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Abstract

In this paper, we refine the Berry–Esseen bounds for the multivariate normal approximation
of Polyak–Ruppert averaged iterates arising from the linear stochastic approximation (LSA)
algorithm with decreasing step size. We consider the normal approximation by the Gaussian
distribution with covariance matrix predicted by the Polyak-Juditsky central limit theorem and
establish the rate up to order n−1/3 in convex distance, where n is the number of samples used in
the algorithm. We also prove a non-asymptotic validity of the multiplier bootstrap procedure for
approximating the distribution of the rescaled error of the averaged LSA estimator. We establish
approximation rates of order up to 1/

√
n for the latter distribution, which significantly improves

upon the previous results obtained by Samsonov et al. (2024).

1 Introduction

In this paper we consider the Linear Stochastic Approximation (LSA) algorithm, a simple yet
foundational method with various applications in statistics and machine learning [16, 4, 21, 24]. The
LSA procedure addresses the problem of approximating the unique solution θ⋆ to a linear system of
equations given by

Āθ⋆ = b̄ ,

where Ā ∈ Rd×d is a non-degenerate matrix. This approximation is based on a sequence of
observations {(A(Zk),b(Zk))}k∈N, where A : Z → Rd×d and b : Z → Rd are measurable mappings.
The sequence (Zk)k∈N consists of independent and identically distributed (i.i.d. ) random variables
defined on a measurable space (Z,Z) with distribution π, satisfying E[A(Zk)] = Ā and E[b(Zk)] = b̄.
Often in the applications (Zk)k∈N are not independent and instead form a Markov chain, see
[12, 30, 55]. In this paper, we do not consider this setting and postpone it as a direction for a future
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work. Given a sequence of decreasing step sizes (αk)k∈N and an initialization θ0 ∈ Rd, we define the
iterative estimates (θk)k∈N and their Polyak–Ruppert averaged counterparts (θ̄n)n∈N by

θk = θk−1 − αk (A(Zk)θk−1 − b(Zk)) , k ≥ 1, θ̄n = n−1
n−1∑
k=0

θk, n ≥ 1. (1.1)

The idea of using averaged estimates θ̄n was proposed in the works of Ruppert [40] and Polyak
and Juditsky [36, 37]. Using the averaged iterates θ̄n instead of the last iterate θn has been shown
to stabilize stochastic approximation procedures and accelerate their convergence. Moreover, it
is known (see [37]) that the estimator θ̄n is asymptotically normal under appropriate regularity
conditions on the step sizes (αk)k∈N and the noise observations (A(Zk))k∈N, that is,

√
n(θ̄n − θ⋆)

d−→ N (0,Σ∞) . (1.2)

The expression for Σ∞ is given below in Section 3.2 and corresponds to the preconditioned version
of the sequence θk, which uses the optimal preconditioner Ā−1, see [18, 37].

Both asymptotic [37, 6] and non-asymptotic [25, 48, 29, 12] properties of the averaged LSA errors
θ̄n − θ⋆ attained lot of research interest. Many of the mentioned works primarily focus on providing
the moment bounds and concentration inequalities for the scaled estimation error

√
n(θ̄n − θ⋆). The

primary aim of these concentration bounds is to obtain results with explicit dependence on the
number of samples n, the problem dimension d, and other problem-specific quantities related to
Ā and the noise observations (A(Zk))k∈N. It is also important to study the rate of convergence
in (1.2) in a sense of appropriate distance between the probability distributions. Recent papers
consider approximation either in Wasserstein distance [47], class of smooth test functions [2], or in
convex distance [44, 41, 54]. The latter type of results can be directly applied when ensuring the
non-asymptotic validity of the confidence sets for θ⋆, and we follow the same direction in our paper.

The primary aim of the analysis of the approximation rate in (1.2) is the need to construct
confidence intervals for θ⋆. The principal difficulty is the fact that Σ∞ is unknown in practice, hence,
(1.2) can not be applied directly. Classical approaches suggest to approximate Σ∞ directly based on
either plug-in estimates [8, 54], or various modifications of batch-mean approach [8, 53, 26]. Typically
these methods constructs an estimator Σ̂n of Σ∞, and often provide non-asymptotic on the closeness
between Σ̂n and Σ∞. Yet the there are only asymptotic guarantees on coverage probabilities of θ⋆

with constructed confidence sets. The notable exceptions are recent works [41] and [54], where the
authors provide non-asymptotic error bounds for coverage probabilities. The paper [41] considers
general LSA setting and multiplier bootstrap procedure adopted from [17], while the authors of [54]
considered a plug-in based approach for estimating Σ∞ and focused on the particular setting of the
temporal difference (TD) learning algorithm. In this paper we revisit the analysis of [41], derive the
error rates in coverage probabilities of order up to 1/

√
n. Our contributions can be summarized as

follows:

• We refine the high-order moment bounds for
√
n(θ̄n − θ⋆), improving the previous results of

[29] and [12]. Namely, our results yield, for p ≥ 2, the bound

E1/p
[
∥θ̄n − θ⋆∥p

]
≲

√
p
√
TrΣ∞√
n

+
p3/2

n5/6
,

provided that the step sizes αk are appropriately chosen. Note that the leading term of this
bound aligns with the moment bound for the Gaussian vector N (0,Σ∞).
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• We establish a Berry–Esseen bound characterizing the rate of normal approximation in (1.2) in
a sense of convex distance (see Section 3.2) between distributions. We show the approximation
rate in (1.2) of order up to n−1/3, up to logarithmic factors in n. This convergence rate
improves the previous rate of order n−1/4 obtained in [41] for the general LSA procedure, and
aligns with the rate achieved in [54] for the particular setting of the temporal difference (TD)
learning algorithm. Similar to [41] and [54], our proof approach builds upon the techniques
developed for nonlinear statistics in [44].

• We derive an approximation of the distribution of the scaled Polyak–Ruppert estimator√
n(θ̄n − θ⋆) based on a multiplier bootstrap procedure. In particular, we show that the

coverage probabilities of the true value θ⋆ under the true distribution
√
n(θ̄n − θ⋆) can

be approximated by its bootstrap-based counterpart with a rate approaching n−1/2 up to
logarithmic factors in n. This rate is achieved for step sizes of the form αk = c0/(k + k0)

γ

when γ → 1. Our results provide an improvement over the existing non-asymptotic bounds
obtained in [41] for similar procedure. The main reason for this improvement is the observation
that the distribution of

√
n(θ̄n − θ⋆) can be effectively approximated by a normal distribution

N (0,Σn) with a suitably chosen covariance matrix Σn, bypassing the direct approximation
with N (0,Σ∞). The obtained rate is in sharp contrast with [54] and other related works based
on direct approximating of the limiting covariance Σ∞.

Notations. For matrix A ∈ Rd×d we denote by ∥A∥ its operator norm. Given a sequence of
matrices {Aℓ}ℓ∈N, Aℓ ∈ Rd×d, we use the following convention for matrix products:

∏k
ℓ=mAℓ =

AkAk−1 . . . Am, where m ≤ k. For symmetric and positive-definite matrix Q = Q⊤ ≻ 0 , Q ∈ Rd×d,
and x ∈ Rd we define the corresponding norm ∥x∥Q =

√
x⊤Qx, and define the respective matrix

Q-norm of the matrix B ∈ Rd×d by ∥B∥Q = supx̸=0 ∥Bx∥Q/∥x∥Q. For sequences an and bn, we
write an ≲ bn if there exist a constant c > 0 such that an ≤ cbn for any n ∈ N. In the present text,
the following abbreviations are used: "w.r.t." stands for "with respect to", "i.i.d. " - for "independent
and identically distributed".

2 Related works

Asymptotic properties of Linear Stochastic Approximation (LSA) algorithms were studied in [37, 24,
6, 4]. These works established asymptotic normality and almost sure convergence under both i.i.d.
and Markovian noise. Non-asymptotic analyses of LSA (and of the non-linear setting, corresponding
to the SGD algorithm) have been carried out in [38, 32, 5, 25, 30], where mean squared error
(MSE) bounds for LSA iterates and their Polyak-Ruppert averaged versions were obtained. Further
works [29, 13, 12] establish high-probability bounds (moment bounds or Bernstein-type bounds)
for the estimation error θ̄n − θ⋆. However, the concentration bounds for the LSA error given in
[29, 13, 12, 30] do not yield convergence rates of the rescaled error

√
n(θ̄n − θ⋆) to the normal

distribution in Wasserstein or Kolmogorov distance.
Non-asymptotic convergence rates towards normality were investigated in [2] using Stein’s method

and measured in terms of the integral probability metric associated with smooth test functions
(smoothed Wasserstein distance). Recent advances include [47], which studied convergence rates
in Wasserstein distance for LSA with Markov observations. The bounds derived in these works
exhibit less favorable dependence on the trajectory length n than those presented here. Further,
[41] analyzed normal approximation rates for

√
n(θ̄n − θ⋆) and obtained convex distance bounds
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of order n−1/4 for general LSA. This result was later improved by [54] for the specific setting of
the temporal difference (TD) learning algorithm. In this paper, we show that the actual rate of
normal approximation for LSA is also n−1/3 up to logarithmic factors, matching the result of [54]. A
detailed comparison with these works is provided in the discussion following Theorem 3.

The bootstrap approach [15] is one of the widely used methods for constructing confidence
intervals in parametric models. This method has been extensively studied theoretically; see [9, 10,
46, 20]. In these works, the validity of the bootstrap relies on Gaussian comparison techniques and
anticoncentration results, tailored to particular subclasses of convex sets (spherical or rectangular).
Bootstrap validity has also been analyzed in the context of spectral projectors of covariance matrices
[31, 23]. At the same time, extending classical bootstrap methods to online learning algorithms poses
considerable theoretical and practical challenges. In particular, the iterates {θk}k∈N generated by
the iterative scheme (1.1) are typically not stored in memory, making standard bootstrap methods
inapplicable. Instead, one can employ the multiplier bootstrap technique introduced in [17], designed
specifically for the iterates of Stochastic Gradient Descent (SGD). A non-asymptotic analysis of
this procedure was carried out in [41], which established approximation rates for the distribution
of

√
n(θ̄n − θ⋆) of order up to n−1/4 in convex distance. In this paper, we show that the actual

approximation rate can be significantly faster, up to n−1/2. However, the attempt in [39] to generalize
this procedure to the case of Markovian noise leads to an inconsistent method, as demonstrated in
[28, Proposition 1]. Thus, the question of appropriate generalizations of the multiplier bootstrap
approach to stochastic approximation algorithms with Markov data remains, to our knowledge, open.

Other methods for constructing confidence intervals, not based on the bootstrap approach, rely on
the direct estimation of the asymptotic covariance matrix Σ∞; see, e.g., [8, 27, 53]. In this approach,
the authors typically construct an estimator Σ̂n of Σ∞ and provide bounds on E[∥Σ̂n − Σ∞∥] with
explicit dependence on n. To our knowledge, within this approach there are no error bounds for the
coverage probabilities of θ⋆ or error rates for approximating, for example, the distribution of the
true statistic

√
n(θ̄n − θ⋆) with N (0, Σ̂n).

3 Main results

We begin this section by specifying the set of assumptions that will be used for the non-asymptotic
central limit theorem for LSA iterates. To simplify notation and whenever clarity permits, we write
simply Ak = A(Zk) and bk = b(Zk). Starting from equation (1.1), algebraic manipulations yield
the recurrence

θk − θ⋆ = (I− αkAk)(θk−1 − θ⋆)− αkεk, (3.1)

where we have introduced the noise term εk = ε(Zk), defined by

ε(z) = Ã(z)θ⋆ − b̃(z), Ã(z) = A(z)− Ā, b̃(z) = b(z)− b̄.

The random variable ε(Zk) corresponds to the noise measured at the solution θ⋆. We introduce the
following assumptions on {Zk} and mappings A(·),b(·):

A 1. The sequence {Zk}k∈N consists of independent and identically distributed (i.i.d.) random
variables defined on a probability space (Ω,F ,P) with common distribution π.

A 2.
∫
ZA(z)dπ(z) = Ā and

∫
Z b(z)dπ(z) = b̄, with the matrix −Ā being Hurwitz. Moreover,

∥ε∥∞ = supz∈Z ∥ε(z)∥ < +∞, and the mapping z → A(z) is bounded, that is,

CA = sup
z∈Z

∥A(z)∥ ∨ sup
z∈Z

∥Ã(z)∥ < ∞ .
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Moreover, the smallest eigenvalue of the noise covariance matrix Σε =
∫
Z ε(z)ε(z)

⊤dπ(z) is bounded
away from 0, that is,

λmin := λmin(Σε) > 0 .

The fact that the matrix −Ā is Hurwitz implies that the linear system Āθ = b̄ has a unique
solution θ⋆. Moreover, this fact is sufficient to show that ∥I− αĀ∥2Q ≤ 1 − αa for appropriately
chosen matrix Q = Q⊤ > 0 and a > 0, provided that α > 0 is small enough. Precisely, the following
proposition holds:

Proposition 1 (Proposition 1 in [41]). Let −Ā be a Hurwitz matrix. Then for any P = P⊤ ≻ 0,
there exists a unique matrix Q = Q⊤ ≻ 0, satisfying the Lyapunov equation Ā⊤Q + QĀ = P .
Moreover, setting

a = λmin(P )
2∥Q∥ , and α∞ = λmin(P )

2κQ∥Ā∥2Q
∧ ∥Q∥

λmin(P ) , (3.2)

where κQ = λmax(Q)/λmin(Q), it holds for any α ∈ [0, α∞] that αa ≤ 1/2, and

∥I− αĀ∥2Q ≤ 1− αa . (3.3)

Remark 1. One of the important particular examples of the LSA procedure is the setting of the
temporal difference (TD) learning algorithm [49, 50]. In the TD algorithm, we consider a discounted
MDP (Markov Decision Process) given by a tuple (S,A,P, r, γ). Where S and A stand for state
and action spaces, and γ ∈ (0, 1) is a discount factor, and we want to evaluate the value function
of a policy ν(·|s), which is the distribution over the action space A at a fixed state s ∈ S. Many
recent contributions to the analysis of TD learning deal with the linear function approximation when
V ν(s) ≈ φ⊤(s)θ, where θ ∈ Rd and φ(s) : S → Rd is a feature mapping. Under these conditions,
the problem of finding optimal approximation parameters θ⋆ is reduced to an instance of a linear
stochastic approximation problem by the projected Bellman equation [52]. All the results given below
in Sections 3.1, 3.2 and 4 apply directly to the TD learning with linear function approximation under
the generative model assumptions studied in [41] and [54]. Namely, the assumptions A1 and A2 hold,
and Proposition 1 holds with Q = I and P = Ā+ Ā⊤, where Ā is a system matrix corresponding to
the projected TD learning equations, see [41, Section 5].

We also consider the family of assumptions on the step sizes αk. Namely, for p ≥ 2 consider the
following assumptions A3(p):

A 3 (p). The step sizes {αk}k∈N have a form αk = c0
(k+k0)γ

, where γ ∈ (1/2; 1) and c0 ∈ (0;α∞].
Assume additionally that

k0 ≥
(

16

ac0

)1/(1−γ)

∨
(
2pκQC2

A

ac0

)1/γ

.

In our main results we often apply A3(p) with p = log d. This particular choice of p imposes a
logarithmic dependence of k0 upon the problem dimension d. This relaxes the polynomial bounds
on d, which were previously considered in [30]. At this stage we assume that k0 is a fixed constant
that does not depend on time horizon n used in (1.1).

5



3.1 Moment bounds for Polyak-Ruppert averaged LSA iterates.

We first present results for the p-th norm of the averaged LSA error, that is, E1/p[∥θ̄n − θ⋆∥p], where
θ̄n is given in (1.1). We first define the product of random matrices

Γm:k =

k∏
ℓ=m

(I− αℓAℓ) , m ≤ k , and Γm:k = I , m > k . (3.4)

Using the recurrence relation (3.1), we obtain the following decomposition of the LSA error:

θk − θ⋆ = θ̃
(tr)
k + θ̃

(fl)
k , θ̃

(tr)
k = Γ1:k(θ0 − θ⋆) , θ̃

(fl)
k = −

k∑
ℓ=1

αℓΓℓ+1:kεℓ . (3.5)

The term θ̃
(tr)
k above is a transient term, which reflects the forgetting of the initial error θ0 − θ⋆,

while θ̃
(fl)
k is a fluctuation term. Controlling the p-th order moments of the transient component θ̃(tr)k

is essentially equivalent to bounding the p-th moment of the product of random matrices Γm:k. For
this purpose, we use techniques for proving the stability of products of random matrices from [22]
and [14]. We establish the following bound, which is referred to as the exponential stability of the
product of random matrices:

Lemma 1. Let p ≥ 2 and assume A1, A2 , A3(p∨ log d). Then for any k ≤ n, 1 ≤ m ≤ k, it holds
that

E1/p [∥Γm:k∥p] ≤
√
κQe

k∏
ℓ=m

(
1− aαℓ

2

)
≤ √

κQe exp
{
−a

2

k∑
ℓ=m

αℓ

}
.

