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ABSTRACT

Antimicrobial peptides (AMPs) are essential components of the innate immune system in humans and other organisms,
exhibiting potent activity against a broad spectrum of pathogens. Their potential therapeutic applications, particularly in
combating antibiotic resistance, have rendered AMP classification a vital task in computational biology. However, the
scarcity of labeled AMP sequences, coupled with the diversity and complexity of AMPs, poses significant challenges for
the training of standalone AMP classifiers. Self-supervised learning has emerged as a powerful paradigm in addressing
such challenges across various fields, leading to the development of Protein Language Models (PLMs). These models
leverage vast amounts of unlabeled protein sequences to learn biologically relevant features, providing transferable protein
sequence representations (embeddings), that can be fine-tuned for downstream tasks even with limited labeled data. This
study evaluates the performance of several publicly-available PLMs in AMP classification utilizing transfer learning techniques
and benchmarking them against state-of-the-art neural-based classifiers. Our key findings include: (a) Model scale is
crucial, with classification performance consistently improving with increasing model size; (b) State-of-the-art results are
achieved with minimal effort utilizing PLM embedding representations alongside shallow classifiers; and (c) Classification
performance is further enhanced through efficient fine-tuning of PLMs’ parameters. Code showcasing our pipelines is available
at https://github.com/EliasGeorg/PLM_AMP_Classification.

Introduction
Antimicrobial peptides (AMPs) are naturally occurring peptides found in a wide range of living organisms. They serve as a
critical line of defense in the innate immune system against pathogens1, 2. With their broad-spectrum antimicrobial activity,
AMPs have garnered attention as promising candidates for therapeutic applications, particularly in addressing the global
challenge of antibiotic resistance3. However, AMP discovery and characterization remain difficult due to their sequence
diversity, limited availability in public databases (only a few thousand are known), and intricate structure-function relationships1.
AMP classification has predominantly relied on supervised learning, including approaches that either leverage manually
curated features4–11 or sequence-based neural networks12–16. While these methods have achieved reasonable success, they are
often hindered by the scarcity of labeled AMP data, leading to issues such as overfitting and suboptimal generalization17, 18.
Additionally, these methods typically rely on complex architectures and training procedures that are challenging to implement
and require advanced expertise.

Another challenge, distinct from the limitations of supervised approaches, is how to effectively leverage the vast amounts of
publicly-available protein sequences while capturing their inherent complexity –a problem that has been recently addressed
through self-supervised learning. Self-supervised learning represents a significant paradigm shift in deep learning, enabling
researchers to extract valuable insights from large, unlabeled datasets. Largely inspired by the success of Large Language
Models (LLMs) in natural language processing19–25, Protein Language Models (PLMs)26–31 have been established as powerful
tools in AI-driven protein research. Trained on large-scale datasets and leveraging significant computational resources, PLMs
effectively model the protein landscape and have excelled at learning meaningful protein representations. Like LLMs, which
have demonstrated proficiency as few-shot learners through transfer learning techniques19–23, PLMs have shown similar
few-shot learning capabilities achieving state-of-the-art performance across a variety of tasks, including protein structure
prediction29, 30, function annotation26, 32, 33, and de novo protein design31, 34.

This study conducts an extensive comparative analysis of various publicly-available PLMs26, 27, 29, 35–38, focusing on their
performance in AMP classification through transfer learning techniques. We implement and evaluate two primary transfer
learning approaches: embedding-based transfer learning, which integrates PLM-generated embeddings with shallow classifiers,
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and parameter fine-tuning, which efficiently adapts the weights of the PLM to the specific task. Utilizing multiple AMP
datasets, we thoroughly evaluate a series of pre-trained PLMs aiming to address the following questions: (i) Which PLMs
deliver the most accurate predictions for the AMP classification task? (ii) Which characteristics of the PLMs highly correlate
with performance metrics? (iii) How does transfer learning on PLMs compares with state-of-the-art standalone neural-based
AMP classifiers7, 8, 10–12? (iv) Can efficient fine-tuning of PLMs’ parameters further enhance performance?

