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ABSTRACT

In the realm of recommender systems (RS), Top-K metrics such as NDCG@K
are the gold standard for evaluating performance. Nonetheless, during the training
of recommendation models, optimizing NDCG@K poses significant challenges
due to its inherent discontinuous nature and the intricacies of the Top-K truncation
mechanism. Recent efforts to optimize NDCG@K have either neglected the Top-
K truncation or suffered from low computational efficiency. To overcome these
limitations, we propose SoftmaxLoss@K (SL@K), a new loss function designed
as a surrogate for optimizing NDCG@K in RS. SL@K integrates a quantile-
based technique to handle the complex truncation term; and derives a smooth
approximation of NDCG@K to address discontinuity. Our theoretical analysis
confirms the close bounded relationship between NDCG@K and SL@K. Besides,
SL@K also exhibits several desirable properties including concise formulation,
computational efficiency, and noisy robustness. Extensive experiments on four
real-world datasets and three recommendation backbones demonstrate that SL@K
outperforms existing loss functions with a notable average improvement of 6.19%.

1 INTRODUCTION

Recommender systems (RS) (Ko et al., 2022; Zhang et al., 2019) have been widely applied in various
personalized services (Nie et al., 2019; Ren et al., 2017). The primary goal of RS is to model users’
preferences (scores) on items and subsequently retrieve a few items that users are most likely to
interact with (Liu et al., 2009; Li et al., 2020; Hurley & Zhang, 2011). In practice, RS typically
display only the Top-K items to users. Therefore, Top-K ranking metrics, e.g., NDCG@K (He
et al., 2017b), are commonly used to evaluate recommendation performance. These metrics focuses
on the quality of the items ranked within the Top-K positions, as opposed to full-ranking metrics
(e.g., NDCG) (Järvelin & Kekäläinen, 2017), which assess the entire ranking list.

Despite the widespread adoption of the NDCG@K metric, optimizing this metric remains highly
challenging: 1) The loss function is discontinuous and flat across most regions, rendering gradient-
based optimization ineffective; 2) The loss computation involves truncating the ranking list, requiring
the identification of whether an item appears in the Top-K positions, which is difficult to manage.

Recent efforts have proposed surrogate losses (Lapin et al., 2016; 2017) to optimize NDCG@K, yet
these approaches exhibit significant limitations:

• Some studies have focused on optimizing full-ranking metrics such as NDCG, without accounting
for Top-K truncation (Rashed et al., 2021; Chapelle & Wu, 2010; Taylor et al., 2008). A notable
and successful example is the Softmax Loss (SL) (Wu et al., 2024a), which is easily implemented
and serves as an upper bound for optimizing NDCG (Bruch et al., 2019). SL has been widely
applied in practice and usually yield state-of-the-art (SOTA) performance (Wu et al., 2024b).
However, NDCG and NDCG@K are not always aligned — NDCG@K focuses on the quality
of a few top-ranked items, while NDCG evaluates the entire list. This discrepancy makes that
optimizing NDCG does not always yield improvements in NDCG@K and sometimes may even
lead to performance degradation, as illustrated in Figure 1a.

• Other approaches have sought to optimize NDCG@K by incorporating lambda weights (Burges
et al., 2006; Wang et al., 2018) for each training instance in their LambdaLoss@K (Jagerman
et al., 2022). While this method has proven effective in document retrieval tasks (Liu et al., 2009),
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(a) Inconsistency between NDCG and NDCG@K.

60.4x

(b) Execution time comparison.

Figure 1: (a) Illustration of inconsistency between NDCG and NDCG@K. Ranking 1 and Ranking
2 represent two different ranking schemes of the same set of items, where red/while circles denote
positive/negative items respectively. While Ranking 1 has a better NDCG than Ranking 2, it has
worse NDCG@5. (b) Execution time comparison (per epoch) on the Electronic dataset (8K items),
where LambdaLoss@K incurs a significantly higher computational overhead.

its application to RS remains impractical. The main challenge lies in efficiency: the calculation of
lambda weights depends on the ranking positions of items, requiring a full sorting of items for each
user at every iteration. This is computationally prohibitive in real-world RS given the immense
number of users and items (cf. Figure 1b). Additionally, due to the sparsity of positive items in
RS, most of lambda weights are extremely small (e.g., 99% are less than 0.005, cf. Appendix B),
further hindering the effectiveness of the training process.

Given the critical importance of optimizing NDCG@K and the limitations of existing approaches,
there is a pressing need to develop a more effective surrogate loss for NDCG@K. In this work, we
propose SoftmaxLoss@K (SL@K), incorporating the following strategies:

• To address the challenge of Top-K truncation, we introduce a quantile-based technique (Koenker,
2005; Hao & Naiman, 2007; Shao, 2008). Specifically, we define a Top-K quantile as a threshold
score that separates the Top-K items from the rest. This quantile can be efficiently estimated, and
the complex top-K truncation term can be reformulated as a simple comparison between an item’s
score and the quantile. This transformation makes the truncation both computationally efficient
and tractable for optimization.

• To overcome the issue of discontinuity, we analyzes an upper bound for optimizing NDCG@K and
relax it into a fully continuous function. Our theoretical analysis proved that SL@K serves as a
tight upper bound for − log NDCG@K, ensuring both theoretical rigor and practical applicability.

Beyond its theoretical merits, SL@K is concise in form and easy to implement. Compared to the
conventional SL, SL@K introduces only a quantile-based weight for each positive instance, which
adds minimal computational overhead (cf. Figure 1b). Furthermore, our analysis reveals that SL@K
demonstrates enhanced robustness to false positive noise (Chen et al., 2023; Wang et al., 2021; Wen
et al., 2019) — a common issue in RS, where some positive interactions may result from factors other
than true user preference (e.g., misclicks).

To empirically validate the effectiveness of SL@K, we conduct extensive experiments across four real-
world recommendation datasets using three typical recommendation backbones. The experimental
results demonstrate that SL@K achieves impressive performance improvements, with an average
gain of 6.19% in NDCG@K. Additional experiments, including an exploration of the hyperparameter
K and robustness evaluations, confirm that SL@K is not only well-aligned with NDCG@K but also
exhibits superior resistance to false positive noise.

2 PRELIMINARIES

2.1 TASK FORMULATION

This work focuses on Top-K recommendation from implicit feedback, a widely-used scenario in
recommender systems (RS) (Su, 2009; Zhu et al., 2019). Given a RS with a user set U and an item
set I , let D = {yui : u ∈ U , i ∈ I} denote the historical interactions between users and items, where
yui = 1 indicates that user u has interacted with item i, and yui = 0 indicates has not. For each user
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u, we denote Pu = {i ∈ I : yui = 1} as the set of positive items for u, and Nu = I \ Pu as the set
of negative items. The recommendation task can be formulated as follows: learning user preference
from D and recommending the Top-K items that users are most likely to interact with.

Formally, modern RS typically infer user preferences for items with a learnable recommendation
model sui = fΘ(u, i), where fΘ(u, i) : U × I → R can be any flexible model architecture with
parameters Θ, mapping user/item features (e.g., IDs) into their preference scores sui. Subsequently,
the Top-K items with the highest sui values are retrieved as recommendations. In this work, we
focus not on model architecture design but instead on exploring the loss function. Given that the loss
function guides the optimization direction of models, its importance cannot be overemphasized.

2.2 FORMULATION OF NDCG@K

Given the Top-K recommendation nature of RS, Top-K ranking metrics have been widely used to
evaluate the recommendation performance. This work focuses on the most representative Top-K
ranking metric, NDCG@K (Normalized Discounted Cumulative Gain with a Top-K cutoff) (Järvelin
& Kekäläinen, 2017). NDCG@K not only measures the number of positive items within the Top-K
positions (as Recall@K and Precision@K do) but also considers their concrete ranking positions
within the Top-K ranking list (higher ranking with larger NDCG@K), which better reflects practical
recommendation needs. Formally, NDCG@K for each user can be formulated as follows:

NDCG@K(u) =
DCG@K(u)

IDCG@K(u)
, where DCG@K(u) =

∑
i∈Pu

I(πui ≤ K)

log2(πui + 1)
(2.1)

where IDCG@K is a normalizing constant representing the optimal DCG@K value with an ideal
ranking; I(·) denotes indicator function; πui denotes the ranking position of item i for user u, which
can be formally written as: πui =

∑
j∈I I(suj ≥ sui).

While NDCG@K is widely applied, optimizing it presents significant challenges:

• Truncation Challenge: The loss computation involves truncating the ranking list, i.e., the term
I(πui ≤ K), which requires identifying whether an item appears in the Top-K positions. Efficient
computation of this truncation is particularly challenging. Moreover, computing the gradient of
this term for effective optimization remains an open problem.

• Discontinuity Challenge: The loss involves the computations of item ranking position πui, while
πui is a discontinuous function w.r.t. the model prediction scores sui. Moreover, the loss function
is often flat over most regions (Bruch et al., 2019), making gradient-based optimization ineffective.

2.3 ANALYSES OVER EXISTING SURROGATE LOSS

To address these challenges, recent research has proposed surrogate losses for NDCG@K optimiza-
tion, but significant limitations remain. These approaches can be categorized into two types:

Type 1: Optimizing NDCG without Top-K truncation. Some studies have focused on opti-
mizing full-ranking metrics such as NDCG, without considering Top-K truncation. NDCG opti-
mization has been extensively explored, with approaches ranging from contrastive-based methods
(e.g., Softmax Loss (Wu et al., 2024a)), ranking-based methods (e.g., Smooth-NDCG (Chapelle &
Wu, 2010)), Gumbel-based methods (e.g., NeuralSort (Grover et al., 2019)), neural-based methods
(e.g., GuidedRec (Rashed et al., 2021)). Among these methods, the most representative one is the
Softmax Loss (SL) (Wu et al., 2024a), which has been widely used in practice and demonstrated
effectiveness. Formally, SL is defined as:

LSL(u) =
∑
i∈Pu

log

∑
j∈I

exp(duij/τ)

 (2.2)

where τ is a temperature hyperparameter, and duij = suj − sui. SL offers multiple advantages:
1) Theoretical guarantees: SL has been proven to be an upper bound of − log NDCG (Bruch
et al., 2019), ensuring that optimizing SL is consistent with optimizing NDCG, leading to SOTA
performance. 2) Efficiency: SL has a concise form and does not require the computation of ranking
positions, which is complex and time-consuming. Additionally, SL is compatible with negative
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sampling — although its computation involves all items j ∈ I , it can be efficiently accelerated through
negative sampling (Wu et al., 2024b) or in-batch strategies (Wu et al., 2024a) during optimization.

While SL serves as an effective surrogate loss for NDCG, a gap remains between NDCG and
NDCG@K, which limits its performance. As shown in Figure 1a, optimizing NDCG does not
consistently improve NDCG@K and sometimes even lead to performance drops. Thus, Top-K
truncation cannot be ignored and should be explicitly modeled during training.