The proof of Lemma 1 is given in Section B. We further decompose θ̃(fl)k based on the perturbation-
expansion approach of [1], see also [12]. Namely, we notice that θ̃

(fl)
k satisfies the recurrence

θ̃
(fl)
k = (I− αkAk)θ̃

(fl)
k−1 − αkεk, with θ̃

(fl)
0 = 0. Extracting its linear part, we represent θ̃

(fl)
k as

θ̃
(fl)
k = J

(0)
k +H

(0)
k , (3.6)

where the latter terms are defined by the following pair of recursions

J
(0)
k =

(
I− αkĀ

)
J
(0)
k−1 − αkεk , J

(0)
0 = 0 , (3.7)

H
(0)
k = (I− αkAk)H

(0)
k−1 − αkÃkJ

(0)
k−1 , H

(0)
0 = 0 . (3.8)

Here the term J
(0)
k represents the leading (w.r.t. αk) part of the error θ̃(fl)k . Informally, one can show

that E1/2[∥J (0)
k ∥2] ≲ α

1/2
k , and similarly E1/2[∥H(0)

k ∥2] ≲ αk. Thus, J (0)
k is a leading term of θ̃(fl)k in

terms of its moments, and H
(0)
k is a remainder one, a phenomenon, that is referred to as a separation

of scales.
The linear part J

(0)
k plays an important role in our further analysis. In particular, we note that

the outlined representation of the last iterate error (3.5) implies that

√
n(θ̄n − θ⋆) =

1√
n

n−1∑
k=1

J
(0)
k +

1√
n

n−1∑
k=1

H
(0)
k +

1√
n

n−1∑
k=0

Γ1:k(θ0 − θ⋆) . (3.9)
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The representation (3.9) plays a key role in our subsequent analysis of both the moment bounds
and Gaussian approximation for

√
n(θ̄n − θ⋆). Indeed, this representation allows us to represent the

statistic
√
n(θ̄n − θ⋆), which is non-linear as a function of Z1, . . . , Zn−1, as a sum of a linear statistic

1√
n

∑n−1
k=1 J

(0)
k and a remainder non-linear part, which is of smaller scale. We further denote

Σn =
1

n
Var

[n−1∑
k=1

J
(0)
k

]
=

1

n

n−1∑
k=1

QkΣεQ
⊤
k , Qℓ = αℓ

n−1∑
j=ℓ

Gℓ+1:j , Gm:k =
k∏

ℓ=m

(I− αℓĀ) . (3.10)

We also define the sequence φn, n ∈ N, as follows:

φn =


2c

3/2
0

(1−3γ/2)n3γ/2−1/2 , 1/2 < γ < 2/3;

c
3/2
0 logn

n1/2 , γ = 2/3;
c
3/2
0

(3γ/2−1)n1/2 , 2/3 < γ < 1 .

(3.11)

As a first main result of this section, we obtain the following p-th moment bound with the leading
term given by the trace of the covariance matrix Σn. Precisely, the following bound holds:

Theorem 1. Let p ≥ 2 and assume A 1, A 2, and A 3(p ∨ log d). Then, it holds that

E1/p
[
∥θ̄n − θ⋆∥p

]
≤

C1,1
√
p
√
TrΣn√

n
+∆(fl)(n, p, γ) +

C1,5∥θ0 − θ⋆∥
n

, (3.12)

where we set

∆(fl)(n, p, γ) =
C1,2p

3/2

n1/2+γ/2
+

C1,3p
5/2φn

n1/2
+

C1,4p

n
,

and the constants {C1,i}5i=1, depending on γ, κQ, a,CA, c0, k0 and ∥ε∥∞, are given in Section 5.1, see
(5.5).

Remark 2. In order to study the scaling of the bound (3.12) with the problem dimension d, we
assume the natural scaling ∥ε∥∞ ≤

√
dCε, where Cε is dimension-free. Then Theorem 1 implies that

E1/p
[
∥θ̄n − θ⋆∥p

]
≲

√
p
√
TrΣn√
n

+
p3/2

√
d

n1/2+γ/2
+

p5/2
√
dφn

n1/2
+

p
√
d

n
,

where ≲ stands for constant not depending upon p, n, and d.

The proof of Theorem 1 is provided in Section 5.1. Note that the leading in n term of the above
bound appears with the coefficient

√
TrΣn, where Σn is the variance of the linear statistic extracted

in the representation (3.9). It is possible to switch from the bound provided by Theorem 1 to the
moment bound with the leading term matching the CLT covariance given by

Σ∞ = Ā−1ΣεĀ
−⊤, (3.13)

and Σε is defined in A2. Precisely, the following bound holds:

Corollary 1. Assume A1, A 2, A 3(p ∨ log d). Then, it holds that

E1/p
[
∥θ̄n − θ⋆∥p

]
≤

C1,1
√
p
√
TrΣ∞√
n

+
C1d

√
p

n3/2−γ
+∆(fl)(n, p, γ) +

C1,5∥θ0 − θ⋆∥
n

. (3.14)

where the constant C1 is defined in (5.7).
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The proof of Corollary 1 is provided in Section 5.1. Optimizing the r.h.s. of (3.14) over γ, we
obtain that the optimal value is γ = 2/3. This choice implies the moment bound

E1/p
[
∥θ̄n − θ⋆∥p

]
≲

√
p
√
TrΣ∞√
n

+
p3/2

n5/6
, (3.15)

where ≲ stands for constant not depending upon n and p. The bound (3.15) improves upon previous
bounds of this type obtained in [29] and [12]. Both of these papers considered constant step-size
LSA. [12, Proposition 5] showed a bound of the form (3.15) with a residual term of order O(p2/n3/4).
The improvement in the dependence on n, compared to the latter paper, arises from the fact that
the authors used a summation by parts formula applied to θ̄n − θ⋆, which yields a counterpart of
(3.9) with a different linear statistic identified as the leading term. [29, Theorem 2] obtained a
counterpart of (3.15) for one-dimensional projections of the error. Unlike typical results in linear
stochastic approximation, where stepsizes often decay as n−γ for γ ∈ (1/2, 1), [29] requires a slower
rate of n−1/3, leading to a second-order term of order O(n−5/6), similar to (3.15).

3.2 Gaussian approximation for Polyak-Ruppert averaged LSA iterates.

In this section, we analyze the rate of Gaussian approximation for the statistic
√
n(θ̄n − θ⋆). The

result of Polyak and Juditsky [37] states that, under assumptions A1-A3, it holds that

√
n(θ̄n − θ⋆)

d→ N (0,Σ∞) , (3.16)

where the asymptotic covariance matrix Σ∞ is defined in (3.13). We are interested to quantify the
rate of convergence in (3.16) w.r.t. the available sample size n and other problem parameters, such
as dimension d. To measure the approximation quality, we use the convex distance, defined for a
pair of probability measures µ, ν on Rd as

ρConv(µ, ν) = sup
B∈Conv(Rd)

|µ(B)− ν(B)| ,

where Conv(Rd) denotes the collection of all convex sets in Rd. With a slight abuse of notation,
we write ρConv(X,Y ) for random vectors X and Y defined on the same probability space (Ω,F ,P)
instead of their distributions under P whenever there is no risk of confusion.
Gaussian approximation with randomized concentration inequalities. To establish the
Gaussian approximation for

√
n(θ̄n − θ⋆), we consider it as a non-linear statistic of independent

random variables Zk outlined in (1.1). Then we consider this statistic as a sum of a linear term and
a remainder term of smaller order in n. This framework is presented in [44], and we summarize
below the key results that will be later used to establish our findings. In this paragraph, we present
all results for statistics defined in terms of the random variables X1, . . . , Xn, rather than Z1, . . . , Zn

as used in the remainder of the paper.
Let X1, . . . , Xn be independent random variables taking values in a measurable space X, and

consider a d-dimensional statistic T = T (X1, . . . , Xn), which admits the decomposition T = W +D,
where

W =

n∑
ℓ=1

ξℓ, D := D(X1, . . . , Xn) = T −W . (3.17)

Here ξℓ = hℓ(Xℓ), and hℓ : X → Rd are measurable functions. The term D represents a potentially
nonlinear component of the statistic T , which is assumed to be small compared to W in an appropriate
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sense. Assume that E[ξℓ] = 0 and
∑n

ℓ=1 E[ξℓξ⊤ℓ ] = Id. Define Υn =
∑n

ℓ=1 E[∥ξℓ∥3]. Then, letting
η ∼ N (0, Id), [44, Theorem 2.1] yields that

ρConv(T, η) ≤ 259d1/2Υn + 2E[∥W∥∥D∥] + 2
n∑

ℓ=1

E[∥ξℓ∥∥D −D(ℓ)∥], (3.18)

where D(ℓ) = D(X1, . . . , Xℓ−1, X
′
ℓ, Xℓ+1, . . . , Xn), and (X ′

1, . . . , X
′
n) is an independent copy of

(X1, . . . , Xn). One can modify the bound (3.18) for the setting when
∑n

ℓ=1 E[ξℓξ⊤ℓ ] = Σ ≻ 0, see [44,
Corollary 2.3].
Gaussian approximation for the LSA algorithm. In the setting of linear stochastic approxi-
mation we use the decomposition (3.17), identify T = T (Z1, . . . , Zn−1) =

√
nΣ

−1/2
n (θ̄n − θ⋆), and

write

W =
1√
n
Σ−1/2
n

n−1∑
k=1

J
(0)
k , D =

1√
n
Σ−1/2
n

n−1∑
k=1

H
(0)
k +

1√
n
Σ−1/2
n

n−1∑
k=0

Γ1:k(θ0 − θ⋆) . (3.19)

Changing the order of summation, we get with Qℓ defined in (3.10), that

W = − 1√
n

n−1∑
ℓ=1

Σ−1/2
n Qℓεℓ , (3.20)

i.e. W is a weighted sum of i.i.d. random vectors with mean zero and E[WW⊤] = Id. The
decomposition (3.19) and (3.20) allows to apply the general Gaussian approximation result of (3.18).
Application of the above result requires that the matrix Σn is non-degenerate, which is guaranteed
by the following lemma:

Lemma 2. Let p ≥ 2 and assume A 1, A 2, A 3(p). Let also n ≥ k0 + 1. Then it holds that

∥Σn − Σ∞∥ ≤ C2n
γ−1 , (3.21)

where the constant C2 is given in (5.34).

The proof of Lemma 2 is given in Section 5.5. With Lidskii’s inequality, we obtain that

λmin(Σn) ≥ λmin(Σ∞)− ∥Σ∞ − Σn∥ .

Therefore, using Lemma 2, we can lower bound λmin(Σn), provided that n is large enough. This is
formalized in the following assumption:

A 4. The sample size n satisfies the conditions n ≥ k0 + 1 and n1−γ ≥ 2C2/λmin(Σ∞).

With the assumptions above, we obtain the following Gaussian approximation result.

Theorem 2. Assume A1, A 2, A 3(2 ∨ log d), A 4. Then, with η ∼ N (0, I),

ρConv(
√
n(θ̄n − θ⋆),Σ1/2

n η) ≤ C2,1√
n

+
C2,2

nγ/2
+ C2,3φn +

C2,4∥θ0 − θ⋆∥
n

,

where φn is defined in (3.11) and C2,1, C2,2, C2,3, C2,4 are constants defined in (5.8).
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The constants C2,2 − C2,4 contain factors that scale as 1/(1− γ), and the result in the stated
form is not valid when setting γ = 1. At the same time, following the technique of Shao and Zhang
[44, Theorem 3.4], it is possible to show that a counterpart of Theorem 2 holds when γ = 1, at the
cost of additional log n factors arising in the r.h.s. of the bound and under additional constraints on
the constant c0, which cannot be chosen too small in this case.

Remark 3. Under a natural scaling ∥ε∥∞ ≤
√
dCε, where Cε is dimension-free, Theorem 2 implies

that

ρConv(
√
n(θ̄n − θ⋆),Σ1/2

n η) ≲
d2√
n
+

d3/2

nγ/2
+ dφn +

d log(d)∥θ0 − θ⋆∥
n

,

where ≲ stands for inequality up to a constant not depending upon n and d.

The proof of Theorem 2 is provided in Section 5.2. Note that the term C2,1√
n

above corresponds to
the summand Υn from (3.18), which is related with the sum of third moments of random vectors
forming the linear statistic W . The result of Theorem 2 shows, that the rate of normal approximation
of

√
n(θ̄n − θ⋆) by N (0,Σn) improves when the step sizes αk are chosen to be less aggressive, that

is, when the power γ approaches 1 in A3. As already mentioned, constants C2,2 − C2,4 scales with
1/(1− γ), so the latter conclusion applies when the available number of observations n is large. This
aligns with the phenomenon, previously observed for the SGD algorithm [44], [45] and TD learning
[54].

Given the result of Theorem 2 and Lemma 2, it is possible to quantify the rate of convergence in
(3.16). Precisely, the following result holds.

Theorem 3. Assume A1, A 2, A 3(2 ∨ log d), A 4. Then, with η ∼ N (0, I),

ρConv(
√
n(θ̄n − θ⋆),Σ1/2

∞ η) ≤ C2,1√
n

+
C2,2

nγ/2
+ C2,3φn +

C2,4∥θ0 − θ⋆∥
n

+
C3

n1−γ
, (3.22)

where the constant C3 is given in (5.13).

The proof of Theorem 3 is provided in Section 5.2.

Discussion. The bound established in Theorem 3 achieves the optimal normal approximation
error rate of n−1/3 for Polyak-Ruppert averaged estimates. This optimal rate is attained using step
sizes αk = c0/(k + k0)

2/3, corresponding to the decay exponent γ = 2/3 in (3.22).
This n−1/3 rate aligns with recent results for policy evaluation in reinforcement learning. Wu et

al. [54] established the same convergence rate for the temporal difference (TD) learning algorithm.
Their analysis employs step sizes scaling as c0/k

2/3, which is consistent with the optimal choice
predicted by Theorem 3. Related work Wu et al. [55] studies TD learning under Markov noise,
achieving a slightly slower rate of n−1/4 (up to logarithmic factors) in convex distance. Another
relevant contribution is provided by Srikant [47], who analyzed temporal-difference learning with
Markov noise and established a convergence rate of n−1/6 in Wasserstein distance for the step sizes
αk = c0/k

2/3. Applying the relation between convex distance and Wasserstein distance [33, Eq. (3)],
this bound translates to a convergence rate of order n−1/12 in convex distance.

The fastest known rate for ρConv(
√
n(θ̄n − θ⋆),Σ

1/2
∞ η) in the general LSA problem is n−1/4 and

is due to [41]. Our rate improvement compared to this work is achieved through a tighter analysis
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of the normal approximation with N (0,Σn), which is carried out in Theorem 2. We then estimate
ρConv(N (0,Σn),N (0,Σ∞)) using the Gaussian comparison inequality [3, 11]. The authors of [41]
used a different error decomposition for the statistic

√
n(θ̄n − θ⋆) based on the summation by parts

representation [29, 12], with a linear statistic with covariance matrix Σ∞. This approach avoids the
Gaussian comparison step but induces a slower approximation rate compared to Theorem 3.

Several related studies [2, 44, 45] have investigated the normal approximation problem (3.16)
for stochastic gradient descent (SGD) algorithms targeting strongly convex objective functions. We
provide a comparative analysis of these results relative to our LSA framework. Anastasiou et al. [2]
studied both SGD setting and LSA with symmetric positive-definite system matrix Ā = Ā⊤ ≻ 0,
achieving normal approximation rates of order n−1/2 for integral probability metrics d[2] induced by
twice-differentiable test functions. Precise definition of d[2] is given in Section A. This result has two
important limitations. First, the relation between the Kolmogorov distance and d[2] metric (see e.g.
[19, Proposition 2.1]) suggests that the rate n−1/2 translates to the one of n−1/6 when considering
the Kolmogorov distance. Hence, the implied rate in convex distance is not faster than n−1/6, which
is substantially slower than the n−1/3 rate achieved in (3.22). Second, a detailed examination of [2,
Theorem 4] reveals that their bound depends on a quantity ρ(η, t) which scales, in notations of the
current paper, with the sample size n and the step-size exponent γ. It is not clear that this term
can be uniformly bounded independently of n, suggesting that the convergence rate in a sense of d[2]
is actually slower than n−1/2, depending upon γ.

Shao and Zhang [44] developed the SGD counterpart of our result of Theorem 2. Their analysis
focused on Gaussian approximation with the normal distribution N (0,Σn) from (3.10), rather than
N (0,Σ∞). These results were further developed in Sheshukova et al. [45], where the authors shown
a counterpart of Theorem 3 with a convergence rate of order n−1/4 when setting γ = 3/4. This rate
is slower than the one corresponding to the LSA setting. This gap arises from the nonlinearity of
SGD recursions, which introduces an additional error term in the r.h.s. of (3.18).