Our findings demonstrate that transfer learning on PLMs consistently outperforms current state-of-the-art models for AMP
classification, even with minimal fine-tuning and computational resources. This establishes a robust, scalable, and user-friendly
framework for AMP classification, reinforcing the use of PLMs as transformative tools for advancing AI-driven protein research.

Methods
Two distinct transfer learning pipelines were implemented to leverage the capacity of PLMs for the task of AMP classification:
an embedding-based approach and a parameter fine-tuning approach. Figure 1 demonstrates the two pipelines. The upper
diagram shows the embedding-based approach, where the pre-trained model generates fixed-size vectors for input sequences,
which are subsequently used as features for a separate, trainable classifier. The lower diagram illustrates the fine-tuning
approach, where the PLM’s weights are fine-tuned by updating them through an efficient adaptation mechanism, allowing the
model to learn specific traits related to the AMP classification task.

Figure 1. Illustration of the transfer learning pipelines. (a) Protein sequences are initially fed into a pre-trained PLM to
generate embeddings for each amino acid within the sequence. To obtain fixed-size representations for each sequence, the mean
of these embeddings across the sequence length dimension is computed. These embeddings, along with their corresponding
protein class labels, are used to train a classifier to perform AMP classification. (b) A binary classification head is appended to
the final layer of the PLM’s encoder. New trainable parameters (∆W ) are introduced in a parameter-efficient manner called
Low-Rank Adaptation (LoRA). These parameters are trained to adapt the PLM specifically for the AMP classification task.

Protein Language Models
PLMs constitute a class of deep neural networks trained on massive amounts of protein sequence data, employing self-
supervision at a large scale. This study evaluates the representational capabilities of publicly-available, pre-trained PLMs
enlisted in Table 1 with respect to their performance in AMP classification. PLMs, as the great majority of recent sequence-to-
sequence models, have been dominated by the transformer architecture and the associated self-attention mechanism39. This
mechanism enables the models to process sequences in an adaptive, non-linear and context-sensitive manner, which could be
particularly advantageous for deciphering the complex interactions between amino acids. Indeed, the transformer architecture
have consistently excelled at identifying long-range dependencies within sequences.

In this work, we explore various models from the Evolutionary Scale Modeling (ESM)26 family and its sequel, ESM229.
While ESM2 retains core features of ESM, it introduces improvements in both architecture and training process. ESMs are
trained on evolutionary-scale data utilizing a variant of the Bidirectional Encoder Representations from Transformers40 (BERT)
architecture, which is an encoder-only architecture with a masked language modeling loss function. In masked language
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modeling, a certain percentage of tokens from the input sequence are randomly masked, and the model is trained to predict
the masked tokens based on the context provided by the rest of the sequence. This approach encourages the model to learn
representations that capture informative features of the protein sequences, enabling it to perform well on downstream tasks.
ESM2 is trained on an enriched version of Uniref5041 dataset with over 60M sequences and comes in various sizes and training
computational budgets. Notice that the standard Uniref50 dataset clusters sequences with at least 50% sequence identity and
comprises approximately 45M sequences. We also investigate ESM-1b26 trained on the UniRef50 dataset as well as ESM-1v35

which is trained on the UniRef9041 dataset. The UniRef90 dataset clusters sequences with at least 90% sequence identity and
contains about 138M sequences.