Type 2: Incorporating lambda weights. Other researchers have proposed Lambdaloss@K (Jager-
man et al., 2022), which optimizes NDCG@K by incorporating lambda weights (Burges et al., 2006;
Wang et al., 2018). In recommendation scenarios, Lambdaloss@K can be written as:

LLambdaLoss(u) =
∑

i∈Pu,j∈Nu

µuij · Softplus(duij) (2.3)

where the lambda weight µuij is defined as

µuij =

ηuij ·
(
1− 1

log2(max(πui, πuj) + 1)

)−1

, if πui > K or πuj > K

ηuij , else
(2.4)

and
ηuij =

1

log2(|πui − πuj |+ 1)
− 1

log2(|πui − πuj |+ 2)
(2.5)

Although Lambdaloss@K has proven effective in document retrieval tasks, it is impractical for
large-scale RS due to the following limitations:

• High computational time cost. The calculation of lambda weights µuij requires determining item
ranking positions πui and πuj , which dynamically change during training. This necessitates a full
sorting of items for each user at every iteration, with a complexity of O(|U||I| log |I|), rendering
it impractical for large-scale RS. While Monte Carlo sampling (Metropolis et al., 1953) could
approximate rankings πui, its accuracy is questionable. More critically, The loss function is highly
sensitive to estimation errors. Specifically, for instances where πuj is closer to πui, which have
relatively larger µuij and contribute significantly to training, even small estimation errors can lead
to substantial deviations. Our experiments show a performance degradation of over 30% when
using sampling-based estimation in LambdaLoss@K (cf. Table 3 and Appendix D.4).

• Ineffective training due to extremely small lambda weights. Due to the large item space and
sparse positive instances in RS, most lambda weights µuij are extremely small since |πui − πuj |
tends to be large. In our experiments, we found that 99% of weights are less than 0.005, suggesting
that the gradients of Lambdaloss@K are dominated by a few training instances, while others
contribute negligibly (cf. Appendix B). This increases training instability and hampers model
convergence. Furthermore, this issue complicates sampling estimation, as negative sampling
exacerbates the problem: sampled instances often have small lambda weights, leading to gradient
vanishing and consequently hindering training progress.

While optimizes NDCG@K is promising, these limitations make Lambdaloss@K less effective for
RS. Developing a better NDCG@K surrogate loss for recommendation warrants further exploration.

Other Related Losses. Beyond aforementioned losses, there are other conventional or advanced
losses used in RS. For instance, BPR (Rendle et al., 2012) as one of the most classic approaches,
approximately optimizes the AUC metric through pairwise comparisons. More recently, OPAUC
(Dodd & Pepe, 2003) and LLPAUC (Shi et al., 2024) have been proposed to optimize partial
AUC, with discussions on their theoretical relations with Recall@K and Precision@K. However,
their connections with NDCG@K remain unknown. Additionally, these methods involve complex
adversarial training, which may hinder their effectiveness and applicability. For a comprehensive
overview of recent advancements in this area, readers are referred to Appendix A.

3 METHODOLOGY

In this section, we first introduce the proposed surrogate loss — SoftmaxLoss@K (SL@K), followed
by a discussion of its properties. Finally, we detail the Top-K quantile estimation method.
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3.1 SOFTMAXLOSS@K : A SUPERIOR SURROGATE LOSS FOR NDCG@K

The primary challenges in optimizing NDCG@K stem from the Top-K truncation and the discon-
tinuity. To address these challenges, we propose a novel surrogate loss, named SoftmaxLoss@K
(SL@K), leveraging the following strategies:

Leveraging quantile technique. The original truncation term I(πui ≤ K) involves estimating the
ranking position πui and determining whether it is less than K, which is computationally difficult to
handle efficiently. To overcome this, we introduce the Top-K quantile βK

u of the preference scores
for each user u, which is defined as:

βK
u := inf{sui : πui ≤ K} (3.1)

This quantile acts as a threshold score that separates the Top-K items from the remainder. Specifically,
if an item’s score sui ≥ βK

u , it indicates that the item belongs to the Top-K positions; conversely,
sui ≤ βK

u implies that it does not. Using this quantile, the truncation term can be simplified as:

I(πui ≤ K) = I(sui ≥ βK
u ) (3.2)

This transformation reduces the problem to a simple comparison between the item’s score sui and the
quantile βK

u , thus avoiding the need to directly estimate the ranking position πui. This makes the
Top-K truncation both computationally efficient and easily optimizable.

Some may express concerns regarding the computational cost of estimating the Top-K quantile. In
fact, this quantile can be estimated efficiently and accurately using a sampling-based method with
theoretical guarantees. We will discuss this in detail in Section 3.3.

Deriving a continuous surrogate. To tackle the discontinuity issue, we turn to relax NDCG@K
into a fully smooth function. Specifically, we aim to derive a smooth upper bound of − log DCG@K,
since optimizing this upper bound is equivalent to lifting NDCG@K1. To ensure well-definedness
and rigor, we simply assume that DCG@K is non-zero. In fact, this assumption is practical note
that DCG@K = 0 is the worst result. During training, the scores of positive instances would be fast
lifted and typically larger than those of negative instances. As a result, there is almost always at least
one positive item in the Top-K positions, ensuring that DCG@K > 0.

While several successful examples of relaxing (full-ranking) DCG exist as references (Bruch et al.,
2019; Wang et al., 2018), special care must be taken to account for the differences in DCG@K
introduced by the truncation mechanism. We have the following relaxations for DCG@K:

− logDCG@K(u)
(3.2)
= − log

(∑
i∈Pu

I(sui ≥ βK
u )

1

log2(πui + 1)

)
(3.3a)

①
≤− log

(∑
i∈Pu

I(sui ≥ βK
u )

1

πui

)
(3.3b)

=− log

(∑
i∈Pu

I(sui ≥ βK
u )

HK
u

1

πui

)
− logHK

u (3.3c)

②
≤
∑
i∈Pu

I(sui ≥ βK
u )

HK
u

(
− log

1

πui

)
− logHK

u (3.3d)

③
≤
∑
i∈Pu

I(sui ≥ βK
u ) log πui (3.3e)

where HK
u =

∑
v∈Pu

I(suv ≥ βK
u ), denoting the number of positive instances in Top-K positions

(a.k.a. Top-K hits) for user u. Equation (3.3c) is well-defined and HK
u ≥ 1 due to our non-zero

assumption2. Several important relaxations are applied in Equation (3.3): ① is due to log2(πui+1) ≤
πui; ② is due to Jensen’s inequality (Jensen, 1906); ④ is due to HK

u ≥ 1.

1Note that optimizing DCG@K and NDCG@K is equivalent, as the normalization term IDCG is a constant.
2Due to the assumption that DCG@K > 0, there is at least one Top-K hit i such that sui ≥ βK

u .
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The motivation behind the relaxations ① and ② is to manage the complexity of the fractional term
1/ log2(πui + 1), which involves the ranking position πui in the denominator. By transforming the
fractional term into a more concise form, we simplify the calculation. This transformation helps to
avoid numerical instability and better supports sampling-based estimation. Similar techniques have
been employed in Softmax Loss (SL) (Wu et al., 2024a; Bruch et al., 2019) to handle NDCG. For
the relaxation ③, we drop the term HK

u due to its computational complexity. While retaining this
term could potentially lead to improved performance, we empirically find that the gains are marginal,
whereas the additional computational overhead is significant.

We can express indicator function with Heaviside step function δ(x) = I(x ≥ 0), and express the
the ranking position πui based on the scores sui, i.e., πui =

∑
j∈I I(suj ≥ sui) =

∑
j∈I δ(duij),

where duij = suj − sui. Thus, Equation (3.3e) can be re-written as:

(3.3e) =
∑
i∈Pu

δ(sui − βK
u ) · log

∑
j∈I

δ(duij)

 (3.4)

To further address the discontinuity of the Heaviside functions δ(·) in Equation (3.4), we approximate
them by two continuous activations σw and σd, resulting in the following SoftmaxLoss@K (SL@K):

LSL@K(u) =
∑
i∈Pu

σw(sui − βK
u )︸ ︷︷ ︸

weight: wui

· log

∑
j∈I

σd(duij)


︸ ︷︷ ︸

SL term: LSL(u,i)

(3.5)

Note that exponential and sigmoid are two conventional activation functions to approximate the
Heaviside function δ(·) — exponential are employed by SL, and sigmoid has been shown to provide
a tighter approximation. Here we recommend using two different activations: σd as the exponential
with σd(x) = ex/τd , and σw as the sigmoid with σw(x) = 1/(1 + e−x/τw), where τd and τw denote
temperature hyperparameters. This configuration ensures that SL@K serves as a tight upper bound
for − log DCG@K (cf. Theorem 3.1). In contrast, if both activations are chosen as sigmoid, the
bound relations do not hold; if both are chosen as exponential, the bound is not as tight as in our
setting. Readers may refer to the discussions in Appendix C.1 for further details.

3.2 ANALYSES OF SOFTMAXLOSS@K

Our proposed SoftmaxLoss@K (SL@K) offers several advantages:

Concise and efficient. The proposed SL@K has a concise form (3.5). Compared to conventional
SL, SL@K only introduces an additional quantile-based weight wui for each instance, which just
involves a simple difference between the scores sui and the quantiles βK

u . SL@K inherits the benefits
of SL, while the introduction of wui can be intuitively understood: it assigns larger weights to positive
instances with higher scores sui, emphasizing those within the Top-K positions during optimization.
This aligns with the principles of Top-K ranking metric for recommendation.

The introduction of wui does not incur significantly computational overhead. The quantile estimation
and weight calculation in SL@K are efficient and do not require the time-consuming estimation
of ranking positions, as in LambdaLoss@K. Moreover, similar to SL, SL@K supports negative
sampling, leading to further acceleration during training.

The time complexity of SL@K changes from O(|U|P̄N) of SL to O(|U|P̄N + |U|N logN), where
P̄ denotes the average number of positive items per user; and N denotes the size of sampled negative
items satisfying N ≪ |I|. The additional complexity O(|U|N logN) arises from the quantile
estimation (cf. Section 3.3), which remains efficient, as logN is typically smaller than P̄ . Our
experiments also confirm the computational efficiency of SL@K (cf. Table 3 in Section 4.2).

Theoretical guarantees. We establish theoretical connections between SL@K and NDCG@K:
Theorem 3.1 (SL@K as a surrogate loss for NDCG@K). For any user u, if the Top-K hits HK

u > 1,
then SL@K serves as an upper bound of − logDCG@K, i.e.,

− logDCG@K(u) ≤ LSL@K(u) (3.6)

when HK
u = 1, a slightly looser but effective bound holds, i.e., − 1

2 logDCG@K(u) ≤ LSL@K(u).
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Figure 2: Illustration of the estimated quantile β̂20
u compared with the ideal quantile β20

u across users
on the Electronic dataset, where users are sorted by β20

u . The estimation error is 0.06 ± 0.03. (b)
The values of the ideal quantiles, compared with the distributions of positive scores sui and negative
scores suj , using Kernel Density Estimation (KDE) (Parzen, 1962) to illustrate the distribution.

The proof is presented in Appendix C.2. From Equation (3.4), the derivation is straightforward,
except for the careful handling of the activation functions. The assumptions of HK

u > 1 is commonly
satisfied in practice, as the training process tends to increase the scores of positive items, making
them typically larger than those of negative items (cf. Appendix C.2 for empirical validation). These
theoretical properties guarantee the effectiveness of SL@K — minimizing SL@K is equivalent to
maximizing DCG@K, leading to recommendation performance improvements.