3.3 Lower bounds for the LSA algorithm.

Lower bounds for the convex distance ρConv(
√
n(θ̄n − θ⋆),Σ

1/2
∞ η) were studied in [45] for the setting

of SGD algorithm. The particular instance of this algorithm, which covers also to the LSA setting,
can be written as follows. Consider the simplest 1-dimensional LSA problem with Ā = 1, b̄ = 0,
that is, simply the equation

θ = 0 .

and Ak = 1, bk ∼ N (0, 1) for any k ∈ N. Here θ⋆ = 0. The corresponding sequence of LSA updates
can be written as follows:

θk+1 = θk − αk(θk + ξk+1), k ≥ 0 ,

where θ0 ∈ R, αk = c0(1 + k)−γ , 1/2 < γ < 1, and ξk = −bk are i.i.d. standard gaussian random
variables. Then [45, Proposition 1] shows that for large enough n it holds that

ρConv(
√
n(θ̄n − θ⋆),N (0, 1)) >

C(γ, c0)

n1−γ
, (3.23)

where C(γ, c0) is a constant that depends upon γ, c0. This result implies that the rate of convergence
in Theorem 3 is optimal for γ ∈ [2/3, 1), since the term C3

n1−γ dominates the r.h.s. in this regime.
Similar result for TD learning was shown in [54]. However, to the best of our knowledge, there is no
matching lower bound for the setting when γ ∈ (1/2, 2/3).
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4 Multiplier bootstrap for LSA

To perform statistical inference with the Polyak-Ruppert estimator θ̄n, we propose an online bootstrap
procedure that recursively updates the LSA estimate and a set of randomly perturbed LSA trajectories
using the same set of noise variables Zk. The proposed method follows the procedure outlined in [17].
This approach does not rely on the asymptotic distribution of the error

√
n(θ̄n − θ⋆) and does not

require approximation of the covariance matrix Σ∞, which is known to be computationally expensive
[8].

We describe the suggested procedure as follows. We assume that on the same probability space
(Ω,F ,P) where the sequence {Zk}k∈N is defined, we can construct M ∈ N sequences of i.i.d. random
variables {wℓ

k}, 1 ≤ k ≤ n and 1 ≤ ℓ ≤ M , which are independent of {Zk}k∈N. We assume that
E[wℓ

k] = 1, Var[wℓ
k] = 1, and E[|wℓ

k − 1|3] = m3 < ∞. Using these weight sequences, we recursively
update M randomly perturbed LSA estimates according to:

θb,ℓk = θb,ℓk−1 − αkw
ℓ
k{A(Zk)θ

b,ℓ
k−1 − b(Zk)} , k ≥ 1 , θb,ℓ0 = θ0 ,

θ̄b,ℓn = n−1
∑n−1

k=0 θ
b,ℓ
k , n ≥ 1 .

(4.1)

These weights add additional random perturbations to the LSA process (1.1). We set Zn−1 =
{Zℓ}1≤ℓ≤n−1 and use the notation Pb = P(·|Zn−1) and Eb = E(·|Zn−1) for the corresponding
conditional probability and expectation. We refer to them as the "bootstrap world" probability and
expectation, respectively. We adopt the shorthand notation θ̄bn for θ̄b,1n .

The fundamental principle behind (4.1) is that the conditional distribution of the perturbed
bootstrap samples

√
n(θ̄bn − θ̄n) given the observed data Zn−1 (the "bootstrap world" distribution)

approximates the distribution of the target quantity
√
n(θ̄n − θ⋆). Specifically, [17] established that

sup
B∈Conv(Rd)

|Pb(
√
n(θ̄bn − θ̄n) ∈ B)− P(

√
n(θ̄n − θ⋆) ∈ B)| → 0 (4.2)

in P-probability as n → ∞. We refer to this result as the asymptotic validity of the procedure (4.1)
and aim to quantify the rate in (4.2). While no closed-form expression exists for Pb(

√
n(θ̄bn− θ̄n) ∈ B),

this probability can be approximated numerically via (4.1) by simulating a sufficiently large number
M of perturbed trajectories. Standard Monte Carlo theory (see, e.g., [43, Section 5.1]) indicates
that this approximation achieves accuracy of order M−1/2. Consider the following assumption:

A 5. The step size offset k0 satisfies

kγ0 ≥ max
{
2h(n) CA

√
κQ,

c0h(n)
min{1,α∞} ,

8C2
A c0

√
κQeh(n)

a(2−2γ) , c0 log
2(5n)

min{1, a}
}
,

where h(n) is defined as

h(n) :=

⌈(
8CA

√
κQ(1+2 log(10n3d))

a(2−2γ)

)2⌉
. (4.3)

Additionally, the sample size n must be sufficiently large such that

λmin(Σ∞) ≥
8
√
2∥ε∥2∞C2

4

√
log (10dn)√

n
+

8∥ε∥2∞C2
4 log (10dn)

3n
.

The condition A5 ensures that the initial step sizes are not too large, which is crucial for the
bootstrap approximation to be valid. We now present the main theoretical result of this section.
Our analysis focuses on polynomially decaying step sizes γn = c0/(k0 + n)γ with decay exponent
γ ∈ (1/2, 1).
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Theorem 4. Assume A1, A 2, A 3(log(5n3) ∨ log d), A 4, A 5. Then with P – probability at least
1− 1/n it holds that

sup
B∈Conv(Rd)

|Pb(
√
n(θ̄bn − θ̄n) ∈ B)− P(

√
n(θ̄n − θ⋆) ∈ B)| ≤ C4∥θ0 − θ⋆∥ +∆4,1√

n
+

∆4,2

nγ/2
+∆4,3φn +

∆4,4

n
,

where C4 is a constant and {∆4,i}4i=1 are polynomials in log(n) that are defined in Section 5.3, see
(5.28).

Proof. We provide here a high-level overview of the proof and refer the reader to Section 5.3 for a
detailed exposition. The main ingredient of the proof is a Gaussian approximation via the randomized
concentration inequalities approach [44]. The latter is carried out both for

√
n(θ̄n − θ⋆) under P and

for
√
n(θ̄bn− θ̄n) under Pb. These two results are then combined using a suitable Gaussian comparison

inequality. The main steps of the proof are outlined in the diagram presented below: The principal

Real world:
√
n(θ̄n − θ⋆) N (0,Σ)

Bootstrap world:
√
n(θ̄bn − θ̄n) N (0,Σb)

Gaussian approximation
under P

Gaussian
comparisonGaussian approximation

under Pb

question that arises here is related with the choice of the approximating normal distribution Σ and
its bootstrap counterpart Σb. In the earlier work [41], the authors used Σ = Σ∞. As indicated by
Theorem 2 and Theorem 3, this does not appear to be an optimal choice, as it fails to provide an
approximation rate faster than n−1/3—at least when γ ∈ (2/3; 1)—due to the lower bound (3.23).
At the same time,

√
n(θ̄n − θ⋆) can be approximated by N (0,Σn) at a rate approaching 1/

√
n. This

is the reason why we use Σ = Σn in the present paper. The second principal difficulty in the proof is
more technical and is related to the fact that applying a randomized concentration approach under
Pb requires a representation √

n(θ̄bn − θ̄n) = W b +Db , (4.4)

where W b is a linear statistic with Eb[W b{W b}⊤] =: Σb
n. Since we aim to prove Gaussian approxi-

mation under Pb, by "linear statistic" we mean linearity in the bootstrap weights wℓ. In addition to
(4.4), we need to ensure that Σb

n is "close" to Σn in an appropriate sense. We provide a detailed
exposition, together with the definition of the statistics W b, Db, and Σb

n, in Section 5.3.1.

The terms {∆4,i}4i=1 exhibit similar behavior as the constants from Theorem 2 and scale with
the factor 1/(1− γ). Thus the special setting of γ = 1 requires separate treatment and is not covered
by Theorem 4 in the present form. Similarly to Theorem 2, we expect that in the particular setting
of γ = 1, the conclusion of Theorem 4 is still valid, probably with additional log n factors appearing
in the r.h.s. and given additional constraints on c0.

Remark 4. Assuming a natural scaling ∥ε∥∞ ≤
√
dCε, where Cε is dimension-free, Theorem 4
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writes as

sup
B∈Conv(Rd)

|Pb(
√
n(θ̄bn − θ̄n) ∈ B)− P(

√
n(θ̄n − θ⋆) ∈ B)| ≲

d2 + d3/2
√
log(dn)√

n

+
d3/2 log n+

√
d log2γ n

nγ/2
+ dφn +

d3/2 log(dn)

n
.

Discussion. The direct counterpart of Theorem 4 with the slower approximation rate (with
order up to order n−1/4 up to logarithmic factors in n) was obtained in [41]. The main reason
for improvement in the current paper is the choice of the approximating matrix Σ in Section 4.
The authors in [41] used Σ = Σn contrary to the choice Σ = Σ∞ employed in Theorem 4. To our
knowledge, the closest result to ours is the one of [54]. In this paper within the plug-in methods the
authors obtain an estimator Σ̂n of the asymptotic covariance Σ∞ and provide high-probability error
bounds

ρConv(
√
n(θ̄n − θ⋆),N (0, Σ̂n)) ≲

1

n1/3
,

which is attained when the step size exponent γ = 2/3. Theorem 4 provides approximation of order
up to 1/

√
n when γ → 1.

5 Proofs

5.1 Proofs of Section 3.1

In this section we provide additional details on the perturbation-expansion technique [1, 12]. Recall
that we can represent the fluctuation component of the error θ̃(fl)k defined in (3.5) as θ̃(fl)k = J

(0)
k +H

(0)
k

where the terms J
(0)
k and H

(0)
k are given in (3.7) and (3.8), respectively. The term H

(0)
k can be

further expanded. One can check with simple algebra that for any L ∈ N the term H
(0)
k can be

decomposed as

H
(0)
k =

L∑
ℓ=1

J
(ℓ)
k +H

(L)
k , (5.1)

where the terms J
(ℓ)
k and H

(ℓ)
k are given by the following recurrences:

J
(ℓ)
k =

(
I− αkĀ

)
J
(ℓ)
k−1 − αkÃ(Zk)J

(ℓ−1)
k−1 , J

(ℓ)
0 = 0 ,

H
(ℓ)
k = (I− αkA(Zk))H

(ℓ)
k−1 − αkÃ(Zk)J

(ℓ)
k−1 , H

(ℓ)
0 = 0 .

(5.2)

It is possible to show that, under assumptions A1, A2, and A3, it holds that E1/p[∥J (ℓ)
k ∥p] ≤ cℓα

(ℓ+1)/2
k ,

and similarly E1/p[∥H(ℓ)
k ∥p] ≤ cℓα

(ℓ+1)/2
k , where the constant cℓ can depend upon d, p, and problem-

related quantities, but not upon k. Thus the expansion depth L in (5.1) controls the desired
approximation accuracy. Our analysis of the p-th moment of the last iterate error θk − θ⋆ will not
require the expansion (3.6). At the same time, more delicate bounds for E1/p[∥θ̄n− θ⋆∥p] will require
to use (3.6) and (5.1) with L = 2. We recall the p-th moment bound of last iterate, adapted from
[41, Proposition 4].
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Proposition 2. Let p ≥ 2 and assume A 1, A 2, and A 3(p ∨ log d). Then for any 1 ≤ k ≤ n− 1, it
holds that

E1/p[∥θk − θ⋆∥p] ≤ √
κQe∥θ0 − θ⋆∥

k∏
ℓ=1

(1− a

2
αℓ) + C2p

√
αk , where C2 =

√
6e∥ε∥∞

√
κQ/a .

Now we provide moment bounds for the terms J
(ℓ)
k , H

(ℓ)
k , ℓ ∈ {0, . . . , L}.

Lemma 3. Let p ≥ 2. Assume A1, A 2, and A 3(p ∨ log d). Then for any ℓ ∈ {0, 1, 2} it holds that

E1/p[∥J (ℓ)
k ∥p] ≤ C

(J,ℓ)
3 pℓ+1/2α

(ℓ+1)/2
k ,

E1/p[∥H(ℓ)
k ∥p] ≤ C

(H,ℓ)
3 pℓ+1/2α

(ℓ+1)/2
k ,

where the constants C
(J,ℓ)
3 , C(H,ℓ)

3 satisfy the recurrence

C
(J,0)
3 =

4
√
3κ

1/2
Q ∥ε∥∞
a1/2

, C
(J,ℓ)
3 =

2
√
6κ

1/2
Q CA

a1/2
C
(J,ℓ−1)
3 , C

(H,ℓ)
3 =

12κ
1/2
Q e

a
C
(J,ℓ)
3 .

We also state here the lemma, which is instrumental for our further results and bounds ∥Qℓ∥ for
matrices Qℓ defined in (3.10).

Lemma 4. Assume A1, A 2, and A 3(2 ∨ log(d)). Then, for any ℓ ∈ {1, . . . , n− 1},

∥Qℓ∥ ≤ αℓ

n−1∑
j=ℓ

∥Gℓ+1:j∥ ≤ C4 , where C4 = κ
1/2
Q

(
c0 +

2

a(1− γ)

)
. (5.4)

Moreover,
∑n−1

j=1 ∥G1:j∥ ≤ (1 + k0)
γC4/c0.

Proof of Theorem 1. We first define the constants outlined in the statement of the theorem:

C1,1 = 60e , C1,2 =

√
c0C

(J,0)
3 C4CA√
1− γ

, C1,3 = C
(J,2)
3 + C

(H,2)
3 , (5.5)

C1,4 = 60C4∥ε∥∞ , C1,5 = 1 +

√
κQe(1 + k0)

γ

c0
(c0 +

2

a(1− γ)
) .

Combining the representations (3.5) and (3.6), we get

θ̄n − θ⋆ = n−1
n−1∑
k=1

Γ1:k(θ0 − θ⋆) + n−1
n−1∑
k=1

J
(0)
k + n−1

n−1∑
k=1

H
(0)
k . (5.6)

Now we proceed with different terms in (5.6) separately. Applying Lemma 25, we obtain that

E1/p
[
∥n−1

n−1∑
k=0

Γ1:k(θ0 − θ⋆)∥p
]
≤ ∥θ0 − θ⋆∥C1,5

n
.
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Now we proceed with the term n−1
∑n−1

k=1 J
(0)
k = −n−1

∑n−1
ℓ=1 Qℓεℓ, where Qℓ is defined in (3.10).

Applying the version of Rosenthal inequality due to Pinelis [35, Theorem 4.1], we get

E1/p∥n−1
n−1∑
ℓ=1

Qℓεℓ∥p ≤
CRos,1 p

1/2{TrΣn}1/2

n1/2
+

CRos,2 pE1/p[max1≤ℓ≤n ∥Qℓεℓ∥p]
n

,

where CRos,1 = 60e and CRos,2 = 60 are constants from [35]. Applying Lemma 4, we get that
∥Qℓ∥ ≤ C4, where C4 is defined in (5.4). Hence,

E1/p∥n−1
n−1∑
ℓ=1

Qℓεℓ∥p ≤
CRos,1 p

1/2{TrΣn}1/2

n1/2
+

CRos,2 pC4∥ε∥∞
n

.

Now we proceed with the next-order terms in n corresponding to n−1
∑n−1

k=1 H
(0)
k . Note that

H
(0)
k = J

(1)
k +H

(1)
k where J

(1)
k and H

(1)
k are given by J

(1)
k = −

∑k
ℓ=1 αℓGℓ+1:kÃℓJ

(0)
ℓ−1 and H

(1)
k =

−
∑k

m=1 αmΓm+1:kJ
(1)
m . Applying Lemma 3 and Minkowski’s inequality, we obtain that

E1/p[∥H(1)
k ∥p] ≤ E1/p[∥J (2)

k ∥p] + E1/p[∥H(2)
k ∥p] ≤ (C

(J,2)
3 + C

(H,2)
3 )p5/2α

3/2
k .

which implies that

n−1E1/p[∥
n−1∑
k=1

H
(1)
k ∥p] ≤ n−1(C

(J,2)
3 + C

(H,2)
3 )p5/2

n−1∑
k=1

α
3/2
k ≤ φn

n1/2
(C

(J,2)
3 + C

(H,2)
3 )p5/2 ,

where the sequence φn is defined in (3.11). It remains to proceed with
∑n−1

k=1 J
(1)
k . Note that

n−1∑
k=1

J
(1)
k = −

n−1∑
k=1

k∑
ℓ=1

αℓGℓ+1:kÃℓJ
(0)
ℓ−1 = −

n−1∑
ℓ=1

QℓÃℓJ
(0)
ℓ−1 .

Using the fact that QℓÃℓJ
(0)
ℓ−1 is a martingale-difference w.r.t. Fℓ−1 = σ(Zs : s ≤ ℓ− 1), we obtain,

applying Burkholder’s inequality [34, Theorem 8.6] and Lemma 3,

1

n
E1/p

[
∥

n∑
k=1

J
(1)
k ∥p

]
≤ p

n

(n−1∑
ℓ=1

E2/p∥QℓÃℓJ
(0)
ℓ−1∥

p

)1/2

≤
C
(J,0)
3 C4CA p3/2

{∑n−1
ℓ=1 αℓ

}1/2
n

≤
√
c0C

(J,0)
3 C4CA√
1− γ

p3/2

n(1+γ)/2
.

It remains to combine the above bounds in (5.6).

Proof of Corollary 1. First, we define the constant C1 outlined in the statement:

C1 =
C1,1C2

2
√
Tr (Σ∞)

, (5.7)

where the constant C2 is introduced in Lemma 2. Using that for a > 0, b ≥ 0,
√
a+ b =√

a(1 + b/a) ≤
√
a+ b/(2

√
a) and Lemma 2, we get√

Tr (Σn) ≤
√
Tr (Σ∞) +

|Tr (Σn − Σ∞)|
2
√
Tr (Σ∞)

≤
√
Tr (Σ∞) +

dC2n
γ−1

2
√
Tr (Σ∞)

.

