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ABSTRACT

Pretraining on large-scale, unstructured internet text enables language models to
acquire a significant amount of world knowledge. However, this knowledge acqui-
sition is data-inefficient—to learn a fact, models must be trained on hundreds to
thousands of diverse representations of it. This poses a challenge when adapting a
pretrained model to a small corpus of domain-specific documents, where each fact
may appear rarely or only once. We propose to bridge this gap with synthetic con-
tinued pretraining: using the small domain-specific corpus to synthesize a large
corpus more amenable to learning, and then performing continued pretraining on
the synthesized corpus. We instantiate this proposal with EntiGraph, a synthetic
data augmentation algorithm that extracts salient entities from the source corpus
and then generates diverse text by drawing connections between those entities.
Synthetic continued pretraining with EntiGraph enables a language model to an-
swer questions and follow generic instructions related to the source documents
without access to them. If the source documents are instead available at inference
time, we show that the knowledge acquired through our approach compounds with
retrieval-augmented generation. To better understand these results, we build a sim-
ple mathematical model of EntiGraph, and show how synthetic data augmentation
can “rearrange” knowledge to enable more data-efficient learning.

1 INTRODUCTION

Language models (LMs) have demonstrated a remarkable ability to acquire knowledge from unstruc-
tured text, enabling them to perform challenging knowledge-intensive tasks (Brown et al., 2020;
OpenAI et al., 2024; Gemini, 2024; Anthropic, 2024b; Dubey et al., 2024; Gunter et al., 2024).
These successes are enabled by the combination of the next-token prediction objective (Shannon,
1951) and large-scale internet data (Common Crawl, 2007). However, it is becoming increasingly
apparent that this approach is data-inefficient; for example, a 13-year-old human acquires knowl-
edge from fewer than 100M tokens, while state-of-art open-source language models are trained on
15T tokens (Warstadt et al., 2023; Dubey et al., 2024). Recent works have highlighted a range of
related problematic phenomena, including the “reversal curse”, where models struggle to learn the
relation “B=A” when trained on “A=B” (Berglund et al., 2023), and the requirement that models be
exposed to thousands of examples per fact for knowledge acquisition (Allen-Zhu & Li, 2024).

These drawbacks pose a challenge when adapting the next-token prediction paradigm to learn from
small-scale corpora. Because large-scale pretrained models already capture much of public common
knowledge, further advancements will necessitate learning from the tails of the distribution (Kandpal
et al., 2023): niche data that is either contained in small, private domains or appears only once or
twice on the internet. This challenge of data-efficient, parametric knowledge acquisition is becoming
increasingly important as growing compute capacity enables language model providers to exhaust
publicly available data (Muennighoff et al., 2023; Villalobos et al., 2024).

We propose to address this problem of acquiring knowledge from small corpora with synthetic con-
tinued pretraining. To illustrate, consider the problem of teaching an LM a new area of mathematics,
succinctly documented by a small set of textbooks. Directly training the model on those textbooks
is unlikely to be effective due to the limited volume of text (e.g., tens of thousands of words), and
the model will struggle to generalize from this compressed representation of knowledge. In contrast,
learning established mathematical areas like linear algebra is straightforward because a large-scale
corpus with diverse knowledge representations is accessible: for example, online lecture notes, Stack
Exchange discussions, or Python implementations of the singular value decomposition. Synthetic
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Title: The Blue Behemoth 
Author: Leigh Blackett 

Shannon's Imperial Circus was a 
jinxed space-carny leased for a 
mysterious tour of the inner 
worlds. It made a one-night… 

Title: Cosmic Yo-Yo 
Author: Ross Rocklynne 

Bob Parker, looking through the 
photo-amplifiers at the wedge-
shaped asteroid, was plainly 
flabbergasted. Not in his wildest… 

…

Input: small, niche 
corpus of documents

Title: Defining Decay Down 
Author: David Plotz 

If you haven’t visited a dentist in 
the past few years, first of all, that’s 
gross. (Checkups are every six 
months, and don’t pretend you…

(1) Entity Extraction 
For each document , 
extract a list of entities

D

E1

…

Checkups

Fluoride

Dentist

E2

E3

E4 Enamel

E1

E2

E3

E4

(2) Relation Analysis 
Form a knowledge graph and 

prompt an LM to describe its edges

User: Analyze relations among given 
entities in the provided text. 
[…] 
Document { } 
Entities {  = Fluoride,  = Enamel} 

D = Defining Decay Down
E3 E4

LM: The interplay between enamel and 
fluoride within the context of “Defining 
Decay Down” is a telling one, as it 
underpins the significant shift […] 

Output: diverse 
synthetic corpus for 

continued pretraining

Figure 1: Synthetic continued pretraining (synthetic CPT) converts a small source corpus into a large syn-
thetic corpus that is amenable to learning via standard continued pretraining. We instantiate synthetic CPT
using a synthetic data augmentation algorithm called EntiGraph, which forms a knowledge graph over entities
extracted from documents, and then prompts an LM to synthesize a text-based representation of the graph.

continued pretraining bridges this gap by first converting a small, data-constrained domain into a
synthetic corpus with diverse knowledge representations, and then continuing pretraining on it.

One basic approach is to simply paraphrase or rewrite the source documents in multiple ways. How-
ever, we demonstrate that this generic rephrasing does not cover the gap in the diversity of knowledge
representations. We repeatedly rephrase a small corpus and find that the value of incremental syn-
thetic data quickly decreases, with downstream model performance scaling poorly. We attribute this
failure to the lack of diversity in paraphrasing alone. In the linear algebra example, online lecture
notes and Stack Exchange discussions go beyond a simple rewrite of any textbook—they provide
deeper analysis and application of the underlying concepts and techniques.

We address this shortcoming with EntiGraph, an entity-centric augmentation algorithm. EntiGraph
breaks down a text corpus into a list of entities and then uses an LM to describe relations among
entities, iteratively “filling in” the knowledge graph underlying the corpus (Figure 1).

To concretely measure progress towards effective knowledge acquisition from small corpora, we
propose an experimental setting based on QuALITY (Pang et al., 2022), a reading comprehension
dataset. It enables the evaluation of synthetic data generation methods for data-efficient learning
without incurring the high compute costs of pretraining from scratch. Specifically, we assume access
to a collection of 265 books totaling 1.3M tokens. Our task is to synthesize a corpus such that
continued pretraining on it enables a model to answer queries (e.g., multiple-choice QA or user
instructions related to the book content) without access to the source texts.

In our main experiments (§5), we use EntiGraph to generate 455M synthetic tokens from 1.3M real
tokens using GPT-4 (OpenAI et al., 2024). Then, we continually pretrain Llama 3 8B (Dubey et al.,
2024) on the synthetic tokens and evaluate its QA accuracy on the QuALITY questions. We observe
log-linear scaling in the accuracy as synthetic token count increases, up to 455M (§4.2). At the
endpoint, we find that synthetic continued pretraining with 455M EntiGraph tokens provides 80%
of the accuracy gain of having the source documents available at inference time (§5). Beyond QA,
we also perform instruction tuning on the continually pretrained model and find that it is capable of
following open-ended instructions (e.g., summarization) related to the QuALITY books (§4.3).

To summarize, our key contributions are as follows:

• We propose to learn from small corpora with synthetic continued pretraining—converting the
small corpus into a large, diverse, synthetic corpus and continuing pretraining on it—and instan-
tiate this approach using the EntiGraph synthetic data augmentation algorithm (§2.2).

• We demonstrate that continued pretraining on the EntiGraph-synthesized corpus yields a QA
accuracy scaling trend that is log-linear in the synthetic token count, significantly outperforming
continued pretraining on the source documents or paraphrases (§4.2). Furthermore, we show that
instruction tuning the EntiGraph continually pretrained model enables it to follow more diverse
queries related to the source documents (§4.3).

• We complement the main experiments with an open-book setup (§5), providing the model with
access to the source documents when answering queries. We demonstrate that the knowledge
acquired through synthetic continued pretraining with EntiGraph is complementary to the knowl-
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edge accessed through retrieval-augmented generation (RAG, Lewis et al. (2020))—RAG with
the EntiGraph continually pretrained model outperforms RAG with the base model.

• Lastly, we build a mathematical model that captures the intuition behind EntiGraph. We analyze
it to obtain a parametric formula for the scaling trend of a continually pretrained model’s accuracy
with respect to EntiGraph synthetic tokens, closely matching our empirical observations (§6).

Practically, synthetic continued pretraining with EntiGraph enables pretrained LMs to adapt to spe-
cialized domains by acquiring parametric knowledge, rather than the non-parametric knowledge
accessed through retrieval. At a higher level, our approach points toward a family of synthetic data
generation algorithms that convert compute into data efficiency for (continued) pretraining.

1.1 RELATED WORK

We next discuss recent work most related to our setting of synthetic data generation for continued
pretraining. Appendix A surveys classical work on synthetic data and continual learning.

Synthetic generation of pretraining data. Recent approaches synthesize pretraining data using
hierarchical prompting methods to promote dataset diversity. Eldan & Li (2023) prompt LLMs to
generate stories containing sampled keywords, and demonstrate that small LMs trained on their
dataset can generate fluent text. Gunasekar et al. (2023) synthesize textbooks and code exercises by
conditioning on topic, target audience, and function names, and later release strong LLMs pretrained
on synthetic data (Li et al., 2023b; Abdin et al., 2023; 2024). However, their datasets and prompts
are not public. Maini et al. (2024) prompt an LM to rephrase documents for pretraining, improving
training efficiency. Distinct from all above works, our focus is teaching a pretrained LLM the knowl-
edge of a small corpus. Mecklenburg et al. (2024) consider task-specific finetuning and propose a
fact-based synthetic QA generation procedure, but do not show improvement on generic instruction
following tasks. We instead focus on teaching a model generally useful knowledge about a small
corpus, untied to a particular downstream task. Ovadia et al. (2024) continually pretrain Llama
2–based LMs on synthetic paraphrases of Wikipedia articles, but do not observe consistent improve-
ments. We adapt the approach of Maini et al. (2024) and Mecklenburg et al. (2024) to our small
corpus setting (“Rephrase baseline” in §4). We find that our graph-based augmentation algorithm
outperforms it, likely because our approach enforces diversity through entity-based generation.

Continued pretraining. Continual or continued pretraining works (Gururangan et al., 2020) adapt
pretrained LLMs to broad target domains such as code, medicine, or mathematics by collecting mas-
sive datasets (often >100B tokens; cf. Table 1 for a survey) and applying causal language modeling
recipes (Gupta et al., 2023; Ibrahim et al., 2024; Parmar et al., 2024). We aim to extend the success
of continued pretraining to small, specialized domains such as proprietary datastores. Observing
that standard continued pretraining is ineffective on small corpora, we propose a knowledge graph–
inspired approach to synthesize a diverse related corpus and find it more amenable to learning.

Knowledge editing. A related line of work updates LMs with small units of factual knowledge,
e.g., (subject, relation, object) tuples. Zhu et al. (2020) study constrained fine-tuning to limit model
complexity. Later approaches attempt to localize where factual knowledge is stored in Transformers
and update only those weights (Mitchell et al., 2022; Meng et al., 2022; 2023), or maintain an
external memory of edits and prepend them as context during generation (Zhong et al., 2023; Cohen
et al., 2023). Most related to our work is Akyürek et al. (2024), which first deduces implications of a
factual edit and then finetunes on those implications. Unlike the knowledge editing literature which
learns atomic, sentence-length facts, we aim to learn from a small corpus of documents.

2 OUR METHOD

We focus on learning parametric knowledge from a small corpus of documents. Our goal is to
continually pretrain an LM to acquire the knowledge of a niche corpus. Observing that simple
continued pretraining is ineffective (§4), we propose to use synthetic continued pretraining, which
first uses the small corpus to synthesize a larger one more amenable to learning, and then continues
pretraining on the synthetic corpus. In this section, we first outline this problem setting and our
evaluation approach in more detail (§2.1). Then, we provide a concrete instantiation of synthetic
continued pretraining using a data augmentation algorithm called EntiGraph (§2.2).
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Study Domain Model Parameter Count Total Unique CPT Tokens

Minerva (Lewkowycz et al., 2022) STEM 8B, 62B, 540B 26B-38.5B
MediTron (Chen et al., 2023) Medicine 7B, 70B 46.7B
Code Llama (Rozière et al., 2024) Code 7B, 13B, 34B 520B-620B
Llemma (Azerbayev et al., 2024) Math 7B, 34B 50B-55B
DeepSeekMath (Shao et al., 2024) Math 7B 500B
SaulLM-7B (Colombo et al., 2024b) Law 7B 30B
SaulLM-{54, 141}B (Colombo et al., 2024a) Law 54B, 141B 520B
HEAL (Yuan et al., 2024a) Medicine 13B 14.9B

Our setting Articles & Books 8B 1.3M

Table 1: Comparing the scale of modern continued pretraining (CPT) works with our small corpus setting.
Prior work adapts LMs to broad domains with diverse, large-scale corpora. We aim to downscale CPT to small
corpora; we use a corpus that is 10,000× smaller than the smallest modern corpus for domain-adaptive CPT.

