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ABSTRACT

Gradient-based Discrete Samplers (GDSs) are effective for sampling discrete en-
ergy landscapes. However, they often stagnate in complex, non-convex settings.
To improve exploration, we introduce the Discrete Replica EXchangE Langevin
(DREXEL) sampler and its variant with Adjusted Metropolis (DREAM). These
samplers use two GDSs (Zhang et al., 2022b) at different temperatures and step
sizes: one focuses on local exploitation, while the other explores broader energy
landscapes. When energy differences are significant, sample swaps occur, which
are determined by a mechanism tailored for discrete sampling to ensure detailed
balance. Theoretically, we prove both DREXEL and DREAM converge asymptoti-
cally to the target energy and exhibit faster mixing than a single GDS. Experiments
further confirm their efficiency in exploring non-convex discrete energy landscapes.

1 INTRODUCTION

Sampling from high-dimensional discrete distributions has been an important task for decades across
applications in texts (Mikolov et al., 2013; Devlin et al., 2019), images (Krizhevsky et al., 2012;
Ronneberger et al., 2015), signal processing (Mallat, 1989; Donoho, 2006), genome sequences
(Metzker, 2010; Macosko et al., 2015), etc. However, the exponential growth in the number of
configurations makes sampling from 7(0) oc exp [U(6)] computationally prohibitive. The computa-
tional burden comes from evaluating the exact probabilities and normalizing constants, which makes
exact sampling impossible in practice. Algorithms such as rejection sampling (Neumann, 1951),
Swendsen-Wang (Swendsen & Wang, 1987), and Hamze-Freitas (Hamze & de Freitas, 2004) leverage
special structures within the problem to make global updates. In more general settings, these methods
may suffer from slow exploration, local dependencies, and poor convergence.

To make high-dimensional discrete sampling more effi-
cient, Locally Balanced Proposals (LBPs) (Zanella, 2020;
Sun et al., 2021) improved acceptance rates by adjusting
proposal distributions based on the likelihood ratio. Early
LBPs updated one coordinate at a time (Zanella, 2020;
Grathwohl et al., 2021), and Grathwohl et al. (2021) de-
veloped gradient-based discrete sampler (GDS) to update
coordinately. Later, Zhang et al. (2022b) further extended
GDSs by updating all coordinates simultaneously, which
enhances efficiency and scalability for large-scale, high-
dimensional computations on GPUs and TPUs.

Despite improvements in LBPs, how to balance the trade-
off between “global exploration” and “local exploitation”
remains a challenge. High-dimensional discrete distribu-
tions are highly multi-modal, with deep and narrow wells
caused by intrinsic discontinuities. Gradient-based LBPs,
although effective, tend to get trapped in local modes due
to their reliance on local gradients and small noise, which
is insufficient for escaping these traps.

Figure 1: DREXEL & DREAM sample tra-
jectory in discrete domains. Blue denotes
a low-temperature sampler, and red high-
temperature sampler. They exchange sam-
ples following a swap mechanism.

To bridge this gap, we propose two samplers: Discrete Replica EXchangE Langevin (DREXEL)
and Discrete Replica Exchange with Adjusted Metropolis (DREAM). These samplers combine
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GDS with the replica exchange Markov Chain Monte Carlo (reMCMC) (Chen et al., 2019) for
efficient exploration of non-convex discrete spaces. As illustrated in Figure 1, the samplers employ
two GDSs at different temperatures and step sizes: the low-temperature sampler focuses on local
exploitation, while the high-temperature sampler escapes local traps for broader exploration. Sample
swaps occur when energy differences are significant, governed by a mechanism tailored for discrete
sampling to ensure detailed balance. The combination of replica exchange and GDS makes them
particularly effective for sampling from complex discrete structures in modern applications. The
primary contributions in this work are summarized as follows:

o A novel integration of GDS with replica exchange to improve non-convex exploration;

e A swap mechanism tailored for detailed balance and sample efficiency in discrete sampling;

Theoretical analysis of improved mixing rates over naive discrete Langevin-like samplers;

Superior performance in synthetic tasks, Ising models, restricted Boltzmann machines, and
energy-based deep learning models for navigating non-convex discrete energy landscapes.

2 REeLATED WORK

Gradient-based Discrete Sampling becomes popular for complex discrete sampling tasks and its
original idea comes from LBPs. The concept of LBPs, as introduced by Zanella (2020), utilized local
information in the form of density ratios to improve the sample efficiency. Grathwohl et al. (2021)
expanded LBPs by the use of first-order Taylor approximation, which further ensures computational
feasibility. To improve sampling in high-dimensional discrete spaces, LBPs were extended to cover
larger neighborhoods by performing a sequence of small moves (Sun et al., 2021). Zhang et al.
(2022b) further developed GDSs, which adapt the continuous Langevin MCMC to discrete spaces
and allow parallel updates of all coordinates based on gradient information. Subsequently, GDSs
were improved through the introduction of an adaptive mechanism by which the step size can be
automatically adjusted (Sun et al., 2023a). Most recently, Pynadath et al. (2024) introduced an
automatic cyclical scheduling approach in step sizes to better handle multi-modal distributions by
alternating between exploration and exploitation phases. While these methods have shown promise,
sampling from highly non-convex discrete distributions remains challenging, particularly when
dealing with strongly correlated variables or energy-based deep learning models.