The proof is concluded using Theorem 1.
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5.2 Proofs of Section 3.2

We first define the constants outlined in the statement of the theorem:

C2,1 = 259d3/2C
−1/2
6 ∥ε∥∞C4 , (5.8)

C2,2 = d1/2
211/2CA C4C

(J,0)
3

√
c0∥ε∥∞

C
1/2
6

√
1− γ

+ 2d1/2C−1
6 ∥ε∥∞C4

√
c0

1− γ
C8 ,

C2,3 =
√
d(27/2C

−1/2
6 C

(J,2)
3 + 27/2C

−1/2
6 C

(H,2)
3 ) ,

C2,4 = d1/2C
−1/2
6 C1,5 + 2d1/2

2(1 + k0)
γ

C6
∥ε∥∞C7(1 +

4

ac0(1− γ)
) ,

Proof of Theorem 2. Recall that we use the representation
√
nΣ

−1/2
n (θ̄n − θ⋆) = W +D , where

W =
1√
n
Σ−1/2
n

n−1∑
k=1

J
(0)
k , D =

1√
n
Σ−1/2
n

n−1∑
k=1

H
(0)
k +

1√
n
Σ−1/2
n

n−1∑
k=0

Γ1:k(θ0 − θ⋆) .

Alternative representation for W is given in (3.20). Recall that we write η for a random vector with
standard normal distribution η ∼ N (0, Id) under P. Then, setting

ξk =
1√
n
(Σn)

−1/2Qkεk , Υn =
n−1∑
k=1

E[∥ξk∥3] ,

we obtain from [44, Theorem 2.1]:

ρConv(
√
nΣ−1/2

n (θ̄n − θ⋆), η) ≤ 259d1/2Υn + 2E[∥W∥∥D∥] + 2
n−1∑
ℓ=1

E[∥ξℓ∥∥D −D(ℓ)∥]. (5.9)

Note that Lemma 6 and Lemma 4 imply ∥ξk∥ ≤ 1√
n
C
−1/2
6 ∥ε∥∞C4. Hence,

Υn ≤ 1√
n
C
−1/2
6 ∥ε∥∞C4

n−1∑
k=1

E[∥ξk∥2] =
d√
n
C
−1/2
6 ∥ε∥∞C4 . (5.10)

To proceed with the second term in (5.9), we use the representation for the statistic D from (3.19):

D =
1√
n
Σ−1/2
n

n−1∑
k=1

H
(0)
k +

1√
n
Σ−1/2
n

n−1∑
k=0

Γ1:k(θ0 − θ⋆) .

Lemma 5 implies that

C
−1/2
6√
n

E
[
∥
n−1∑
k=0

Γ1:k(θ0 − θ⋆)∥2
]
≤ C

−1/2
6 ∥θ0 − θ⋆∥C1,5√

n
.

Using the representation H
(0)
k = J

(1)
k + J

(2)
k +H

(2)
k and Minkowski’s inequality,

E1/2
[
∥
n−1∑
k=1

H
(0)
k ∥2

]
≤ E

[
∥
n−1∑
k=1

J
(1)
k ∥2

]
+ E

[
∥
n−1∑
k=1

J
(2)
k ∥2

]
+ E

[
∥
n−1∑
k=1

H
(2)
k ∥2

]
.
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Applying Lemma 3 with p = 2 and Minkowski’s inequality, we get

n−1/2E1/2
[
∥
n−1∑
k=1

J
(2)
k ∥2

]
≤ n−1/2

n−1∑
k=1

C
(J,2)
3 25/2α

3/2
k ≤ 25/2C

(J,2)
3 φn ,

where the function φn is defined in (3.11). Similarly, it holds that

n−1/2E1/2
[
∥
n−1∑
k=1

H
(2)
k ∥2

]
≤ n−1/2

n−1∑
k=1

25/2C
(H,2)
3 α

3/2
k ≤ 25/2C

(H,2)
3 φn .

Rewrite the sum of J (1)
k :

n−1/2E1/2
[
∥
n−1∑
k=1

J
(1)
k ∥2

]
= n−1/2E1/2

[
∥
n−1∑
k=1

k∑
ℓ=1

αℓGℓ+1:kÃℓJ
(0)
ℓ−1∥

2
]
= n−1/2E1/2

[
∥
n−1∑
ℓ=1

QℓÃℓJ
(0)
ℓ−1∥

2
]
.

Since QℓÃℓJ
(0)
ℓ−1 is a martingale-difference sequence, Lemma 4 and Burkholder’s inequality [34,

Theorem 9.1] imply

n−1/2E1/2
[
∥
n−1∑
ℓ=1

QℓÃℓJ
(0)
ℓ−1∥

2
]
≤ 2n−1/2C4

(n−1∑
ℓ=1

E[∥ÃℓJ
(0)
ℓ−1∥

2]
)1/2 ≤ 2n−1/2CA C4

(n−1∑
ℓ=1

E[∥J (0)
ℓ−1∥

2]
)1/2

.

Now we use Lemma 3 and get:

n−1/2∥E1/2
[n−1∑
k=1

J
(1)
k ∥2

]
≤ 29/2n−1/2CA C4C

(J,0)
3

√√√√c0

n−2∑
ℓ=1

ℓ−γ ≤
29/2CA C4C

(J,0)
3

√
c0√

1− γ
n−γ/2 .

Combining the above bounds with E[∥W∥2] = d we obtain:

E
[
∥W∥∥D∥

]
≤

29/2d1/2CA C4C
(J,0)
3

√
c0∥ε∥∞

nγ/2C
1/2
6

√
1− γ

+ d1/225/2C
−1/2
6 φn(C

(J,2)
3 + C

(H,2)
3 ) +

d1/2∥θ0 − θ⋆∥
C
1/2
6 n1/2

C1,5 ,

(5.11)

To derive a bound for the third term in (5.9), we introduce the following notations:

D
(i)
1 = n−1/2

n−1∑
k=1

(H
(0)
k −H

(0,i)
k ) , D

(i)
2 = n−1/2

n−1∑
k=1

(Γ1:k − Γ
(i)
1:k)(θ0 − θ⋆) .

Hence, one can check that
D −D(i) = Σ−1/2

n (D
(i)
1 +D

(i)
2 ) .

Thus, combining Lemma 4, Lemma 7, Lemma 8 with Minkowski’s inequality, we get

E
[
∥ξi∥∥D −D(i)∥

]
≤ n−1/2C−1

6 ∥ε∥∞C4

(
E1/2

[
∥D(i)

1 ∥2
]
+ E1/2

[
∥D(i)

2 ∥2
])

≤ C−1
6 ∥ε∥∞

(
∥θ0 − θ⋆∥

n
C7

i−1∏
m=1

(1− aαm

2
) +

1

n

√
αiC8

)
.
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Hence, using Lemma 25, we finish the proof:

n−1∑
i=1

E[∥ξi∥∥D −D(i)∥] ≤
∥ε∥∞C4

√
c0

1−γC8

C6nγ/2
+

∥θ0 − θ⋆∥
n

∥ε∥∞C7

C6
(c0 +

2

a(1− γ)
)
(1 + k0)

γ

c0
. (5.12)

The proof follows from (5.10), (5.11), (5.12) by rearranging the terms.

We now state the technical lemmas that we use in the proof of Theorem 3.

Lemma 5. Let p ≥ 2. Assume A1, A 2, A 3(p ∨ log d), A 4. Then, it holds that

E1/p
[
∥
∑n−1

k=0
Γ1:k(θ0 − θ⋆)∥p

]
≤ ∥θ0 − θ⋆∥C1,5 ,

where the constant C1,5 is given in (5.5).

Lemma 6. Let p ≥ 2. Assume A1, A 2, A 3(p ∨ log d), A 4. Then it holds that

λmin(Σn) ≥ C6 , where C6 =
λmin(Σ∞)

2
.

Now we introduce the vector (Z ′
1, . . . , Z

′
n−1) an independent copy of (Z1, . . . , Zn−1), and introduce

the following notation for ℓ ≤ m:

Γ
(i)
ℓ:m =

{
Γℓ:m, if i ̸∈ [ℓ,m],

Γℓ:m(Zℓ, . . . , Zi−1, Z
′
i, Zi+1, . . . , Zm), if i ∈ [ℓ,m] ;

J
(ℓ,i)
k =

{
J
(ℓ)
k , if k < i,

J
(ℓ)
k (Z1, . . . , Zi−1, Z

′
i, Zi+1, . . . , Zk), if k ≥ i ;

H
(ℓ,i)
k =

{
H

(ℓ)
k , if k < i,

H
(ℓ)
k (Z1, . . . , Zi−1, Z

′
i, Zi+1, . . . , Zk), if k ≥ i ;

D(i) = n−1/2Σ−1/2
n

n−1∑
k=1

H
(0,i)
k + n−1/2Σ−1/2

n

n−1∑
k=1

Γ
(i)
1:k(θ0 − θ⋆) .

Here D(i), 1 ≤ i ≤ n − 1, is a counterpart of D with Zi substituted with Z ′
i. In order to control

E[∥D −D(i)∥2], we use the following two auxiliary lemmas.

Lemma 7. Assume A1, A 2, A 3(2 ∨ log d) and A 4. Then it holds that

E1/2
[
∥ 1√

n

n−1∑
k=1

(Γ1:k − Γ
(i)
1:k)(θ0 − θ⋆)∥2

]
≤ ∥θ0 − θ⋆∥√

n
C7

i−1∏
m=1

(1− aαm

2
) ,

where C7 = CA κQe
2(c0 + 2/((1− γ)a)).

Lemma 8. Assume A1, A 2, A 3(2 ∨ log d) and A 4. Then it holds that

n−1/2E1/2
[
∥
n−1∑
k=1

(H
(0)
k −H

(0,i)
k )∥2

]
≤ C8√

n

√
αi ,

where C8 is given by

C8 = κQe
2∥ε∥∞CA

(
c0 +

2

a(1− γ)

)3/2

+ 2CA
√
κQe(C

(J,0)
3 + C

(H,0)
3 )

(
c0 +

2

a(1− γ)

)
.
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Proof of Theorem 3 We first introduce the constant

C3 =
3
√
dC2

2λmin(Σ∞)
. (5.13)

Applying the triangle inequality,

ρConv(
√
n(θ̄n − θ⋆),Σ1/2

∞ η) ≤ ρConv(
√
n(θ̄n − θ⋆),Σ1/2

n ζ) + ρConv(Σ1/2
n ζ,Σ1/2

∞ η) , (5.14)

where η, ζ ∼ N (0, Id). Then the first term in r.h.s. is controlled with Theorem 2, and it remains to
upper bound ρConv(Σ

1/2
∞ η,Σ

1/2
n ζ). Towards this aim, we apply the Gaussian comparison inequality

of [11, Theorem 1.1], see also [3]. Assumption A4 and Lemma 2 imply that

∥Σ−1/2
∞ ΣnΣ

−1/2
∞ − Id∥ ≤ ∥Σ−1

∞ ∥∥Σn − Σ∞∥ ≤ C2

λmin(Σ∞)n1−γ
≤ 1

2
.

On the other hand, the following bound holds:

Tr (Σ−1/2
∞ ΣnΣ

−1/2
∞ − Id)

2 ≤ C2
2d

λ2
min(Σ∞)n2(1−γ)

.

Hence, applying [11, Theorem 1.1], we get

ρConv(Σ1/2
n ζ,Σ1/2

∞ η) ≤ 3C2

2λmin(Σ∞)

√
d

n1−γ
,

and it remains to substitute this bound into (5.14).

5.3 Proofs of Section 4

5.3.1 Preliminary steps for Gaussian approximation under Pb

We first identify the linear (W b) and non-linear (Db) parts of the error decomposition (4.4). We
start from the decomposition

θbk − θk = (I− αkwkAk)(θ
b
k−1 − θk−1)− αk(wk − 1)ε̃k, (5.15)

where we have set
ε̃k = Ak(θk−1 − θ⋆) + εk . (5.16)

To simplify the notation, we omit the bootstrap replication index, which is implicit in the sequel.
Expanding the recurrence above till k = 0, and using the fact that θb0 = θ0, we obtain from (5.15)
that

θbk − θk = −
k∑

ℓ=1

αℓ(wℓ − 1)Γb
ℓ+1:kε̃ℓ .

where we have defined, similarly to (3.4), the product of random matrices

Γb
m:k =

k∏
ℓ=m

(I− αℓwℓAℓ) , m ≤ k , and Γb
m:k = I , m > k . (5.17)
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Proceeding as in (3.7), we consider the decomposition θbk − θk = J
(b,0)
k +H

(b,0)
k , where we have set

J
(b,0)
k = (I− αkAk) J

(b,0)
k−1 − αk(wk − 1)ε̃k , J

(b,0)
0 = 0 , (5.18)

H
(b,0)
k = (I− αkwkAk)H

(b,0)
k−1 − αk(wk − 1)AkJ

(b,0)
k−1 , H

(b,0)
0 = 0 . (5.19)

The idea of the decomposition (D.2)-(D.3) is similar to the one outlined before in (3.7)-(3.8), since
the statistic J

(b,0)
k is linear when considered under Pb (that is, when we consider only the randomness

due to the bootstrap weights (wk)). With the decomposition (D.2)-(D.3), we get by averaging the
iterates

√
n(θ̄bn − θ̄n) =

1√
n

n−1∑
k=1

J
(b,0)
k +

1√
n

n−1∑
k=1

H
(b,0)
k . (5.20)

Unfortunately, the representation (5.20) does not exactly match the one for
√
n(θ̄n − θ⋆) outlined in

(3.19). Indeed, the latter one shows that
√
n(θ̄n−θ⋆) = Σ

1/2
n W+Σ

1/2
n D, and E[Σ1/2

n WW⊤{Σ1/2
n }⊤] =

Σn. At the same time, simple calculations show that

E
[
Varb

[ 1√
n

n−1∑
k=1

J
(b,0)
k,0

]]
̸= Σn .

This issue is due to additional term Aℓ(θℓ−1 − θ⋆) arising in the definition of ε̃k in (5.16). In order
to overcome this problem, we further represent J

(b,0)
k =

∑2
i=0 J

(b,0)
k,i , where

J
(b,0)
k,0 = −

k∑
ℓ=1

αℓ(wℓ − 1)Gℓ+1:kεℓ, J
(b,0)
k,1 = −

k∑
ℓ=1

αℓ(wℓ − 1)(Γℓ+1:k −Gℓ+1:k)εℓ,

J
(b,0)
k,2 = −

k∑
ℓ=1

αℓ(wℓ − 1)Γℓ+1:kAℓ(θℓ−1 − θ⋆),

(5.21)

It is easily seen that
∑n−1

k=1 J
(b,0)
k,0 =

∑n−1
ℓ=1 (wℓ − 1)Qℓεℓ, where (Qℓ) is defined in (3.10), moreover,

Σb
n := Varb

[ 1√
n

n−1∑
k=1

J
(b,0)
k,0

]
=

1

n

n−1∑
ℓ=1

Qℓεℓε
⊤
ℓ Q

⊤
ℓ , and E[Σb

n] = Σn .

Later we show that J
(b,0)
k,i , i = 1, 2 are negligible relative to the leading term J

(b,0)
k,0 . Now we rely on

the "bootstrap-world" decomposition
√
n(θ̄bn − θ̄n) = (Σb

n)
1/2W b + (Σb

n)
1/2Db ,

where we have set

W b = n−1/2(Σb
n)

−1/2
n−1∑
k=1

J
(b,0)
k,0 =:

n−1∑
k=1

ξbk , where ξbk = n−1/2(Σb
n)

−1/2(wk − 1)Qkεk, (5.22)

Db = (Σb
n)

−1/2

(
1√
n

n−1∑
k=1

J
(b,0)
k,1 +

1√
n

n−1∑
k=1

J
(b,0)
k,2 +

1√
n

n−1∑
k=1

H
(b,0)
k

)
. (5.23)
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In this decomposition, W b is the linear part whereas Db is the nonlinear part. With these notations
and preliminary results, we are in a position to provide the proof of Theorem 4. Some proofs of
technical lemmas are postponed to the appendix.

The following decomposition allows us to formalize the structure outlined in the sketch of proof
given in Section 4:

sup
B∈Conv(Rd)

|Pb(
√
n(θ̄bn − θ̄n) ∈ B)− P(

√
n(θ̄n − θ⋆) ∈ B)| ≤ T1 + T2 + T3 ,

where

T1 := sup
B∈Conv(Rd)

∣∣P(√n(θ̄n − θ⋆) ∈ B
)
− P(Σ1/2

n η ∈ B)
∣∣ ,

T2 := sup
B∈Conv(Rd)

∣∣P(Σ1/2
n η ∈ B)− Pb((Σb

n)
1/2η ∈ B)

∣∣ ,
T3 := sup

B∈Conv(Rd)

∣∣Pb(
√
n(θ̄bn − θ̄n) ∈ B)− Pb((Σb

n)
1/2η ∈ B)

∣∣ ,
and η ∼ N (0, I) under P and Pb. Our next objective is to obtain bounds on these three terms.
For the term T1, it suffices to apply Theorem 2. Consider now T2. In this case, we are comparing
two centered Gaussian distributions that differ in their covariance matrices. We begin by applying
Pinsker’s inequality to bound the total variation distance, which itself serves as an upper bound for
the convex distance, using [11, Theorem 1.1]:

∥N (0,Σ1)−N (0,Σ2)∥TV ≤ 3
√
d

2
∥Σ−1/2

1 Σ2Σ
−1/2
1 − I∥ .

Applying the inequality above yields

T2 ≤
3
√
d

2λmin(Σn)
∥Σb

n − Σn∥.