2.1 PROBLEM SETUP

Continued pretraining on small corpora. We focus on approaches that continually pretrain an
LM to teach it the knowledge of a small source corpus Dsource. These approaches acquire “parametric
knowledge”—the knowledge of Dsource is learned in the LM’s parameters, as in pretraining.

Synthetic continued pretraining (synthetic CPT). First, we apply a synthetic data generation
algorithm Asynth to convert a small corpus Dsource into a synthetic corpus Dsynth:

Asynth : Dsource 7−→ Dsynth. (1)

Then, we perform continued pretraining on Dsynth instead of on Dsource. We implement Asynth using
a prompted LM. A natural concern is that the LM may hallucinate and fabricate false knowledge.
Therefore, we consider synthetic data augmentation algorithms that condition the generation pro-
cess on the source documents to improve the synthesized data’s faithfulness.

Evaluation with knowledge-intensive queries. We evaluate the quality of a synthetic data aug-
mentation algorithm Asynth by testing whether the downstream synthetic CPT model has effectively
acquired the knowledge of Dsource in its parameters. More precisely, we curate test queries Qtest that
probe the knowledge about Dsource acquired by the model. For example, in the linear algebra setting,
Qtest could be held-out exam questions. To test parametric knowledge, we do not allow the model to
access the source documents Dsource at test time. Therefore, the queries cannot be ambiguous with-
out access to Dsource. For example, a reading comprehension question like “Where was he born?”
is ambiguous without context. Altogether, we can evaluate data augmentation algorithms Asynth for
synthetic CPT using a paired source corpus and related test queries (Dsource,Qtest).

2.2 ENTIGRAPH

Next, we present EntiGraph, our instantiation of a synthetic data augmentation algorithm Asynth. At
a high level, EntiGraph generates diverse representations of knowledge from a small corpus Dsource
by using a prompted LLM to synthesize a knowledge graph representation of Dsource. EntiGraph
consists of two steps/prompts: extracting entities from the document and analyzing relations among
an arbitrary subset of the entities (Figure 1). Altogether, this hierarchical prompting strategy ex-
ternalizes the problem of generating diverse synthetic text to a combinatorial structure—namely, a
graph relating various entities appearing in the corpus documents.

Step 1: Entity extraction. First, EntiGraph extracts a list of salient entities {E1, E2, . . . , En}
from the document Dsource using an entity extraction prompt (full prompt in Appendix
G.1): {E1, E2, . . . , En} ∼ LMaug

(
entity extraction(Dsource)

)
. In the linear algebra exam-

ple, Dsource could be one specific linear algebra textbook. We would expect to extract entities such
as {E1 = Linear space, E2 = Vector, E3 = SVD, . . . }.

Step 2: Relation analysis. Next, EntiGraph analyzes the relations among subsets of enti-
ties. The intuition is to explore the edges of the knowledge graph underlying the source docu-
ment Dsource, analogous to a student writing diverse notes about a linear algebra textbook. We
apply a relation analysis prompt (full prompt in Appendix G.1) to describe how a sub-
set of k ≤ n entities are related in the context of the source document Dsource: D̃Ei1

...Eik
∼

LMaug
(
relation analysis(D,Ei1 , Ei2 , . . . , Eik)

)
. For example, if E1 = Linear space

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

and E2 = Vector, D̃E1E2
could be Based on the textbook, a vector is an

element of a linear space... Exhaustively enumerating all possible subsets of entities
is impractical. We generate data for pairs D̃EiEj

and triplets D̃EiEjEk
in our experiments.

EntiGraph synthetic corpora. Finally, we collect all sampled synthetic texts from Step 2 as the
EntiGraph output: DEntiGraph = {D̃Ei1 ...Eik

, . . . }. Altogether, we described a data augmentation
algorithm mapping a small source corpus Dsource to a larger synthetic corpus DEntiGraph, as in (1).

3 EXPERIMENT SETUP

We next detail how we evaluate a given data augmentation algorithm Asynth. As described in §2.1,
we evaluate algorithms Asynth by evaluating how well an LM continually pretrained on their output
synthetic corpus Asynth(Dsource) can answer test queries Qtest about the source documents Dsource.

In our main experiments, we use queries that are unambiguous without the source documents Dsource,
and disallow the LM from accessing Dsource while answering queries Qtest. This allows us to evaluate
which data augmentation algorithm best promotes the acquisition of parametric knowledge through
synthetic CPT. Later, in §5, we consider an open-book setting where the model can simultaneously
access the source documents Dsource and test queries Qtest, to test how the parametric knowledge ac-
quired through synthetic CPT composes with non-parametric access to knowledge through retrieval
(Lewis et al., 2020). We next introduce our small corpus and related test queries (Dsource,Qtest).

QuALITY corpus Dsource. Our corpus and test queries are based on the QuALITY (Pang et al.,
2022) long-document comprehension benchmark. The QuALITY corpus Dsource consists of 265
articles and short books on genres such as science fiction and journalism, averaging ∼5,000 tokens.

QuALITY test queries Qtest. We use the 10-20 multiple choice questions accompanying each
article in QuALITY. They serve as high-quality knowledge probes on Dsource, but the query phrasing
often presupposes the reading comprehension context (e.g., “What does the author think about...”).
We remove ambiguity by contextualizing them with an article reference: “In the context of article
{article name} by {author name}, what does the author think about...”. This provides us with 4,609
unambiguous queries Qtest to test the parametric knowledge of our continually pretrained LMs.

Evaluation on instruction-tuned summarization. We also instruction tune the continually pre-
trained LMs and evaluate them on more general instruction following queries. Specifically, we
prompt them to generate closed-book summaries of QuALITY articles, given only title and author.

Performance with strong API-based LLMs. In our continued pretraining setting, we must select
a corpus Dsource that is not well-represented in standard pretraining datasets. As an initial test of
the obscurity of the QuALITY corpus Dsource, we evaluate GPT-3.5 and GPT-4 on Qtest. In the
closed-book setting, we find GPT-3.5 accuracy at 44.81% and GPT-4 accuracy at 51.30% (Figure
2). In the open-book setting (full access to Dsource), we find GPT-3.5 accuracy at 72.60% and GPT-4
accuracy at 86.09% (Table 3). Based on the large (∼30%) improvement when Dsource is provided,
we conclude that the QuALITY corpus Dsource is sufficiently niche to serve as an appropriate testbed.

4 MAIN EXPERIMENTS

In this section, we present our main experimental results. Using GPT-41 as our prompted model
LMaug, we apply EntiGraph to the 1.3M token QuALITY corpus Dsource, generating a 455M token
synthetic corpus. For the remainder of the paper, we refer to the former as the “Raw corpus” and the
latter as the “EntiGraph corpus”. Additional details on these corpora are provided in Appendix B.

We continually pretrain Llama 3 8B (Dubey et al., 2024) with causal language modeling on the
455M token EntiGraph corpus. In §4.1, we describe our CPT procedure and introduce two natural
baselines. In §4.2, we evaluate on the QuALITY test queries Qtest. In §4.3, we show that synthetic
CPT using EntiGraph is compatible with downstream instruction tuning (Ouyang et al., 2022).

4.1 CONTINUED PRETRAINING PROCEDURE

EntiGraph CPT. In our main continued pretraining experiment, we continually pretrain Llama 3
8B Base on the 455M token EntiGraph corpus for 2 epochs with replay on the RedPajama dataset

1We use the gpt-4-turbo model as of Aug. 19, 2024.
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(TogetherAI, 2023). Hereafter, we refer to this model as “EntiGraph CPT”. We discuss CPT details
in Appendix C. Next, we describe two baselines to which we compare in closed-book QA (§4.2).

Raw CPT baseline. The first baseline continues pretraining Llama 3 8B Base on the 1.3M token
Raw corpus of raw QuALITY articles Dsource. We jointly tune the number of epochs and RedPajama
replay rate, obtaining the “Raw CPT” model. Further tuning details are provided in Appendix C.

Rephrase CPT baseline. Another simple synthetic data augmentation procedure is to rephrase
QuALITY articles repeatedly. Maini et al. (2024) and Ovadia et al. (2024) execute a systematic
extension of this idea (cf. §1.1). Based on their approaches, we craft a “Rephrase baseline” which
repeatedly applies three fixed prompts (easy, medium, and hard rephrase)2 to the QuALITY articles
at temperature 1.0. We stopped generating paraphrases at 38M tokens, where we observed a clear
gap in QA evaluations from EntiGraph CPT and a slower scaling trend (Figure 2). We refer to this
data as the “Rephrase corpus” and the continually pretrained model as “Rephrase CPT”.

4.2 QUESTION-ANSWERING EVALUATIONS

Next, we present our closed-book QA evaluations with the QuALITY test queries Qtest.

Evaluation procedure. Each QuALITY question is a four-choice, single-answer multiple choice
question (similar to MMLU, Hendrycks et al. (2021)). We evaluate with 5-shot chain-of-thought
prompting (Brown et al., 2020; Wei et al., 2024) and provide our prompt in Appendix H.1.

100 101 102

Number of synthetic tokens (in Millions)
37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

QA
 A

cc
ur

ac
y

GPT-4 (51.30%)
GPT-3.5 (44.81%)
Raw CPT (38.15%)

EntiGraph CPT
Rephrase CPT
Llama 3 8B Base (39.49%)

Figure 2: Accuracy on the QuALITY question set Qtest
(y-axis) as a function of the synthetic token count (x-
axis). The accuracy of synthetic continued pretraining
using the EntiGraph data augmentation algorithm (Enti-
Graph CPT) scales log-linearly up to 455M tokens.

EntiGraph scaling. We find that CPT on
the 455M token EntiGraph corpus improves
closed-book QA accuracy from 39.49% (for
Llama 3 8B Base) to 56.22% (Figure 2). A
natural question is how accuracy scales as we
synthesize and train on more tokens with Enti-
Graph. To test this, we randomly subsam-
ple without replacement the EntiGraph corpus
with varying sample sizes, continually pretrain
Llama 3 8B Base on each subsample, and plot
accuracy versus sample size in Figure 2. We
observe log-linear scaling of the accuracy in the
number of synthetic tokens used for CPT, up to
455M tokens. We mathematically investigate
the scaling properties of EntiGraph in §6. In
broad strokes, we postulate that QuALITY ac-
curacy follows a mixture-of-exponential shape
with three stages: (i) linear growth, (ii) log-
linear growth, and (iii) asymptotic plateau.

Comparison with baselines. Raw CPT (green line) underperforms even Llama 3 8B (dashed black
line). We postulate two explanations: (i) The Raw corpus follows a narrower, different distribution
than the Llama 3 pretraining corpus; heavily training on it may harm the LM’s English capabilities.
(ii) The limited diversity of knowledge representations in the Raw corpus leads to limited knowledge
acquisition due to problems such as the reversal curse (Berglund et al., 2023). Rephrase CPT scales
poorly compared with EntiGraph (Figure 2), suggesting that for synthetic CPT to scale well, the
synthetic data must be sufficiently diverse. EntiGraph tackles this problem using a hierarchical
prompting strategy that externalizes diversity to a knowledge graph’s combinatorial relationships.

4.3 INSTRUCTION FOLLOWING EVALUATIONS

Next, we explore more general test queries beyond the test queries Qtest. Concretely, we perform in-
struction tuning on EntiGraph CPT to obtain EntiGraph Instruct. We demonstrate that synthetic CPT
on the EntiGraph corpus is compatible with instruction tuning; EntiGraph Instruct can directly use
knowledge obtained during synthetic CPT in instruction following tasks, without test-time access to
the QuALITY corpus Dsource. We detail our instruction tuning procedure in Appendix C.

2Maini et al. (2024) include a 4th prompt to generate synthetic QA pairs. We defer this task-specific QA
finetuning method to Appendix D and focus on task-agnostic baselines for learning generic knowledge.
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Table 2: EntiGraph Instruct examples.

Explicit reference: Summarize “Defining Decay
Down”.

The article “Defining Decay Down” by David Plotz
discusses [...] Dentists began to focus on cosmetic
dentistry, [...]

Implicit reference: How has dentistry in the U.S.
changed?

1. Increase in cosmetic dentistry [...]
2. Use of technology: [...]

Cross article instruction: Compare David Plotz’s
commentary on American dentistry and the movie
Fight Club?

David Plotz’s commentary style is different when
he analyzes American dentistry and when he dis-
cusses the movie Fight Club. [...]