We further delve into the models from the ProtT527 family. ProtT5 employs a variant of the Text-To-Text Transfer
Transformer (T5) training procedure21 which utilizes an encoder-decoder architecture. ProtT5xl-bfd and ProtT5xxl-bfd models
are trained on the BFD100 dataset. The BFD100 dataset is a clustered version of the Big Fantastic Database (BFD)42, 43,
where sequences with 100% identity are grouped, effectively removing duplicates. The dataset consolidates protein sequences
from various sources and contains approximately 2.1B unique sequences. Subsequently, these models are fine-tuned on the
UniRef50 dataset, resulting in the ProtT5xl and ProtT5xxl models. To provide an extensive outlook, we additionally examine
ProtBert27, ProtAlbert27, ProtXLNet27, ProteinBert36 and Tasks Assessing Protein Embeddings (TAPE)37 models. ProtBert is
trained on the UniRef10041 dataset, which consolidates 216M sequences from the UniProt Knowledgebase (UniProtKB)44,
while ProtBert-bfd and ProteinBert on BFD100 and UniRef90, respectively. ProtAlbert and ProtXLNet utilize the BERT-based
architectures ALBERT45 and XLNet46, respectively, and were trained on UniRef100. TAPE Bert37 is a BERT model, while
TAPE Babbler37 is a unidirectional mLSTM model. Both TAPE models are trained on a dataset of approximately 32M protein
sequences retrieved from the Pfam47 database. Finally, we consider SeqVec38, a model based on the bi-directional LSTM
architecture of Embeddings from Language Models (ELMo)48, trained on the UniRef50 dataset.

Table 1. Overview of the studied PLMs. The table lists key characteristics of the 18 PLMs, including their embedding size,
training datasets, architecture details, and the number of parameters.

Model Embedding size Training dataset Number of layers Model type
Number of
parameters

E
SM

229

t48 5120 UniRef50++ 48 Transformer 15B
t36 2560 UniRef50++ 36 Transformer 3B
t33 1280 UniRef50++ 33 Transformer 650M
t12 480 UniRef50++ 12 Transformer 35M
t6 320 UniRef50++ 6 Transformer 8M

E
SM

1b26 1280 UniRef50 33 Transformer 650M
1v35 1280 UniRef90 33 Transformer 650M

Pr
ot

T
527 xxl 1024 BFD100/UniRef50 24 Transformer 11B

xl 1024 BFD100/UniRef50 24 Transformer 3B
xl-bfd 1024 BFD100 24 Transformer 3B

ProtBert27 1024 UniRef100 30 Transformer 420M
ProtBert-bfd27 1024 BFD100 30 Transformer 420M
ProtAlbert27 4096 UniRef100 12 Transformer 224M
ProtXLNet27 1024 UniRef100 30 Transformer 409M
ProteinBert36 1562 UniRef90 12 Transformer 16M
TAPE Bert37 768 Pfam 12 Transformer 92 M

TAPE Babbler37 1900 Pfam 2 mLSTM 18M
SeqVec38 1024 UniRef50 2 ELMo 93M

Embedding-Based Transfer Learning
The first transfer learning approach, as shown in Figure 1a), begins by tokenizing the protein sequences using the model’s
tokenizer. The tokenized sequence is then passed through the pre-trained PLM to generate token-level embeddings that capture
both semantic and structural information. To create a fixed-size representation for each sequence, mean pooling is applied
across the sequence length. Mean pooling is a straightforward yet effective approach that preserves the essential information
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without requiring any additional training. These embeddings, along with their corresponding class labels, are then used to train
a classifier to distinguish between antimicrobial and non-antimicrobial peptides (AMP classification).

For the AMP classification task, we utilize shallow classifiers such as Logistic Regression (LogReg), Support Vector Ma-
chines (SVMs), and Extreme Gradient Boosting (XGBoost). The incorporation of a diverse set of classifiers enables a thorough
evaluation of how different machine learning models perform when leveraging PLM-generated embedding representations. For
SVM and XGBoost classifiers, moderate hyper-parameter tuning is performed. The choice of shallow classifiers was primarily
motivated by the relatively small size of the datasets in comparison to the embedding dimensions. Furthermore, the linear
nature of the aggregated embedding space, empirically observed across various domains such as images and language, suggests
that simple and shallow classifiers are capable of effectively capturing the underlying patterns and relationships within the
data19, 49.