Robustness to false positive noise. False positive instances (Chen et al., 2023) are prevalent in
recommendation systems, arising from various factors such as iclckbait (Wang et al., 2021), item
position bias (Hofmann et al., 2014), or accidental interactions (Adamopoulos & Tuzhilin, 2014).
Recent studies have shown that such noise can significantly mislead model training and degrade
performance (Wen et al., 2019). Interestingly, the introduction of the weight wui in SL@K helps
mitigate this issue. False positives, which often resemble negative instances, tend to have lower
prediction scores sui than true positives. As a result, they receive smaller weights wui and contribute
less in model training, which enhances the robustness of model, as analyzed in Appendix C.3.

3.3 TOP-K QUANTILE ESTIMATION

Quantile estimation has been extensively studied in the field of statistics (Koenker, 2005; Hao &
Naiman, 2007; Bickel & Doksum, 2015). In this work, we develop a simple Monte Carlo sampling-
based strategy (Metropolis et al., 1953). The approach is straightforward: for each user, we randomly
sample a small set of N items and estimate the Top-K quantile from this sampled set. The complexity
of this method is O(|U|N logN), as it only requires sorting the items in the sample set. Despite its
simplicity, this method comes with theoretical guarantees:
Theorem 3.2 (Sample quantile estimation error). For any c.d.f. F and any p ∈ (0, 1) , the p-th
quantile3 is define as θp := F−1(p) = inf{t : F (t) ≥ p}. We sample N samples {Xi}Ni=1

i.i.d.∼ F ,
suppose that FN (t) = 1

N

∑N
i=1 I(Xi ≤ t) is the empirical c.d.f. , and the p-th estimated quantile is

defined as θ̂p := F−1
N (p). Then, for any ϵ > 0, we have

Pr
(∣∣∣θ̂p − θp

∣∣∣ > ε
)
≤ 4e−2Nδ2ε (3.7)

where δε = min{F (θp + ε)− p, p− F (θp − ε)}.

The proof is provided in Appendix D.1. Theorem 3.2 provides theoretical foundation of sampling-
based estimation that the error between the estimated quantile and the ideal quantile is bounded by a
function that decreases exponentially with the sample size N . This implies that the Top-K quantile
βK
u can be estimated with arbitrary precision provided a sufficiently large N .

3Here we adopt the definition of p-th quantile to generalize the theory to the continuous case. In the context
of RS, this can be simply interpreted as the Top-(p · |I|) quantile.
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In practice, this simple strategy can be further improved by leveraging the properties of recommen-
dation systems. As shown in Figure 2b, the scores of positive items are typically much higher than
those of negative items, and the Top-K quantile is often located within the range of positive item
scores. Therefore, it is more effective to retain all positive instances and randomly sample a small
set of negative instances for quantile estimation. This strategy, though simple, yields more accurate
results. Figure 2a provides an example of estimated quantiles across users on the Electronic dataset,
with a sample size of N = 1000. The estimated quantile β̂20

u closely matches the optimal β20
u , with

an average deviation of only 0.06. More examples and details can refer to Appendix D.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and backbones. To ensure fair comparisons, our experimental setup closely follows
Wu et al. (2024a;b)’s prior work. We conduct experiments on four widely-used datasets: Health,
Electronic, Gowalla, and Book. Additionally, given the inefficiency of LambdaLoss@K in handling
these large datasets, we further evaluate its performance on two additional datasets with relatively
small scale, Movielens and Food. Detailed descriptions of the datasets can be found in Appendix F.1.

We also evaluate the proposed losses using three distinct recommendation backbones: the classic Ma-
trix Factorization (MF) model (Koren et al., 2009), the representative graph-based model LightGCN
(He et al., 2020), and the SOTA method XsimGCL (Yu et al., 2023).

Compared losses. We compare our SL@K loss with the following conventional or SOTA losses:
1) the classic BPR (Rendle et al., 2012); 2) the SOTA Softmax Loss (SL) (Wu et al., 2024a) and
its DRO-enhanced variants (Shapiro, 2017) including AdvInfoNCE (Zhang et al., 2024) and BSL
(Wu et al., 2024b); 3) model-based NDCG surrogate loss GuidedRec (Rashed et al., 2021); 4)
LambdaLoss@K (Jagerman et al., 2022) that optimizes NDCG@K; 5) LLPAUC (Shi et al., 2024)
that optimizes partial AUC metric. The readers may refer to Appendix F.4 for more details.

Hyperparameters settings. For fair comparisons, SL@K sets the temperature τd (cf. Equation (3.5))
to be the same as the optimal τ in SL (cf. Equation (2.2)), and uses the same negative sampling as
SL for sample quantile estimation and training, with the negative sampling number N = 1000. The
implementation details can be found in Appendix F.4, and the optimal hyperparameters of these
losses are reported in Appendix F.6.

4.2 ANALYSES ON EXPERIMENTS RESULTS

SL@K vs. Existing losses. Table 1 presents the performance comparison of SL@K against existing
losses. As shown, SL@K consistently outperforms all competing losses across various datasets and
backbones. The improvements are substantial, with an average increase of 6.19%. This highlights the
importance of explicitly modeling Top-K truncation during optimization, which cannot be overlooked.
Since SL@K is more closely aligned with the NDCG@K metric, we observe its superiority over
existing losses. Interestingly, SL@K also demonstrates strong performance on Recall@K metric.
This can be attributed to the fact that optimizing NDCG@K naturally increases the number of
positive items in the Top-K positions, thereby enhancing Recall@K performance.

Performance comparison with varying K. Table 2 illustrates the performance across different
values of K. We observe that SL@K consistently outperforms the compared methods for various
values of K. However, as K increases, the magnitude of the improvements decreases. This observa-
tion aligns with our intuition. Specifically, the truncation mechanism has a greater impact when K
is small. As K increases, the Top-K metric NDCG@K degrades to the full-ranking metric NDCG.
Consequently, the advantage of optimizing for NDCG@K relatively diminishes as K grows.

SL@K vs. Lambdaloss@K. We further compare SL@K with Lambdaloss@K on two relatively
small datasets, with the results presented in Table 3. Although both losses are designed to optimize
NDCG@K, our experiments show that SL@K consistently outperforms Lambdaloss@K. This per-
formance gap can primarily be attributed to the extremely skewed lambda weights in Lambdaloss@K,
which hinder its training effectiveness. Moreover, we observe that Lambdaloss@K incurs signifi-
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Table 1: Performance comparison of SL@K with existing losses. The best results are highlighted in
bold, and the best baselines are underlined. "Imp." denotes the improvement of SL@K over the best
baseline; "R@20" denotes the metric Recall@20; and "D@20" denotes the metric NDCG@20.

Backbone Loss
Health Electronic Gowalla Book

R@20 D@20 R@20 D@20 R@20 D@20 R@20 D@20

MF

BPR 0.1575 0.1209 0.0816 0.0527 0.1355 0.1111 0.0665 0.0453
GuidedRec 0.1573 0.1084 0.0644 0.0385 0.1135 0.0863 0.0518 0.0361
LLPAUC 0.1671 0.1219 0.0821 0.0499 0.1610 0.1189 0.1150 0.0811
SL 0.1737 0.1264 0.0821 0.0529 0.2064 0.1624 0.1559 0.1210
AdvInfoNCE 0.1660 0.1236 0.0829 0.0527 0.2067 0.1627 0.1557 0.1172
BSL 0.1737 0.1264 0.0834 0.0530 0.2071 0.1630 0.1563 0.1212

SL@20 0.1804 0.1373 0.0892 0.0587 0.2121 0.1709 0.1612 0.1269
Imp. % +3.86% +8.62% +6.95% +10.75% +2.41% +4.85% +3.13% +4.70%

LightGCN

BPR 0.1618 0.1203 0.0813 0.0524 0.1745 0.1402 0.0984 0.0678
GuidedRec 0.1550 0.1073 0.0657 0.0393 0.0921 0.0686 0.0468 0.0310
LLPAUC 0.1685 0.1207 0.0831 0.0507 0.1616 0.1192 0.1147 0.0810
SL 0.1691 0.1235 0.0823 0.0526 0.2068 0.1628 0.1567 0.1220
AdvInfoNCE 0.1706 0.1264 0.0823 0.0528 0.2066 0.1625 0.1568 0.1177
BSL 0.1691 0.1236 0.0823 0.0526 0.2069 0.1628 0.1568 0.1220

SL@20 0.1791 0.1369 0.0894 0.0587 0.2128 0.1729 0.1625 0.1280
Imp. % +4.98% +8.31% +7.58% +11.17% +2.85% +6.20% +3.64% +4.92%

XSimGCL

BPR 0.1496 0.1108 0.0777 0.0508 0.1966 0.1570 0.1269 0.0905
GuidedRec 0.1539 0.1088 0.0760 0.0473 0.1685 0.1277 0.1275 0.0951
LLPAUC 0.1519 0.1083 0.0781 0.0481 0.1632 0.1200 0.1363 0.1008
SL 0.1534 0.1113 0.0772 0.0490 0.2005 0.1570 0.1549 0.1207
AdvInfoNCE 0.1499 0.1072 0.0776 0.0489 0.2010 0.1564 0.1568 0.1179
BSL 0.1649 0.1201 0.0800 0.0507 0.2037 0.1597 0.1550 0.1207

SL@20 0.1718 0.1322 0.0860 0.0569 0.2095 0.1717 0.1624 0.1277
Imp. % +4.18% +10.07% +7.50% +12.01% +2.85% +7.51% +3.57% +5.80%

Table 2: Performance comparisons with varying K on Health and Electronic datasets and MF
backbone. The best results are highlighted in bold, and the best baselines are underlined. "Imp."
denotes the improvement of SL@K over the best baseline; "D@20" denotes the metric NDCG@20.

Health D@5 D@20 D@50

BPR 0.0934 0.1209 0.1602
GuidedRec 0.0771 0.1084 0.1477
LLPAUC 0.0909 0.1219 0.1575
SL 0.0921 0.1264 0.1611
AdvInfoNCE 0.0918 0.1236 0.1607
BSL 0.0921 0.1264 0.1611

SL@K 0.1072 0.1373 0.1733
Imp. % +14.78% +8.62% +7.57%

Electronic D@5 D@20 D@50

BPR 0.0347 0.0527 0.0699
GuidedRec 0.0225 0.0385 0.0546
LLPAUC 0.0305 0.0499 0.0687
SL 0.0352 0.0529 0.0696
AdvInfoNCE 0.0340 0.0527 0.0695
BSL 0.0345 0.0530 0.0695

SL@K 0.0401 0.0587 0.0760
Imp. % +13.92% +10.75% +8.73%

Table 3: Performance comparison of SL@K with the Lambdaloss@K on MF backbone. "Imp."
denotes the improvement of SL@K over LambdaLoss@K, while "Degr." denotes the degradation of
LambdaLoss@K caused by the sample estimation. The average running time per epoch is reported.

Loss
Movielens Food

Recall@20 NDCG@20 Time (s) Recall@20 NDCG@20 Time (s)

LambdaLoss@20 0.3418 0.3466 26 0.0530 0.0382 494
LambdaLoss@20 (Sample) 0.1580 0.1603 6 0.0335 0.0238 36

Degr. % (Sample) -53.77% -53.75% N/A -36.79% -37.70% N/A

SL@20 0.3580 0.3677 2 0.0635 0.0465 8
Imp. % +4.53% +6.09% N/A +19.81% +21.73% N/A
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Figure 3: NDCG@20 performance of SL@K compared with SL under varying ratios of imposed
false positive instances. "Imp." indicates the improvement of SL@K over SL.