Instruction tuning qualitative examples. We first
present qualitative examples that demonstrate Enti-
Graph Instruct’s ability to follow instructions re-
lated to QuALITY articles. First, we ask the model
to summarize a QuALITY article given an explicit
reference to the title and author, but no access to
the article itself (Table 2, top row). This article pro-
vides context for the coming examples. Next, we
show that even without an explicit reference to the
title and author, knowledge of the article is stored
in the model’s parameters and can affect its behav-
ior (Table 2, middle row). Finally, we provide an
example where the model performs a comparison
using knowledge across two articles (Table 2, bot-
tom row). Albeit artificial, this shows that though
EntiGraph does not synthesize data that simulta-
neously involves multiple articles, the model can
reason about their interaction using its parametric
knowledge. We provide full responses in Table 5.
Evaluation metric for closed-book summarization. We also present quantitative metrics for sum-
marization, a well-studied instruction following task. We compare EntiGraph Instruct summaries of
QuALITY articles with human-written summaries from sQuALITY (Wang et al., 2022), a varia-
tion of QuALITY with provided human summaries. Common scalar summarization metrics such as
ROUGE (Lin, 2004) or BERTScore (Zhang* et al., 2020) mostly evaluate text similarity between
the summary and source articles, and may not accurately reflect summarization quality for abstrac-
tive systems (Zhang et al., 2024b). We use a simple, automated evaluation metric based on pyramid
evaluation (Nenkova et al., 2007; Gao et al., 2019) that measures both the hallucination rate and how
well the summary captures the salient claims of the original article. Our approach uses GPT-4 to (1)
split the summary into atomic claims (Min et al., 2023), (2) decide whether each claim is true/false
based on the source article, and (3) determine if true claims are salient to the article’s main message.
We hence obtain the count of false and salient claims for each summary, normalize these by the
corresponding count from the human summary, and report the average of these normalized metrics
in Figure 3. Appendix H.2 provides further details.
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Figure 3: Closed-book summarization:
number of false claims (y-axis) versus num-
ber of salient claims (x-axis) normalized by
the human summary.

Results discussion. In Figure 3, we compare four sum-
marizers: EntiGraph Instruct, Raw Instruct, GPT-3.5, and
GPT-4. We provide each summarizer with two different
prompts, asking for short and long summaries (prompts
in Appendix H.2). When we request more detailed sum-
maries, Raw Instruct hallucinates and generates more
false claims with little improvement in the number of
salient claims. In contrast, EntiGraph Instruct can gener-
ate more salient claims as the summary gets longer, with
a small increase in the number of false claims (similar to
GPT-3.5 and GPT-4 levels). The gaps in both salient and
false claim rates are sufficiently large that these results
likely hold beyond our particular metric. We complement
the automated evaluation metrics above with several qual-
itative examples in Appendix H.2.

5 OPEN-BOOK EXPERIMENTS

Next, we consider an open-book setting with the domain-specific corpus Dsource available at test
time. In this widespread setting, retrieval-augmented generation (RAG; Lewis et al. (2020)) is the
predominant approach. A natural question whether the parametric knowledge learned through syn-
thetic CPT using EntiGraph complements the non-parametric knowledge accessed using RAG. We
answer this question by comparing a state-of-the-art RAG pipeline with and without Entigraph CPT.
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EntiGraph CPT + RAG Llama 3 8B Base + RAG GPT-4 + Oracle RAG GPT-3.5 + Oracle RAG

Accuracy Recall@8 Accuracy Recall@8 Accuracy Recall@8 Accuracy Recall@8

62.60 99.63 60.35 99.63 86.09 100.0 72.60 100.0

Table 3: QuALITY question-answering accuracy and recall rate in the open-book retrieval-augmented genera-
tion (RAG) setting. EntiGraph CPT and Llama 3 8B Base are used in a RAG pipeline (cf. §5 for setup details).
Recall@8 is defined as the proportion of questions for which the salient article appears in the top 8 reranked
document chunks. GPT-4 and GPT-3.5 Oracle RAG provide an upper bound with a perfect retriever, by placing
the entire relevant document in-context.

RAG evaluation setup. Our RAG pipeline follows established best practices (Lewis et al., 2020;
Gao et al., 2024). It involves an offline stage which indexes document chunks, followed by
inference-time retrieval, reranking, and placement of those chunks in a few-shot LM prompt.
Throughout, we use OpenAI text-embedding-3-large (Neelakantan et al., 2022) as our
API-based embedding model, FAISS as our similarity search index (Douze et al., 2024), and Cohere
rerank-english-v3.0 (Cohere, 2024) as our reranker. Following the evaluation procedure
detailed in §4, we evaluate parallel RAG pipelines on the QuALITY multiple choice test set using
few-shot chain-of-thought prompting. All hyperparameters are tuned separately for each LM’s RAG
pipeline. We refer the reader to Appendix E for further details on our RAG evaluation setup.

EntiGraph continued pretraining complements RAG. We observe in Table 3 that EntiGraph
CPT outperforms Llama 3 8B Base, the model from which it is continually pretrained. These re-
sults demonstrate that the knowledge internalized through synthetic CPT is complementary to that
accessed during RAG, and demonstrate a competitive new recipe for small corpus QA: (1) synthetic
data augmentation, (2) continued pretraining, and (3) RAG.

EntiGraph continued pretraining alone approaches RAG performance. These results also
contextualize the effectiveness of EntiGraph in the closed-book, parametric knowledge setting (§4).
Comparing Figure 2 and Table 3, we observe that adding RAG to Llama 3 8B Base improves accu-
racy by 20.86% (39.49% → 60.35%). On the other hand, continued pretraining of Llama 3 8B Base
on the EntiGraph corpus improves accuracy by 16.73% (39.49% → 56.22%). Hence, EntiGraph
continued pretraining provides >80% of the absolute performance improvement of RAG, even in a
small corpus setting where RAG recall is nearly perfect.

Overall, our results show that the parametric knowledge acquired in EntiGraph continued pretraining
composes with realistic knowledge-intensive QA pipelines, and that EntiGraph continued pretrain-
ing alone—without test-time corpus access—is nearly competitive with a strong RAG baseline.

6 THEORETICAL ANALYSIS OF ENTIGRAPH SCALING

It may seem surprising that simply “rewriting” the source documents Dsource can improve perfor-
mance at all (§4), as EntiGraph does not explicitly add new knowledge beyond Dsource. We postu-
late that EntiGraph “rearranges” Dsource into a layout more amenable to learning. For example, in
Dsource, the entity pair (A,B) may appear together in some sentences and (B,C) in others. As a
result, models trained directly on Dsource may learn the (A,B) relation and the (B,C) relation, but
not the (A,C) relation (Akyürek et al., 2024). We build a mathematical model to formalize this in-
tuition (§6.1) and provide a quantitative prediction that the scaling trend of EntiGraph CPT follows
a mixture-of-exponential shape (§6.3), which fits well with our empirical observations (Figure 4).

6.1 TOY MODEL SETUP

In this toy model, we use V to denote the set of entities, and represent the source documents Dsource
with pairs of known relations Dsource ⊂ {(x, y) ∈ V2 : x ̸= y}. We assume that each relation
pair in V2 appears in the source documents Dsource independently at random, with probability p.
Mathematically, P [(x, y) ∈ Dsource] = p for all x ∈ V and y ∈ V with x ̸= y. We write V = |V|
and assume that p = λ/V , for some constant λ > 1.

Training as memorization. We model the learning of factual knowledge as a memorization pro-
cess, in which a model memorizes the relations it is trained on but does not meaningfully generalize
beyond them (Yang et al., 2023; Feldman, 2020). In this view, a language model’s knowledge can
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be represented by a matrix M ∈ {0, 1}V×V such that M(x, y) = 1 if the model “knows” the
(x, y) relation and equals 0 otherwise. Then, training directly on the source documents Dsource sim-
ply means setting all entries that appear in Dsource to 1, denoting that the model has memorized the
relations given in the source documents. Mathematically, we denote this model trained on Dsource by
the matrix M0 ∈ {0, 1}V×V , which has i.i.d. Bernoulli off-diagonal entries with mean p.

EntiGraph synthetic data augmentation. Given the source documents Dsource, we define the
following iterative procedure of synthetic data generation: for each t = 1, 2, . . .

• Entity pair selection: Sample (xt, yt) ∈ {(x, y) ∈ V2 : x ̸= y} uniformly at random.
• Relation analysis: Generate the “relation between (xt, yt)” by performing a breadth-first search

(BFS) on the directed graph represented by the adjacency matrix M0 starting at xt. If no such
path exists, do nothing. If there exists a path (xt, z

1
t , z

2
t , . . . , z

kt
t , yt) connecting xt to yt, define

Dt = {(xt, z
1
t ), (xt, z

2
t ), . . . , (xt, z

kt
t ), (xt, yt)} ∪ Dt−1, where we assume D0 = Dsource. The

model trained on this round of synthetic data is Mt = Mt−1 +
∑

(x,y)∈Dt\Dt−1
Ixy , where

Ixy ∈ {0, 1}V×V is a binary matrix with Ixy(x, y) = 1 and 0 otherwise.
This mirrors the relation analysis step for the EntiGraph synthetic data augmentation algorithm
(Step 2, §2.2). With the setup above, the index t is analogous to the number of synthetic tokens
that the model has generated, and the model’s knowledge is captured by how many ones the matrix
Mt contains. To make this connection precise, we define the link density (or accuracy) of Mt to be
Acc(Mt) = E[∥Mt∥1|M0]/(V (V −1)), where the expectation is taken over the randomness arising
from the synthetic data generation process and not the source documents Dsource, and ∥M∥1 denotes∑

i,j |Mi,j |. We use the notation Acc as this is intended to emulate the accuracy on QuALITY test
queries studied in the experimental sections (§4 and §5).

6.2 RIGOROUS UPPER AND LOWER BOUND

In this section, we derive rigorous upper and lower bounds on the scaling trend of Acc(Mt).
Definition 1. Let Cλ = (1−ρ(λ))2, where ρ(λ) denotes the extinction probability for a Poisson(λ)
branching process (i.e., ρ is the smallest solution in [0, 1] to the fixed-point equation ρ = exp(λ(ρ−
1))). For any fixed ε > 0, we further define CLB = 1− 1

V (V−1) , CUB = 1− (1+ε) log V
V (V−1) log λ .

Theorem 1. For any time t ≥ 1 and any ε > 0, the link density satisfies, with probability → 1,(
p+ Cλ

(
1− Ct

LB

))
(1− ε) ≤ Acc(Mt) ≤

(
p+ Cλ

(
1− Ct

UB

))
(1 + ε) as V → ∞.

Even though Theorem 1 provides mathematically rigorous upper and lower bounds on the scaling
trend of Acc(Mt), the exact growth curve is more intricate, as we will show next.

6.3 AN ANALYTICAL FORMULA
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Figure 4: A mixture-of-exponential function
(2) closely fits the scaling trend of EntiGraph
CPT with respect to synthetic token count.

We analyze the link density Acc(Mt) using a Pois-
son branching process approximation of the cluster
growth of vertices. This approach yields a mixture-of-
exponential scaling trend

Acc(Mt) ∼ p+ C

(
1−

∞∑
k=1

µ(k) (1− ak)
t

)
, (2)

where A ∼ B means that A/B converges to 1 in prob-
ability as V → ∞. The parameter C governs the link
density Acc(Mt) as t → ∞ and is determined by the
proportion of reachable pairs of vertices in the initial
matrix M0. µ(·) is the probability mass function on k,
which controls the proportion of pairs of vertices with a
specific decay rate. The parameters µ(·) and ak depend
on M0 in a more intricate manner (cf. Appendix F for
a full derivation). We find that (2) accurately fits the empirical scaling trend of EntiGraph CPT ac-
curacy up to 455M synthetic tokens (Figure 4). We discuss curve fitting in Appendix F.1, where we
show that the mixture-of-exponential shape grows in three phases: (i) linear growth; (ii) log-linear
growth; (iii) asymptotic plateau.
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7 DISCUSSION AND CONCLUSION

7.1 LIMITATIONS

Because EntiGraph synthesizes data using a prompted LM, there is a risk it may hallucinate and
fabricate non-existent entities or relations. Although our synthesis process is grounded by the source
documents, it is an assumption that LMaug is capable enough to generate faithful synthetic data when
conditioned on Dsource. In our experiment with QuALITY books, we manually read a few books and
fact-checked a subset of the synthetic data generated for those books; we did not find factually
incorrect synthesized text. We postulate that this is because we use a sufficiently strong prompted
model LMaug (gpt-4-turbo). If EntiGraph were applied to more challenging content like a
complex research paper, it is possible that the prompted model could be more prone to hallucination.