Efficient Parameter Fine-Tuning
Adjusting the weights of a pre-trained model, rather than training task-specific classifiers harnessing its embeddings, is
another transfer learning approach used in deep learning. Given sufficiently large sample size, it typically results in enhanced
performance on downstream tasks32, 50. This method involves the fine-tuning of the pre-trained model’s parameters towards
the statistics of the new task while retaining its overall learned representations. For large models like PLMs and LLMs, full
parameter fine-tuning can be computationally expensive, memory-intensive and may lead to overfitting. To address these issues,
researchers have developed Parameter-Efficient Fine-Tuning (PEFT) techniques51–53. Among these, Low-Rank Adaptation
(LoRA)51 and its variants54–56 have emerged as leading approaches due to their efficiency and simplicity. LoRA functions
by introducing trainable low-rank matrices into specific layers of the pre-trained model (see also Figure 1b). These matrices
serve as updates to the frozen model parameters, significantly reducing the number of trainable parameters during fine-tuning.
Consequently, the low-rank nature of the updates, coupled with the preservation of the original model’s weights, significantly
reduces the risks of catastrophic forgetting57 or overfitting which are common issues in many fine-tuning methods58, 59.

In this work, we deploy LoRA51 and its variant Quantized LoRA54 (QLoRA) for fine-tuning the PLMs to perform AMP
classification. QLoRA introduces additional memory-saving innovations without compromising performance, including the
4-bit NormalFloat (NF4) data type for the weights, double quantization to further reduce memory usage, and paged optimizers
to handle memory spikes. To extend the models towards the binary classification task (AMP vs non-AMP), a dense layer with
tanh activation, dropout for regularization, and an output projection layer are attached to the final layer of the PLM’s encoder,
serving as the classification head.

Moderate hyperparameter tuning was conducted to determine an optimal set of LoRA parameters, including the scaling
factor, which adjusts the contribution of the low-rank updates, the rank, r, determining the size of the trainable matrices, and the
dropout rate, used to regularize the low-rank updates. Additionally, typical training parameters such as learning rate, batch size,
number of training epochs, and weight decay rate were optimized. Following standard LoRA fine-tuning practices for LLMs,
we introduced low rank matrices for the self-attention mechanism in the transformer layers of PLMs. Different combinations
of query, key, value, and output projection matrices within the self-attention module were explored to identify the update
configuration that demonstrates robust and consistent performance across all datasets under examination.

Datasets Description
This study evaluates the performance of PLMs on AMP classification using seven widely recognized datasets: XUAMP5,
APD360, CAMP61, 62, dbAMP63, DRAMP64, 65, LAMP66, 67, and YADAMP68. These datasets vary considerably in size, ranging
from as few as 406 sequences in CAMP to 3,072 sequences in XUAMP, underscoring the challenges posed by limited data
availability in AMP classification. Each dataset has been carefully curated to balance the number of AMP and non-AMP
sequences, with lengths ranging from 11 to 100 residues. Additionally, strict preprocessing ensures no sequences within
the same subset share more than 40% sequence identity, measured using global alignment tools. Table 2 presents a detailed
summary of these datasets, with visualizations of the sequence embeddings available in the ‘Datasets Overview’ section in the
Supplementary.

Results
Comparisons between PLMs: Scale matters
This section compares the performance of PLMs on several AMP datasets using embedding-based transfer learning and shallow
classifiers trained on the mean embedding vector generated by each PLM. Figure 2 showcases the relationship between average
accuracy and model size in logarithmic scale for the XUAMP dataset. This evaluation employs three classifiers (LogReg, SVM
and XGBoost), with moderate hyperparameter tuning performed for SVM and XGBoost to optimize their performance (see
section ‘Details on Training and Fine-Tuning’ in Supplementary). The average accuracy and standard deviation are calculated
by first performing 10-fold cross-validation for each classifier and then averaging the results across the three classifiers. It
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Table 2. Description of AMP datasets in terms of size, sequence length, mean/median sequence length, and average
sequence-sequence identity.