Table 4: Performance exploration of SL@K on NDCG@K with inconsistent K.

Health D@5 D@20 D@50

SL@5 0.1072 0.1363 0.1723
SL@20 0.1067 0.1373 0.1728
SL@50 0.1065 0.1365 0.1733

Electronic D@5 D@20 D@50

SL@5 0.0401 0.0585 0.0756
SL@20 0.0401 0.0587 0.0758
SL@50 0.0400 0.0586 0.0760

cantly higher computational costs compared to SL@K. While sampling strategies could be employed
to accelerate Lambdaloss@K, they lead to substantial (over 30%) performance degradation.

Noise Robustness Study. In Figure 3, we assess robustness of SL@K to false positive instances.
Following (Wu et al., 2024b), we manually introduce a certain ratio of negative instances as noisy
positive instances during training. As shown in Figure 3, as the noise ratio increases, SL@K
demonstrates greater improvements over SL, indicating that SL@K exhibits superior robustness to
false positive noise. This finding is consistent with our analysis in Section 3.2.

Consistency Exploration of NDCG@K and SL@K. Table 4 presents the performance of
NDCG@K and SL@K for varying values of K in {5, 20, 50}. We observe that the best per-
formance is achieved when the value of K in SL@K matches that of NDCG@K. This result aligns
with our expectations. Specifically, when the value of K in SL@K differs from that in NDCG@K,
e.g., SL@20 for NDCG@50, where SL@20 would target at optimizing NDCG@20 rather than
NDCG@50, such discrepancy leads to a performance drop.

2.0 2.5 3.0
w

0.125

0.130

0.135

ND
CG

@
20

Health

SL@20
SL

2.0 2.5 3.0
w

0.054

0.056

0.058

ND
CG

@
20

Electronic

SL@20
SL

Figure 4: Sensitivity analysis of SL@K on τw.

Exploration of Hyperparameter τw. Figure 4
depicts the model performance with varying τw.
Initially, performance improves as τw increases,
but beyond a certain point, further increases lead
to a decline in performance. This behavior re-
flects an inherent trade-off. When τw is small,
the surrogate for NDCG@K is tighter, poten-
tially improving alignment with the target metric
but increasing the training difficulty due to the
decrease in Lipschitz smoothness. Conversely,
as τw increases, the approximation would be
loose, also impacting model performance.

5 CONCLUSION AND FUTURE DIRECTIONS

This work introduces a novel loss function, SoftmaxLoss@K (SL@K), designed for optimizing
NDCG@K. SL@K leverages a quantile-based technique to handle the truncation challenge and
derives a smooth approximation to tackle the discontinuity problem. Our theoretical analysis confirms
the close bounded relationship between NDCG@K and SL@K. Beyond its theoretical strengths,
SL@K offers a concise formulation, introducing only quantile-based weights on top of the conven-
tional Softmax Loss, making it both easy to implement and computationally efficient.

Looking ahead, a promising direction for future work would be the development of incremental
quantile estimation methods, which could further enhance the efficiency of SL@K and support
the incremental learning of recommendation models. Additionally, investigating the application of
SL@K in other domains would be valuable, as Top-K metrics are widely utilized in tasks such as
multimedia retrieval, question answering, link prediction, and anomaly detection.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Panagiotis Adamopoulos and Alexander Tuzhilin. On unexpectedness in recommender systems: Or
how to better expect the unexpected. ACM Transactions on Intelligent Systems and Technology
(TIST), 5(4):1–32, 2014.

Robert Bell, Yehuda Koren, and Chris Volinsky. Modeling relationships at multiple scales to improve
accuracy of large recommender systems. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 95–104, 2007.

Peter J Bickel and Kjell A Doksum. Mathematical statistics: basic ideas and selected topics, volumes
I-II package. Chapman and Hall/CRC, 2015.

Sebastian Bruch, Xuanhui Wang, Michael Bendersky, and Marc Najork. An analysis of the softmax
cross entropy loss for learning-to-rank with binary relevance. In Proceedings of the 2019 ACM
SIGIR international conference on theory of information retrieval, pp. 75–78, 2019.

Christopher Burges, Robert Ragno, and Quoc Le. Learning to rank with nonsmooth cost functions.
Advances in neural information processing systems, 19, 2006.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pp. 129–136, 2007.

George Casella and Roger Berger. Statistical inference. CRC Press, 2024.

Olivier Chapelle and Mingrui Wu. Gradient descent optimization of smoothed information retrieval
metrics. Information retrieval, 13:216–235, 2010.

Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan He. Bias and
debias in recommender system: A survey and future directions. ACM Transactions on Information
Systems, 41(3):1–39, 2023.

Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user movement in location-
based social networks. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 1082–1090, 2011.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman.
Indexing by latent semantic analysis. Journal of the American society for information science, 41
(6):391–407, 1990.

Lori E Dodd and Margaret S Pepe. Partial auc estimation and regression. Biometrics, 59(3):614–623,
2003.

Zeshan Fayyaz, Mahsa Ebrahimian, Dina Nawara, Ahmed Ibrahim, and Rasha Kashef. Recommen-
dation systems: Algorithms, challenges, metrics, and business opportunities. applied sciences, 10
(21):7748, 2020.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. arXiv preprint arXiv:1903.08850, 2019.

Lingxin Hao and Daniel Q Naiman. Quantile regression. Number 149. Sage, 2007.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. In proceedings of the 25th international conference on world
wide web, pp. 507–517, 2016a.

Ruining He and Julian McAuley. Vbpr: visual bayesian personalized ranking from implicit feedback.
In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiangnan He and Tat-Seng Chua. Neural factorization machines for sparse predictive analytics. In
Proceedings of the 40th International ACM SIGIR conference on Research and Development in
Information Retrieval, pp. 355–364, 2017.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182, 2017a.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173–182, 2017b.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

Katja Hofmann, Anne Schuth, Alejandro Bellogin, and Maarten De Rijke. Effects of position bias on
click-based recommender evaluation. In Advances in Information Retrieval: 36th European Con-
ference on IR Research, ECIR 2014, Amsterdam, The Netherlands, April 13-16, 2014. Proceedings
36, pp. 624–630. Springer, 2014.

Neil Hurley and Mi Zhang. Novelty and diversity in top-n recommendation–analysis and evaluation.
ACM Transactions on Internet Technology (TOIT), 10(4):1–30, 2011.

Rolf Jagerman, Zhen Qin, Xuanhui Wang, Michael Bendersky, and Marc Najork. On optimizing
top-k metrics for neural ranking models. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2303–2307, 2022.

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. A survey on contrastive self-supervised learning. Technologies, 9(1):2, 2020.

Kalervo Järvelin and Jaana Kekäläinen. Ir evaluation methods for retrieving highly relevant documents.
In ACM SIGIR Forum, volume 51, pp. 243–250. ACM New York, NY, USA, 2017.

Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta mathematica, 30(1):175–193, 1906.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Hyeyoung Ko, Suyeon Lee, Yoonseo Park, and Anna Choi. A survey of recommendation systems:
recommendation models, techniques, and application fields. Electronics, 11(1):141, 2022.

R Koenker. Quantile regression cambridge, uk: Cambridge univ, 2005.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model.
In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 426–434, 2008.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30–37, 2009.

Maksim Lapin, Matthias Hein, and Bernt Schiele. Loss functions for top-k error: Analysis and
insights. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
1468–1477, 2016.

Maksim Lapin, Matthias Hein, and Bernt Schiele. Analysis and optimization of loss functions for
multiclass, top-k, and multilabel classification. IEEE transactions on pattern analysis and machine
intelligence, 40(7):1533–1554, 2017.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dong Li, Ruoming Jin, Jing Gao, and Zhi Liu. On sampling top-k recommendation evaluation. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2114–2124, 2020.

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and Trends® in Information
Retrieval, 3(3):225–331, 2009.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
supervised learning: Generative or contrastive. IEEE transactions on knowledge and data engi-
neering, 35(1):857–876, 2021.

Jing Lu, Chaofan Xu, Wei Zhang, Ling-Yu Duan, and Tao Mei. Sampling wisely: Deep image
embedding by top-k precision optimization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 7961–7970, 2019.

Xiangkui Lu, Jun Wu, and Jianbo Yuan. Optimizing reciprocal rank with bayesian average for
improved next item recommendation. In Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2236–2240, 2023.

Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and Julian McAuley. Generating personalized
recipes from historical user preferences. arXiv preprint arXiv:1909.00105, 2019.

Pascal Massart. The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The annals of
Probability, pp. 1269–1283, 1990.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43–52, 2015.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The journal of chemical physics,
21(6):1087–1092, 1953.

Liqiang Nie, Wenjie Wang, Richang Hong, Meng Wang, and Qi Tian. Multimodal dialog system:
Generating responses via adaptive decoders. In Proceedings of the 27th ACM international
conference on multimedia, pp. 1098–1106, 2019.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Emanuel Parzen. On estimation of a probability density function and mode. The annals of mathemat-
ical statistics, 33(3):1065–1076, 1962.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Ahmed Rashed, Josif Grabocka, and Lars Schmidt-Thieme. A guided learning approach for item
recommendation via surrogate loss learning. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 605–613, 2021.

Zhaochun Ren, Shangsong Liang, Piji Li, Shuaiqiang Wang, and Maarten de Rijke. Social collabora-
tive viewpoint regression with explainable recommendations. In Proceedings of the tenth ACM
international conference on web search and data mining, pp. 485–494, 2017.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.

Jun Shao. Mathematical statistics. Springer Science & Business Media, 2008.

Alexander Shapiro. Distributionally robust stochastic programming. SIAM Journal on Optimization,
27(4):2258–2275, 2017.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wentao Shi, Chenxu Wang, Fuli Feng, Yang Zhang, Wenjie Wang, Junkang Wu, and Xiangnan He.
Lower-left partial auc: An effective and efficient optimization metric for recommendation. In
Proceedings of the ACM on Web Conference 2024, pp. 3253–3264, 2024.

Thiago Silveira, Min Zhang, Xiao Lin, Yiqun Liu, and Shaoping Ma. How good your recommender
system is? a survey on evaluations in recommendation. International Journal of Machine Learning
and Cybernetics, 10:813–831, 2019.

Xiaoyuan Su. A survey of collaborative filtering techniques. 2009.

Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. Softrank: optimizing non-smooth
rank metrics. In Proceedings of the 2008 International Conference on Web Search and Data
Mining, pp. 77–86, 2008.

Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. Clicks can be
cheating: Counterfactual recommendation for mitigating clickbait issue. In Proceedings of the
44th International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 1288–1297, 2021.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information Retrieval, pp. 165–174, 2019.

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork. The lambdaloss
framework for ranking metric optimization. In Proceedings of the 27th ACM international
conference on information and knowledge management, pp. 1313–1322, 2018.

Hongyi Wen, Longqi Yang, and Deborah Estrin. Leveraging post-click feedback for content recom-
mendations. In Proceedings of the 13th ACM Conference on Recommender Systems, pp. 278–286,
2019.

Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. Self-
supervised graph learning for recommendation. In Proceedings of the 44th international ACM
SIGIR conference on research and development in information retrieval, pp. 726–735, 2021.

