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Abstract— Mobile robots are increasingly ubiquitous in mod-
ern society, necessitating more human-like interaction capabil-
ities, such as following operator instructions or collaborating
with humans. Conventional robot programming methods often
fall short in achieving these complex behaviors. Behavior Trees
(BTs) offer a promising alternative due to their modularity,
scalability and reactivity. We propose using Large Language
Model (LLM) assistants to decompose task descriptions into
executable BTs. The BTs are then refined using Genetic
Programming and a low-resource simulator, eliminating the
need for fine-tuning LLMs. Our approach accelerates behavior
generation, enhances applicability in diverse environments, and
democratizes the process for non-experts. Besides, it enables the
generation of adaptable behaviors tailored to various scenarios.

I. INTRODUCTION

Mobile robots are becoming increasingly prevalent in
various domains, including manufacturing, logistics, and
healthcare, where they often need to interact with people
and operate in dynamic environments [12], [15], [17]. How-
ever, the problem that arises with traditional methods of
programming robot behaviors, like Hierarchical Finite State
Machines, subsumption architectures or Teleo-Reactives [22]
is that they often lack the flexibility and adaptability required
for these scenarios [5], [2]. Behavior Trees (BTs) offer
a compelling solution to this challenge [26]. They have
emerged as a powerful tool for representing and executing
complex robot behaviors in a structured and modular fashion,
offering advantages over their predecessors such as hierar-
chical organization, reusability of micro behaviors, and ease
of readability by users of varying technical expertise [8],
[2]. Despite that, while Large Language Models (LLMs)
offer promising capabilities for BT generation, there are
potential downsides that warrant careful consideration, such
as misinterpretations or hallucination, a need of a large
dataset for fine tuning or computational resources required
for deploying an onboard reliable LLMs in a mobile robot.

The process of generating BTs entails understanding the
goal and transforming it into executable sequences of actions
and conditions. This task demands a deep understanding
of the world, how actions can affect the environment and
a high level of linguistic comprehension when the goal is
provided as text. Our research aims to address this challenge
by proposing an approach that integrates LLMs into the
BT generation process. By leveraging the natural language

understanding capabilities of LLMs and incorporating post-
processing techniques mentioned in Section III, we seek to
automate and streamline the task of BT generation. This
integration enables mobile robots to adapt quickly to user
specified tasks and unpredictable environments.

In recent years, there has been a surge of interest in har-
nessing LLMs for natural language understanding tasks [19].
These models have showcased remarkable capabilities in
understanding and generating human-like text across diverse
domains [25]. One of the remarkable aspects of LLMs lies in
their capacity to encapsulate vast amounts of world knowl-
edge derived from pre-training on extensive text corpora [28].
This inherent understanding of the world enables LLMs to
decipher task descriptions and formulate action plans tailored
to the specified objectives [29], [7]. By tapping into their
accumulated knowledge, LLMs offer a promising avenue for
enhancing the autonomy and problem-solving capabilities of
mobile robots, facilitating efficient and contextually appro-
priate behavior generation in real-world environments [6].

Our proposed methodology can be decomposed in two
parts which are the initial creation of a first BT from a
natural language task description by a user using three
assistants created using ChatGPT 4.0 [23]. And the posterior
processing and evaluation using Genetic Programming (GP)
and a low resource simulator proposed in [9]. Our paper
presents several contributions to the field of autonomous
systems and behavior generation. First and foremost, we
eliminate the need for fine-tuning LLMs specifically for
BT generation, streamlining the process and reducing the
associated computational overhead. The fusion of LLMs and
GP accelerates behavior generation while facilitating extrap-
olation to more realistic scenarios, thereby enhancing the
applicability of generated behaviors in diverse environments.
Our approach is designed to be accessible to non-experts by
generating an initial BT and the necessary gene pool for
further BT processing just from a given task description.

This process democratizes the process of behavior gen-
eration and fostering broader adoption in the society. Fur-
thermore, our approach enables the generation of adaptable
behaviors tailored to different scenarios, enhancing the flex-
ibility and robustness of autonomous systems. Through our
research, we aim to push the boundaries of BT generation for
mobile robots, ultimately paving the way for more intuitive
and user-friendly robot programming interfaces.