Dataset Number of Length Range (residues) Mean/Median Length Sequence Identity (%)
Peptides AMP Non-AMP AMP Non-AMP AMP Non-AMP

XUAMP 3072 16-100 28-100 62.9/63.0 77.1/79.0 25.4 28.7
DRAMP 2816 16-100 31-100 62.7/62.0 76.5/78.0 25.7 29.0
LAMP 2108 13-100 30-100 58.0/57.0 74.9/76.0 24.0 28.7
dbAMP 1044 17-100 32-100 52.5/48.0 75.5/77.0 23.9 28.8
APD3 988 13-100 31-100 48.1/43.0 75.6/77.0 24.1 28.9
YADAMP 648 11-100 33-100 31.4/32.0 77.1/79.0 25.3 29.0
CAMP 406 11-100 29-100 19.6/20.0 75.8/78.0 24.7 28.7

is evident from Figure 2 that the model size plays a crucial role in improving the accuracy of the classifiers, indicating their
elevated capacity to identify intricate patterns in protein sequences. As the PLM size increases, its proficiency in capturing and
representing complex features of protein sequences improves, resulting in superior classification accuracy.

Apparently, the improvement scales relatively consistently with the logarithm of the model size. Indeed, the Spearman
correlation between log-model size and AMP accuracy is 0.87, suggesting a strong relationship between the two quantities.
Moreover, the performance of the ESM2 family of models consistently exceeds the average trend (represented by the red line in
Figure 2), indicating that these models are particularly effective and achieve enhanced performance. This favorable behavior
can be partially attributed to the high-quality training dataset that plays a significant role in enhancing the performance of the
models. Similar trends are observed across all the tested AMP datasets, as shown in Supplementary Figures S4–S9, further
reinforcing the consistency of our findings.

Figure 2. Average AMP accuracy plotted against model size on a logarithmic scale for the XUAMP dataset. Each point
represents the mean accuracy, and the vertical grey lines indicate the respective standard deviation. The red line illustrates the
linear fit described by the equation y = 0.008x+0.546, which suggests that for every doubling of the model size, there is an
associated 0.8% gain in accuracy.

Figure 3 generalizes the above observations via presenting the average accuracy over all AMP datasets using LogReg
as a classifier (see Supplementary Figures S10–S11 for the other two classifiers). The ordering of the models in Figure 3
is determined by their size, from the largest PLM to the smallest one. ESMt48 with 15B parameters and ProtT5xl with 3B
parameters exhibit the highest accuracy across all datasets. ProtT5xxl (11B) and ESM2t36 (3B) exhibit slightly lower accuracy
while certain BERT-based models, such as ProtBert (420M), TAPE Bert (92M), and ProtBert-bfd (240M), deliver even lower
accuracy. The fact that ProtT5xl performs better than ProtT5xxl, which is almost 4 times larger, could be at least partially
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attributed to the computational budget constraints that were imposed for its training27, highlighting the significant role of
additional training epochs in improving the performance of downstream tasks. Another observation from Figure 3 is that
ProtT5xl, which has been fine-tuned with UniRef50, is significantly better from the ProtT5xl-bfd which is trained solely on the
BFD dataset. This outcome aligns with the findings from Elnggar et al.27 on different downstream tasks, suggesting that a
well-curated, diverse dataset like UniRef50 can be beneficial for improved performance.

Figure 3. Average accuracy over all tested datasets with standard deviation using LogReg as a classifier. Models are arranged
according to their size, from the largest (on the left) to the smallest (on the right).

Comparisons with Existing AMP Classifiers: Superior performance with minimal effort
Employing the same embedding-based transfer learning pipeline as previously, the top-performing PLMs are compared against
state-of-the-art (SOTA) approaches in AMP classification, including sAMPpred-GAT12, amPEPpy7, AMPfun8 and AMPEP10.
To ensure a fair comparison, we utilize the curated datasets from Yan et al.12 and follow the same evaluation protocol.
The methodology employed for dataset construction deviates from conventional evaluation practices such as K-fold cross
validation because special care is taken to avoid sequences in the training, validation and test sets with large sequence identity.
Consequently, these dataset splits also incorporate aspects of generalization error and they actually correspond to a mixture of
both classification and generalization error (we refer to Supplementary Figure S3 where those train and test sets are visualized
using the UMAP algorithm69).