On the other hand, since we use a strong prompted LM gpt-4-turbo to generate synthetic data,
one might be concerned that our performance gains come from distilling it. The closed-book results
indicate that distillation effects alone cannot explain the performance of our approach (we exceed
GPT-4’s closed-book performance), but our approach does not yet enable bootstrapping, i.e., using
an LM to generate its own synthetic data for a target domain. We view this as exciting future work.

7.2 FUTURE DIRECTIONS

Continued scaling beyond real data. The large but finite body of human-written text is rapidly be-
ing consumed. Villalobos et al. (2024) predict that frontier language models will exhaust all public,
human-generated text in 2028. As we transition from a data-rich to a data-constrained regime (Ka-
plan et al., 2020; Muennighoff et al., 2023), further scaling will require us to extract more knowledge
from existing data. We demonstrated that synthetic continued pretraining with EntiGraph effectively
extracts more knowledge from small corpora, which could help us learn from proprietary datasets
or tail knowledge that appears only once or twice on the internet. It is an open question whether
synthetic data generation methods like EntiGraph could improve data efficiency more generally on
standard pretraining data and without relying upon a stronger prompted model.

Alternatives to long-context language models. Recent work handles long user queries (e.g.,
1M-10M+ tokens) using efficient attention (Dao et al., 2022; Liu et al., 2023; Gemini, 2024) or ar-
chitectures that are sub-quadratic in the context length (Tay et al., 2022; Gu et al., 2022; Gu & Dao,
2024; Sun et al., 2024). In settings where many queries share a long prefix—e.g., a corporation’s
proprietary documents or other prompt caching use cases (Anthropic, 2024a)—one could instead
continue pretraining on the prefix to internalize its knowledge, and then perform standard quadratic
attention on shorter queries. This approach pays a fixed training cost to amortize the prefix’s knowl-
edge into the weights of a model, and then benefits from shorter context lengths (Gururangan et al.,
2020; Snell et al., 2022). By adapting the continued pretraining paradigm from 10B-100B tokens
to as little as 1.3M tokens, our synthetic continued pretraining approach could enable unsupervised
learning of shared text prefixes at much smaller and more practical token counts.

7.3 CONCLUSION

Continued pretraining with next-token prediction is remarkably effective in teaching pretrained lan-
guage models new knowledge, but to date has only been applied successfully in broad, data-rich
domains with 10B-100B+ tokens. We downscale continued pretraining to small, specialized cor-
pora with ∼1M tokens using synthetic continued pretraining: converting a small corpus into a large
synthetic one with diverse representations of knowledge, and continuing pretraining on it.

We instantiate this approach using EntiGraph, a knowledge graph–inspired synthetic data augmen-
tation algorithm. Synthetic continued pretraining with EntiGraph demonstrates consistent scaling in
downstream closed-book QA performance up to a 455M token synthetic corpus, whereas baselines
such as continued pretraining on the small corpus or synthetic paraphrases show no improvement
or scale slowly. Moreover, the acquired parametric knowledge composes with instruction tuning
and retrieved non-parametric knowledge in an open-book setting. Lastly, we present a simplified
mathematical model of EntiGraph and derive a functional form for its scaling trend, which closely
matches our empirical trend. We hypothesize that EntiGraph’s “externalization” of the synthetic data
generation process to a combinatorial structure—in this case, a knowledge graph over entities—is a
generally useful strategy in synthesizing highly diverse data and a promising object for future study.
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Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L. Richter, Quentin Anthony, Timothée
Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train
large language models, 2024. URL https://arxiv.org/abs/2403.08763.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
models struggle to learn long-tail knowledge. In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Richard M Karp. The transitive closure of a random digraph. Random Structures & Algorithms, 1
(1):73–93, 1990.

Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L. Hayes, and Christopher Kanan. Mea-
suring catastrophic forgetting in neural networks. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelli-
gence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Has-
sabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–
3526, 2017. doi: 10.1073/pnas.1611835114. URL https://www.pnas.org/doi/abs/
10.1073/pnas.1611835114.

16

https://arxiv.org/abs/2308.04014
https://aclanthology.org/2020.acl-main.740
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://aclanthology.org/2023.acl-long.806
https://aclanthology.org/2023.emnlp-main.67
https://aclanthology.org/2023.emnlp-main.67
https://arxiv.org/abs/2403.08763
https://arxiv.org/abs/2001.08361
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114
https://www.pnas.org/doi/abs/10.1073/pnas.1611835114


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Hunter Lang, Monica N Agrawal, Yoon Kim, and David Sontag. Co-training improves prompt-
based learning for large language models. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pp. 11985–12003. PMLR, 17–23 Jul 2022. URL https://proceedings.mlr.press/
v162/lang22a.html.

Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep
neural networks. ICML 2013 Workshop: Challenges in Representation Learning, 2013.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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A ADDITIONAL RELATED WORK

Synthetic data generation. There is a rich literature on using neural nets to generate synthetic
data. Many such approaches were originally developed for semi-supervised learning—self-training
and pseudo-labeling methods improve models by iteratively training them on their own predictions
(Scudder, 1965; Lee, 2013; Yalniz et al., 2019; Berthelot et al., 2019; Xie et al., 2020), and co-
training uses two models to supervise each other (Blum & Mitchell, 1998; Balcan et al., 2004).
Before language models rose to prominence, few approaches attempted to synthesize inputs. One
exception is membership query synthesis, which explored the synthesis of inputs in a supervised
learning context (Angluin, 1988; Schumann & Rehbein, 2019).

Contemporary works employ co-training (Lang et al., 2022) and self-training to improve language
model performance, often on mathematical reasoning tasks (Huang et al., 2023; Gulcehre et al.,
2023; Zhang et al., 2024a), or synthesize input-output pairs for instruction tuning, usually by con-
ditioning on a curated seed set (Wang et al., 2023b; Honovich et al., 2023; Taori et al., 2023; Peng
et al., 2023; Yuan et al., 2024b; Li et al., 2024).

Continual learning and pretraining. Continual learning is rooted in historical work on connec-
tionist networks (McCloskey & Cohen, 1989; Ratcliff, 1990) and considers learning with tasks ar-
riving in an online manner (Schlimmer & Fisher, 1986; Grossberg, 2012). The main focus is on
mitigating a neural net’s “catastrophic forgetting” of previously encountered tasks (Robins, 1995;
Goodfellow et al., 2015; Kemker et al., 2018). Approaches include regularizing parameter updates
to preserve important parameters (Nguyen et al., 2017; Zenke et al., 2017; Kirkpatrick et al., 2017);
dynamically modifying the architecture (Rusu et al., 2016; Golkar et al., 2019); and recalling or
replaying previous experiences (Rebuffi et al., 2017; Shin et al., 2017; Lopez-Paz & Ranzato, 2017).
Modern works in continued pretraining (cf. §1.1) effectively mitigate catastrophic forgetting by
scaling parameter count (Ramasesh et al., 2022) and mixing in updates on pretraining data (Ouyang
et al., 2022).

B DETAILS ON THE QUALITY DATASET

We provide additional details on the QuALITY dataset below. For each book, we execute entity
extraction (Step 1, §2.2) and then analyze all pair-wise relations between entities and a subset of all
triplet relations (Step 2, 2.2). We provide summary statistics for the Raw and EntiGraph corpora in
Figure 5.

2 3 4 5 6 7 8
Token count (K)

0

5

10

15

20

25

30

Fr
eq

ue
nc

y

(a) Raw article tokens

0 20 40 60 80 100
Entity count

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

(b) Extracted entities

0 1000 2000 3000 4000 5000
Token count (K)

0

5

10

15

20

25

30

Fr
eq

ue
nc

y

(c) EntiGraph corpus tokens

Figure 5: Histograms over the 265 QuALITY articles and books. (a) The token count of raw articles.
(b) The number of extracted entities. (c) The token count of EntiGraph synthetic data (generated for
each book).

C TRAINING DETAILS FOR THE MAIN EXPERIMENTS

Continued pretraining details. In all experiments, we continue pretraining the Llama 3 8B Base
model with a context length of 2048 and batch size of 16. We apply a linear learning rate warmup
for 5% of total steps, followed by a cosine decay with peak learning rate 5e-6. We perform full
parameter training with Fully Sharded Data Parallelism (FSDP, Zhao et al. (2023)).
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EntiGraph continued pretraining details. To mitigate the forgetting of pretrained knowledge,
we perform replay with a rate of 0.1 using 1B RedPajama tokens (TogetherAI, 2023). More pre-
cisely, for each training batch, we flip a biased coin such that with 10% probability, we load the
RedPajama data instead of the EntiGraph synthetic data.

Raw continued pretraining details. Next, we provide details for our continued pretraining di-
rectly on the Raw corpus, producing the “Raw CPT” model. Because the Raw corpus only has 1.3M
tokens, we jointly tune the number of epochs (repetition factor) and the RedPajama replay rate on
accuracy over a QuALITY QA validation split. The selected hyperparameter configuration uses 4
epochs and a 0.1 replay rate.

Instruction tuning details. We use the UltraChat instruction tuning dataset (Ding et al., 2023)
filtered by the Huggingface team (Tunstall et al., 2023) as our instruction tuning data. We use the
chat template of Llama 3.1 8B Instruct (Dubey et al., 2024) to format the UltraChat conversations,
obtaining a 250M token instruction tuning dataset. We apply a linear learning rate warmup followed
by a cosine decay to 0 with peak learning rate 5e-6, and train the model for 1 epoch with a batch size
of 512 and context window of 2048. To sanity check our instruction tuning procedure, we measure
the AlpacaEval (Li et al., 2023a) winrate against GPT-4 and find it improves from 0% to 6.25%,
comparable to a 7.7% baseline winrate of Llama 2 Chat 13B.

Compute resource. All the continued pretraining experiments are performed with one 8×H100
node. With PyTorch FSDP (Zhao et al., 2023), we obtain throughput of 6090 tokens per second.
Since all experiments use the same model architecture, batch size, and context length, the time to run
the experiments can be calculated based on the total tokens seen during training. For example, the
main EntiGraph is trained on 455M tokens with 2 epochs. Therefore, it should take 455M×2/6090
seconds, which is about 41 hours.

D TASK-SPECIFIC FINETUNING FOR THE QUALITY QUESTION SET

Our work considers task-agnostic synthetic data generation and continued pretraining as a way to
obtain generalizable knowledge about a domain, in a way that can later be extracted via few-shot
prompting (Brown et al., 2020) and instruction tuning (Ouyang et al., 2022).

However, if our goal is only to do well on a single task, such as question answering, then we could
fine-tune a language model for that particular task. This approach worked extremely well on tasks
such as SQuAD (Rajpurkar et al., 2016) in-domain but suffered from degraded performance outside
the fine-tuning data distribution (Awadalla et al., 2022).

We do not extensively perform comparisons to task-specific finetuning due to the more general multi-
task goals of EntiGraph. We run preliminary experiments comparing a simple QA SFT baseline
to EntiGraph, and find that EntiGraph scaling and synthetic data generation costs are generally
favorable even when compared to this strong, task-specific baseline.

QA SFT. We follow the same set as in §2.1 and §3 except that we do not prompt LMsynth to
generate general knowledge about QuALTY articles. Instead, we prompt LMsynth to generate QA
pairs directly:

You are an assistant to help read a article and then rephrase it in a
question answering format. The user will provide you with an article
with title, year, content. You need to generate a paraphrase of the
same article in question and answer format with multiple tags of
"Question: ..." followed by "Answer: ...". Remember to keep the
meaning and every content of the article intact, including the title,
year, etc.

We repeat this prompt many times at temperature 1.0, resulting in 28M tokens on synthetic question
answer pairs. We perform the same continued pretraining procedure in §4.1 on Llama 3 8B and refer
to this model as “QA SFT”.
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Figure 6: Accuracy on the QuALITY question set Qtest (y-axis) as a function of the synthetic token
count (x-axis). Comparison among EntiGraph CPT, Rephrase CPT, and QA SFT.

Results discussion We plot the QA SFT scaling curve in Figure 6. We can see that task-specific
finetuning demonstrates a very sharp improvement in QA accuracy, consistent with prior results
showing task-specific finetuning gains for pretrained models. While QA SFT performance is high,
we note that EntiGraph attains similar performance despite being entirely task-agnostic, and the
overall dollar cost of creating the dataset is much lower for EntiGraph.

This difference in synthetic data generation cost is hidden in Figure 6, as we plot the number of
training tokens rather than dollars spent to generate the synthetic data. For QA SFT, each QA
question is generally short, resulting in large inefficiencies in generating this QA dataset. We found
that the input token to output token ratio was large compared with Rephrase CPT and EntiGraph
CPT, resulting in over $5K to generate just 28M tokens3. This difference in cost means that further
scaling became prohibitively expensive, and that EntiGraph’s performance in Figure 6 is even better
than it appears, if we match for total cost rather than token budget.