Bounding T2 therefore boils down to obtain a high-probability bound for ∥Σb
n − Σn∥. Such bound

follow from the matrix Bernstein inequalities, developed in [51]. Detailed argument is given below.
The main technical challenge arises in controlling the term T3, which requires decomposing the

quantity H
(b,0)
k in a manner analogous to the decomposition in (5.1). It is worth noting, however,

that once again, the quantities introduced and the method used to derive the bounds are markedly
different than the ones used in Section 5.1. Along the lines of (5.2), we expand H

(b,0)
k as follows:

θbk − θk = Jb,0
k +

L∑
j=1

Jb,j
k +Hb,L

k , (5.24)

where

J
(b,0)
k = −

k∑
ℓ=1

αℓ(wℓ − 1)Γℓ+1:kε̃ℓ, J
(b,j)
k = −

k∑
ℓ=1

αℓ(wℓ − 1)Γℓ+1:kAℓJ
(b,j−1)
ℓ−1 , j ∈ [1, L]

H
(b,L)
k = −

k∑
ℓ=n+1

αℓ(wℓ − 1)Γb
ℓ+1:kAℓJ

(b,L)
ℓ−1 ,

(5.25)
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Similar to Section 5.1, we will establish upper bounds on the p-th moments under Pb of J
(b,j)
k ,

H
(b,j)
k , j ∈ [0;L] and ε̃ℓ. However, the proofs differ significantly from the previous case, which relied

heavily on the exponential stability of products of random matrices Γm:k (see Lemma 1). The proof
strategy consists of two steps. First, we define certain events in the ’original world’ under which the
various quantities of interest can be controlled. Second, we show that these events occur with high
probability—specifically, of order 1− ι/n, for an appropriately chosen ι > 0. We define first:

Ω1 =
n−1⋂
k=1

{
∥θk − θ⋆∥ ≤ g(k, ∥θ0 − θ⋆∥, n)

}
,

where we have set

g(k, t, n) =
√
κQe

2t
k∏

ℓ=1

(1− a

2
αℓ) + 2e log(5n)C2

√
αk .

Applying Proposition 2 with for 2 ≤ p ≤ log(5n2) and then Lemma 24, we get that for every fixed
k ∈ [1;n− 1],

P (∥θk − θ⋆∥ ≥ g(k, ∥θ0 − θ⋆∥, n)) ≤ 1

5n2
.

By the union bound, we obtain that P(Ω1) ≥ 1− 1/(5n). We may show that

Lemma 9. Under the assumptions of Theorem 4, on the event Ω1, it holds for any ℓ ≥ 1 that

∥ε̃ℓ∥ ≤ C9, where C9 = ∥ε∥∞ + 2eCA C2 +
√
κQe

3CA ∥θ0 − θ⋆∥ .

Similarly, we introduce the following event

Ω2 =
⋂

1≤m≤k≤n

{
∥Γm:k∥ ≤ C1

k∏
j=m

(
1− aαj

2

)}
.

Using the exponential stability of Γm:k (see Lemma 1) with p = log(5n3) and Lemma 24, we get
that with probability at least 1− 1/(5n3),

∥Γm:k∥ ≤ C1

k∏
ℓ=m

(
1− aαℓ

2

)
≤ C1 exp

{
−a

2

k∑
ℓ=m

αℓ

}
where C1 =

√
κQe

2 .

By the union bound, we get P(Ω2) ≥ 1− 1/(5n). It is also required to consider

Ω3 =

n⋂
ℓ=1

{
∥αℓ

n−1∑
k=ℓ

(Γℓ+1:k −Gℓ+1:k)εℓ∥ ≤ C17
√
αℓ log(5n)

}
,

Here again, we may show that P(Ω3) ≥ 1− 1/(5n). A detailed proof is given in Lemma 13. On the
event

⋂3
i=1Ωi, we derive below bounds for Jb,0

k,i , i = 1, 2, defined in (5.21).

Lemma 10. Under the assumptions of Theorem 4, on the event Ω3, it holds that

{
Eb
[
∥n−1/2

∑n−1

k=1
Jb,0
k,1∥

2
]}1/2 ≤ C10

log (5n)

nγ/2
, where C10 =

∥ε∥∞
√
c0C17√

1− γ
.
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Lemma 11. Under the assumptions of Theorem 4, on the event Ω1 ∩ Ω2, it holds{
Eb
[
∥n−1/2

∑n−1

k=1
Jb,0
k,2∥

2
]}1/2 ≤ C11,1 log(5n)

nγ/2
+

C11,2(1 + k0)
γ/2∥θ0 − θ⋆∥√
n

,

where we have defined

C11,1 =
√
2CA C1e

(
c0 +

2

a(1− γ)

)
C2

√
c0√

1− γ
, C11,2 = 2

√
2c

−1/2
0 CA C1κ

1/2
Q e2

(
c0 +

2

a(1− γ)

)3/2
.

We introduce an additional event, which is essential for establishing exponential stability of the
bootstrap world random matrix product Γb

m:k defined in (5.17).

Ω4 =
n⋂

h=1

n−h−1⋂
m=0

{
∥

m+h∑
ℓ=m+1

αℓ(Aℓ − Ā)∥ ≤ 2CA

{ m+h∑
ℓ=m+1

α2
ℓ

}1/2
log
(
10n3d

)}
, (5.26)

Here again, we may show that P(Ω4) ≥ 1− 1/(5n). The proof is a straightforward application of
matrix Bernstein inequality; details are given in Lemma 14.

Under the event Ω1 ∩ Ω2 ∩ Ω4, we can provide bounds to the terms appearing in the expansion
of H(b,0)

j , given in (5.25).

Lemma 12. Under the assumptions of Theorem 4, on the event Ω1 ∩ Ω2 ∩ Ω4, for j, L ∈ {0, 1, 2} it
holds that

{Eb[∥Jb,j
k ∥2]}1/2 ≤ C

(b,J,j)
12,1 α

(j+1)/2
k , {Eb[∥Hb,L

k ∥2]}1/2 ≤ C
(b,H,L)
12,1 α

(L+1)/2
k .

where C
(b,J,j)
12,1 , C(b,H,L)

12,1 satisfy the recurrence

C
(b,J,0)
12,1 =

2
√
3C9C1√
a

, C
(b,J,j)
12,1 =

2
√
3√
a
C
(b,J,j−1)
12,1 CA C1 , C

(b,H,L)
12,1 =

4
√
3√
a
C
(b,J,L)
12,1 CA C3 .

We may now proceed to the proof of the theorem.

Proof of Theorem 4. We start with T2. We first show that the bootstrap word covariance Σb
n

approximates Σn. More precisely, set C15 = 2∥ε∥2∞C2
4 and consider the event

Ω5 =
{
∥Σb

n − Σn∥ ≤
√
2C15

√
log (10dn)√
n

+
C15 log (10dn)

3n

}
,

It is shown in Lemma 15 that P(Ω5) ≥ 1− 1/5n and in Lemma 16, that λmin(Σn) ≥ λmin(Σ∞)/2.
Combining these two results, we then get that on the event Ω5,

T2 ≤
3
√
d

2λmin(Σn)

(√
2C15

√
log (10dn)√
n

+
C15 log (10dn)

3n

)
Finally, we consider T3. As emphasized in the preliminaries of the proof, we again invoke the
approach of [44], where W b (defined in (5.22)) plays the role of the linear term and Db (defined in
(5.23)) that of the nonlinear remainder. [44, Theorem 2.1] shows that

T3 ≤ 259d1/2Υb + 2Eb[∥W b∥∥Db∥] + 2
n∑

ℓ=1

Eb[∥ξbℓ ∥∥Db −Db,ℓ∥], (5.27)
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where Υb =
∑n−1

i=1 E[∥ξbi ∥3], and ξbℓ is defined in (5.22). It follows Lemma 4 and Lemma 16 that

∥ξbℓ ∥ ≤ n−1/2{λmin(Σ
b
n)}−1/2|wℓ − 1|∥Qℓ∥∥ε∥∞ ≤ |wℓ − 1|∥ε∥∞C4/(

√
C16

√
n).

Since by construction Eb[∥W b∥2] =
∑n

ℓ=1 Eb[∥ξbℓ ∥2] = d and Eb[|wℓ − 1|3] = m3 for all ℓ, we get:

Υb ≤ m3∥ε∥∞C4√
n
√
C16

n−1∑
i=1

Eb[∥ξbℓ ∥2] ≤
d√
n

m3∥ε∥∞C4√
C16

.

To proceed with the second term in (5.27), first note that

Eb
[
∥W b∥∥Db∥

]
≤ {Eb

[
∥W b∥2

]
}1/2{Eb

[
∥Db∥2

]
}1/2 = d1/2{Eb

[
∥Db∥2

]
}1/2 .

We use the expression of Db given in (5.23) and further expand H
(b,0)
k =

∑2
j=1 J

(b,j)
k +H

(b,2)
k , using

(5.24) with L = 2. Lemmas 10 and 11 provide bounds for
{
Eb
[
∥n−1/2

∑n−1
k=1 J

b,0
k,j ∥

2
]}1/2, j = 1, 2.

Lemma 18 give the bound for
{
Eb
[
∥ 1√

n

∑n−1
k=1 J

b,1
k ∥2

]}1/2. Finally, Lemma 12 show that

{
Eb
[
∥ 1√

n

n−1∑
k=1

Jb,2
k ∥2

]}1/2 ≤ 1√
n

n−1∑
k=1

C
(b,J,2)
12,1 α

3/2
k ≤ C

(b,J,2)
12,1 φn ,

{
Eb
[
∥ 1√

n

n−1∑
k=1

Hb,2
k ∥2

]}1/2 ≤ 1√
n

n−1∑
k=1

C
(b,H,2)
12,1 α

3/2
k ≤ C

(b,H,2)
12,1 φn .

By combining the inequalities above, we obtain

Eb
[
∥W b∥∥Db∥

]
≤ d1/2 log(5n)

nγ/2C
1/2
16

(C10 + C11,1 + C18)

+
d1/2(1 + k0)

γ/2∥θ0 − θ⋆∥C11,2

n1/2C
1/2
16

+
d1/2

C
1/2
16

(C
(b,J,2)
12,1 + C

(b,H,2)
12,1 )φn .

Cauchy-Schwarz inequality and Lemma 20 imply the bound for the third term in (5.27):

Eb[∥ξbi ∥∥Db −Db,i∥] ≤ {Eb[∥ξbi ∥2]}1/2{Eb[∥Db −Db,i∥2]}1/2 ≤ 1

n

1√
C16

C4∥ε∥∞
√
αi log(5n)C20 .

Thus, it holds that

n−1∑
i=1

Eb[∥ξbi ∥∥Db −Db,i∥] ≤ n−γ/2 log(n)
1√
C16

C4∥ε∥∞
√
c0

1− γ/2
C20,1

+ n−γ ∥θ0 − θ⋆∥√
C16

C4∥ε∥∞
c0

1− γ/2
C20,2 .

By collecting the inequalities derived above, we ultimately obtain the final bound.

T3 ≤ C4,1
log(5n)

nγ/2
+ C4,2

(1 + k0)
γ/2

nγ/2
+ C4,3φn + C4,4

1√
n
+ C4,5

1

nγ
,
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where the constants C4,1, C4,2, C4,3, are given by:

C4,1 = 2d1/2C
−1/2
16 (C10 + C11,1 + C18) + 2C

−1/2
16 C4∥ε∥∞

√
c0

1− γ/2
C20 , C4,2 = 2d1/2C

−1/2
16 C11,2 ,

C4,3 = 2d1/2C
−1/2
16 (C

(b,J,2)
12,1 + C

(b,H,2)
12,1 ) , C4,4 = 259m3C

−1/2
16 d3/2∥ε∥∞C4 , C4,5 =

2√
C16

C4∥ε∥∞
c0

1− γ/2
C20,2 .

Rearranging the terms above yields the statement with the expressions ∆4,1 to ∆4,4 and C4 given by

C4 = C2,4 +
2√
C16

C4∥ε∥∞
c0

1− γ/2
C20,2 , (5.28)

∆4,1 = C2,1 +
3
√
2
√
dC15

√
log (10dn)

2C6
+ C4,4 ,

∆4,2 = C2,2 + C4,1 log(5n) + C4,2(1 + k0)
γ/2 ,

∆4,3 = C2,3 + C4,3 ,

∆4,4 =
3
√
dC15 log (10dn)

6C6
.

Lemma 13. Under the assumptions of Theorem 4, P(Ω3) ≥ 1− 1/(5n)

Proof. The proof follows from Lemma 17 and union bound.

Lemma 14. Under the assumptions of Theorem 4, P(Ω4) ≥ 1− 1/(5n)

Proof. To show that P(Ω4) ≥ 1− 1/(5n), we fix h ∈ [1, n] and m ∈ [0, n− h− 1], and define the
random variable

Tn = ∥
m+h∑

ℓ=m+1

αℓ(Aℓ − Ā)∥.

We first control its variance. By standard matrix inequalities, we have:

max

(
∥

m+h∑
ℓ=m+1

α2
ℓ E
[
(Aℓ − Ā)(Aℓ − Ā)⊤

]
∥, ∥

m+h∑
ℓ=m+1

α2
ℓ E
[
(Aℓ − Ā)⊤(Aℓ − Ā)

]
∥

)
≤ C2

A

m+h∑
ℓ=m+1

α2
ℓ ,

and note that for each ℓ, the operator norm satisfies ∥(Aℓ − Ā)(Aℓ − Ā)⊤∥ ≤ C2
A. Applying the

matrix Bernstein inequality [51], we obtain that with probability at least 1− δ/n2,

Tn ≤ CA

√√√√2

m+h∑
ℓ=m+1

α2
ℓ log

(
2n2d

δ

)
+

αm+1CA

3
log

(
2n2d

δ

)
.

The remainder of the proof follows by setting δ = 1/(5n) and applying a union bound over all valid
pairs (h,m), along with the inequality ∥B∥2Q ≤ κQ∥B∥2, which holds for any matrix B ∈ Rd×d.

Lemma 15. Under the assumption of Theorem 4, P(Ω5) ≥ 1− 1/(5n), where C15 = 2∥ε∥2∞C2
4.
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Proof. Introduce a random matrix Uℓ = Qℓ(εℓε
⊤
ℓ − Σε)Q

⊤
ℓ . Note that E [Uℓ] = 0 and Σb

n − Σn =
1
n

∑n−1
ℓ=1 Uℓ. Moreover, Lemma 4, A1, and A2 imply that

∥Uℓ∥ ≤ (∥ε∥2∞ + ∥Σε∥)C2
4 ≤ 2∥ε∥2∞C2

4 = C15 .

Hence, the matrix Bernstein inequality [51, Theorem 6.1.1] implies

P
(
∥Σb

n − Σn∥ ≥ t
)
= P

(
∥
n−1∑
ℓ=1

Uℓ∥ ≥ nt
)
≤ 2d exp

(
− nt2

2C2
15 + 2C15t/3

)
.

Equivalently (see e.g. [7, Theorem 2.10]), with probability at least 1− δ, it holds that

∥Σb
n − Σn∥ ≤

√
2C15

√
log (2d/δ)√
n

+
C15 log (2d/δ)

3n
.

To complete the proof it remains to take δ = 1/(5n).

Lemma 16. Under the assumption of Theorem 4, on the event Ω5 it holds that

λmin(Σ
b
n) ≥ C16 , where C16 =

λmin(Σ∞)

4
.

Proof. Using Lidskii’s inequality for Hermitian matrices, we get that

λmin(Σ
b
n) ≥ λmin(Σn) + λmin(Σ

b
n − Σn) ≥ λmin(Σn)− ∥Σb

n − Σn∥.

Hence, on the event Ω5, we get that

λmin(Σ
b
n) ≥ λmin(Σn)−

(√
2C15

√
log (10dn)√
n

+
C15 log (10dn)

3n

)
.

Under A5, the sample size n is chosen large enough so that

λmin(Σ
b
n) ≥ λmin(Σn)− λmin(Σ∞)/4.

From (3.21), using again Lidskii’s inequality this time with Σn and Σ∞, we know that under A3,
λmin(Σn) ≥ λmin(Σ∞)/2. The proof follows.

Lemma 17. Under the assumptions of Theorem 4, For each ℓ ∈ {1, . . . , n− 1}, it holds that

P
(
∥αℓ

n−1∑
k=ℓ

(Γℓ+1:k −Gℓ+1:k)εℓ∥ ≥ log(5n)C17
√
αℓ

)
≤ 1

5n2
.

where we have defined

C17 = 2(
√
8/

√
7)e2CA ∥ε∥∞C4κ

1/2
Q

(
c0 +

2

a(1− γ)

)1/2

.
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Lemma 18. Under the assumptions of Theorem 4, conditionally on the event Ω0, it holds

{
Eb
[
∥ 1√

n

n−1∑
k=1

Jb,1
k ∥2

]}1/2 ≤ C18

nγ/2
,

where the constant C18 is defined as follows

C18 =
2
√
3√
a

CA

(
c0 +

2

a(1− γ)

)√ c0
1− γ

C1C9 .