Table 3 reports the accuracy of the four best-performing PLMs, compared to the results from Yan et al.12, which are
derived by stand-alone deep learning models trained solely on AMP datasets. In six out of seven datasets, the embeddings
from pretrained PLMs, when paired with shallow classifiers, outperformed the current SOTA stand-alone models. This
emphasizes the benefits of embedding-based transfer learning approaches, suggesting that pretrained models can achieve
superior performance in AMP classification with minimal effort. Moreover, the SVM classifier consistently produced higher
accuracy values than other classifiers, although this difference was less pronounced for the ESM2 models compared to the
ProtT5 models. Another key observation is that the largest model in each family consistently demonstrated the highest accuracy
levels, indicating that these deeper models may reduce generalization error more effectively by providing more informative
embeddings. Overall, we conclude that ESM2t48 and ProtT5xxl deliver the best performance in terms of AMP accuracy, a
result that is further confirmed by other performance metrics reported in Supplementary Tables S9–S12.

Parameter Fine-Tuning Outperforms Embedding-Based Transfer Learning
Parameter fine-tuning, which allows the weights of the PLM to be updated, represents a more sophisticated transfer learning
approach. In this section, we assess the accuracy of fine-tuned models on the AMP classification task and compare their
performance to the embedding-based transfer learning approach. Specifically, we focus on LoRA and QLoRA, both of which
are parameter-efficient fine-tuning techniques. Models from both ESM2 and ProtT5 families were selected for parameter
fine-tuning due to their consistently high rankings in all previous experiments while the curated datasets and splits from Yan et
al.12 were utilized for the evaluation.
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Table 3. Accuracy values across different AMP datasets for the train/test splits provided in the work of Yan et al.12. The last
column corresponds to the average accuracy across all AMP datasets.

Model Classifier Dataset AverageXUAMP DRAMP LAMP dbAMP APD3 YADAMP CAMP

E
SM

2

LogReg 0.735 0.766 0.884 0.910 0.922 0.968 0.978 0.880
t48 SVM 0.727 0.774 0.888 0.900 0.925 0.969 0.980 0.880

XGBoost 0.727 0.764 0.853 0.885 0.898 0.961 0.988 0.868
LogReg 0.723 0.758 0.864 0.882 0.906 0.966 0.973 0.867

t36 SVM 0.725 0.761 0.868 0.884 0.909 0.958 0.973 0.868
XGBoost 0.726 0.754 0.851 0.892 0.898 0.954 0.966 0.863

Pr
ot

T
5

LogReg 0.723 0.752 0.871 0.899 0.912 0.957 0.970 0.869
xxl SVM 0.734 0.779 0.883 0.900 0.924 0.971 0.978 0.881

XGBoost 0.724 0.762 0.873 0.908 0.917 0.972 0.975 0.876
LogReg 0.712 0.731 0.843 0.884 0.897 0.906 0.906 0.840

xl SVM 0.735 0.762 0.864 0.895 0.907 0.944 0.936 0.863
XGBoost 0.697 0.721 0.805 0.866 0.863 0.917 0.879 0.821

SO
TA

sAMPpred-GAT 0.715 0.760 0.840 0.888 0.896 0.955 0.956 0.858
amPEPpy 0.679 0.734 0.765 0.889 0.939 0.915 0.948 0.838
AMPEP 0.661 0.712 0.755 0.766 0.936 0.969 0.973 0.825