The rest of the paper is structured as follows. First,
we delve into a comprehensive review of the literature
surrounding the utilization of LLMs as behavior generators,
as well as the application of GP in learning BTs. Then, we
provide a detailed description of our proposed methodology,
elucidating the intricacies of combining LLMs and GP for
behavior generation in autonomous systems. We described
the used benchmarking scenarios and engage in a thorough
discussion of the results obtained. Finally, we draw insightful
conclusions from our experiments and propose directions for
future research.

II. RELATED WORK

As mentioned, our BT generation pipeline can be decom-
posed in two parts which are the initial creation of a first BT
using LLMs and the posterior fine tuning and evaluation of
the BT. The usage of LLMs as BT generators is starting to
thrive. For example, in [1] the authors propose a Phase-Step
prompt design that facilitates hierarchical-structured robot
task generation, integrated with a behavior-tree-embedding-
based search. This approach enables automatic and cross-
domain behavior-tree task generation without the need for
pre-defined primitive tasks but with the need of a previous
task decomposition examples. Their main downside is that
the generated BTs are restricted to a sequence of actions
resulting more in a sequential plan than a BT, lacking to
exploit the main advantages of the different control nodes in
BTs.

Other examples of using LLMs for BTs generation
are [16], [14]. They introduce different methodologies of
training LLMs to become BT generators. Their downside
is the need for large text corpora for fine tuning such
models. For instace, LLM-BRAIn generates robot BTs from
operator commands but needs fine-tuning on 8.5k instruction-
following demonstrations in the style of self-instruct using
text-davinchi-003. Although previously cited papers employ
LLMs for generating BTs, they lack detailed scenarios that
would allow for a direct comparison of our methodology
with theirs [16], [14], or they do not provide the necessary
knowledge base for testing their methodologies in our spe-
cific scenario [1].

Evolutionary algorithms, such as GP, operate by treating
valid BTs as population within a generation. The nodes
within the BTs represent the genetic diversity within this
population, and processes analogous to those found in na-
ture, such as mutation or crossover, occur to facilitate the
evolution of the population into the next generation [21].
As previously mentioned, in our case we have used the
GP algorithm proposed in [9] as well as their low resource
simulator approach for fine tuning the generated BT. The
fitness of each candidate program, which represents how well
it solves the problem or performs the task, is evaluated using
their fitness function J = R −

(
α∥sd − s∥2 + βb+ γT

)
,

where R is the reward obtained for completing the task, s
is the world state after the BT execution, sd is the desired
goal state, b is the the number of nodes in the BT, and T is
the execution time.

III. METHODOLOGY

In our research, we focus the generation of a valid func-
tional BT involving a systematic methodology that integrates
user interaction, assistance from specialized tools and a final
BT post processing GP approach as depicted in Figure 1.
The three assistants are created using OpenAI’s Chat GPT
4.0 [23] and their assistants API, starting with the Task
Understanding Assistant (TUA).

The TUA extracts key details from user-provided task
descriptions, such as manipulable objects and relevant lo-
cations, and confirms these with the user before proceeding.
This streamlined description shortens the methodology sec-
tion and reduces the redundancy of explaining every single
assistant’s function in detail.

Following user confirmation, the task description and
associated data are used as input for to the Node Parametriza-
tion Assistant (NPA). The associated data includes the
addition of previous examples as text files enabling the
Retrieval-Augmented Generation (RAG) [4] of the assistant
to be triggered if it considers it necessary. This phase in-
volves the parametrization of fundamental action nodes (i.e.
move_to_{location}, pick_{object} and place_{object}) and
condition nodes (i.e. have_{object}?). The NPA empowers
the user to filter out or adding in nodes that may not align
or might be needed within the task requirements, thereby
refining the node pool for subsequent stages. Parametrized
nodes, along with the task description, are stored for future
reference and utilization.