Let w′
i be a copy of wi independent from w1, . . . , wn−1. Introduce the following notation for ℓ ≤ m:

Γb,i
ℓ:m =

{
Γb
ℓ:m, if i ̸∈ [ℓ,m],

Γb
ℓ:m(wℓ, . . . , wi−1, w

′
i, wi+1, . . . , wm), if i ∈ [ℓ,m]

J
(b,ℓ,i)
k,m =

{
J
(b,ℓ)
k,m , if k < i,

J
(b,ℓ)
k,m (w1, . . . , wi−1, w

′
i, wi+1, . . . , wk), if k ≥ i

H
(b,ℓ,i)
k =

{
H

(b,ℓ)
k , if k < i,

H
(b,ℓ)
k (w1, . . . , wi−1, w

′
i, wi+1, . . . , wk), if k ≥ i

Db,i =
1√
n

n−1∑
k=1

J
(b,0,i)
k,1 +

1√
n

n−1∑
k=1

J
(b,0,i)
k,2 +

1√
n

n−1∑
k=1

H
(b,0,i)
k

For simplicity we introduce the following constants:

C
(1)
5.29 = c0 +

16

a(1− γ)
, C

(2)
5.29 =

1

1− ac0
(1 +

16

ac0(1− γ)
) . (5.29)

Lemma 19. Under the assumptions of Theorem 4, let w′
i be a copy of wi independent from

w1, w2, . . . , wn−1. Then on the event Ω0 it holds that

{
Eb
[
∥ 1√

n

n−1∑
k=1

H
(b,0)
k − 1√

n

n−1∑
k=1

H
(b,0,i)
k ∥2

]}1/2 ≤ n−1/2√αiC19

where the constant C19 is given by

C19 = CA C3(C
(b,J,0)
12,1 + C

(b,H,0)
12,1 )C

(1)
5.29 +CA(C

(1)
5.29)

3/2C3C1C9 .

Lemma 20. Under the assumptions of Theorem 4, conditionally on Ω0, it holds that

{Eb[∥Db −Db,i∥2]}1/2 ≤ 1√
n

√
αi log(5n)C20,1 + C20,2

αi∥θ0 − θ⋆∥√
n

,

where the constant C20 is given by

C20,1 =
2
√
2C17√
C16

+
C19√
C16

+
2
√
2eC1CA κ

1/2
Q ∥ε∥∞C

(1)
5.29√

C16
, C20,2 =

√
2κ

1/2
Q e2C1CA C

(2)
5.29√

C16(1− a/2)2
.
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5.4 Proofs on products of random matrices

We first introduce some notations and definitions. For a matrix B ∈ Rd×d we denote by (σℓ(B))dℓ=1

its singular values. For q ≥ 1, the Shatten q-norm of B is denoted by ∥B∥q = {
∑d

ℓ=1 σ
q
ℓ (B)}1/q. For

q, p ≥ 1 and a random matrix X we write ∥X∥q,p = {E[∥X∥pq ]}1/p. We use a result of [22], sharpened
in [12].

Lemma 21 (Proposition 15 in [12]). Let {Yℓ}ℓ∈N be an independent sequence and P be a positive
definite matrix. Assume that for each ℓ ∈ N there exist mℓ ∈ (0, 1) and σℓ > 0 such that ∥E[Yℓ]∥2P ≤
1 −mℓ and ∥Yℓ − E[Yℓ]∥P ≤ σℓ almost surely. Define Zk =

∏k
ℓ=0Yℓ = YkZk−1, for k ≥ 1 and

starting from Z0. Then, for any 2 ≤ q ≤ p and k ≥ 1,

∥Zk∥2p,q ≤ κP

k∏
ℓ=1

(1−mℓ + (p− 1)σ2
ℓ )∥P 1/2Z0P

−1/2∥2p,q , (5.30)

where κP = λ−1
min(P )λmax(P ).

Now we aim to bound Γm:k defined in (3.4) using Lemma 21. Set Yℓ = I − αℓAℓ, ℓ ≥ 1, and
Y0 = I. Applying the bound (3.3), we get ∥E[Yℓ]∥2Q = ∥I− αℓĀ∥2Q ≤ 1− aαℓ. Further, assumption
A2 implies that almost surely,

∥Yℓ − E[Yℓ]∥Q = αℓ∥Aℓ − Ā∥Q ≤ αℓ
√
κQCA = bQαℓ .

Therefore, (5.30) holds with mℓ = aαℓ and σℓ = bQαℓ. As ∥I∥p = d1/p, we obtain the following
corollary.

Corollary 2. Assume A 1 and A 2. Then, for any αℓ ∈ [0, α∞], 2 ≤ q ≤ p, and 1 ≤ m ≤ k, it holds

E1/q [∥Γm:k∥q] ≤ ∥Γm:k∥p,q ≤
√
κQd

1/p
k∏

ℓ=m

(1− aαℓ + (p− 1)b2Qα
2
ℓ ) ,

where α∞ was defined in (3.2), and bQ =
√
κQCA.

Proposition 3. Assume A 1, A 2, A 3(log(5n2) ∨ log d), A 4, A 5. Then on the set Ω4 defined in
(5.26), it holds for any 0 ≤ m ≤ k ≤ n, that

{
Eb[∥Γb

m+1:k∥2]
}1/2 ≤ C3 exp

{
−a

4

k∑
ℓ=m+1

αℓ

}
, C3 = κ

3/2
Q e9/8 .

Lemma 22. Assume A 1, A 2, A 3(log(5n2) ∨ log d), A 4, A 5. Then on the event Ω4, defined in
(5.26), with h = h(n) defined in (4.3), it holds for any m ∈ [0;n− h− 1], that

{
Eb[∥Γb

m+1:m+h∥2Q]
}1/2 ≤ exp

{
−a

4

m+h∑
ℓ=m+1

αℓ

}
,

where Γb
m+1:m+h is defined in (5.17).
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5.5 Proof of Lemma 2

Before proceeding with the actual proof, we introduce a decomposition of Σn − Σ∞ that forms the
backbone of the argument. This decomposition is built upon non-trivial identities involving both
Qt − Ā−1 and the cumulative sum

∑n−1
t=1 (Qt − Ā−1), as outlined and established in [54, pp. 26–30].

Qt − Ā−1 = St − Ā−1Gt:n, St =
n−1∑

j=t+1

(αt − αj)Gt+1:j−1 (5.31)

n−1∑
t=1

(Qt − Ā−1) = −Ā−1
n−1∑
j=1

G1:j (5.32)

In the following, we will require a bound on the operator norm of the matrix St, which is provided
below:

Lemma 23. Assume A1 to 3 with p = 2 ∨ log(d). Let c0 ∈ (0, α∞] and t ∈ N. Then

∥St∥ ≤ √
κQC23(t+ k0)

γ−1 ,

where C23 is given by

C23 =
c0

1− γ
exp

(
ac0 +

ac0
2(1− γ)

)(
ac0

2(1− γ)

)− 1
1−γ
(
max{1, ϕ(xγ)}

(ac0
2

+ xγ

)
+

∫ ∞

xγ

ϕ(x)

)
,

and xγ = γ
1−γ , ϕ(x) = x

γ
1−γ exp(−x).

Since Σ∞ = Ā−1ΣεĀ
−⊤, elementary manipulations with Σn − Σ∞ imply the following equality:

Σn − Σ∞ =
1

n

n−1∑
t=1

(Qt − Ā−1)ΣεĀ
−⊤ +

1

n

n−1∑
t=1

Ā−1Σε(Qt − Ā−1)⊤︸ ︷︷ ︸
D1

+
1

n

n−1∑
t=1

(Qt − Ā−1)Σε(Qt − Ā−1)⊤︸ ︷︷ ︸
D2

− 1

n
Σ∞ (5.33)

The decomposition (5.33) is crucial to obtain the convergence rate of Σn −Σ∞. The proof would
follow from estimating D1 and D2 separately by expressions of order nγ−1. For simplicity, we
introduce the following notation:

g
(γ)
k:m =

m∑
ℓ=k

(ℓ+ k0)
−γ , k ≤ m .

Proof of Lemma 2. We first provide an expression for the constant C2:

C2 = ∥Σ∞∥ +
21+γ∥Σ∞∥√κQC4

c0
+

∥Σε∥κQ (C23)
2

2γ − 1
+

2γκQ∥Σ∞∥
ac0 − (ac0/2)2

+
4κQ∥ĀΣ∞∥C23

ac0
. (5.34)
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Using (5.33), we get

∥Σn − Σ∞∥ ≤ 1

n
∥Σ∞∥ + ∥D1∥ + ∥D2∥ .

We first bound D1. The operator norms of both terms are equal because one is a transposed version
of another, so it is sufficient to bound only one of them. Note that Gn:m, Qt, Ā, Ā−1 commute as
polynomials in Ā. Now we use (5.32) and obtain

∥ 1
n

n−1∑
t=1

(Qt − Ā−1)ΣεĀ
−⊤∥ = ∥ − 1

n
Ā−1

n−1∑
j=1

G1:jΣεĀ
−⊤∥ = ∥n−1Σ∞

n−1∑
j=1

G1:j∥ ≤ n−1∥Σ∞∥∥
n−1∑
j=1

G1:j∥ .

Lemma 4 directly implies the bound for D1:

1

n
∥
n−1∑
t=1

(Qt − Ā−1)ΣεĀ
−⊤∥ ≤

∥Σ∞∥∥
∑n−1

j=1 G1:j∥
n

≤
∥Σ∞∥√κQC4(1 + k0)

γ

nc0
≤

2γnγ−1∥Σ∞∥√κQC4

c0
.

Hence,

∥D1∥ ≤
21+γnγ−1∥Σ∞∥√κQC4

c0
. (5.35)

We now consider D2. Using (5.31), we get

n−1
n−1∑
t=1

(Qt − Ā−1)Σε(Qt − Ā−1)⊤ = n−1
n−1∑
t=1

StΣεS
⊤
t︸ ︷︷ ︸

D21

+n−1
n−1∑
t=1

Ā−1
n−1∏
k=t

(I− αkĀ)ΣεĀ
−⊤

n−1∏
k=t

(I− αkĀ)⊤︸ ︷︷ ︸
D22

− n−1
n−1∑
t=1

Ā−1
n−1∏
k=t

(I− αkĀ)ΣεS
⊤
t︸ ︷︷ ︸

D23

−n−1
n−1∑
t=1

StΣεĀ
−⊤

n−1∏
k=t

(I− αkĀ)⊤︸ ︷︷ ︸
D24

.

Lemma 23 reveal an evident bound for ∥D21∥:

∥D21∥ = ∥n−1
n−1∑
t=1

StΣεS
⊤
t ∥ ≤ n−1∥Σε∥

n−1∑
t=1

κQ (C23)
2 t2(γ−1) ≤ n2(γ−1) ∥Σε∥κQ (C23)

2

2γ − 1
. (5.36)

Note that

n−1∑
t=1

∥Gt:n−1∥2 ≤ κQ

n−1∑
t=1

n−1∏
k=t

(1− ac0
2

(k + k0)
−γ)2 ≤ κQ

n−1∑
t=1

(1− ac0
2

(n− 1 + k0)
−γ)n−t ,

The bound for ∥D22∥ follows from the above inequality:

∥D22∥ ≤ n−1∥Σ∞∥
n−1∑
t=1

∥Gt:n−1∥2 ≤ n−1 κQ∥Σ∞∥
ac0(n+ k0)−γ − (ac0/2)2(n+ k0)−2γ

≤ nγ−1 2γκQ∥Σ∞∥
ac0 − (ac0/2)2

.

(5.37)
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Since D23 = D⊤
24, we concentrate on ∥D24∥. Lemma 23 and Lemma 25-i imply the following bound:

∥D24∥ = ∥n−1
n−1∑
t=1

StΣεĀ
−⊤

n−1∏
k=t

(I− αkĀ)⊤∥ ≤ n−1∥ΣεĀ
−⊤∥

n−1∑
t=1

∥St∥∥
n−1∏
k=t

(I− αkĀ)⊤∥

≤ n−1∥ĀΣ∞∥
n−1∑
t=1

√
κQ(t+ k0)

γ−1C23
√
κQ

n−1∏
k=t+1

(1− ac0
2

(k + k0)
−γ) ≤ n2(γ−1) 2κQ∥ĀΣ∞∥C23

ac0
.

Hence,

∥D23∥ + ∥D24∥ ≤ n2(γ−1) 4κQ∥ĀΣ∞∥C23

ac0
. (5.38)

The needed result follows from (5.35), (5.36), (5.37), (5.38).

5.6 Technical Lemmas

Lemma 24 (Lemma 1 in [41]). Fix δ ∈ (0, 1/e2) and let Y be a positive random variable, such that
E1/p[Y p] ≤ C1 + C2p for any 2 ≤ p ≤ log (1/δ). Then it holds with probability at least 1− δ, that

Y ≤ eC1 + eC2 log (1/δ) .

Lemma 25. The following statement holds:

(i) Let b > 0 and (αk)k≥0 be a non-increasing sequence such that α0 ≤ 1/b. Then

k∑
j=1

αj

k∏
l=j+1

(1− αlb) =
1

b

{
1−

k∏
l=1

(1− αlb)

}
.

(ii) Let b > 0 and αk = c0
(k+k0)γ

, γ ∈ (0, 1), such that c0 ≤ 1/b and k1−γ
0 ≥ 8γ

bc0
. Then for any

q ∈ (1, 4] it holds that

k∑
j=1

αq
j

k∏
ℓ=j+1

(1− αℓb) ≤
6

b
αq−1
k .

(iii) Let b, c0, k0 > 0 and αℓ = c0(ℓ+ k0)
−γ for γ ∈ (1/2, 1) and ℓ ∈ N. Assume that bc0 < 1 and

k1−γ
0 ≥ 1

bc0
. Then, for any ℓ, n ∈ N, ℓ ≤ n, it holds that

n−1∑
k=ℓ

αℓ

k∏
j=ℓ+1

(1− bαj) ≤ c0 +
1

b(1− γ)
.

Proof. Lemma 25-i follows from Lemma 24 in [14]. Lemma 25-ii follows from Lemma 33 in [42]. (iii)
is elementary.

Lemma 26 (Lemma 36 in [42]). For any A > 0, any 1 ≤ i ≤ n− 1, and γ ∈ (1/2, 1) it holds

n−1∑
j=i

exp

{
−A(j1−γ − i1−γ)

}
≤

{
1 + exp

{
1

1−γ

}
1

A1/(1−γ)(1−γ)
Γ( 1

1−γ ) , if Ai1−γ ≤ 1
1−γ ;

1 + 1
A(1−γ)2

iγ , if Ai1−γ > 1
1−γ .
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6 Conclusion

In this paper, we have obtained a novel bound for the Gaussian approximation of the distribution
of the Polyak–Ruppert averaged LSA iterates in the sense of convex distance. Compared to the
previous analysis established in [41], the fastest achievable rate of normal approximation has been
improved from n−1/4 to n−1/3. We also derived a bootstrap-based approximation for the distribution√
n(θ̄n − θ⋆) with an error of order up to 1/

√
n. Importantly, this result does not rely on the

Gaussian approximation with the limiting covariance matrix Σ∞. Among further directions, we list
the generalization of the randomized concentration approach of [44] to the Markov setting, which
enables the analysis of stochastic approximation problems with Markov noise. Current approaches
[47, 55, 42] rely on versions of the Berry–Esseen inequalities for martingales, which require additional
step size constraints and introduce extra log n factors. Another research direction would be to tighten
the lower bound (3.23) in the regime where the step size exponent γ ∈ (1/2, 2/3). Establishing a
counterpart of (3.23) with the term n−γ/2 would imply the optimality of the rate n−1/3 in Theorem 3.
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A Definitions of integral probability metrics

In this section we closely follow the exposition outlined in [19]. Consider two Rd-valued random
variables X and Y . The integral probability metric [56], associated with a class of test functions
H = {h : Rd → R : E[|h(X)|] < ∞,E[|h(Y )|] < ∞}, is defined as

dH(X,Y ) = sup
h∈H

∣∣E[h(X)]− E[h(Y )]
∣∣ .

Different choices of the function class H induce different probability metrics. We consider the
following important examples:

HK = {1(−∞,u1]×···×(−∞,ud], u = (u1, . . . , ud) ∈ Rd}
HConv = {1B, B ∈ Conv(Rd)}

HW = {h : Rd → R, ∥h∥Lip ≤ 1}
H[m] = {h : Rd → R, h ∈ Cm−1(Rd) with |h|j ≤ 1 for 1 ≤ j ≤ m} ,

where Conv(Rd) denotes the collection of all convex subsets of Rd, ∥h∥Lip = supx̸=y
∥h(x)−h(y)∥

∥x−y∥ is
the Lipschitz constant, Cm−1(Rd) represents the space of (m− 1)-times continuously differentiable
functions, and the seminorm |h|j is defined as

|h|j = max
i1,...,ij∈{1,...,d}

∥ ∂jh

∂ui1 · · · ∂uij
∥∞ .

Thus, for each m ∈ N, the function class H[m] consists of functions whose partial derivatives up to
order m are uniformly bounded.

These function classes generate well-established probability metrics in the literature. The class
HK induces the classical Kolmogorov metric between distributions [56], while HConv generates the
convex distance ρConv defined for a pair of probability measures µ, ν on Rd as

ρConv(µ, ν) = sup
B∈Conv(Rd)

|µ(B)− ν(B)| ,

which is the primary focus of this paper. The class HW yields the Wasserstein-1 distance, and the
classes H[m] define the smoothed Wasserstein metrics of order m. We denote the corresponding
metrics as dK , ρConv, dW , and d[m], respectively.