E ADDITIONAL DETAILS ON OPEN-BOOK EXPERIMENTS

We provide additional details on our open-book experimental setup below, including our retrieval-
augmented generation (RAG, Lewis et al. (2020); Gao et al. (2024)) pipeline. As mentioned in §5,
we use a standard two-stage RAG pipeline: first, an offline stage which indexes document chunks;
second, inference-time retrieval, reranking, and placement of those chunks in a few-shot LM prompt.

E.1 STAGE 1: OFFLINE INDEXING

The purpose of the indexing stage is to construct an index over all the 265 articles and books from
the QuALITY corpus Dsource. More specifically, this stage chunks documents from the given corpus,
obtains dense vector embeddings for each chunk using an API-based embedding model, and indexes
the (embedding, chunk) pairs.

Chunking documents. We first split each document D(i) ∈ {D(i)}ni=1 = Dsource into a set
of mi document chunks {C(i)

1 , ..., C
(i)
mi}. To perform this splitting, we use the Recursive

CharacterTextSplitter from Chase (2022), which attempts to keep all paragraphs (and then
sentences, and then words) together for as long as possible, in order to preserve the semantics within
each chunk. We use non-overlapping chunks and tune chunk size in characters (chunk size,
hyperparameter values provided below). Lastly, because we have access to metadata about each
document D(i)—namely, the title, author, and year of the book or article—we prepend this meta-
data to each document chunk. This is analogous to how a corporation building a RAG system over

3OpenAI API pricing, Sep 2024
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their own document store could include metadata about the document (title, author, year, etc.). These
final chunks with metadata prepended are embedded, and are the ones that are retrieved and placed
in-context.

Embedding and indexing document chunks. Next, we obtain dense embeddings for all
document chunks using a state-of-the-art text embedding model OpenAI text-embedding
-3-large (Neelakantan et al., 2022). Lastly, we index all (embedding, chunk) tuples using a
FAISS vector store (Douze et al., 2024).

E.2 STAGE 2: INFERENCE-TIME RETRIEVAL AND RERANKING

At inference time, the RAG system receives a test query q ∈ Qtest. Each query q is contextualized
with the article title and author name, as described in §3, and contains its four possible answer
choices (QuALITY is a 4-choice, multiple choice dataset). In Stage 2, we embed the query with the
API-based embedding model, retrieve K document chunks using an approximate nearest-neighbor
search, and lastly, select the k < K most relevant chunks using an API-based reranker.

Retrieving top-K document chunks. We embed q with text-embedding-3-large, and
retrieve the top-K most relevant document chunks from our indexed vector store using FAISS simi-
larity search with a Euclidean distance metric.

Reranking to obtain top-k (k < K) chunks. Next, we use a reranker to filter the K retrieved
document chunks to a smaller number of reranked chunks k. Rerankers are known to significantly
improve recall (the proportion of the time that the salient article is contained in the top chunks),
and indeed, the recall of our RAG pipelines is near-perfect (Table 3 in §5). Specifically, we pass
the query q and the list of K retrieved document chunks to a state-of-the-art reranker—Cohere
rerank-english-v3.0 (Cohere, 2024)—which returns a list of the K chunks in order from
most to least semantically relevant for the query. We take the k highest scoring chunks and place
them in our few-shot prompt.

Few-shot prompt formatting. Our full few-shot chain-of-thought evaluation prompts for the
open-book setting will be provided in our code release. Similar to the closed-book QA evaluation
prompt, we manually write and fact-check in-context learning examples about well-known books, to
avoid leaking knowledge from the QuALITY articles. In early experiments, we found that placing
the retrieved contexts first, followed by the question and answer choices after, significantly improved
performance compared to question-then-contexts; we use this format throughout the retrieval exper-
iments. We treat as a hyperparameter whether the reranked chunks are ordered from the best match
to worst (best first) or from the worst match to best (best last). When performing few-shot
evaluation, we follow the sampling procedure used in the closed-book experiments (Appendix H.1).
Specifically, we generate 64 responses for each question, and filter out responses that do not parse
to one of the four choices. Lastly, we randomly select one of the valid responses as the model’s final
answer.

E.3 HYPERPARAMETER TUNING

In our experiments, we compare two LMs used in the RAG pipeline above: EntiGraph CPT and its
base model, Llama 3 8B Base. As mentioned above, we fix the retrieved number of chunks to K =
128, but vary the number of reranked chunks k which are ultimately placed in the context window.
For each language model + RAG pipeline, we independently tune the following hyperparameters
with a grid search on accuracy using a QuALITY QA validation split:

• Document chunk size ∈ {256, 512, 1024}
• Rerank top-k ∈ {1, 2, 4, 8, 16}
• Order of chunks ∈ {best first,best last}
• Eval temperature ∈ {0.1, 0.3, 0.5, 0.7}

We will provide tuned hyperparameters in our code release.
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F PROOF OF THEOREM 1 AND OTHER ANALYTICAL FORMULAS

In this section, we prove Theorem 1 and provide the derivations for several other approximation
formulas.

Proof of Theorem 1. Fix the matrix M0, we observe that

Acc(Mt) =
E[∥Mt∥1|M0]

V (V − 1)
=

∑
(i,j)∈V2

E[1((i, j) ∈ Dt)|M0]

V (V − 1)
=

∑
(i,j)∈V2

P[(i, j) ∈ Dt|M0]

V (V − 1)
.

For each (i, j) ∈ V2, we define qi,j to be the probability that (i, j) is included in the set
{(xt, z

1
t ), (xt, z

2
t ), . . . , (xt, z

kt
t ), (xt, yt)}. Note that each iteration of the procedure generates a

path (xt, z
1
t , z

2
t , . . . , z

kt
t , yt) independently identically. So naturally qi,j does not depend on the

time t. This implies that P[(i, j) ∈ Dt|M0] = 1− (1− qi,j)
t. Thus we can further rewrite the link

density as

Acc(Mt) =
|Dsource|
V (V − 1)

+
∑

(i,j)∈V2\Dsource

P[(i, j) ∈ Dt|M0]

V (V − 1)

=
|Dsource|
V (V − 1)

+
∑

(i,j)∈V2\Dsource

1− (1− qi,j)
t

V (V − 1)
.

The remaining task is to estimate qi,j . We say a vertex j is reachable from i and denote i ∼ j, if
there is a directed path from i to j in M0. We define R = {(u, v) ∈ V2 : u ̸= v, u ∼ v} to be the
set of all reachable pairs of vertices in V . We note that qi,j is non-zero if and only if j is reachable
from i in M0. Now, for any t ≥ 1, the function 1− (1−x)t is concave, thus by Jensen’s inequality,
we have ∑

(i,j)∈V2\Dsource

1− (1− qi,j)
t ≤

∑
(i,j)∈R

1− (1− qi,j)
t ≤ |R|

(
1− (1− q̄i,j)

t
)
,

where

q̄i,j =

∑
(i,j)∈R qi,j

|R|
.

For each (i, j) ∈ R, the probability qi,j satisfies

qi,j =

∑
a ̸=b∈V2 1((i, j) ∈ {(a, z1), (a, z2), . . . , (a, zk), (a, b)})

V (V − 1)

where (a, z1, z1, · · · , zk, b) is the shortest path in M0 connecting a and b. If there is no such path,
then by default the indicator equals zero. Now we look at∑

(i,j)∈R

qi,j =
1

V (V − 1)

∑
(i,j)∈R

∑
(a,b)∈R

1((i, j) ∈ {(a, z1), (a, z2), . . . , (a, zk), (a, b)})

≤ 1

V (V − 1)

∑
(a,b)∈R

∑
i ̸=j∈V2

1((i, j) ∈ {(a, z1), (a, z2), . . . , (a, zk), (a, b)})

=
1

V (V − 1)

∑
(a,b)∈R

ℓa,b,

where ℓa,b is the length of the shortest path connecting a to b. To analyze the typical shortest length
of paths, we present a few classical results on directed Erdős-Rényi graphs. For any a ∈ V , let X(a)
denote the set of vertices reachable from a and let Y (a) denote the set of vertices from which a is
reachable. Recall that ρ(λ) is the extinction probability for the Poisson(λ) branching process.

Lemma F.1 (Lemma 1 and Corollary 1 in Karp (1990)). For each vertex a, with probability tending
to 1 as V tends to infinity, there exists a constant β > 0 such that either |X(a)| ≤ β log V or
|X(a)| = (1−ρ(λ))V +Θ(

√
V ). Moreover, the probability that the latter happens tends to 1−ρ(λ)

as V tends to infinity. The same is true for Y (a).
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For each vertex a, the set X(a) is said to be small if |X(a)| ≤ β log V (in such case we write
a ∈ SX ) and large if |X(a)| = (1− ρ(λ))V +Θ(

√
V ) (we write a ∈ LX ). We define SY and LY

similarly.

Lemma F.2 (Theorem 3 in Karp (1990) and Theorem 2.4.1 in Durrett (2010)). With probability
tending to 1, the following statement holds for all a and b in V: if X(a) is large and Y (b) is large,
then b is reachable from a. Moreover, if X(a) is large and Y (b) is large, then for any ε > 0 and any
sufficiently small δ > 0,

P[ℓa,b > (1 + ε) log V/ log λ] < exp(−V εδ).

With Lemma F.1 and Lemma F.2, we can now give useful estimates of |R|. In particular, for any
ε > 0,

|R| = |{(a, b) ∈ R : a ∈ LX , b ∈ LY }|+ |{(a, b) ∈ R : a ∈ SX or b ∈ SY }|
≤ (1− ρ(λ))2(1 + ε/4)V 2 + 2(1 + ε)V β log V

≤ (1− ρ(λ))2(1 + ε/3)V (V − 1),

with high probability. Similarly, for the lower bound,
|R| = |{(a, b) ∈ R : a ∈ LX , b ∈ LY }|+ |{(a, b) ∈ R : a ∈ SX or b ∈ SY }|

≥ (1− ρ(λ))2(1− ε)V 2

≥ (1− ρ(λ))2(1− ε)V (V − 1),

with high probability. By a union bound over all pairs of (a, b) ∈ R, we also have that∑
(i,j)∈R

qi,j ≤
1

V (V − 1)

∑
(a,b)∈R

ℓa,b

=
1

V (V − 1)

∑
(a,b)∈R

a∈LX ,b∈LY

ℓa,b +
1

V (V − 1)

∑
(a,b)∈R

a∈SX or b∈SY

ℓa,b

≤ (1− ρ(λ))2(1 + ε/2)
log V

log λ
+

1

V (V − 1)
2(1 + ε)V (β log V )2

≤ (1− ρ(λ))2(1 + ε)
log V

log λ
,

with probability larger than 1− V 2 exp(−V εδ). Combining the above, for any ε > 0,

q̄i,j =

∑
(i,j)∈R qi,j

|R|
≤ (1 + ε) log V

V (V − 1) log λ
,

with high probability. Therefore, for any ε > 0,

Acc(Mt) ≤
|Dsource|
V (V − 1)

+
|R| (1− (1− q̄i,j)

t)

V (V − 1)

≤ (1 + ε)

(
p+ (1− ρ(λ))2

(
1−

(
1− (1 + ε) log V

V (V − 1) log λ

)t
))

,

with high probability, which completes the proof of the upper bound. For the lower bound, we
observe that if i ∼ j and (i, j) ∈ R\Dsource, then qi,j ≥ 1/V (V − 1), because when i and j are
chosen in the procedure, the edge (i, j) will be added. This implies that

Acc(Mt) =
|Dsource|
V (V − 1)

+
∑

R\Dsource

1− (1− qi,j)
t

V (V − 1)

≥ |Dsource|
V (V − 1)

+
|R\Dsource|
V (V − 1)

(
1−

(
1− 1

V (V − 1)

)t
)

≥ (1− ε)

(
p+ (1− ρ(λ))2

(
1−

(
1− 1

V (V − 1)

)t
))

,

with high probability which completes the proof of the lower bound.
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To obtain a more precise description of Acc(Mt), we employ a Poisson branching process to ap-
proximate the cluster growth of vertices, which we now define. A Poisson(λ) branching process is a
model for a population evolving in time, where each individual independently gives birth to a num-
ber of children with Poisson(λ) distribution. We denote by Zn the number of individuals in the n-th
generation, where by default Z0 = 1. Then Zn satisfies the recursion relation Zn =

∑Zn−1

i=1 Xn,i,
where {Xn,i}n,i≥1is a doubly infinite array of i.i.d. Poisson(λ) random variables. The total progeny
Yn is then defined as Yn =

∑n
i=0 Zn. Zn is often called a Galton–Watson branching process and

the associated tree is called a Galton–Watson tree.