In the final assistant phase, the parametrized action nodes,
the refined task description and previous examples if apply
are forwarded to the Behavior Tree Assistant (BTA). The
BTA, just like the NPA, is also doted with RAG. Leveraging
the provided information, the BTA orchestrates the synthesis
of a simplified action-based BT tailored to address the speci-
fied task objectives. The resultant behavior tree encapsulates
a hierarchical structure of actions designed to facilitate task
resolution within the defined environment. The idea behind
this assistants is to decompose a big prompting task into
smaller and easier to understand subtasks, similarly to [27].

To ensure that the system is able to work even if the
LLMs hallucinate [23], following the generation of a BT by
the Behavior Tree Assistant (BTA), a crucial step involves
ensuring its validity for its posterior evolution and evaluation.
For this, a validation engine is employed to transform the
output BT into a structurally and functionally sound tree.
The validation engine scrutinizes the BT to identify and
rectify any inconsistencies or syntactical errors that may
compromise its effectiveness in task execution (see Figure 2).

Once validated, the BT undergoes evaluation and fine-
tuning using Genetic Programming techniques within a
simulator environment proposed in [10]. The researchers
utilize a simplified, deterministic, low-resource simulator that
can be interpreted as a state machine. This speeds up the
learning process by not requiring the detailed modeling of the
robot’s physical attributes and interactions, thereby reducing
computational costs. The final BT is tested in Gazebo [13].



Fig. 1: Workflow of the proposed approach.

Genetic Programming offers a systematic approach to
iteratively refine the BT’s structure and parameters, lever-
aging evolutionary principles to optimize its functionality
and adaptability to diverse scenarios. Through this iterative
process, the BT evolves to better align with the task require-
ments, removing redundancies and enhancing the overall
autonomy and efficiency of the system.

In summary, the workflow for BT generation embodies a
collaborative endeavor between users and specialized assis-
tants followed by BT validation and polishing. By iteratively
refining task descriptions, parametrizing action and condition
nodes, and orchestrating BT synthesis, the workflow eases
the creation of tailored solutions to complex tasks.

IV. EXPERIMENTS

A. Scenarios

Our experimental evaluation tests the BT generation on
three controlled scenarios to assess adaptability, efficiency,
and robustness across 3 scenarios outlined in [9]. The consis-
tent setup involves three tables where cubes appear (namely
Table 0, Table 1, and Table 2) and a target table (Table 3) for
cube transportation. The scenarios progress from a fixed cube
location on Table 0 in scenario 1, introducing cube spawn
randomness in scenario 2, and culminating in simultaneous
spawns across all tables in scenario 3. This setup effectively
demonstrates our approach’s capability to handle uncertainty
and multiple objectives efficiently.

B. ALFRED

The ALFRED (Action Learning From Realistic Environ-
ments and Directives) [24] is a benchmark for learning a
mapping from natural language instructions and egocentric
vision to sequences of actions for household tasks. ALFRED
provides a collection of environments with a natural language
goal description, a set of instructions and corresponding
demonstration trajectories. These instructions outline step-
by-step tasks, guiding agents on how to accomplish various
household activities such as cooking, cleaning, or organizing

objects. The dataset is categorized into different task types,
delineating distinct challenges and objectives for agents
to tackle. For our experimentation, we randomly selected
two tasks from the "pick_and_place_simple" category where
agents are tasked with the fundamental action of picking up
objects from one location and placing them elsewhere. We
randomly chose the tasks of placing a baseball bat on a bed
and moving a watch to a glass table. Thereby, we aim to
assess the ability of our approach to extrapolate from more
hard-coded scenarios to more realistic tasks.

C. Genetic Programming Modifications
In order to refine the generated BT by the assistants and

being able to evaluate the generated tree we have used the
approach proposed in [9] (using the same GP parameters).
Their approach incorporates structural constraints inspired
by [18] to evolve the BT. Unlike [3], mutations are not
restricted to nodes of the same type, increasing diversity.
Conditions are chosen by the Genetic Programming (GP)
algorithm, with essential ones included at an atomic level.
Several modifications have been made to the original ap-
proach to try to improve its performance:

• Change Mutation Probs.: Adjusted mutation probabil-
ities to favor changes within nodes of the same type,
focusing the likelihood of mutation towards similar
nodes without deeply affecting diversification.