ADAM-HMM 0.684 0.736 0.872 0.886 0.886 0.927 0.869 0.837
AMPFUN 0.702 0.743 0.810 0.892 0.905 0.950 0.933 0.848

Experimentation with different combinations of target LoRA modules revealed that updating the query, key, and value
matrices of the self-attention mechanism together produced the best results for the ESM2 family of models. For the ProtT5
models, we also updated the output weight matrix, which follows the self-attention mechanism. We set the rank r = 1 for
the weight update matrices, as this configuration not only yielded among the highest performance across all datasets but also
introduces the fewest trainable parameters. We associate the low rank value to the limited number of samples available for
fine-tuning, which is relatively small compared to the size of the PLM. Additional details on the hyperparameter values and
tuning can be found in the ‘Details on Training and Fine-Tuning’ section in the Supplementary.

Figure 4 displays the receiver operating characteristic (ROC) curves for representative fine-tuned ESM2 and ProtT5 models
on the DRAMP (left) and XUAMP (right) datasets. The results correspond to the average performance over five runs, each
initialized with a different random seed. For comparison, the ROC curve of the SVM classifier, trained on the embeddings
from the largest ESM2 model (ESM2t48), is also included. For the DRAMP dataset, the highest AUC value is achieved by
fine-tuning ESM2t33 with LoRA, followed by ProtT5xl also fine-tuned with LoRA. Interestingly, the largest ESM2 model,
fine-tuned with QLoRA, did not yield the highest AUC value, which may be attributed to the larger number of introduced
trainable parameters leading to poor fitting, given the relatively small size of the training dataset. Furthermore, AUC values
suggest that fine-tuning ESM2t12 offers classification performance comparable to the embedding-based transfer learning
approach with the larger ESM2t48 model. ROC curve plots for the remaining datasets are available in the Supplementary
Figure S12.

Table 4 reports a detailed comparison of average AUC values (five runs with different random seeds) for different PLMs
fine-tuned with LoRA or QLoRA as well as stand-alone SOTA models. Standard deviations, being of the order of the third
decimal, are omitted for clarity and are available in Supplementary Table S13. The results clearly demonstrate that fine-tuning
consistently outperforms the embedding-based transfer learning approach in the AMP classification task, given the same
model and dataset. The improvements observed in the DRAMP dataset, and to some extent in the XUAMP dataset, are
particularly noteworthy. Furthermore, both LoRA and QLoRA show comparable performance in terms of AUC across all
datasets, indicating that parameter quantization does not deteriorate performance. Apart from the AUC, the accuracy values of
the fine-tuned PLMs have consistently improved, further demonstrating the enhanced predictive capabilities of these models. In
particular, the highest accuracy achieved on the XUAMP dataset is 75.3% with the ESM2t36 model when fine-tuned using
LoRA, while the highest accuracy on the DRAMP dataset reaches 79.4% with the same ESM2t36 model, but fine-tuned using
QLoRA. For a detailed presentation of evaluation metrics, we refer to the Supplementary Tables S13–S18.
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Figure 4. Average ROC curves for models evaluated on the DRAMP (left) and XUAMP (right) datasets. We compare the
SVM classifier trained on the ESMt48 model’s embeddings (orange) with ESM2t12 (blue), ESM2t33 (purple), ESM2t48
(green) as well as ProtT5xl (red) fine-tuned with LoRA or QLoRA. The best-performing model from the embedding-based
approach achieves performance comparable to the smallest fine-tuned ESM2 model. In contrast, all other PLMs fine-tuned with
(Q)LoRA exhibit superior performance.

Table 4. Average AUC values for various fine-tuned PLMs across different datasets.