As in the previous proof, an accurate estimate of Acc(Mt) relies on understanding qi,j , the proba-
bility that the edge (i, j) will be added in each round. As before, the only edges that will be added
are those connected to the giant component (i.e., i ∈ LX and j ∈ LY ). The proportion of such
edges converges to Cλ as V → ∞. Recall that

qi,j =

∑
(a,b)∈R 1((i, j) ∈ {(a, z1), (a, z2), . . . , (a, zk), (a, b)})

V (V − 1)
(3)

where (a, z1, z1, · · · , zk, b) represents the shortest path in M0 connecting a and b. Equivalently, if
we consider the tree generated by a breadth-first search in M0 rooted at i, then since i ∼ j, j will be
in the tree, and the numerator counts the total number of offspring of j in the tree, including j itself.
This is the point at which a rigorous mathematical characterization of the tree becomes challenging.
Instead, we approximate the tree and analyze its behavior. It is well-known that when p = λ/V ,
the cluster growth (or the breadth-first search at a vertex) can be approximated by a Poisson(λ)
branching process (see e.g., Hofstad (2016); Durrett (2010)). For fixed vertex i, we define T as a
Galton–Watson tree rooted at i with Poisson(λ) offspring distribution with depth L. We use T to
approximate the exploration process at i. For 0 ≤ ℓ ≤ L, the number of vertices at level L − ℓ is
approximately λL−ℓ. Given that the total number of vertices in T is approximately (1−ρ(λ))V , the
number of vertices at level L−ℓ is also (1−ρ(λ))V (λ−1)/λℓ+1. For each vertex at level L−ℓ, the
number of its offspring (including itself) equals k with probability pℓ(k). In this case, the numerator
in (3) equals k. Combining the above, there are around (1−ρ(λ))V ·pℓ(k)(1−ρ(λ))V (λ−1)/λℓ+1

vertex pairs (i, j) in the graph such that i ∈ LX , j ∈ LY , qi,j = k/V (V − 1) and j is located at the
L− ℓ level in the tree T . Ultimately, we arrive at an approximation of the form

Acc(Mt) ∼ p+ Cλ

(
1−

∞∑
ℓ=0

λ− 1

λℓ+1

∞∑
k=1

pℓ(k)

(
1− k

V (V − 1)

)t
)
.

Beyond Erdős-Rényi graphs, the term qi,j may not be as explicit. We can define C as the proportion
of vertex pairs (i, j) such that i ∼ j in M0, then qi,j is nonzero for CV (V − 1) pairs of vertices. In
this case, if we write ak = k/V (V − 1) and define µ(k) as the probability that qi,j = ak, then we
can have a general formula

Acc(Mt) ∼ p+ C

(
1−

∞∑
k=1

µ(k) (1− ak)
t

)
.

The drawback of this formula is the lack of explicit expressions. For a given M0, it is unclear how
to compute the measure µ(·) easily.

Next, we provide a qualitative description of the shape of such a mixture of exponentials.
Lemma F.3. For a fixed constant 0 < C < 1 and a probability measure µ(·) on Z+ with finite mean
m, we define

f(t) = p+ C

(
1−

∞∑
k=1

µ(k)

(
1− k

V (V − 1)

)tV (V−1)
)
.

Then we have that there exists 0 < t1 < t2 such that

f(t) =


Θ(p+ t) , for 0 ≤ t ≤ t1,

Θ(log t), for t1 ≤ t ≤ t2,

Θ(1), for t ≥ t2,

as V → ∞.
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Proof of Lemma F.3. Fix any 1 < t1 < t2. Note that f(t) is monotone increasing, concave and
always bounded by 1. We also have

f(t2) ≥ p+ C

(
1−

(
1− 1

V (V − 1)

)t2V (V−1)
)

≥ p+ C(1− exp(−t2)) = Θ(1).

So f(t) = Θ(1) when t ≥ t2. Now when t ≤ t1,

f(t) ≤ p+ C

(
1−

∞∑
k=1

µ(k)(1− tk)

)
≤ p+ Cmt.

Since f(0) = p and f(t2) ≥ p + C(1 − exp(−t2)), by concavity, f(t) is lower bounded by
p + tC(1 − exp(−t2))/t2 = Θ(p + t) for any 0 ≤ t ≤ t1. Finally for t1 ≤ t ≤ t2, we note
that f(t1) ≤ f(t) ≤ 1, so easily, f(t) ≤ log t1/ log t1 ≤ log t/ log t1 = O(log t). Similarly,
f(t) ≥ f(t1) log t2/ log t2 ≥ log t(f(t1)/ log t2) ≥ Ω(log t). Therefore, f(t) = Θ(log t) for any
t1 ≤ t ≤ t2.

F.1 MORE DETAILS ON THE MIXTURE OF EXPONENTIAL SHAPE

We provide more discussion on the mixture of exponential shape, including how we use it to fit the
empirical EntiGraph CPT QA accuracy.

Sketch of derivation. Intuitively, the edge (i, j) will eventually be added if and only if j is reach-
able from i in the original graph M0. This explains the limiting behavior of Acc(Mt) as t ap-
proaches infinity: the proportion of links will converge to the proportion of connected vertex pairs
in M0. To understand the mixture-of-exponential functional form, consider that at the time t, the
probability of adding each vertex pair follows an exponential pattern, with different vertex pairs
exhibiting different exponential growth rates. Specifically, think of a breadth-first search in M0

starting from a vertex i. If j is very close to the root, there are many paths from i to other vertices
passing through j, making it more likely that (i, j) will be included in each iteration. In contrast, if
j is far from the root (e.g., at the end of the exploration process), there are fewer such paths, making
it less likely for (i, j) to be included in each iteration. This accounts for the mixture-of-exponential
shape, where the mixture primarily reflects the distance of each vertex from the root, the number of
such vertices, and their corresponding exponential growth rates.

(a) Linear regime (b) Log-linear (t in log scale) (c) Plateau regime

Figure 7: Accuracy Acc(Mt) with respect to time t, for V = 100 and p = 0.03. The mixture-of-
exponential functional form in (2) leads to three distinct regimes.

Qualitative description. Finally, to help build an intuitive understanding, we provide a qualitative
description of the mixture-of-exponential shape. We demonstrate in Appendix F that this mixture-
of-exponential shape comprises three distinct phases: a fast growth phase, a slower growth phase,
and a plateau phase. Mathematically, we show the existence of two distinct times, 0 < t1 < t2, such
that

Acc(MT ) =


Θ(p+ t) , for 0 ≤ t ≤ t1,

Θ(log t), for t1 ≤ t ≤ t2,

Θ(1), for t ≥ t2,
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where we use a convenient change of variable T = tV (V − 1). It is important to note that the
choice of log t in the second phase is not necessarily canonical. In fact, the bound holds for any
well-behaved monotone increasing concave function as a replacement for log t. Our representation
here is motivated by two factors: first, it aligns with the performance observed in our EntiGraph
CPT numerical results, and second, it reflects the gradual slowdown in growth. We illustrate the
three phases in Figure 7, which present a simulation of the toy model with p = 0.03.

To perform curve fitting using the mixture-of-exponential formula, we approximate the infinite sum
with three terms in

Acc(Mt) ∼ p+ C

(
1−

∞∑
k=1

µ(k) (1− ak)
t

)
.

Mathematically, we fit the empirical observation against the formula

y(x) = a− b1r
x
1 − b2r

x
2 − b3r

x
3 ,

where x is the EntiGraph token count (in millions) and y(x) is the QuALITY QA accuracy. We
use the non-linear least squares method implemented by Virtanen et al. (2020). As a result of this
procedure, we obtain the fitted formula

y(x) = 64.5456− 13.8352× (0.9989)x − 8.4705× (0.8961)x − 3.932× (0.0546)x.

For the implementation of this procedure, we refer readers to our code release.
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G SYNTHETIC DATA GENERATION PROMPTS

We generate two synthetic corpora in this paper: EntiGraph (Appendix G.1) and the Rephrase base-
line (Appendix G.2). In our experiments, the Dsource is a collection of documents D, and our syn-
thetic augmentation procedure is applied to each document D ∈ Dsource. We will focus on a single
document D for the remainder of this section.

G.1 ENTIGRAPH PROMPTS

The EntiGraph procedure is described in detail in §2.2. We will recap the three steps below.

Step 1: Entity extraction. The first step is to extract the salient entities from the document D
using the entity extraction operation (Step 1, §2.2). The complete entity extraction
prompt is as follows:

As a knowledge analyzer, your task is to dissect and understand an
article provided by the user. You are required to perform the
following steps:
1. Summarize the Article: Provide a concise summary of the entire
article, capturing the main points and themes.
2. Extract Entities: Identify and list all significant "nouns" or
entities mentioned within the article. These entities should include
but not limited to:

* People: Any individuals mentioned in the article, using the
names or references provided.
* Places: Both specific locations and abstract spaces relevant to
the content.
* Object: Any concrete object that is referenced by the provided
content.
* Concepts: Any significant abstract ideas or themes that are
central to the article’s discussion.

Try to exhaust as many entities as possible. Your response should be
structured in a JSON format to organize the information effectively.
Ensure that the summary is brief yet comprehensive, and the list of
entities is detailed and accurate.

Here is the format you should use for your response:

{
"summary": "<A concise summary of the article>",
"entities": ["entity1", "entity2", ...]

}

Step 2: Relation analysis. The last step is to generate diverse descriptions of relations among
two or more entities. In our experiments, for each document D, we enumerate all entity pairs and
generate a description for each. The prompt for generating a description relating a pair of entities is
as follows:

You will act as a knowledge analyzer tasked with dissecting an
article provided by the user. Your role involves two main
objectives:
1. Rephrasing Content: The user will identify two specific entities

mentioned in the article. You are required to rephrase the
content of the article twice:
* Once, emphasizing the first entity.
* Again, emphasizing the second entity.

2. Analyzing Interactions: Discuss how the two specified entities
interact within the context of the article.
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Your responses should provide clear segregation between the
rephrased content and the interaction analysis. Ensure each section
of the output include sufficient context, ideally referencing the
article’s title to maintain clarity about the discussion’s focus.
Here is the format you should follow for your response:

### Discussion of <title> in relation to <entity1>
<Rephrased content focusing on the first entity>

### Discussion of <title> in relation to <entity2>
<Rephrased content focusing on the second entity>

### Discussion of Interaction between <entity1> and <entity2>
in context of <title>

<Discussion on how the two entities interact within the article>

We also generate synthetic data involving three entities, using the prompt below:

You will act as a knowledge analyzer tasked with dissecting an
article provided by the user. Your role involves three main
objectives:

1. Rephrasing Content: The user will identify three specific
entities mentioned in the article. You are required to rephrase
the content of the article three times:
* Once, emphasizing the first entity.
* Again, emphasizing the second entity.
* Lastly, emphasizing the third entity.

2. Analyzing Interactions: Discuss how these three specified
entities interact within the context of the article.

Your responses should provide clear segregation between the
rephrased content and the interaction analysis. Ensure each section
of the output include sufficient context, ideally referencing the
article’s title to maintain clarity about the discussion’s focus.
Here is the format you should follow for your response:

### Discussion of <title> in relation to <entity1>
<Rephrased content focusing on the first entity>

### Discussion of <title> in relation to <entity2>
<Rephrased content focusing on the second entity>

### Discussion of <title> in relation to <entity3>
<Rephrased content focusing on the third entity>

### Discussion of Interaction between <entity1>, <entity2> and
<entity3> in context of <title>

<Discussion on how the three entities interact within the article>

G.2 REPHRASE PROMPTS

For the rephrase corpus, we adapt the prompt from Maini et al. (2024) to our setting of books and
articles. We provide four rephrase styles below:

Easy rephrase:

You are an assistant to help read a article and then rephrase it in
simpler terms. The user will provide you with an article with
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title, year, content. You need to generate a paraphrase of the same
article using a very small vocabulary and extremely simple
sentences that a toddler will understand. Remember to keep the
meaning and every content of the article intact, including the
title, year, etc.

Medium rephrase:

You are an assistant to help read a article and then rephrase it in
different terms. The user will provide you with an article with
title, year, content. You need to generate a paraphrase of the same
article using diverse and high quality English language as in
sentences on Wikipedia. Remember to keep the meaning and every
content of the article intact, including the title, year,
etc.