An important hierarchy exists among these metrics: for any pair of random vectors X and Y ,
we have

dK(X,Y ) ≤ ρConv(X,Y ),

since every rectangular set is convex, implying HK ⊂ HConv.Other relations among these metrics
are substantially more intricate. For instance, when Y is a multivariate normal vector, it is
well-established (see, e.g., [33]) that

ρConv(X,Y ) ≤ C
√
dW (X,Y ) ,

where the constant C depends explicitly on the covariance matrix of the vector Y . This inequality
serves as the theoretical basis for comparing the bounds provided in Theorem 3 with the results
obtained in [47].
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B Proofs of Section 3.1

Proof of Lemma 1. Note that A3(p ∨ log d) implies for all ℓ that

1− aαℓ + (p− 1)b2Qα
2
ℓ ≤ 1− aαℓ

2
.

To finish the proof we combine the latter inequality with Corollary 2.

Proof of Proposition 2. Using the decomposition (3.5), we obtain that, with p ≥ 2, it holds

E1/p[∥θk − θ⋆∥p] ≤ E1/p[∥Γ1:k{θ0 − θ⋆}∥p] + E1/p[∥
k∑

j=1

αjΓj+1:kεj∥p] , (B.1)

and we bound both terms separately. Applying Lemma 1, we get for 2 ≤ p ≤ log (5n2):

E1/p[∥Γ1:k{θ0 − θ⋆}∥p] ≤ √
κQe∥θ0 − θ⋆∥

k∏
ℓ=1

(1− a

2
αℓ) .

Now we proceed with the second term in (B.1). Applying Burholder’s inequality [34, Theorem 8.6],
we obtain that

E1/p[∥
∑k

j=1
αjΓj+1:kεj∥p] ≤ p

(
E2/p

[(∑k

j=1
α2
j∥Γj+1:kεj∥2

)p/2
])1/2

≤ p

(∑k

j=1
α2
jE2/p

[
∥Γj+1:kεj∥p

])1/2

≤ p
√
κQe∥ε∥∞

(∑k

j=1
α2
j

k∏
ℓ=j+1

(
1− aαℓ

2

))1/2 (a)

≤ C2p
√
αk ,

where in (a) we additionally applied Lemma 25-ii.

Proof of Lemma 3. First, we derive a bound for J
(0)
k = −

∑k
ℓ=1 αℓGℓ+1:kεℓ which is a sum of

independent random vectors, satisfying ∥αℓGℓ+1:kεℓ∥ ≤ αℓκ
1/2
Q

∏k
j=ℓ+1(1 − αja)

1/2∥ε∥∞. Hence,
applying the Pinelis inequality [35, Theorem 3.5], we obtain that, for any t ≥ 0,

P(∥J (0)
k ∥ ≥ t) ≤ 2 exp

(
− t2

2σ2
k

)
, where σ2

k = κQ∥ε∥2∞
k∑

ℓ=1

α2
ℓ

k∏
j=ℓ+1

(1− αja) ≤ αkc1 ,

and c1 = 24κQ∥ε∥2∞/a. Thus, applying [12, Lemma 7], we obtain that, for p ≥ 2, it holds

E1/p
[
∥J (0)

k ∥
p]

≤ 21/p
√
p
√
αk

√
c1 ,

and the bound for J
(0)
k follows. Now we bound J

(ℓ)
k by induction. Using the equation (5.2), J (ℓ)

k ,
ℓ ≥ 1, can be represented as

J
(ℓ)
k = −

k∑
m=1

αmGm+1:kÃmJ
(ℓ−1)
m−1 .
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Note that αmGm+1:kJ
(ℓ−1)
m−1 is a martingale-difference sequence w.r.t. the filtration Fm = σ(Zs : 1 ≤

s ≤ m). Hence, Burkholder’s inequality [34, Theorem 8.6] implies that

E1/p[∥J (ℓ)
k ∥p] ≤ p

( k∑
m=1

E2/p[∥αmGm+1:kÃmJ
(ℓ−1)
m−1 ∥p]

)1/2

≤ CA pℓ+1/2C
(J,ℓ−1)
3

( k∑
m=1

αℓ+2
m ∥Gm+1:k∥2

)1/2
(a)

≤ CA C
(J,ℓ−1)
3 ·

2
√
6
√
κQ√

a
pℓ+1/2α

(ℓ+1)/2
k ,

where in (a) we used Lemma 25. Now we prove the bound for H
(ℓ)
k . Recall that H

(ℓ)
k =

−
∑k

m=1 αmΓm+1:kJ
(ℓ)
m . Since Γm+1:k and J

(ℓ)
m are independent for all m, the desired result fol-

lows from Lemma 3, Lemma 25, and Minkowski’s inequality:

E1/2[∥H(ℓ)
k ∥p] ≤

k∑
m=1

αmE1/p[∥Γm+1:k∥p]E1/p[∥J (ℓ)
m ∥p]

(a)

≤ √
κQeC

(J,ℓ)
3 pℓ+1/2

k∑
m=1

α(ℓ+3)/2
m

k∏
ℓ=m

(1− aαℓ

2
)

(b)

≤ C
(H,ℓ)
3 pℓ+1/2α

(ℓ+1)/2
k ,

where in (a) we used the moment bound for J
(ℓ)
m , and in (b) we used Lemma 25.

Proof of Lemma 4. Using the triangle inequality we get:

∥Qℓ∥ ≤ αℓ

n−1∑
k=ℓ

∥Gℓ+1:k∥ ≤ √
κQ

n−1∑
k=ℓ

αℓ

k∏
j=ℓ+1

(1− ac0
2

j−γ)

The rest of the proof follows from Lemma 25.

C Proofs of Section 3.2

Proof of Lemma 5. Applying Minkowski’s inequality and Corollary 2,

E1/p
[
∥
n−1∑
k=0

Γ1:k∥p
]
≤

n−1∑
k=0

E1/p [∥Γ1:k∥p] ≤ 1 +
√
κQe

n−1∑
k=1

k∏
ℓ=1

(1− aαℓ

2
) .

Thus, applying Lemma 25,
∑n−1

k=1

∏k
ℓ=1(1−

aαℓ
2 ) ≤ (1+k0)γ

c0
(c0+

2
a(1−γ)), and the statement follows.

Proof of Lemma 6. Decomposing Σn = Σ∞ + (Σn − Σ∞) and then applying Lidskii’s inequality, we
obtain λmin(Σn) ≥ λmin(Σ∞)− ∥Σn − Σ∞∥. The conclusion follows from Lemma 2 and A3, which
imply ∥Σn − Σ∞∥ ≤ C2n

γ−1 ≤ λmin(Σ∞)
2 .

Proof of Lemma 7. First, we rewrite the sum:

n−1∑
k=1

(Γ1:k − Γ
(i)
1:k) =

n−1∑
k=i

αiΓ1:i−1(A(Zi)−A(Z ′
i))Γi+1:k = Γ1:i−1(A(Zi)−A(Z ′

i))

n−1∑
k=i

αiΓi+1:k .
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Hence, it holds that

∥
n−1∑
k=1

(Γ1:k − Γ
(i)
1:k)∥ ≤ CA ∥Γ1:i−1∥∥

n−1∑
k=i

αiΓi+1:k∥ .

Lemma 1 implies that E1/2
[
∥Γ1:i−1∥2

]
≤ √

κQe
∏i−1

m=1(1− aαm/2). On the other hand, combining
Minkowski’s inequality with Lemma 25, we obtain

E1/2
[
∥
n−1∑
k=i

αiΓi+1:k∥2
]
≤ √

κQe

n−1∑
k=i

αi

k∏
m=i+1

(1− aαj/2) ≤
√
κQe(c0 +

2

a(1− γ)
) .

To finish the proof, it remains to notice that Γ1:i−1 is independent from Γi+1:k.

Proof of Lemma 8. First, note that H(0)
k −H

(0,i)
k = 0, if k < i. On the other hand, for k ≥ i we get

H
(0)
k −H

(0,i)
k = Γi+1:k(H

(0)
i −H

(0,i)
i )︸ ︷︷ ︸

T
(k)
1

−
k∑

j=i+1

αjΓj+1:kÃj(J
(0)
j−1 − J

(0,i)
j−1 )︸ ︷︷ ︸

T
(k)
2

.

Introduce ε′i = ε(Z ′
i) and A′

i = A(Z ′
i). Then, for ℓ ≥ i+1: J (0)

ℓ−1 − J
(0,i)
ℓ−1 = αiGi+1:ℓ−1(ε

′
i − εi). Thus,

since T
(i)
2 = 0, we obtain that

n−1∑
k=i

T
(k)
2 =

n−1∑
k=i+1

k∑
j=i+1

αjΓj+1:kÃkαiGi+1:k−1(ε
′
i − εi) =

n−1∑
j=i+1

αi

(n−1∑
k=j

αjΓj+1:k

)
ÃjGi+1:j−1(ε

′
i − εi)︸ ︷︷ ︸

Uj

.

Note that Uj is a reverse martingale-difference sequence with respect to the filtration Fj,i =
σ(Zi, Z

′
i, Zj , Zj+1, . . . , Zn−1). Hence,

E1/2
[
∥n−1/2

n−1∑
ℓ=i+1

Uj∥2
]
= n−1/2

( n−1∑
j=i+1

E
[
∥Uj∥2

])1/2
.

For simplicity we set uℓ:m =
∏m

t=ℓ(1− aαt/2). Applying Corollary 2 and Lemma 25, we obtain

E
[
∥Uj∥2

]
≤ α2

i

(
κQe

2∥ε∥∞CA

)2
n−1∑

k=j

αjuj+1:k

2

u2i+1:j−1 ≤ α2
i

(
κQe

2∥ε∥∞CA(c0 +
2

a(1− γ)
)

)2

︸ ︷︷ ︸
R2

U

ui+1:j−1 .

Thus, it holds that

E1/2
[
∥n−1/2

n−1∑
ℓ=i+1

Uj∥2
]
≤ 1

n1/2

√
αiRU

(
αi

n−2∑
j=i

ui+1:j

)1/2 ≤ RU

√
c0 +

2
a(1−γ)

n1/2

√
αi .
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The recurrent rule (3.8) implies the following representation for T
(k)
1 :

T
(k)
1 = Γi+1:k(−αi(Ai −A′

i)H
(0)
i−1 − αi(Ai −A′

i)J
(0)
i−1) .

Therefore, Lemma 3 together with αi−1 ≤ 2αi implies that

E1/2
[
∥T (k)

1 ∥2
]
≤ 2CA

√
κQeui+1:kα

3/2
i (C

(J,0)
3 + C

(H,0)
3 ) .

Thus, using Lemma 25, we get

E1/2
[
∥
n−1∑
k=i

T
(k)
1 ∥2

]
≤ 2CA

√
κQeui+1:kα

1/2
i (C

(J,0)
3 + C

(H,0)
3 )

n−1∑
k=i

αiui+1:k

≤ α
1/2
i 2CA

√
κQe(C

(J,0)
3 + C

(H,0)
3 )(c0 +

2

a(1− γ)
) .

It remains to note that

n−1∑
k=1

(H
(0)
k −H

(0,i)
k ) =

n−1∑
k=1

(T
(k)
1 + T

(k)
2 ) =

n−1∑
k=i

(T
(k)
1 + T

(k)
2 ) ,

and use Minkowski’s inequality.

D Proofs of Section 4

Proof of Lemma 9. Writing, ε̃ℓ = εℓ +Aℓ(θℓ−1 − θ⋆), the proof follows from the definition of Ω1 and
A5.

Proof of Lemma 10. Applying Lemma 17, we get

Eb∥ 1√
n

n−1∑
k=1

Jb,0
k,1∥

2 = n−1Eb∥
n−1∑
ℓ=1

αℓ(wℓ − 1)
n−1∑
k=ℓ

(Γℓ+1:k −Gℓ+1:k)εℓ∥2 = n−1
n−1∑
ℓ=1

∥αℓ

n−1∑
k=ℓ

(Γℓ+1:k −Gℓ+1:k)εℓ∥2

≤ n−1 log2(5n)C2
17∥ε∥2∞

n−1∑
ℓ=1

αℓ ≤ log2(5n)
c0C

2
17∥ε∥2∞

(1− γ)nγ
.

Proof of Lemma 11. First we rewrite the sum and obtain

Eb∥ 1√
n

n−1∑
k=1

Jb,0
k,2∥

2 =
1

n
Eb∥

n−1∑
k=1

k∑
ℓ=1

αℓ(wℓ − 1)Γℓ+1:kAℓ(θℓ−1 − θ⋆)∥2

=
1

n

n−1∑
ℓ=1

α2
ℓ∥

n−1∑
k=ℓ

Γℓ+1:kAℓ(θℓ−1 − θ⋆)∥2 ≤ 1

n
C2
A

n−1∑
ℓ=1

α2
ℓ∥

n−1∑
k=ℓ

Γℓ+1:k∥2∥θℓ−1 − θ⋆∥2 .
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Hence, using Lemma 1 and Lemma 25 with b = a/2, we get that on the event Ω2, it holds that

Eb∥ 1√
n

n−1∑
k=1

Jb,0
k,2∥

2 ≤ n−1C2
A C2

1

n−1∑
ℓ=1

(
αℓ

n−1∑
k=ℓ

k∏
j=ℓ+1

(1− aαj

2
)
)2∥θℓ−1 − θ⋆∥2

≤ n−1C2
A C2

1

(
c0 +

2

a(1− γ)

)2 n−1∑
ℓ=1

∥θℓ−1 − θ⋆∥2 .

Using an elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we get that on the event Ω1, it holds

n−1∑
ℓ=1

∥θℓ−1 − θ⋆∥2 ≤
n−1∑
ℓ=1

{
2κQe

4∥θ0 − θ⋆∥2
ℓ−1∏
j=1

(1− aαj

2
) + 8e2 log2(5n)C2

2αℓ−1

}
≤

2κQe
4(1 + k0)

γ
(
c0 +

2
a(1−γ)

)
c0

∥θ0 − θ⋆∥2 + 8e2 log2(5n)C2
2c0

n1−γ

1− γ
.

It remains to combine the above bounds.

Proof of Lemma 12. We start from the decomposition

θbk − θk = (I− αkwkAk)(θ
b
k−1 − θk−1)− αk(wk − 1)ε̃k. (D.1)

Expanding the recurrence above till k = 0, and using the fact that θb0 = θ0, we get running the
recurrence (D.1), that

θbk − θk = −
k∑

ℓ=n+1

αℓ(wℓ − 1)Γb
ℓ+1:kε̃ℓ .

Hence, proceeding as in (3.7), we obtain the representation

J
(b,0)
k = (I− αkAk) J

(b,0)
k−1 − αk(wk − 1)ε̃k , J

(b,0)
0 = 0 , (D.2)

H
(b,0)
k = (I− αkwkAk)H

(b,0)
k−1 − αk(wk − 1)AkJ

(b,0)
k−1 , H

(b,0)
0 = 0 . (D.3)

Hence, using Lemma 9 together with the definition of Jb,0
k , we obtain that

Eb[∥Jb,0
k ∥2] =

k∑
ℓ=1

α2
ℓ∥Γℓ+1:kε̃ℓ∥2 ≤ αkC

2
9C

2
1

k∑
ℓ=1

α2
ℓ

k∏
j=ℓ+1

(1− aαℓ/2) ≤ αk
12C2

9C
2
1

a︸ ︷︷ ︸
(C

(b,J,0)
12,1 )2

.

Assume now that the bound on Jb,j−1
k has a form {Eb[∥Jb,j−1

k ∥2]}1/2 ≤ C
(b,J,j−1)
12,1 α

j/2
k . Then, using

the martingale property of Jb,j
k , we write that

Eb[∥Jb,j
k ∥2] =

k∑
ℓ=1

α2
ℓEb[∥Γℓ+1:kAℓJ

b,j−1
ℓ−1 ∥2] ≤ (C

(b,J,j−1)
12,1 )2

k∑
ℓ=1

αj+2
ℓ C2

A C2
1

k∏
t=ℓ+1

(1− aαt/2)
2 .
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Hence, applying Lemma 25 we get

Eb[∥Jb,j
k ∥2] ≤ αj+1

k (C
(b,J,j−1)
12,1 )2C2

1C
2
A

12

a︸ ︷︷ ︸
(C

(b,J,j)
12,1 )2

.

and, thus, the moment bound for Jb,j
k is proved. Moreover, using the definition of Hb,L

k and
Minkowski’s inequality, we obtain that

(Eb[∥Hb,L
k ∥2])1/2 ≤ CA

k∑
ℓ=1

αℓ(Eb[∥Γb
ℓ+1:k∥2])1/2(Eb[∥Jb,L

ℓ−1∥
2])1/2 ≤ CA C

(b,J,L)
12,1 C3

k∑
ℓ=1

α
L+3
2

ℓ

k∏
t=ℓ+1

(1− aαt

8
)

≤ α
(L+1)/2
ℓ CA C

(b,J,L)
12,1 C3

48

a︸ ︷︷ ︸
C
(b,H,L)
12,1

.

and the moment bound for Hb,L
k follows.

Proof of Lemma 17. For any matrix-valued sequences (Un)n∈N, (Vn)n∈N and any M ∈ N, it holds
that:

M∏
k=1

Uk −
M∏
k=1

Vk =
M∑
k=1

( M∏
j=k+1

Vj

)
(Uk − Vk)

(k−1∏
j=1

Uj

)
. (D.4)

Using (D.4) and changing the order of summation, we get

αℓ

n−1∑
k=ℓ

(Γℓ+1:k −Gℓ+1:k)εℓ = αℓ

n−1∑
j=ℓ+1

(
αj

n−1∑
k=j

Gj+1:k

)
(Aj − Ā)Γℓ+1:j−1εℓ︸ ︷︷ ︸
Uj

. (D.5)

Applying Lemma 4, we get ∥αj
∑n−1

k=j Gj+1:k∥ = ∥Qj∥ ≤ C4, hence, ∥Uj∥ ≤ 2C4CA ∥Γℓ+1:j−1∥.
Consider the sigma-algebras

Fm:k =

{
σ(Zs : m ≤ s ≤ k), if m ≤ k ,

{∅,Z}, otherwise.