Jiancan Wu, Xiang Wang, Xingyu Gao, Jiawei Chen, Hongcheng Fu, and Tianyu Qiu. On the
effectiveness of sampled softmax loss for item recommendation. ACM Transactions on Information
Systems, 42(4):1–26, 2024a.

Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Jizhi Zhang, and Xiang Wang. Bsl: Understand-
ing and improving softmax loss for recommendation. In 2024 IEEE 40th International Conference
on Data Engineering (ICDE), pp. 816–830. IEEE, 2024b.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender
systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.

Junliang Yu, Xin Xia, Tong Chen, Lizhen Cui, Nguyen Quoc Viet Hung, and Hongzhi Yin. Xsimgcl:
Towards extremely simple graph contrastive learning for recommendation. IEEE Transactions on
Knowledge and Data Engineering, 2023.

An Zhang, Leheng Sheng, Zhibo Cai, Xiang Wang, and Tat-Seng Chua. Empowering collaborative
filtering with principled adversarial contrastive loss. Advances in Neural Information Processing
Systems, 36, 2024.

Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender system: A survey
and new perspectives. ACM computing surveys (CSUR), 52(1):1–38, 2019.

Huachi Zhou, Hao Chen, Junnan Dong, Daochen Zha, Chuang Zhou, and Xiao Huang. Adaptive
popularity debiasing aggregator for graph collaborative filtering. In Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
7–17, 2023.

Ziwei Zhu, Jianling Wang, and James Caverlee. Improving top-k recommendation via jointcollabora-
tive autoencoders. In The World Wide Web Conference, pp. 3483–3482, 2019.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

Recommendation models. As a fundamental component of recommender systems, recommendation
models aim to predict the user-item interactions. One of the most popular paradigms is collaborative
filtering (CF) (Su, 2009; Zhu et al., 2019). CF-based models assume that users with similar preferences
will have similar interactions with items. Therefore, a common practice to implement CF models is
to parameterize the user and item embeddings and predict the interactions by the vector similarity
between user and item embeddings.

The earliest works stem from the idea of Matrix Factorization (MF) (Koren et al., 2009), which
factorizes the user-item interaction matrix into user and item embedding vectors, such as MF (Koren
et al., 2009), SVD (Deerwester et al., 1990; Bell et al., 2007), SVD++ (Koren, 2008), NCF (He et al.,
2017a), etc. However, MF-based models have limitations in capturing high-order relations, since
they only consider the first-order interactions. To address this issue, some works have proposed to
incorporate the graph structure of user-item interactions, using Graph Neural Networks (GNNs) (Wu
et al., 2022; Kipf & Welling, 2016; Wang et al., 2019). GNN-based models, such as LightGCN
(He et al., 2020), NGCF (Wang et al., 2019), and APDA (Zhou et al., 2023), have achieved great
success in recommendation. Moreover, the most recent works, including SGL (Wu et al., 2021) and
XSimGCL (Yu et al., 2023), introduce contrastive learning (Liu et al., 2021; Oord et al., 2018) for
graph data augmentation, achieving state-of-the-art performance in recommendation.

Recommendation losses. Recommendation loss, which significantly impacts the effectiveness
of recommendation models, is gaining increasing attention from researchers in the field. The
earliest works treat recommendation as a simple regression or binary classification problem, utilizing
pointwise losses such as MSE (He & Chua, 2017) and BCE (He et al., 2017a). However, due to
neglecting the ranking essence in recommendation, these pointwise losses usually result in inferior
recommendation performance.

To address the limitations of pointwise losses, pairwise losses such as BPR (Rendle et al., 2012)
have been proposed. BPR aims to learn a partial order between positive and negative items, which
is a surrogate loss for AUC metric and achieves significant improvements over pointwise losses.
Following BPR, listwise losses (Cao et al., 2007) such as Softmax Loss (SL) (Wu et al., 2024a)
extends the pairwise ranking to listwise, i.e., maximizing the likelihood of the entire list of items
consisting of one positive item and multiple negative items. SL has been proven as a NDCG surrogate
loss and achieves state-of-the-art performance in recommendation (Wu et al., 2024a; Bruch et al.,
2019).

Given the success of ranking losses, recent works have attempted to further improve ranking per-
formance from different perspectives. For instance, some works have proposed to further improve
the robustness of SL by introducing Distributional Robust Optimization (DRO) (Shapiro, 2017),
e.g., AdvInfoNCE (Zhang et al., 2024) and BSL (Wu et al., 2024b). Other works try to directly
optimize the ranking metrics including NDCG (Järvelin & Kekäläinen, 2017) and MRR (Lu et al.,
2023). Among them, LambdaRank (Burges et al., 2006) and LambdaLoss (Wang et al., 2018) are
the most representative works, which serve as the NDCG surrogate losses with a different form
compared to SL. There are also some works focusing on optimizing NDCG from other approaches,
e.g., GuidedRec (Rashed et al., 2021) uses neural networks, Smooth-NDCG (Chapelle & Wu, 2010)
designs a smooth ranking position indicator, SoftNDCG (Taylor et al., 2008) considers the rank
distribution, NeuralSort (Grover et al., 2019) leverages Gumbel-Softmax trick for optimization, etc.

Despite the success of the aforementioned ranking losses, they still have limitations in practice, as
real-world recommender systems only retrieve a small subset of items for users, i.e., Top-K recom-
mendation (Li et al., 2020; Hurley & Zhang, 2011). The Top-K ranking metrics (e.g., NDCG@K),
which consider solely the top-ranked items, could be inconsistent with the full ranking metrics
(e.g., NDCG). Therefore, the NDCG surrogate losses like SL and LambdaLoss may obtain subopti-
mal performance in practical recommendation scenarios. To address this issue, directly optimizing
the Top-K ranking metrics has become increasingly important.

Several existing works focus on Top-K metrics optimization. For example, LLPAUC (Shi et al., 2024)
optimizes the lower-left part of AUC, which is a surrogate loss for Recall@K and Precision@K.
Prec@K (Lu et al., 2019) directly optimize the Precision@K in deep image embedding task.
LambdaLoss@K (Jagerman et al., 2022), which is a reweighted LambdaLoss, achieves a NDCG@K
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surrogate loss in document retrieval tasks. However, LLPAUC and Prec@K are not designed for
optimizing NDCG@K. Besides, LLPAUC involves complex adversarial training, hinders its effec-
tiveness and applicable. Moreover, Prec@K and LambdaLoss@K are not specifically designed
for recommendation, would suffer from serious inefficiency issue when transferred to recommen-
dation scenarios. The skewed lambda weight in LambdaLoss@K also hinders its effective training.
Therefore, it is still an open problem to design an efficient and effective surrogate loss for optimizing
NDCG@K in recommendation.
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B ANALYSIS OF LAMBDA WEIGHT IN LAMBDALOSS@K

In this section, we provide a detailed analysis of the lambda weight µuij in LambdaLoss@K
(Jagerman et al., 2022), which is defined as

µuij =

ηuij ·
(
1− 1

log2(max(πui, πuj) + 1)

)−1

, if πui > K or πuj > K

ηuij , else
(2.4)

and
ηuij =

1

log2(|πui − πuj |+ 1)
− 1

log2(|πui − πuj |+ 2)
(2.5)

Since ηuij is the difference between the reciprocals of adjacent discount terms 1/ log2(·), this causes
the lambda weight µuij to rapidly approach 0 when |πui − πuj | is large, i.e., when the ranking
positions of the two items differ significantly. This indicates that during training, only negative items
that are close to positive items receive sufficient gradients, while most negative items do not get
effective trained. In fact, this is counter-intuitive and leads to inefficient training.

The following Figure B.1 shows the lambda weight µuij of Top-20 items in LambdaLoss@5, with a
minimum value of 0.005. Even with a ranking difference less than 20, µuij is nearly vanishing. This
means that in a RS with |I| items, the lambda weight δui has at most 40|I| values greater than 0.005,
which is less than 1% of the total number of items in the practical RS with usually more than 4K
items. This clearly indicates the gradient vanishing issue in LambdaLoss@K. Conversely, there are a
certain ratio (1/|I|) of the lambda weights are greater than 0.3, which dominate the gradients and
have a decisive impact on the optimization direction, which increases training instability and hampers
model convergence. This also indicates we can not use a large learning rate to mitigate issue of
gradient vanishing during sampling estimation. As the few instances with large lambda weights could
be sampled occasionally and lead to numerical explosion if we use a large learning rate. Overall,
the extreme long-tail distribution of lambda weights makes optimization challenging and cannot be
easily resolved by simply adjusting the learning rate.
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Figure B.1: The lambda weight µuij of Top-20 items in LambdaLoss@5.
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C ADDITIONAL ANALYSIS OF SL@K

C.1 DISCUSSION ON THE ACTIVATION FUNCTIONS IN SL@K

In Equation (3.5), we smooth SL@K by two conventional activation functions, i.e., the sigmoid
function σw(x) = 1/(1 + exp(−x/τw)) and the exponential function σd(x) = exp(x/τd), where
τw and τd are the temperature parameters. In this section, we will discuss the rationale behind the
selection of these activation functions, as summarized in Table C.1.

Table C.1: Comparison of different activation functions choices in SL@K.

(σw, σd) Sigmoid Exponential

Sigmoid ✗ (not achieve upper bound) ✓ (Our SL@K loss)
Exponential ✗ (not achieve upper bound) ✗ (not tight enough)

Case 1: (σw, σd) = (Sigmoid, Sigmoid). To achieve an upper bound of DCG@K from Equa-
tion (3.4) to Equation (3.5), since σw(·) ≥ 0 whether σw(·) chooses the sigmoid or exponential
function, the positivity of LSL(u, i) = log

(∑
j∈I σd(duij)

)
should be guaranteed. However, if we

choose the sigmoid function for σd(·), this positivity may not be guaranteed, and thus leads to a
failure to achieve a surrogate loss with theoretical guarantees. Moreover, given that the sigmoid
function is not an upper bound of δ(·), choosing the sigmoid function for σw(·) would also fail to
achieve the upper bound of DCG@K.

Case 2: (σw, σd) = (Sigmoid, Exponential). This is our proposed SL@K loss, which achieves a
tight upper bound for − logDCG@K, as proven in Theorem 3.1 and Appendix C.2.

Case 3: (σw, σd) = (Exponential, Sigmoid). Similar to Case 1, the sigmoid function could make
the LSL(u, i) term not positive and thus fail to achieve the upper bound of DCG@K.

Case 4: (σw, σd) = (Exponential, Exponential). In this case, SL@K indeed serves as an upper
bound of − logDCG@K, but the exponential function is not tight enough to approximate the
Heaviside step function δ(·), leading to a loose upper bound. In fact, the difference between the
sigmoid function 1/(1 + exp(−x/τw)) and δ(x) is 1/(1 + exp(|x|/τw)) ≈ exp(−|x|/τw) when
τw is small. In contrast, the difference between the exponential function exp(x/τd) and δ(x) is
exp(x/τd)− 1 ≈ x/τd when x > 0 and τd is large. It’s obvious that the sigmoid function is a better
approximation of the Heaviside step function. Additionally, even though the sigmoid function does
not serve as an upper bound of δ(·), it can still be used in SL@K to surrogate DCG@K with tighter
upper bound, as proven in Theorem 3.1.