Hard rephrase:

You are an assistant to help read a article and then rephrase it in
more sophisticated terms. The user will provide you with an article
with title, year, content. You need to generate a paraphrase of the
same article using very terse and abstruse language that only an
erudite scholar will understand. Remember to keep the meaning and
every content of the article intact, including the title, year,
etc.
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H ADDITIONAL EVALUATION DETAILS OF MAIN EXPERIMENTS

H.1 QUALITY QA QUESTION SET

In this section, we provide more details of evaluation on the QuALITY QA test queries. Throughout
the closed-book QA experiments, we use a fixed 5-shot prompt below:

## Example 1
### Question
In the context of "Les Misérables", written by Victor Hugo in 1862,
what is the main setting of the novel? There is only one correct
choice.
### Choices
A. London
B. Madrid
C. Paris
D. Rome
### Thought Process and Answer
Thought process: "Les Misérables" is primarily set in Paris, making
C the correct choice. London, Madrid, and Rome are significant
cities in other literary works but not in Victor Hugo’s "Les
Misérables". There is only one correct choice.
Answer: C.

## Example 2
### Question
In the context of "Brave New World", written by Aldous Huxley in
1932, what substance is widely used in the society to control
citizens’ happiness? There is only one correct choice.
### Choices
A. Gold
B. Soma
C. Silver
D. Iron
### Thought Process and Answer
Thought process: In Aldous Huxley’s "Brave New World," Soma is used
as a means to maintain social control by ensuring citizens’
happiness, making B the correct choice. Gold, Silver, and Iron are
not the substances used for this purpose in the book.
Answer: B.

## Example 3
### Question
In the context of "Romeo and Juliet", written by William
Shakespeare in the early 1590s, what are the names of the two
feuding families? There is only one correct choice.
Choices:
A. Montague and Capulet
B. Bennet and Darcy
C. Linton and Earnshaw
D. Bloom and Dedalus
### Thought Process and Answer
Thought process: In William Shakespeare’s "Romeo and Juliet," the
two feuding families are the Montagues and the Capulets, making A
the correct choice. The Bennets and Darcys are in "Pride and
Prejudice", the Lintons and Earnshaws in "Wuthering Heights", and
Bloom and Dedalus in "Ulysses".
Answer: A.

## Example 4
### Question
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In the context of "1984", written by George Orwell in 1949, what is
the name of the totalitarian leader? There is only one correct
choice.
### Choices
A. Big Brother
B. O’Brien
C. Winston Smith
D. Emmanuel Goldstein
### Thought Process and Answer
Thought process: In George Orwell’s "1984," the totalitarian leader
is known as Big Brother, making A the correct choice. O’Brien is a
character in the novel, Winston Smith is the protagonist, and
Emmanuel Goldstein is a rebel leader.
Answer: A.

## Example 5
### Question
In the context of "Moby-Dick", written by Herman Melville in 1851,
what is the name of the ship’s captain obsessed with hunting the
titular whale? There is only one correct choice.
### Choices
A. Captain Hook
B. Captain Nemo
C. Captain Flint
D. Captain Ahab
### Thought Process and Answer
Thought process: In Herman Melville’s "Moby-Dick," the ship’s
captain obsessed with hunting the whale is Captain Ahab, making D
the correct choice. Captain Nemo is in "Twenty Thousand Leagues
Under the Sea", Captain Flint in "Treasure Island", and Captain
Hook in "Peter Pan".
Answer: D.

## Example 6

If the output of the model correctly follows the format of the few-shot prompt, its last two characters
should be “A.”, “B.”, “C.”, or “D.”. However, the model sometimes cannot successfully follow
the few-shot prompting format, particularly for the continually pretrained model. As a result, in all
our evaluations, we sample the response 64 times, and only select the ones that can be parsed in the
correct format. Out of these 64 attempts, we randomly select among the valid answers to give the
final answer. Note that this is different from majority voting in self-consistency prompting (Wang
et al., 2023a).

H.2 CLOSED-BOOK SUMMARIZATION

Automated evaluation metric. We design a three-stage evaluation procedure: (i) In the first stage,
we use GPT-44 to break the summary into atomic claims, similar to Min et al. (2023); (ii) In the
second stage, we provide both the list of claims and the source article to a judge model (also GPT-4).
We ask the judge model to determine whether each claim is true or false, based on the source article.
If the claim is true, we further ask the model to determine whether the claim is salient (contributes
to the main message of the article) or cosmetic (factual details that do not help understand the main
message). (iii) Finally, for each summary, we obtain its number of false and salient claims and
normalize it by the corresponding count from the human summary. We report the average of these
normalized metrics across the QuALITY corpus articles in Figure 3.

Prompts to generate summaries. For summarization evaluation with EntiGraph Instruct and Raw
Instruct, we apply the following two prompts to obtain two summaries of increasing length. We
provide three examples of summarization outputs below. For each of the three examples, we will

4Specifically, we use the gpt-4-turbo model as of Aug. 19, 2024.
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➤ Short prompt: Summarize the article {article title} by {author
name} for me.

Give a short summary of ‘‘Cosmic Yo-Yo’’ by Ross Rocklynne.

➤ Long prompt: Write an extremely long and detailed article
regarding the book {article title} by {author name}.
Write an extremely long and detailed article regarding the
book ‘‘Cosmic Yo-Yo’’ by Ross Rocklynne.

Table 4: Summarization prompt for EntiGraph Instruct, Raw Instruct, and Reprhase Instruct.

first present the human summary for this article to provide context for the example, and then present
the short summary from the two summarizers.

Example 1. The first example is “Cosmic Yo-Yo” by Ross Rocklynne.

Human summary: Bob Parker, the President of Interplanetary Hauling & Moving Co.,
sells asteroids to wealthy people on earth. Clients ask for asteroids with size parameters and
specifications, and Bob finds them in space and hauls them to earth. His company is almost
bankrupt because a rival company, Saylor & Saylor, stole his idea and now offers the same
services. Bob receives mail from Mr. Andrew S. Burnside with a request for an asteroid that
he would like to use in an upcoming wedding. Bob and his partner Queazy set out to find the
perfect asteroid for Mr. Burnside, although they know it’s a longshot. Fairly quickly, they
find one that looks perfect. The men land on the asteroid, and Bob deploys his atomic-whirl
spectroscope to test it. Suddenly, a beautiful woman interrupts him and demands that they
leave the asteroid. She pulls out her spasticizer gun before telling them that they can have it
in a month after she’s gone. Bob explains that they are desperate, but the girl retorts that her
fate is worse than death if she leaves.
Suddenly, the Saylor brothers’ ship appears, and Bob tells the girl that they have to fight this
enemy together. Wally and Billy Saylor, along with three other men, jump out of the ship.
Bob tells them that Mr. Burnside has ordered this asteroid, and the Saylor brothers say that
they received the same order. Bob quickly grabs the girl’s spasticizer while Queazy throws
his body at Billy. However, Wally manages to shoot the gun out of Bob’s hand and attack
him. Bob is knocked unconscious in the scuffle.
When Bob wakes up, he is completely alone, floating in space. He panics because he has
very little oxygen left. Finally, he hears Queazy’s voice explaining that the girl used her
ship’s technology to find them both. The mystery girl introduces herself as Starre Lowenthal,
the granddaughter of Mr. Burnside. She concedes that this entire mission was fake. She told
her grandfather that she would only marry her fiance Mac if he could get this particular
asteroid, and then she made plans to conquer and protect the asteroid so it could not be
supplied for the wedding.
Bob is confident that they can reach the Saylor brothers before they bring the asteroid back
to earth, but his plan does nothing to protect Starre from marrying a man she doesn’t love.
She agrees to help Bob and Queazy. Within five days, Bob realizes he is in love with Starre.
Starre compares her small ship to a yo-yo, and Bob gets an idea - they will use Starre’s ship
like a yo-yo to retrieve the asteroid from the Saylor brothers. Once the team catches up to
the Saylor brothers, Bob flings Starre’s ship at the asteroid several times, and Wally calls
them to tell them that they might die as a result of the damage their ship has sustained. Bob
makes it clear that they have no intention of stopping, and the Saylor brothers release the
asteroid.

EntiGraph Instruct with short prompt: Cosmic Yo-Yo is a science fiction story by Ross
Rocklynne about Bob Parker and Queazy, two interplanetary haulers who are hired to deliver
an asteroid to Earth for a wealthy client’s backyard wedding. However, they face competition
from their rivals, the Saylor brothers, who also want to deliver the asteroid. The story follows
their race to deliver the asteroid before the deadline, using a yo-yo-like device to maneuver
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the asteroid and outsmart their rivals. The story is filled with action, adventure, and a touch
of romance.

Raw Instruct with short prompt: Cosmic Yo-Yo by Rocklynne, Ross is a science fiction
novel that follows the story of a young woman named Susan who discovers a mysterious
device that can transport her through time and space. She uses the device to travel to different
planets and meet different alien species, but soon realizes that her actions have consequences
and she must find a way to return home. The novel explores themes of identity, responsibility,
and the consequences of our actions.

Example 2. The second example is “Beach Scene” by Marshall King. We can see that EntiGraph
correctly gives a summary of the story while Raw Instruct mistakes the book as a painting.

Human summary: Purnie, an animal, is going to see the ocean on his fifth birthday. He
has heard stories about this place, and experiencing it firsthand is surreal for him. Purnie
is careful not to disturb the animals he sees along the way because he has frozen time, and
everything must resume normally when he unfreezes it. He knows that time-stopping is
forbidden for animals his age, but he chooses to believe that his family will be proud of his
bravery.
Finally, he sees the ocean in front of him, and he resumes time. He does a head-stand and
feels weak and dizzy. These feelings are a result of the time-stop, and he knows it. Purnie
approaches some humans on the beach. A man named Forbes is in the middle of explaining
to his captain, Benson, that he has found 17 planets to claim as his own. Forbes is hellbent
on raising his FORBES flag as soon as possible. He is eager to stake his claim to the land
and says that his mission is much bigger than real estate alone. Benson retorts that yes, his
mission is bigger than just real estate because his paperwork says that Forbes will own all of
the inhabitants of the planets he claims as well as the land.
The crew members use a special machine and find radiation emanating from Purnie. Forbes
demands that they put the animal in a box. Benson protests and reminds Forbes that it’s
against Universal Law, but Forbes insists. Purnie experiences his first-ever impulse to run
away with fear when a noose comes towards him. He goes back to pick up his fruit, and
Forbes shoots him in the leg. When the man throws the noose again, Purnie involuntarily
stops time. He drags himself up the knoll where he originally came from.
The humans are astonished when time resumes and Purnie is not where he was a split second
ago. They spot him up on top of a pile of petrified logs, and suddenly the logs fall down the
hill and pin the men down. Purnie is shocked and regretful. The whole thing was an accident.
He deliberately stops time and uses all of his remaining strength to lift the logs off of the
humans. Purnie begins to lose consciousness, and he knows that he must resume time or
he will die. After pouring all of his strength into this action, time does begin again. The
humans resume life and feel as though they have gone mad. They know that they were just
facing death by drowning, and now they are free. The logs were so heavy that it would have
taken superhuman strength to move them. Forbes, in particular, has really gone mad, and he
laughs to himself uncontrollably. Benson believes that Purnie was responsible for moving
the logs, but of course that seems physically impossible.
Purnie stares off at the beautiful ocean views and watches the men leave in their vehicle as
he dies.

EntiGraph Instruct with short prompt: Beach Scene is a short story by Marshall King
that follows a young boy named Purnie who discovers the power of stopping time. On his
fifth birthday, Purnie decides to explore the beach and use his newfound ability to stop time
to play with the animals and explore the ocean. However, his adventures take a turn when
he encounters a group of explorers who want to capture him for their own gain. Purnie must
use his powers to save himself and the animals from the explorers’ greed.
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Raw Instruct with short prompt: Beach Scene by King, Marshall is a painting that depicts
a group of people enjoying a day at the beach. The painting features a vibrant blue ocean,
a sandy beach, and a group of people relaxing, playing, and swimming in the water. The
painting is known for its bright colors and lively atmosphere, capturing the joy and energy
of a day at the beach.

Example 3. The third example is “The Madman From Earth” by “Keith Laumer”.