PLM Transfer Learning Dataset
XUAMP DRAMP LAMP dbAMP APD3 YADAMP CAMP

E
SM

2

t48 SVM 0.801 0.842 0.962 0.972 0.977 0.996 1.000
t12 LoRA 0.799 0.840 0.951 0.968 0.970 0.997 1.000
t33 LoRA 0.818 0.877 0.960 0.976 0.977 0.997 1.000
t33 QLoRA 0.817 0.882 0.961 0.977 0.974 0.997 1.000
t36 LoRA 0.810 0.861 0.965 0.978 0.978 0.997 1.000
t36 QLoRA 0.806 0.861 0.965 0.980 0.979 0.997 1.000
t48 QLoRA 0.816 0.856 0.964 0.976 0.978 0.998 1.000

Pr
ot

T
5 xxl SVM 0.805 0.857 0.956 0.971 0.977 0.997 0.999

xl LoRA 0.807 0.864 0.962 0.972 0.980 0.997 0.999
xxl LoRA 0.802 0.852 0.963 0.975 0.978 0.996 1.000

SO
TA

sAMPpred-GAT 0.777 0.827 0.917 0.952 0.954 0.994 1.000
amPEPpy 0.742 0.759 0.855 0.940 0.972 0.968 0.978
AMPEP 0.727 0.773 0.818 0.933 0.983 0.992 0.994

ADAM-HMM 0.684 0.736 0.872 0.886 0.886 0.927 0.869
AMPFUN 0.735 0.810 0.852 0.930 0.972 0.997 1.000

Discussion
The unprecedented number of protein sequences available in public databases, coupled with the exponential growth of
computational resources, presents a unique opportunity to deepen our knowledge of proteins, their structure and function
through self-supervised learning. This work explores the transfer learning capabilities of various PLMs on the AMP classification
task. The evaluation is conducted using real data from the literature and we aim to understand which characteristics of PLMs
crucially contribute to efficiently capturing discriminative information between antimicrobial and non-antimicrobial peptide
sequences. Our findings emphasize the importance of scale in achieving higher accuracy, with larger PLMs consistently
outperforming their smaller counterparts. The results also highlight that PLMs can achieve SOTA results with minimal effort
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via transfer learning making AI-driven protein engineering more reliable and accessible to a broader audience. Indeed, the
embedding-based transfer learning pipeline employed in this study demonstrates that highly effective AMP classification can be
achieved without relying on complex architectures or extensive fine-tuning. This simplicity ensures that the embedding-based
transfer learning framework can be readily adopted by researchers with minimal machine learning expertise. Additionally,
fine-tuning methods such as LoRA and QLoRA further enhance PLM performance by adapting the models to specific datasets
efficiently, while mitigating risks such as overfitting and catastrophic forgetting. This observation aligns well with recent
studies on fine-tuning approaches of PLMs which have demonstrated notable performance gains across a range of classification
or regression tasks32. Effectively, these parameter-efficient techniques balance computational demands and performance
improvements, making them valuable tools for maximizing the utility of PLMs. We also investigated potential performance
differences between the LoRA and QLoRA approaches via repeated experiments which were conducted across multiple datasets
using the same training configurations. No statistically significant differences were observed in performance between LoRA
and QLoRA as it is evident from Table 4 and Supplementary Tables S13–S18. In contrast, there are significant differences in
computational requirements with QLoRA significantly reducing GPU memory usage, requiring up to 10 times less memory
compared to LoRA without affecting the inference time.

Although this study achieves SOTA performance in AMP classification, it likely represents a conservative estimate of PLMs’
potential. For instance, the use of mean pooling for embedding aggregation, while effective, may not fully exploit the rich
information within the embeddings. Future research will explore more advanced aggregation techniques, such as task-specific
attention mechanisms or bottleneck autoencoders, to enhance performance further. Moreover, the potential for improvement is
supported by ongoing advancements in PLM architecture and training methodologies, which continue to produce models with
greater representational power. For example, recent developments like xTrimoPGLM30 and ESM331, featuring PLMs with 100
billion parameters, have shown superior performance compared to the largest ESM2 model across various downstream tasks.
While the weights for these models are not yet publicly available, their success underscores the rapid progress in the field and
the immense potential for further innovation to advance AMP classification and related applications.

Data Availability
The datasets used in this study are publicly-available at: https://github.com/HongWuL/sAMPpred-GAT/tree/main/datasets.
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