C.2 PROOF OF THEOREM 3.1

Theorem C.1 (Theorem 3.1, SL@K as a surrogate loss for NDCG@K). For any user u, if the
Top-K hits HK

u > 1, then SL@K serves as an upper bound of − logDCG@K, i.e.,

− logDCG@K(u) ≤ LSL@K(u) (3.6)

when HK
u = 1, a slightly looser but effective bound holds, i.e., − 1

2 logDCG@K(u) ≤ LSL@K(u).

Proof of Theorem 3.1. Recall that in Section 3.1, we derive Equation (3.3d), i.e.,

− logDCG@K(u) ≤
∑
i∈Pu

I(sui ≥ βK
u )

HK
u

log πui − logHK
u (C.1)

By the assumption of HK
u ≥ 1, the last term − logHK

u can be relaxed, resulting in

− logDCG@K(u) ≤
∑
i∈Pu

I(sui ≥ βK
u )

HK
u

log πui (C.2)

Recall again that
πui =

∑
j∈I

I(suj ≥ sui) =
∑
j∈I

δ(duij) ≤
∑
j∈I

σd(duij) (C.3)
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where duij = suj − sui, δ(x) = I(x ≥ 0) is the Heaviside step function, and σd(x) = exp(x/τd) is
the exponential function serving as a smooth upper bound of δ(x) for any x and τd > 0. Therefore,
Equation (C.2) can be further relaxed as

− logDCG@K(u) ≤
∑
i∈Pu

1

HK
u

δ(sui − βK
u ) log

∑
j∈I

σd(duij)

 (C.4)

Case 1. In the case of HK
u > 1, we have

1

HK
u

δ(sui − βK
u ) ≤ 1

2
δ(sui − βK

u ) ≤ σw(sui − βK
u ) (C.5)

where σw(x) = 1/(1 + exp(−x/τw)) is the sigmoid function with temperature τw > 0. The
last inequality in Equation (C.5) holds due to σw(sui − βK

u ) ≥ 1
2 if sui > βK

u . Therefore, by
Equations (C.4) and (C.5), we have

− logDCG@K(u) ≤
∑
i∈Pu

σw(sui − βK
u ) log

∑
j∈I

σd(duij)

 (C.6)

which exactly corresponds to the SL@K loss LSL@K(u) in Equation (3.5). Therefore, SL@K serves
as an upper bound of − logDCG@K when HK

u > 1.

Case 2. In the case of HK
u = 1, there only exists one positive item i∗ ∈ Pu with sui∗ ≥ βK

u . In this
case, Equation (C.1) can be reduced to

− logDCG@K(u) ≤ log πui∗ ≤ log

∑
j∈I

σd(dui∗j)

 (C.7)

Since sui∗ ≥ βK
u , we have σw(sui∗ − βK

u ) ≥ 1
2 , which leads to

−1

2
logDCG@K(u) ≤ σw(sui∗ − βK

u ) log

∑
j∈I

σd(dui∗j)

 ≤ LSL@K(u) (C.8)

This completes the proof.

Discussion. The condition in Theorem 3.1 is easy to satisfy in practice. For example, on Electronic
dataset, SL@20 achieves H20

u > 1 for 53.32%, 81.92%, and 95.66% of users within 5, 10, and 20
epochs, respectively.

C.3 GRADIENT ANALYSIS AND FALSE POSITIVE DENOISING

SL@K inherently possesses the denoising ability to resist the false positive noise (e.g., misclicks),
which is common in RS (Wen et al., 2019). To theoretically analyze the denoising ability of SL@K,
we conduct a gradient analysis as follows:

∇uLSL@K = Ei∼Pu

[
wui∇uLSL(u, i) +

1

τw
wui(1− wui)LSL(u, i)∇usui

]
(C.9)

Therefore, we can derive an upper bound of ∥∇uLSL@K∥ as

∥∇uLSL@K∥ ≤ Ei∼Pu

[
wui

(
∥∇uLSL(u, i)∥+

1

τw
LSL(u, i) ∥∇usui∥

)]
(C.10)

It’s evident that the above gradient upper bound of SL@K w.r.t. the user embedding u is controlled
by the weight wui. For any false positive item i with low score sui, wui will be sufficiently small,
which reduces its impact on the gradient. This analysis indicates that SL@K is robust to false positive
noise, highlighting its denoising ability.
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D SAMPLE QUANTILE ESTIMATION

D.1 SAMPLE QUANTILE ESTIMATION ERROR BOUND

In this section, we provide the proof of Theorem 3.2.
Theorem D.1 (Theorem 3.2, Sample quantile estimation error). For any c.d.f. F and any p ∈ (0, 1)
, the p-th quantile is define as θp := F−1(p) = inf{t : F (t) ≥ p}. We sample N samples

{Xi}Ni=1
i.i.d.∼ F , suppose that FN (t) = 1

N

∑N
i=1 I(Xi ≤ t) is the empirical c.d.f. , and the p-th

estimated quantile is defined as θ̂p := F−1
N (p). Then, for any ϵ > 0, we have

Pr
(∣∣∣θ̂p − θp

∣∣∣ > ε
)
≤ 4e−2Nδ2ε (3.7)

where δε = min{F (θp + ε)− p, p− F (θp − ε)}.

To proof Theorem 3.2, we first introduce the following lemma.
Lemma D.2 (Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Massart, 1990; Bickel & Doksum,
2015)). For any c.d.f. F and the corresponding empirical c.d.f. FN , given the sup-norm distance
between FN and F defined as ∥FN − F∥∞ = supt∈R{|FN (t)− F (t)|}, we have

Pr (∥FN − F∥∞ > ε) ≤ 2e−2Nε2 (D.1)

The estimation error bound of the sample quantile technique (cf. Theorem 3.2) can be simply derived
from the DKW inequality (cf. Lemma D.2) as follows.

Proof of Theorem 3.2. Consider the error between θ̂p and θp , we have

Pr(θ̂p > θp + ε) = Pr(p > FN (θp + ε))

= Pr(F (θp + ε)− FN (θp + ε) > F (θp + ε)− p)

≤ Pr(∥FN − F∥∞ > δ+ε )

(D.2)

where δ+ε = F (θp + ε)− p. Analogously, let δ−ε = p− F (θp − ε) , we have

Pr(θ̂p < θp − ε) ≤ Pr(∥FN − F∥∞ > δ−ε ) (D.3)

Therefore, we have the two side error bound (cf. Equation (3.7)) by setting δε = min{δ+ε , δ−ε }, which
completes the proof.

D.2 SAMPLE QUANTILE ESTIMATION TRICKS FOR RECOMMENDATION

In Section 3.3, we introduce a sampling trick to estimate the Top-K quantile βK
u in RS. Specifically,

our sampled items will include all positive items Pu and N (≪ I) sampled negative items N̂u =

{jk
i.i.d.∼ Nu}Nk=1. Since the Top-K quantile is usually located within the score range of positive

items, this trick can estimate the quantile more effectively than directly i.i.d. sampling from all items,
as shown in Figure D.2.

However, applying this sampling trick leads to a theoretical gap. Since the sampled items Îu =

Pu∪N̂u are not i.i.d. sampled from the whole item set I , we should not directly sample the (K/I)-th
quantile of Îu as the estimated quantile β̂K

u , which may introduce serious bias. Instead, under a
reasonable assumption that all Top-min(K,Pu) items are positive items, we should set the estimated
quantile β̂K

u as:

• If K ≤ Pu, β̂K
u should be set as the Top-K score of {sui}, where i ∈ Pu.

• If K > Pu, β̂K
u should be set as the ((K − Pu)/I)-th quantile of {suj}, where j ∈ N̂u.

The sampling trick above can be seen as non-bias. Nevertheless, this sampling setting is still not
practical in RS. In the case of K > Pu, the quantile ratio (K − Pu)/I can be too small and even
less than 1/N (e.g., K = 20, I = 105, N = 103). Therefore, the estimated quantile β̂K

u could be
theoretically higher than all the negative item scores and can not be estimated by sampling N̂u.
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(b) Without sampling trick.

Figure D.2: Comparison of sample quantile estimation with and without the sampling trick for
recommendation, using the same setting as Figure 2.

(a) Estimated Top-K quantile β̂K
u . (b) Ideal Top-K quantile βK

u .

Figure D.3: Comparison of the estimated Top-K quantile β̂K
u with the ideal Top-K quantile βK

u ,
using the same setting as Figure 2.

Given the impracticability of the above non-bias sampling setting, we slightly modify the sampling
trick. Specifically, we set β̂K

u as the Top-K score of {suk}, where k ∈ Pu ∪ N̂u. This sampling trick
perfectly fits the above non-bias case when K ≤ Pu. In the case of K > Pu, this setting actually
estimates the (K − Pu)/N -th quantile of negative item scores, introducing a slight bias but also
making the training more stable. Moreover, it’s clear that the estimated quantile β̂K

u will always be
lower than the ideal Top-K quantile βK

u under this sampling trick (cf. Figure D.2), which leads to a
more moderate truncation in training SL@K, as shown in Figure D.3.

D.3 QUANTILE REGRESSION

Quantile regression method (Koenker, 2005; Hao & Naiman, 2007) can also be used for sample
quantile estimation. Specifically, to estimate the p-th quantile, the quantile regression loss can be
defined as

LQR(u) = Ei∼I

[
(1− p)(sui − β̂u)+ + p(β̂u − sui)+

]
(D.4)

or equivalently

LQR(u) = Ei∼I

[
(sui − β̂u)(δ(sui − β̂u)− p)

]
(D.5)

where (·)+ = max(·, 0), β̂u is the estimated p-th quantile, and note that x·δ(x) = x+, x+−(−x)+ =
x, for any x ∈ R.
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Suppose that S is a random variable representing the score of items sui, and FS is the c.d.f. of S
on R. Since i ∼ I means that i follows the uniform distribution on I, we can rewrite the quantile
regression loss in Equation (D.4) as

LQR(u) = ES∼FS

[
(1− p)(S − β̂u)+ + p(β̂u − S)+

]
=

∫ β̂u

−∞
p(β̂u − S)dFS(S) +

∫ ∞

β̂u

(1− p)(S − β̂u)dFS(S)
(D.6)

Let βu = argminβ̂u
LQR(u), we have

p

∫ βu

−∞
dFS(S) = (1− p)

∫ ∞

βu

dFS(S) (D.7)

resulting
∫∞
βu

dFS(S) = p, i.e., the optimal β̂u is precisely the p-th quantile of scores S.

This regression-based approach can reduce the complexity of SL@K to O(PN) with N negative
sampling. However, in practice, it is found that training quantile regression is relatively difficult to
control, so we still adopt the above sampling trick in Appendix D.2.

D.4 SAMPLE RANKING ESTIMATION

Similar to sample quantile estimation, sample ranking estimation can also be applied to estimate the
ranking position πui. Specifically, we can sample N negative items N̂u = {jk

i.i.d.∼ Nu}Nk=1, and
sort the sampled items i ∈ Îu = Pu ∪ N̂u by scores {sui}. Then, for any item i, given the sample
ranking position π∗

ui in the sampled items Îu, the estimated ranking position π̂ui in the entire item
set is rescaled as

π̂ui = π∗
ui ·
|I|
|Îu|

(D.8)

Compared to sample quantile estimation, sample ranking estimation may result in greater errors,
primarily because the estimated ranking π̂ui obtained from sample ranking estimation is always
fixed, i.e., 1, 1 + |I|/|Îu|, 1 + 2|I|/|Îu|, · · · . Obviously, sample ranking estimation will result in an
expected error of at least 1

2 |I|/|Îu| ≈
1
2 |I|/N , which decreases inversely w.r.t. N . However, the

error in sample quantile estimation decreases exponentially w.r.t. N , leading to better estimation
accuracy. Therefore, sample ranking estimation is not suitable for losses that are extremely sensitive
to ranking positions, such as LambdaLoss (Wang et al., 2018) and LambdaLoss@K (Jagerman et al.,
2022), as discussed in Appendix B.
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E SL@K OPTIMIZATION

In this section, we provide the detailed optimization algorithm of SL@K (cf. Equation (3.5)) in
Algorithm E.1, which is based on the sample quantile estimation trick in Appendix D.2.