• Allow Condition: Allowed the last child node of a
(sub)tree to be a condition, providing more flexibility.

• Global Alignment (GA): Implementation of a global
alignment matrix computation using the Needleman-
Wunsch algorithm [20]. This promotes crossover be-
tween the most similar parts of the BT by aligning
parent BTs and selecting the two most resembling parts.

• Custom GA: Developed a custom global alignment
approach utilizing a custom similarity matrix based on
node proximity based on their type, their core function
and their parametrization. By computing their distances,
a similarity score was assigned to nodes, facilitating
crossover between similar nodes.



Fig. 2: Validation output for nodes move_to_location/object (left), pick_object (middle), and place_object (right).

Fig. 3: Average results from Scenarios 1-3 (lower cost implies better performance): Change Mutation Probs. (violet), Global
Alignment (GA) (orange), Custom GA and Change Probs. (dark blue), Custom GA (blue), Allow Condition (light blue),
Original (light green), and Ours (red). Note that lines appear dashed when the task is not solved yet.

Fig. 4: Average results from different ALFRED tasks (lower
cost implies better performance): Original (violet) and Ours
(red). Note that dashed lines represent BTs not solving the
task, while solid lines represent BTs completing the task.

V. DISCUSSION

The modifications to the GP algorithm did not yield any
discernible improvements compared to the original method-
ology. Furthermore, a combination of various modifications,
as illustrated in Figure 3, produced outcomes similar to those
observed with the original approach. Notably, the modified
algorithm failed to solve Scenario 2 within 4000 generations,
a task successfully solved by the original approach.

We believe that the specific modifications of GA and
changing mutation probabilities undergone to the original GP
algorithm had a negative impact in the space exploration of
possible BTs by reducing diversity in the population. On
the other hand, allowing the last child of a sub tree to be a
condition might result in larger trees without any effect on
the environment, obtaining low fitness scores and inserting
noise in the population. A future modification could be a
guided search over the possible BTs interacting with an
LLM assistant. Consequently, we retained the original GP
algorithm for fine-tuning the assistant BTs.

Alternatively, the assistant pipeline generated BTs that ef-

fectively solved the proposed tasks from their initial genera-
tion. Subsequent post-processing was applied to refine the as-
sistant BTs, aiming to create the most efficient, readable, and
concise structures for the given tasks. Notably, as suggested
in [11], our approach demonstrates superior performance.
Figure 3 illustrates how the original approach failed to solve
the Scenario 3 task within 8000 generations, while leveraging
our LLM-based assistants enabled the generation of BTs that
successfully solved the task since the first generation, hence
using GP only for fine tuning the BT.

Additionally, we evaluated the original approach using
simple ALFRED pick-and-place tasks, as depicted in Fig-
ure 4. Although these tasks are straightforward, our approach
generated valid trees suitable for more realistic scenarios,
assuming the agent possesses complete or generable knowl-
edge of its surroundings. While further research is necessary
to validate our approach for deployment in real-life robots
and more complex tasks, our findings demonstrate the effi-
cacy of integrating LLMs with subsequent post-processing
techniques without the need of fine tuning it, resulting in the
generation of valid and efficient BTs for simulated scenarios.

VI. CONCLUSION

This work introduces a complete BT generation pipeline
combining LLM-based assistants and Genetic Programming
(GP) without requiring LLM fine-tuning. We enable non-
expert users to generating complex robot behaviors from
narrated task descriptions. The combined approach outper-
forms BT-generation methodologies that just relay on GP.
The potential versatility of this approach has been shown
by extending the experimentation to a significant variety of
simple instances of the ALFRED dataset.

Future research focuses on exploring automatic domain
knowledge extraction, fitness function J generation , and
testing the pipeline in stochastic environments, to enhance
applicability and robustness in real-world scenarios.
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