Note that Uj is a martingale-difference sequence w.r.t. the filtration Fℓ+1:ℓ+1 ⊆ Fℓ+1:ℓ+2 ⊆ . . . ⊆
Fℓ+1:2n, thus Burkholder’s inequality [34, Theorem 8.6] implies

E1/p
[
∥

n−1∑
j=ℓ+1

Uj∥p
]
≤ p
( n−1∑
j=ℓ+1

E2/p∥Uj∥p
)1/2 ≤ 2p

√
dCεCA C4

( n−1∑
j=ℓ+1

E2/p∥Γℓ+1:j−1∥p
)1/2

.

Applying now Lemma 1 together with the fact α∞a ≤ 1/2, we get

αℓ

n−1∑
j=ℓ+1

E2/p∥Γℓ+1:j−1∥p ≤
n−1∑

j=ℓ+1

αℓκQe
2

j−1∏
t=ℓ+1

(1− aαt

2
) ≤ (8/7)κQe

2
n−1∑
j=ℓ

αℓ

j∏
t=ℓ+1

(1− aαm

2
)

(a)

≤ (8/7)κQe
2

(
c0 +

2

a(1− γ)

)
.

In (a) we additionally used Lemma 25 with b = a/2. It remains to combine the above bounds in
(D.5). To conclude the proof, we need to apply Lemma 24 with p = log(5n2).
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Proof of Lemma 18. First we rewrite the expression using the recurrent formula for Jb,1
k proven in

Lemma 12 and swapping the order of summation:

Eb
[
∥ 1√

n

n−1∑
k=1

Jb,1
k ∥2

]
=

1

n
Eb
[
∥
n−1∑
k=1

k∑
ℓ=1

αℓ(wℓ − 1)Γℓ+1:kAℓJ
b,0
ℓ−1∥

2
]
=

1

n

n−1∑
ℓ=1

α2
ℓEb
[
∥
n−1∑
k=ℓ

Γℓ+1:kAℓJ
b,0
ℓ−1∥

2
]

≤ 1

n
C2
A

n−1∑
ℓ=1

α2
ℓ∥

n−1∑
k=ℓ

Γℓ+1:k∥2Eb
[
∥Jb,0

ℓ−1∥
2
] (a)

≤ n−1C2
A C2

1

(
c0 +

2

a(1− γ)

)2 n−1∑
ℓ=1

Eb
[
∥Jb,0

ℓ−1∥
2
]
.

Here in (a) we applied Lemma 1 and Lemma 25 with b = a/2. Now we will provide a bound for
Eb
[
∥Jb,0

ℓ−1∥
2
]

using a technique similar to the written above. Lemma 12 and Lemma 9 imply that

Eb
[
∥Jb,0

ℓ−1∥
2
]
= Eb

[
∥

ℓ−1∑
j=1

αj(wj − 1)Γj+1:ℓ−1ε̃j∥2
]
≤

ℓ−1∑
j=1

α2
j∥Γj+1:ℓ−1∥2∥ε̃j∥2 ≤ C2

1C
2
9

ℓ−1∑
j=1

α2
j

ℓ−1∏
t=j+1

(1− aαt

2
) .

Therefore, we obtain using Lemma 25:

Eb
[
∥Jb,0

ℓ−1∥
2
]
≤ C2

1C
2
9αℓ

12

a
.

Introduce the constant

C2
18 = C2

A C2
1

(
c0 +

2

a(1− γ)

)2 c0
1− γ

C2
9

12

a
.

Now we obtain that

Eb
[
∥ 1√

n

n−1∑
k=1

Jb,1
k ∥2

]
≤ C2

18

n
(1− γ)

n−1∑
k=1

k−γ ≤ C2
18n

−γ

which concludes the proof.

Proof of Lemma 19. First, note that H
(b,0)
k −H

(b,0,i)
k = 0 if k < i. On the other hand, for k ≥ i we

get

H
(b,0)
k −H

(b,0,i)
k = Γb

i+1:k(H
(b,0)
i −H

(b,0,i)
i )︸ ︷︷ ︸

T
(k)
1

−
k∑

ℓ=i+1

αℓ(wℓ − 1)Γb
ℓ+1:kAℓ(J

(b,0)
ℓ−1 − J

(b,0,i)
ℓ−1 )︸ ︷︷ ︸

T
(k)
2

For simplicity we introduce vm:k =
∏k

j=m(1 − aαj/8). Consider T
(k)
1 . Note that the following

decomposition holds:

T
(k)
1 = Γb

i+1:k(−αiAi(wi − w′
i)H

(b,0)
i−1 − αiAi(wi − w′

i)J
(b,0)
i−1 ) .

Hence, we get

Eb
[
n−1/2∥

n−1∑
k=i

T
(k)
1 ∥

]
≤ C3CA n−1/2√αi(C

(b,J,0)
12,1 + C

(b,H,0)
12,1 )

n−1∑
k=i

αivi+1:k .
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Recall the definition of C(2)
5.29, C

(1)
5.29 (5.29). Therefore, Lemma 25 and Lemma 4 imply that

Eb
[
n−1/2∥

n−1∑
k=i

T
(k)
1 ∥

]
≤ C3CA n−1/2√αi(C

(b,J,0)
12,1 + C

(b,H,0)
12,1 )C

(1)
5.29 .

Consider T
(k)
2 . First, we note that

J
(b,0)
ℓ−1 − J

(b,0,i)
ℓ−1 = αi(w

′
i − wi)Γi+1:ℓ−1ε̃i .

Thus, we rewrite the sum and get
n−1∑
k=i

T
(k)
2 =

n−1∑
ℓ=i+1

αi(wℓ − 1)(w′
i − wi)

n−1∑
k=ℓ

αℓΓ
b
ℓ+1:kAℓΓi+1:ℓ−1ε̃i︸ ︷︷ ︸

Uℓ

.

Note that Uℓ is a martingale-difference sequence w.r.t. the filtration Fℓ = σ(Wi,W
′
i ,Wℓ, . . . ,Wn−1).

Minkowski’s inequality and Proposition 3 reveal that

{Eb
[
∥
n−1∑
k=ℓ

αℓΓ
b
ℓ+1:k∥2

]
}1/2 ≤ C

(1)
5.29C3 .

Therefore, we obtain

Eb
[
∥Uℓ∥2

]
≤ α2

i (C
(1)
5.29C3)

2C2
A C2

1C
2
9

ℓ−1∏
j=i+1

(1− aαj/2) .

Hence, we get using Lemma 4:

Eb
[
∥
n−1∑
k=i

T
(k)
2 ∥2

]
≤ αi(C

(1)
5.29C3)

2C2
A C2

1C
2
9

n−1∑
ℓ=i

αi

ℓ∏
j=i+1

(1− aαj/2) ≤ αi(C
(1)
5.29C3)

2C2
A C2

1C
2
9C

(1)
5.29 .

Now we combine the obtained bounds with Minkowski’s inequality and finish the proof:

{Eb
[
∥
n−1∑
k=1

H
(b,0)
k −

n−1∑
k=1

H
(b,0,i)
k ∥2

]
}1/2 ≤

2∑
j=1

{Eb
[
∥
n−1∑
k=i

T
(k)
j ∥2

]
}1/2 ≤

√
αiC19 ,

where we have set

C19 = CA C3(C
(b,J,0)
12,1 + C

(b,H,0)
12,1 )C

(1)
5.29 +CA(C

(1)
5.29)

3/2C3C1C9 .

Proof of Lemma 20. Applying Minkowski’s inequality we obtain that

{Eb[∥Db −Db,i∥2]}1/2 ≤ 1
√
n
√
C16

{Eb
[
∥
n−1∑
k=i

(J
(b,0)
k,1 − J

(b,0,i)
k,1 )∥2

]
}1/2

+
1

√
n
√
C16

{Eb
[
∥
n−1∑
k=i

(J
(b,0)
k,1 − J

(b,0,i)
k,2 )∥2

]
}1/2 + 1

√
n
√
C16

{Eb
[
∥
n−1∑
k=i

(H
(b,0)
k,1 −H

(b,0,i)
k,1 )∥2

]
}1/2 .
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Consider the first term. Note that

J
(b,0)
k,1 − J

(b,0,i)
k,1 = αi(w

′
i − wi)(Γi+1:k −Gi+1:k)εi .

Thus, using the definition of Ω5 we get

∥
n−1∑
k=i

(J
(b,0)
k,1 − J

(b,0,i)
k,1 )∥ ≤ |w′

i − wi|C17
√
αi log(5n) .

Hence, it holds that

{Eb
[
∥
n−1∑
k=i

(J
(b,0)
k,1 − J

(b,0,i)
k,1 )∥2

]
}1/2 ≤

√
2C17

√
αi log(5n) .

On the other hand, we obtain the following representation for J
(b,0)
k,2 − J

(b,0,i)
k,2 :

J
(b,0)
k,2 − J

(b,0,i)
k,2 = αi(w

′
i − wi)Γi+1:kAi(θi−1 − θ⋆) .

Introduce the following notation

um:k =
k∏

j=m

(1− aαj/2) .

Therefore, applying Minkowski’s inequality, Lemma 4, Lemma 25 and using the definition of Ω1, we
obtain the following:

{Eb
[
∥
n−1∑
k=i

(J
(b,0)
k,2 − J

(b,0,i)
k,2 )∥2

]
}1/2 ≤

√
2C1CA

n−1∑
k=i

αiui+1:k(κ
1/2
Q e2u1:i−2∥θ0 − θ⋆∥ + 2e log(5n)κ

1/2
Q ∥ε∥∞

√
αi)

≤ αi

√
2κ

1/2
Q e2C1CA ∥θ0 − θ⋆∥

(1− a/2)2
C
(2)
5.29 + 2

√
2eC1CA κ

1/2
Q ∥ε∥∞C

(1)
5.29 log(5n)

√
αi .

Hence, applying Lemma 19 and gathering similar terms the proof follows.

E Proofs of products of random matrices

Proof of Proposition 3. Our proof relies on the auxiliary result of Lemma 22 below together with
the blocking technique. Indeed, let us represent

k −m = Nh+ r ,

where r < h and h = h(n) is a block size defined in (4.3). Then we obtain, using the independence
of bootstrap weights wm+1, . . . , wk, that

{Eb[∥Γb
m+1:k∥2]}1/2 ≤

√
κQ{Eb[∥Γb

m+1:k∥2Q]}1/2

=
√
κQ

N∏
j=1

{
Eb[∥Γb

m+1+(j−1)h:m+1+jh∥
2
Q]
}1/2{Eb[∥Γb

m+1+Nh:k∥2Q]
}1/2

≤ √
κQ exp

{
−a

4

k∑
ℓ=m+1

αℓ

}{
Eb[∥Γb

m+1+Nh:k∥2Q]
}1/2

exp
{a
4

k∑
ℓ=m+1+Nh:k

αℓ

}
.

47



In the last inequality we applied Lemma 22 to each of the blocks of length h in the first bound. It
remains to upper bound the residual terms. Since the remainder block has length less then h, we
have due to (E.5) (which holds according to A5), that

exp
{a
4

k∑
ℓ=m+1+Nh:k

αℓ

}
≤ exp

{α∞a

4

}
≤ e1/8 ,

where the last inequality is due to Proposition 1. Next,

{
Eb[∥Γb

m+1+Nh:k∥2]
}1/2 ≤ κQ

k∏
ℓ=m+1+Nh:k

{Eb[∥(I− αℓwℓAℓ)∥2]}1/2

≤ κQ

k∏
ℓ=m+1+Nh:k

{Eb[1 + 2αℓ|wℓ|CA+α2
ℓw

2
ℓ C

2
A]}1/2 .

Since E[|wℓ|] ≤ E1/2[w2
ℓ ] =

{
(E[wℓ])

2 +Var[wℓ]
}1/2

=
√
2 , we get from previous bound

{
Eb[∥Γb

m+1+Nh:k∥2]
}1/2 ≤ κQ

k∏
ℓ=m+1+Nh:k

(1 + 2
√
2αℓCA+2α2

ℓ C
2
A)1/2

≤ κQ exp
{√

2CA

k∑
ℓ=m+1+Nh:k

αℓ

}
≤ κQ exp{

√
2CA

c0h

kγ0
} ≤ κQe ,

where in the last line we additionally used A5 and the inequality

k∑
ℓ=m+1+Nh

αℓ ≤
h∑

ℓ=1

αℓ ≤ c0

∫ k0+h

k0

x−γ dx = c0
(h+ k0)

1−γ − k1−γ
0

1− γ
≤ c0

h

kγ0
. (E.1)

Proof of Lemma 22. Let h ∈ N be a block length given in (4.3). Then the product Γb
m+1:m+h writes

as

Γb
m+1:m+h = I−

m+h∑
ℓ=m+1

αℓAℓ − S+R = I−
m+h∑

ℓ=m+1

αℓĀ−
m+h∑

ℓ=m+1

αℓ(Aℓ − Ā)− S+R , (E.2)

where S =
∑m+h

ℓ=m+1 αℓ(wℓ − 1)Aℓ is a linear statistics in {wℓ}m+h
ℓ=m+1, and the remainder R collects

the higher-order terms:

R =

h∑
r=2

(−1)r
∑

(i1,...,ir)∈Ir

r∏
u=1

αiuwiuAiu .

with Ir = {(i1, . . . , ir) ∈ {m+ 1, . . . ,m+ h}r : i1 < · · · < ir}. We first consider the contracting part
in matrix Q-norm. Indeed, applying (3.3), we obtain that

∥I−
∑m+h

ℓ=m+1
αℓĀ∥2Q ≤ 1− a

∑m+h

ℓ=m+1
αℓ , (E.3)
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The definition of block size h combined with an integral bound (E.1) guarantees that that
∑m+h

ℓ=m+1 αℓ ≤
α∞, where α∞ is defined in (3.2). Thus, we get from (E.3) that the following bound holds

∥I−
∑m+h

ℓ=m+1 αℓĀ∥Q ≤ 1− (a/2)
∑m+h

ℓ=m+1 αℓ .

Now we need to estimate the remainders in the representation (E.2). On the set Ω4, it holds that

∥
∑m+h

ℓ=m+1
αℓ(Aℓ − Ā)∥Q ≤ 2CA

√
κQ
{ m+h∑
ℓ=m+1

α2
ℓ

}1/2
log(10n3d) .

Moreover, it is straightforward to check that

Eb[∥S∥2Q] ≤ C2
A κQ

m+h∑
ℓ=m+1

α2
ℓ .

In order to bound the remainder term R, we note that for any i ∈ {1, . . . , n}, Eb[|wiu |] ≤
√
2, and

Eb[∥R∥Q] ≤
√
κQ

h∑
r=2

(
h

r

)
αr
m+12

r/2Cr
A ≤ 2α2

m+1C
2
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2C2
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κQ exp
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}
≤ α2
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2C2

A
√
κQe .

To complete the proof it remains to set the parameter h in such a way that we can guarantee the
following:

CA
√
κQ
{ m+h∑
ℓ=m+1

α2
ℓ

}1/2(
1 + 2 log(10n3d)

)
+ α2

m+1h
2C2

A
√
κQe ≤

a

4

m+h∑
ℓ=m+1

αℓ . (E.4)

Now it remains to ensure that our choice of h satisfies{
CA

√
κQ
{∑m+h

ℓ=m+1 α
2
ℓ

}1/2(
1 + 2 log(10n3d)

)
≤ a

8
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ℓ=m+1 αℓ

α2
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2C2
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8
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Using an integral bound, we get
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ℓ=m+1

αℓ ≥ c0
(m+ k0 + h+ 1)1−γ − (m+ k0 + 1)1−γ

1− γ
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(E.5)

Similarly, one can check that

m+h∑
ℓ=m+1

α2
ℓ ≤ c20
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1−2γ − (m+ k0 + h)1−2γ

2γ − 1
≤ c20
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(E.6)

Hence, taking into account (E.5) and (E.6), the inequality (E.4) would follow from the bounds{
CA

√
κQ
{∑m+h

ℓ=m+1 α
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8
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Note that the latter inequalities follow from A 5. Thus, all previous inequalities will be fulfilled.
Hence, the following holds:

{
Eb[∥Γb

m+1:m+h∥2Q]
}1/2 ≤ 1− (a/4)

m+h∑
ℓ=m+1

αℓ ,

and the statement follows from an elementary inequality 1 + x ≤ ex.

F Proof of Lemma 2

Proof of Lemma 23. We follow the approach of [54, pp. 25–26]. By the definition of St

St =

n−1∑
j=t+1

(αt − αj)Gt+1:j−1,

we have
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Hence
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γ
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Since ϕ(x) = x
γ

1−γ e−x attains its maximum at xγ = γ
1−γ , a discrete summation-by-parts gives
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(
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(
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2 + xγ

)
+
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Collecting constants yields
∥St∥ ≤ √

κQ (t+ k0)
γ−1 C23,

as claimed.
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