In practical SL@K optimization, to mitigate the training difficulties caused by frequent changes
in quantiles due to score variations (especially in the early stages), we introduce a quantile update
interval hyperparameter Tβ , i.e., updating the quantiles every Tβ epochs.

Algorithm E.1 SL@K optimization
Input: user and item sets U , I; dataset D = {yui ∈ {0, 1} : u ∈ U , i ∈ I}; score function
sui : U × I → R with parameters Θ; negative sampling number N ; the number of epochs T ;
the number of K; temperature parameters τw, τd; quantile update interval Tβ .

1: Initialize the estimated Top-K quantiles β̂K
u ← 0 for all u ∈ U .

2: for t = 1, 2, . . . , T do
3: for u ∈ U do
4: Let Pu = {i : yui = 1} be the positive items of user u.
5: Let Nu = {i : yui = 0} be the negative items of user u.

▷ Estimate the quantiles β̂K
u

▷ Complexity: O((|Pu|+N) log(|Pu|+N))
▷ Complexity: ≈ O(N logN)

6: if t ≡ 0 mod Tβ then
7: Sample N negative items N̂u = {jk

i.i.d.∼ Nu}Nk=1, let Îu = Pu ∪ N̂u.
8: Sort items î ∈ Îu by scores {suî}.
9: Estimate the Top-K quantile β̂K

u ← Îu[K], i.e., the K-th top-ranked item in Îu.
10: end if

▷ Optimize Θ by SL@K loss
▷ Complexity: O(|Pu|N)

11: Sample N negative items N̂u = {jk
i.i.d.∼ Nu}Nk=1.

12: for i ∈ Pu do
13: Compute the weight wui = σw(sui − β̂K

u ), where σw = σ(·/τw).
14: Compute the SL loss LSL(u, i) = log

∑
j∈N̂u

σd(duij), where σd = exp(·/τd).
15: end for
16: Compute the loss LSL@K(u) =

∑
i∈Pu

wui · LSL(u, i).
17: Update the parameters Θ by minimizing LSL@K(u).
18: end for
19: end for

Output: the optimized parameters Θ.
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F EXPERIMENTAL DETAILS

F.1 DATASETS

In our experiments, we adopt six benchmark datasets summarized in Table F.2:

• Health / Electronic / Book (He & McAuley, 2016a; McAuley et al., 2015): These datasets are
collected from the Amazon dataset, a large crawl of product reviews from Amazon4. The 2014
version of Amazon dataset contains 142.8 million reviews spanning May 1996 to July 2014.

• Gowalla (Cho et al., 2011): The Gowalla dataset is a check-in dataset collected from the location-
based social network Gowalla5, including 1M users, 1M locations, and 6M check-ins.

• Movielens (Harper & Konstan, 2015): The Movielens dataset is a movie rating dataset collected
from Movielens6. We use the Movielens-100K version, which contains 100,000 ratings from 1000
users on 1700 movies.

• Food (Majumder et al., 2019): The Food dataset consists of 180K recipes and 700K recipe reviews
covering 18 years of user interactions and uploads on Food.com7.

Table F.2: Statistics of the datasets.

Dataset #Users #Items #Interactions Density
Health (He & McAuley, 2016a) 1,974 1,200 48,189 0.02034
Electronic (He & McAuley, 2016a) 13,455 8,360 234,521 0.00208
Gowalla (Cho et al., 2011) 29,858 40,988 1,027,464 0.00084
Book (He & McAuley, 2016a) 135,109 115,172 4,042,382 0.00026

Movielens (Harper & Konstan, 2015) 939 1,016 80,393 0.08427
Food (Majumder et al., 2019) 5,875 9,852 233,038 0.00403

In dataset preprocessing, following the standard practice in Wang et al. (2019), we use a 10-core
setting (He & McAuley, 2016b), i.e. all users and items have at least 10 interactions. To remove the
low-quality interactions, we only retain the interactions with ratings greater or equal to 3 (if available).
After preprocessing, we randomly split the datasets into 80% training and 20% test sets, and a 10%
validation set is further randomly split from the training set for hyperparameter tuning.

F.2 RECOMMENDATION SCENARIOS

In this paper, we evaluate the performance of each method mainly under the following two Top-K
recommendation scenarios:

• IID scenario (He et al., 2020): The IID scenario is the most common recommendation scenario,
where the training and test sets are i.i.d. split from the whole dataset and have the same distributions.
We closely follow the setting in He et al. (2020).

• False Positive Noise scenario (Wu et al., 2024b): The Noise scenario is widely adopted to
evaluate the denoising capabilities. Our false positive noise setting is similar to the false negative
noise setting in Wu et al. (2024b). Specifically, for each user u, we randomly sample ⌈r × Pu⌉
negative items and flip them to positive items as false positive noise. The range of noise ratios r is
{5%, 10%, 15%, 20%}.

F.3 RECOMMENDATION BACKBONES

Recommendation backbones, or the recommendation models, are the core components of RS. In the
scope of this paper, the recommendation backbones can be seen as the score function sui : U×I → R
with parameters Θ. It is crucial to evaluate the effectiveness of the recommendation loss on different
backbones to ensure their generalization and consistency.

4https://www.amazon.com/
5https://en.wikipedia.org/wiki/Gowalla
6https://movielens.org/
7https://www.food.com/
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In our experiments, we implement three popular recommendation backbones:

• MF (Koren et al., 2009): MF is the most basic but still effective recommendation model, which
factorizes the user-item interaction matrix into user and item embeddings. All the embedding-based
recommendation models use MF as the first layer. Specifically, we set the embedding size d = 64
for all settings, following the setting in Wang et al. (2019).

• LightGCN (He et al., 2020): LightGCN is a effective GNN-based recommendation model.
LightGCN performs graph convolution on the user-item interaction graph, so as to aggregate the
high-order interactions. Specifically, LightGCN simplifies NGCF (Wang et al., 2019) and only
retains the non-parameterized graph convolution. In our experiments, we set the number of layers
as 2, which aligns with the original setting in He et al. (2020).

• XSimGCL (Yu et al., 2023): XSimGCL is a novel recommendation model based on contrastive
learning (Jaiswal et al., 2020; Liu et al., 2021). Based on a 3-layers LightGCN, XSimGCL adds
a random noise to the output embeddings of each layer, and introduces the contrastive learning
between the final layer and the l∗-th layer, i.e. adding a auxiliary InfoNCE (Oord et al., 2018) loss
between these two layers. Following the original Yu et al. (2023)’s setting, the modulus of random
noise between each layer is set as 0.1, the contrastive layer l∗ is set as 1 (where the embedding layer
is 0-th layer), the temperature of InfoNCE is set as 0.1, and the weight of the auxiliary InfoNCE
loss is searching from {0.05, 0.1, 0.2}.

F.4 COMPARED METHODS AND HYPERPARAMETERS SETTING

To adequately evaluate the effectiveness of SL@K, we reproduce the following SOTA recommenda-
tion losses and search for the optimal hyperparameters using grid search. In loss optimization, we use
Adam (Kingma & Ba, 2014) optimizer with learning rate as lr, and weight decay (L2 regularization
hyperparameter) as wd. The batch size is set as 1024, and the number of epochs is set as 200. If
the negative sampling is needed, we set the negative sampling number N = 1000, except for the
Movielens dataset, which is set to 200 due to the smaller number of items.

• BPR (Rendle et al., 2012): A pairwise loss based on the Bayesian Maximum Likelihood Estimation
(MLE) (Casella & Berger, 2024). The objective of BPR is to learn a partial order of the items,
i.e., the positive items should be ranked higher than the negative items. Furthermore, BPR is a
surrogate loss for AUC metric (Rendle et al., 2012; Silveira et al., 2019).
– Hyperparameters: lr ∈ {10−1, 10−2, 10−3, 10−4}, wd ∈ {0, 10−4, 10−5, 10−6}.
– Score function sui: dot product.

• GuidedRec (Rashed et al., 2021): A BCE (He et al., 2017a) loss with DCG surrogate learning
guidance. GuidedRec is not a DCG surrogate loss. Instead, it learns a surrogate loss model to
estimate DCG. During training, GuidedRec maximizes the estimated DCG while minimizing the
MSE (He & Chua, 2017) between the estimated DCG and the real DCG.
– Hyperparameters: lr ∈ {10−1, 10−2, 10−3}, wd ∈ {0, 10−4, 10−5, 10−6}.
– Score function sui: cosine similarity.

• LLPAUC (Shi et al., 2024): A surrogate loss for lower-left part of AUC. LLPAUC has been shown
as a surrogate loss for metrics such as Recall@K and Precision@K (Fayyaz et al., 2020).
– Hyperparameters: lr ∈ {10−1, 10−2, 10−3}, wd ∈ {0, 10−4, 10−5, 10−6}, hyperparameters
α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and β ∈ {0.01, 0.1}, which follows Shi et al. (2024)’s setting.

– Score function sui: cosine similarity.
• Softmax Loss (SL) (Wu et al., 2024a): A SOTA recommendation loss derived from the listwise

MLE, which has been proven as a DCG surrogate loss.
– Hyperparameters: lr ∈ {10−1, 10−2, 10−3}, wd ∈ {0, 10−4, 10−5, 10−6}, temperature τ ∈
{0.01, 0.05, 0.1, 0.2, 0.5}.

– Score function sui: cosine similarity.
• AdvInfoNCE (Zhang et al., 2024): A DRO-based modification of SL. AdvInfoNCE tries to

introduce adaptive negative hardness to pairwise score duij of SL.
– Hyperparameters: lr ∈ {10−1, 10−2, 10−3}, wd ∈ {0, 10−4, 10−5, 10−6}, temperature τ ∈
{0.01, 0.05, 0.1, 0.2, 0.5}. The other hyperparameters are fixed as the original setting in Zhang
et al. (2024). Specifically, the negative weight is set as 64, the adversarial learning will be
performed every 5 epochs, with the adversarial learning rate as 5× 10−5.
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– Score function sui: cosine similarity.
• BSL (Wu et al., 2024b): A DRO-based modification of SL. Compared to SL, BSL applies additional

DRO on the positive items.
– Hyperparameters: lr ∈ {10−1, 10−2, 10−3}, wd ∈ {0, 10−4, 10−5, 10−6}, temperatures
τ1, τ2 ∈ {0.01, 0.05, 0.1, 0.2, 0.5}.

– Score function sui: cosine similarity.
• LambdaRank (Burges et al., 2006): A weighted BPR loss, with weights designed heuristically.

LambdaRank aims to optimize DCG, but it is not strictly a DCG surrogate loss.
– Hyperparameters: lr ∈ {10−1, 10−2, 10−3, 10−4}, wd ∈ {0, 10−4, 10−5, 10−6}.
– Score function sui: dot product.