Human summary: Following the departure of Consul Whaffle, Retief has taken over
as Consul for the Terrestrial States with the Terrestrial Consulate General on the planet
Groac. His administrative assistant, Miss Yolanda Meuhl, wants him to attend Groacian
cultural events, but Retief is more interested in addressing the nine-year-old mystery of
the disappearance of a Terrestrial cruiser, the ISV Terrific–an event which was followed
by a coup d’etat enacted by the current Groacian government. Much to Miss Meuhl’s dis-
may, Retief shirks his cultural duties and makes his way to the Foreign Office Archives,
whereupon he is promptly barred from entering by a pale-featured Archivist speaking in
the throat-bladder vibrations of the native Groacians. Because of the Archivist’s insistence
that öutworldersc̈annot access the archives, Retief begins walking back to the Consulate and
stops at a bar for a drink. At the, a drunken Groacian approaches Retief and threatens to cage
him and put him on display as a freak. The bartender orders the drunken Groacian out of the
bar, and Retief follows him, ultimately beating him up for information. When Retief returns
to the Consulate, Miss Meuhl informs him that two angry Groaci await him in his office. One
is Fith, an employee of the Terrestrial Desk at the Ministry of Foreign Affairs; the other is
Shluh, a representative of the Internal Police. They are there to investigate reports that Retief
has assaulted a Groacian national–an accusation Retief ignores in order to launch into his
own accusations that the Groaci were engaged in a cover-up of the whereabouts of the ISV
Terrific. Miss Meuhl continually interjects, expresses horror at Retief’s claims, and apolo-
gizes to the Groacians on behalf of the Terrestrial Consulate. Despite the persistent denials
of the Groacians, Retief continues his accusations, suggesting the coup d’etat was an effort
to silence government officials with knowledge of the truth of what happened to the cruiser
and its crew. Then he reveals what he discovered from the drunken Groacian: The crew of
the ISV Terrific had been caged and paraded through the streets of Groac and then neglected
until they died. Fith and Shluh finally admit the truth and offer to show Retief the hidden
cruiser in order to show their contrition. When Retief sees the ship, he once again accuses
the Groacians of attempting to mislead him, saying that this is a lifeboat, and he demands
to see the actual ship. Fith has had enough and threatens to arrest Retief, who yields and
goes back to the Consulate. There, Miss Meuhl is at her wits end. Retief orders her to barri-
cade herself inside the office while he goes to the Foreign Ministry to gather more evidence.
When he returns, Miss Meuhl informs him she has reported him to Regional Headquarters,
and Retief learns he has been relieved of his post. Soon after, the Groacians appoint Miss
Meuhl to his position, and Fith and Shluh enter to arrest him.

EntiGraph Instruct with short prompt: The Madman From Earth is a science fiction
novel by Keith Laumer, published in 1959. The story follows Retief, a diplomat from Earth,
who is sent to the planet Groac to investigate the disappearance of a Terrestrial cruiser and
its crew. Retief uncovers a conspiracy by the Groacian government to cover up the incident
and hide evidence from Earth. He must navigate through political intrigue, cultural misun-
derstandings, and dangerous situations to uncover the truth and bring justice to the missing
crew. The novel is a satirical take on diplomacy and bureaucracy, with Retief’s unorthodox
methods and wit standing out against the rigid and often absurd procedures of the diplomatic
corps.

Raw Instruct with short prompt: The Madman From Earth by Laumer, Keith is a science
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fiction novel that follows the story of a man named John Smith who is transported to a
distant planet called Earth Two. There, he discovers that he is the only human on the planet
and must navigate a world filled with strange creatures and dangerous obstacles. Despite
his initial confusion and fear, John eventually adapts to his new surroundings and becomes
a respected member of the alien society. However, when he is eventually transported back
to Earth One, he realizes that he has been gone for over a thousand years and must grapple
with the changes that have occurred during his absence.

➤ Explicit article reference instruction: Summarize the article “Defining Decay Down” by
“David Plotz” for me.

The article ”Defining Decay Down” by David Plotz discusses how the dental industry has
changed over the years. In the past, dentists were primarily focused on treating cavities and
other dental issues, but as the prevalence of cavities decreased due to the widespread use of flu-
oride, the industry had to adapt. Dentists began to focus on cosmetic dentistry, offering services
like teeth whitening and orthodontics to appeal to the vanity of aging baby boomers. The arti-
cle also discusses how dentists have become more customer-friendly, with amenities like virtual
reality glasses and massage therapy. Despite the shift towards elective procedures, the dental
industry has continued to thrive, with dentists earning higher salaries than ever before.

➤ Implicit article reference: How has the dentistry practice in United States has changed?

The dentistry practice in the United States has undergone significant changes in recent years.
Here are some of the ways in which it has changed:
1. Focus on cosmetic dentistry: In recent years, there has been a growing demand for cosmetic
dental procedures such as teeth whitening, orthodontics, and veneers. Dentists have responded
to this demand by offering more cosmetic services.
2. Use of technology: Dentists are now using advanced technology such as intra-oral cameras,
3D imaging, and laser technology to diagnose and treat dental problems. This technology has
made dental procedures more accurate and efficient.
3. Emphasis on preventive care: Dentists are now focusing more on preventive care to help pa-
tients avoid dental problems. This includes regular check-ups, cleanings, and fluoride treatments.
4. Increased competition: With the rise of dental schools and the influx of foreign-trained den-
tists, the dental industry has become more competitive. Dentists are now offering more services
and amenities to attract and retain patients.
5. Focus on patient experience: Dentists are now focusing on providing a positive patient ex-
perience. This includes offering amenities such as virtual reality glasses, massage therapy, and
entertainment during procedures.
Overall, the dentistry practice in the United States has become more patient-centered,
technology-driven, and focused on preventive care and cosmetic procedures.

➤ Cross article instruction: Compare David Plotz’s commentary style between how he analyze
American dentistry and how he discuss the movie Fight Club?

David Plotz’s commentary style is different when he analyzes American dentistry and when
he discusses the movie Fight Club. In his analysis of American dentistry, Plotz uses a critical
and investigative approach, highlighting the over-commercialization and unnecessary procedures
in the industry. He uses statistics and expert opinions to support his arguments and provides
practical advice for readers to avoid unnecessary dental procedures.
On the other hand, when discussing the movie Fight Club, Plotz adopts a more satirical and
humorous tone. He uses pop culture references and witty commentary to analyze the themes
and messages of the movie. He also provides a critical analysis of the film’s characters and their
motivations, while also acknowledging the movie’s cultural impact.
Overall, Plotz’s commentary style is more serious and investigative when analyzing American
dentistry, while his commentary on Fight Club is more satirical and humorous.

Table 5: Complete instruction following example used in Table 2 from Section 4.3.
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I ABLATION STUDIES

We present ablation experiments to further validate EntiGraph’s effectiveness and test its general-
ization properties. We discussed two potential limitations in §7.1:

1. Could the gains of Synthetic CPT be explained by distillation effects, due to the use of a
strong prompted LM for synthetic data generation?

2. Is the data synthesized in Synthetic CPT factual?

We provide evidence suggesting these are not significant concerns in Appendix I.1 and Appendix
I.2, respectively. Lastly, we repeat the procedure of the core experiments on another small corpus
of Coursera lecture transcripts, to provide evidence that Synthetic CPT generalizes to datasets and
domains beyond QuALITY (Appendix I.3).

I.1 USING A WEAKER SYNTHETIC DATA GENERATION LM

One potential concern is whether EntiGraph’s success demonstrated in §4 stems from distilling
knowledge from GPT-4. To investigate this, we conducted an experiment replacing GPT-4-Turbo
with a significantly weaker model, Llama 3.1 8B Instruct, as the synthetic data generator. Recall
that in all continued pretraining experiments, we finetune the 8B parameter Llama 3 Base model.
Therefore, in this experiment, the capabilities of the synthetic data generator and the continually
pretrained model are very similar, controlling for distillation effects. Using the entity extraction
and relation analysis prompts introduced in §2, we generate 334M synthetic tokens and evaluate the
scaling behavior under the same hyperparameter setup detailed in §4.1.
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Figure 8: The scaling properties of Synthetic CPT with the EntiGraph and Rephrase augmentations,
comparing two synthetic data generators: GPT-4-Turbo and Llama 3.1 8B Instruct.

Figure 8 reveals two key insights. First, even with the weaker generator, EntiGraph maintains steady
log-linear improvement with no signs of saturation at 334M tokens, suggesting that the gains of Syn-
thetic CPT stem from continued pretraining on diverse representations of the corpora’s underlying
knowledge, rather than distilling the generator model’s knowledge. Similar to our main results (§4),
EntiGraph with a Llama 3.1 8B Instruct generator consistently outperforms Rephrase with the same
generator. Moreover, at 334M synthetic tokens, EntiGraph with a Llama 3.1 8B Instruct generator
outperforms closed-book evaluation of GPT-4-Turbo.

Second, while switching from the GPT-4-Turbo generator to the weaker generator shifts the accuracy
curve downward, the log-linear slope remains consistent. In contrast, holding the synthetic generator
constant, we observe that EntiGraph CPT and Rephrase CPT exhibit different slopes.

I.2 FACTUALITY AND LEXICAL DIVERSITY OF ENTIGRAPH SYNTHETIC CORPUS

Factuality. A limitation discussed in §7.1, and inherent in all methods involving synthetic data
generation, is that the generation model may hallucinate. EntiGraph is a synthetic data augmenta-
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tion, which conditions an LM on a given corpus document and prompts the LM to discuss the docu-
ment’s entities and their relationships. Assuming a reasonably good generator model, this grounding
should decrease hallucination rate.

To quantitatively test the factuality of documents synthesized with EntiGraph, we split the 455M
token EntiGraph corpus into sentences and randomly sample 150 sentences. We ask authors of this
work to label whether each sentence is subjective or not, and among non-subjective sentences, to
determine whether it is supported by the article text or not.

We compute two statistics: the proportion of subjective sentences denotes the number of subjective
sentences over the total number of annotated sentences. The factuality rate denotes the number of
non-subjective sentences which are supported by the source document, over the number of non-
subjective sentences, following Min et al. (2023):

• Proportion subjective: 0.532 (bootstrap 0.95 confidence interval: [0.455, 0.610]).

• Factuality rate: 0.944 (bootstrap 0.95 confidence interval: [0.889, 0.986]).

Because EntiGraph uses open-ended prompts which ask the LM to relate different, often abstract en-
tities, the LM often generates subjective statements. We do not necessarily view this as a limitation,
because learning reasonable subjective interpretations is crucial for understanding (and hence is of-
ten assessed in, e.g., essay questions on literature exams). We also observe that the non-subjective
sentences are consistently factual, supporting the effectiveness of grounding in reducing hallucina-
tion.

Lexical Diversity. We hypothesize that good synthetic data augmentations should produce knowl-
edge representations with diverse wording. As a measure of this lexical diversity, we compute the
percentage of n-grams in the synthetic documents that overlap with the n-grams of the correspond-
ing source documents.

More precisely, we first randomly select 100 QuALITY articles, tokenize them with the Llama 3.1
tokenizer, and compute the set of n-grams for each article. Then, for each article, we tokenize the
corresponding EntiGraph and Rephrase synthetic data, compute n-grams, and count the n-grams in
the synthetic data that appear in the set of n-grams for the raw article. For each n and synthetic
augmentation method, we sum this overlap count across articles and normalize by the total number
of synthetic tokens generated for the 100 articles, providing us an estimate of the percentage of
n-grams in the synthetic data that overlap with the source data.

Augmentation n = 2 n = 4 n = 8 n = 16

EntiGraph 23.40 3.66 0.24 0.00
Rephrase 21.35 3.04 0.51 0.22

Table 6: Percentage of token n-grams in synthetic documents that overlap with the source document
n-grams, for the EntiGraph and Rephrase synthetic data augmentations.

These results are provided in Table 6. We observe that for both augmentations, n-gram overlap per-
centage is low and quickly approaches 0% with increasing n, indicating that both methods produce
lexically diverse knowledge representations.

I.3 DATASETS BEYOND QUALITY

To test whether synthetic CPT with EntiGraph generalizes to corpora beyond QuALITY, we evalu-
ated on the Coursera Exam QA dataset (An et al., 2023). This dataset contains lecture transcripts and
exam questions from advanced technical courses like data science and machine learning. Compared
to the books and stories in QuALITY, Coursera exams present new challenges—the content is harder
conceptually, questions can have multiple correct answers, and the number of options is not fixed to
four choices. This makes few-shot prompting more demanding, as the model must understand both
the content and the flexible answering format.

The dataset consists of 15 lecture transcripts and 124K raw tokens, substantially smaller than QuAL-
ITY’s 265 documents and 1.3M raw tokens. During our scaling analysis, we found that models
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trained on tiny synthetic corpora (e.g., a few million tokens) struggled to follow few-shot prompts
reliably for Coursera questions, resulting in parsing errors. Therefore, we begin the scaling curve in
Fig. 9 starting from token counts where parsing error rates fall below 5%. For the Rephrase baseline,
we generate synthetic data up to 22M tokens, and find that only one model has parsing error rates
below 5%.
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Figure 9: The scaling properties of Synthetic CPT using the EntiGraph augmentation on the Cours-
era Exam QA dataset.

Despite these challenges, EntiGraph CPT shows consistent improvement over Llama 3 8B Base, im-
proving accuracy from 48.26% to 53.87%, better than Llama 3 8B Base and the Rephrase baseline.
The log-linear scaling pattern persists up to 32M synthetic tokens, suggesting EntiGraph’s effec-
tiveness extends beyond narrative texts to technical educational content. This successful transfer
to a substantially different domain provides evidence for the generalizability of synthetic continued
pretraining and EntiGraph.
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