n—1 n—1 -
I1Sel < > (@ = ay) [Gryajall < VEgeo ) [(j+k0)—7 - (j+1+k0)—v]e—7g;t+1:j’
j=t+1 i
where
J J+1+ko . 1— 1—
- — +1+k T —(t+k v
Gy = > (E+k) T > / gy = o)1 (t+ o)
=t+1 t+ko -
Set,

acoy
a5 = 1+ (1 — "Y) gt:5, Sty = m@t;j.

Then one checks
aco

i — g acy
(J+ko) " —(+1+k)" < W (t+ ko)™, e 2 91 = gmng @ 2ho)T

Hence

-2 ~

RQ Co %0, _9c e r

el < ‘fv 2R (4 ko) Y (angen — ang) aly | e
j=t

T

Since ¢(x) = xT-7e~ " attains its maximum at z, = %,y, a discrete summation-by-parts gives

1

n—2 v

Z(at:j+1 - at:j) atl;]?e_st:j < max{1, QZ)($A/)}((12ﬂ + x'y) + / ¢() dx.

J=t

Collecting constants yields
1Sell < /FQ (t+ ko)™ Cas,

as claimed. O
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