• LambdaLoss (Wang et al., 2018): A DCG@ surrogate loss, which is formally a weighted BPR
loss. Wang et al. (2018) finds that LambdaRank does not directly optimize DCG, and proposes
LambdaLoss which serves as a DCG surrogate loss.
– Hyperparameters: lr ∈ {10−1, 10−2, 10−3, 10−4}, wd ∈ {0, 10−4, 10−5, 10−6}.
– Score function sui: dot product.

• LambdaLoss@K (Jagerman et al., 2022): A DCG@K surrogate loss, which is formally a
weighted BPR loss. Based on the LambdaLoss framework, Jagerman et al. (2022) proposes
LambdaLoss@K which strictly serves as a DCG@K surrogate loss.
– Hyperparameters: lr ∈ {10−1, 10−2, 10−3, 10−4}, wd ∈ {0, 10−4, 10−5, 10−6}.
– Score function sui: dot product.

• SL@K (Ours): A DCG@K surrogate loss, which is formally a weighted SL with weight
wui = σw(sui − β̂K

u ).
– Hyperparameters: lr ∈ {10−1, 10−2, 10−3}, wd ∈ {0, 10−4, 10−5, 10−6}, SL temperature
τd ∈ {0.01, 0.05, 0.1, 0.2, 0.5} (directly using the optimal temperature hyperparameter of
SL), weight temperature τw ∈ [0.5, 3.0] with searching step of 0.25, quantile update interval
Tβ ∈ {5, 20}.

– Score function sui: cosine similarity.

F.5 COMPUTATIONAL RESOURCES

All experiments are conducted on one NVIDIA GeForce RTX 4090 GPU. The code are implemented
in PyTorch (Paszke et al., 2019) and will be released upon acceptance.

F.6 OPTIMAL HYPERPARAMETERS

We report the optimal hyperparameters of each method on each dataset and backbone as the following
tables Tables F.4 to F.9, in the order of the hyperparameters listed in Table F.3.

Table F.3: Hyperparameters to be searched for each method.

Method Hyperparameters
BPR lr, wd
GuidedRec lr, wd
LLPAUC lr, wd, α, β
SL lr, wd, τ
AdvInfoNCE lr, wd, τ
BSL lr, wd, τ1, τ2
LambdaRank lr, wd
LambdaLoss lr, wd
LambdaLoss@K lr, wd
SL@K lr, wd, τd, τw, Tβ

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table F.4: Optimal hyperparameters of each method on the Health dataset.

Model Loss Hyperparameters

MF

BPR 0.001 0.0001
GuidedRec 0.01 0
LLPAUC 0.1 0 0.7 0.01
SL 0.1 0 0.2
AdvInfoNCE 0.1 0 0.2
BSL 0.1 0 0.2 0.2
SL@5 0.1 0 0.2 2.5 20
SL@20 0.1 0 0.2 2.5 5
SL@50 0.1 0 0.2 2.5 5

LightGCN

BPR 0.001 0.000001
GuidedRec 0.01 0
LLPAUC 0.1 0 0.7 0.1
SL 0.1 0 0.2
AdvInfoNCE 0.1 0 0.2
BSL 0.1 0 0.05 0.2
SL@5 0.1 0 0.2 2.5 5
SL@20 0.1 0 0.2 2.25 20
SL@50 0.1 0 0.2 2.25 5

XSimGCL

BPR 0.1 0.000001
GuidedRec 0.001 0.000001
LLPAUC 0.1 0 0.1 0.1
SL 0.1 0 0.2
AdvInfoNCE 0.1 0 0.2
BSL 0.1 0 0.05 0.2
SL@5 0.1 0 0.2 1.5 5
SL@20 0.1 0 0.2 1.5 5
SL@50 0.1 0 0.2 1.5 20
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Table F.5: Optimal hyperparameters of each method on the Electronic dataset.

Model Loss Hyperparameters

MF

BPR 0.001 0.00001
GuidedRec 0.01 0
LLPAUC 0.1 0 0.5 0.01
SL 0.01 0 0.2
AdvInfoNCE 0.1 0 0.2
BSL 0.1 0 0.5 0.2
SL@5 0.1 0 0.2 2.5 5
SL@20 0.1 0 0.2 2.25 5
SL@50 0.1 0 0.2 2.25 20

LightGCN

BPR 0.01 0.000001
GuidedRec 0.01 0
LLPAUC 0.1 0 0.5 0.01
SL 0.01 0 0.2
AdvInfoNCE 0.01 0 0.2
BSL 0.01 0 0.2 0.2
SL@5 0.1 0 0.2 2.25 5
SL@20 0.1 0 0.2 2.25 20
SL@50 0.1 0 0.2 2 20

XSimGCL

BPR 0.01 0
GuidedRec 0.01 0
LLPAUC 0.1 0 0.3 0.01
SL 0.01 0 0.2
AdvInfoNCE 0.1 0 0.2
BSL 0.1 0 0.1 0.2
SL@5 0.1 0 0.2 1.25 20
SL@20 0.1 0 0.2 1.25 20
SL@50 0.1 0 0.2 1.25 5
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Table F.6: Optimal hyperparameters of each method on the Gowalla dataset.

Model Loss Hyperparameters

MF

BPR 0.001 0.000001
GuidedRec 0.001 0
LLPAUC 0.1 0 0.7 0.01
SL 0.1 0 0.1
AdvInfoNCE 0.1 0 0.1
BSL 0.1 0 0.2 0.1
SL@5 0.1 0 0.1 1 20
SL@20 0.1 0 0.1 1 20
SL@50 0.1 0 0.1 1 20

LightGCN

BPR 0.001 0
GuidedRec 0.001 0
LLPAUC 0.1 0 0.7 0.01
SL 0.1 0 0.1
AdvInfoNCE 0.1 0 0.1
BSL 0.1 0 0.05 0.1
SL@5 0.1 0 0.1 0.75 5
SL@20 0.1 0 0.1 0.75 5
SL@50 0.1 0 0.1 0.75 5

XSimGCL

BPR 0.0001 0
GuidedRec 0.001 0
LLPAUC 0.1 0 0.7 0.01
SL 0.01 0 0.1
AdvInfoNCE 0.1 0 0.1
BSL 0.1 0 0.05 0.1
SL@5 0.1 0 0.1 0.75 20
SL@20 0.1 0 0.1 0.75 5
SL@50 0.1 0 0.1 0.75 5

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table F.7: Optimal hyperparameters of each method on the Book dataset.

Model Loss Hyperparameters

MF

BPR 0.0001 0
GuidedRec 0.001 0
LLPAUC 0.1 0 0.7 0.01
SL 0.1 0 0.05
AdvInfoNCE 0.01 0 0.1
BSL 0.1 0 0.5 0.05
SL@5 0.1 0 0.05 0.5 5
SL@20 0.1 0 0.05 0.5 20
SL@50 0.1 0 0.05 0.5 5

LightGCN

BPR 0.001 0
GuidedRec 0.001 0
LLPAUC 0.1 0 0.7 0.01
SL 0.1 0 0.05
AdvInfoNCE 0.1 0 0.1
BSL 0.1 0 0.5 0.05
SL@5 0.1 0 0.05 0.5 20
SL@20 0.1 0 0.05 0.5 20
SL@50 0.1 0 0.05 0.5 20

XSimGCL

BPR 0.0001 0.00001
GuidedRec 0.1 0
LLPAUC 0.1 0 0.7 0.01
SL 0.1 0 0.05
AdvInfoNCE 0.1 0 0.1
BSL 0.1 0 0.05 0.05
SL@5 0.1 0 0.05 0.5 20
SL@20 0.1 0 0.05 0.5 20
SL@50 0.1 0 0.05 0.5 20

Table F.8: Optimal hyperparameters of each method on the Movielens dataset.

Model Loss Hyperparameters

MF

LambdaRank 0.01 0.000001
LambdaLoss 0.001 0.00001
LambdaLoss (Sample) 0.01 0.0001
LambdaLoss@20 0.001 0.00001
LambdaLoss@20 (Sample) 0.01 0.00001
SL@20 0.1 0 0.2 3 5

Table F.9: Optimal hyperparameters of each method on the Food dataset.

Model Loss Hyperparameters

MF

LambdaRank 0.001 0.00001
LambdaLoss 0.01 0.00001
LambdaLoss (Sample) 0.001 0.0001
LambdaLoss@20 0.001 0.00001
LambdaLoss@20 (Sample) 0.01 0.000001
SL@20 0.1 0 0.2 2.25 5
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G SUPPLEMENTARY EXPERIMENTAL RESULTS

G.1 SUPPLEMENTARY RESULTS: SL@K VS. LAMBDALOSS@K

Supplementary results of Table 3 are reported in Table G.10. We compare the performance of SL@K
with three Lambda losses, including LambdaRank (Burges et al., 2006), LambdaLoss (Wang et al.,
2018), and LambdaLoss@K (Jagerman et al., 2022).

Table G.10: Supplementary results of Table 3. Performance comparison of SL@K with Lambda
losses on MF backbone, including LambdaRank, LambdaLoss, and LambdaLoss@K. The best
results are highlighted in bold, and the best baselines are underlined. "Imp." denotes the improvement
of SL@K over the best Lambda loss, while "Degr." denotes the degradation of Lambda losses caused
by the sample ranking estimation (cf. Appendix D.4).

Loss
Movielens Food

Recall@20 NDCG@20 Recall@20 NDCG@20

LambdaRank 0.3077 0.3043 0.0520 0.0377

LambdaLoss 0.3425 0.3460 0.0515 0.0374
LambdaLoss (Sample) 0.1497 0.1523 0.0333 0.0243

Degr. (Sample) % -56.29% -55.98% -35.34% -35.03%

LambdaLoss@20 0.3418 0.3466 0.0530 0.0382
LambdaLoss@20 (Sample) 0.1580 0.1603 0.0335 0.0238

Degr. (Sample) % -53.77% -53.75% -36.79% -37.70%

SL@20 0.3580 0.3677 0.0635 0.0465
Imp. % +4.53% +6.09% +19.81% +21.73%

G.2 SUPPLEMENTARY RESULTS: NOISE ROBUSTNESS STUDY

Supplementary results of Figure 3 are reported in Figure G.4. We compare the performance of SL@K
with SL and DRO-based BSL under False Positive Noise scenario with varying ratios of imposed
false positive instances.

0% 5% 10% 15% 20%
Noise Ratio

0.110
0.115
0.120
0.125
0.130
0.135

Health

0% 5% 10% 15% 20%
Noise Ratio

0.045
0.048
0.050
0.053
0.055
0.058

Electronic

0% 5% 10% 15% 20%
Noise Ratio

0.150

0.155

0.160

0.165

0.170
Gowalla

0% 5% 10% 15% 20%
Noise Ratio

0.110

0.115

0.120

0.125

Book

0%

4%

8%

12%

16%

20%

0%
4%
8%
12%
16%
20%
24%

0%

4%

8%

12%

16%

0%

4%

8%

12%

16%

BSL (NDCG@20) SL (NDCG@20) SL@20 (NDCG@20) Imp. (%)

Figure G.4: Supplementary results of Figure 3. NDCG@20 Performance of SL@K compared
with SL and BSL under varying ratios of imposed false positive instances. "Imp." indicates the
improvement of SL@K over SL.
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