Replica Exchange MCMC is a powerful method that enhances exploration in complex, multi-modal
distributions, and a variety of related algorithms build on this. For instance, unadjusted Langevin
MCMC (Durmus & Moulines, 2017) leverages gradient information to guide proposals but lacks
the exchange mechanism. Importance sampling (Wang & Landau, 2001) adjusts for the discrepancy
between target and proposal distributions, which offers flexibility in sampling but without temperature-
based exchanges. Simulated tempering (Lee et al., 2018) further refined the temperature-scaling
strategy by dynamically adjusting the temperature of a single chain. Recently, Zhang et al. (2020)
proposed a cyclical step-size scheduler to maintain a balance between exploration and exploitation.
To enhance the exploration, eMCMC runs multiple chains at different temperatures and allows for
chain swaps between them. Dong & Tong (2022) analyzed its mixing by quantifying the spectral
gap, and Deng et al. (2020; 2022) validated its efficiency in large-scale deep learning tasks. Despite
its success in continuous sampling and high-dimensional settings, to the best of our knowledge, its
potential has not been studied in sampling from discrete distributions.

3 PRELIMINARIES
The Target Distribution 7 := ® — [0, 1] denotes the probabilistic model we are sampling from:
1 ue
n(0) = zexp[ﬁ], Vo e®, ®cR (1)
T

Here 6 is d-dimensional variable, 7 = 1.0 denotes the respective temperature, ® is a finite domain, U
represents the energy function, and Z normalizes the distribution. Following the traditional settings
in discrete sampling, we assume:
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1. The sampling domain is coordinate-wisely factorized where ® = ]—[g= 1 ©4, and we primarily
consider the binary cases ® = {0, 1}9 or categorical {0, 1,...,N — 1)9;
2. The energy function is differentiable across RY.

The primary goal is to design an efficient sampler to approximate 7 within a finite sample size.
The empirical distribution derived from these samples converges to &, with the approximation error
bounded by a constant € > 0 under specific metrics.

Replica Exchange MCMC is a popular sampling method for non-convex exploration in continuous
spaces. It updates according to the following dynamics:
60, = 01 + ZVUE) + Vamg. k=12 i= 1.2 1. ®)

i+1

Here a1,@; € R" represent step sizes, 71,7 € R" are temperatures, and &;,&, are independent
Gaussian noises drawn from N (0, Igxq). The typical setup assumes a; < a; and 7; < 75, with the first
chain in (2) labeled as the low-temperature chain and the second as the high-temperature chain. The
gradient VU(-) directs the algorithm toward high-probability regions. To further improve the mixing
rate over Langevin MCMC, reMCMC facilitates interaction via a chain swap mechanism. Specifically,
the probability to swap the i-th samples between 051) and 052) is determined by p min {1, S (05.'), 052))}.
The swap intensity is regulated by p > 0, and the swap function § := ® X ® — R* is given as follows:

S, g?) = 5 v@n-ven] 3)

Intuitively, the swap probability in reMCMC depends on the energy estimated at 8 and 6. When
the low-temperature chain gets stuck in a local minimum and the high-temperature chain escapes to
find modes with significantly lower energy, the chain will swap their samples with high probability.
This enables the low-temperature chain to better characterize the newly discovered modes, while the
high-temperature chain continues to search across the energy landscape. As mentioned in Chen et al.
(2019), reMCMC behaves as a reversible Markov jump process due to its swap mechanism, which
converges to a similar invariant distribution in (1) while the parameters can explore over RY.

While reMCMC is a powerful tool for non-convex exploration, its update may fail to preserve the
target distribution due to discretization errors introduced by the finite step size (Welling & Teh, 2011).
According to Roberts & Tweedie (1996), selecting an inappropriate step size can lead to a transient
Markov chain without a stationary distribution. To mitigate such bias, two main approaches are
commonly used: decaying step sizes (Vollmer et al., 2016; Teh et al., 2016) and Metropolis-Hastings
(MH) corrections (Dwivedi et al., 2019; Chewi et al., 2021). While implementing decaying step sizes
is straightforward and does not require additional computational burden, the second approach is more
favorable due to its specific advantages in discrete sampling, which will be elaborated on later.

Metropolis-Hastings Correction is considered to correct discretization errors and ensure conver-
gence to the target distribution. Specifically, at each iteration, a new candidate w « 6,;" is first
generated with (2). To ensure that the resulting samples come from the target distribution, the MH
step determines whether to accept or reject the candidate with A := @ x 0 — [0, 1]:

(@) (| w)} , @
n(0:)q (w | 6;)

where g := @ X ©® — [0, 1] is the transition probability mapping from the current sample 6; to the next

sample 6;.,. With probability A(w, 6;), the candidate w is accepted in the current step; otherwise,

it retains the current ;. This adjustment preserves the correct stationary distribution. Furthermore,

because Langevin MCMC allows each sample to access any point in RY, it further ensures the Markov
chain is both irreducible and ergodic (Diaconis & Freedman, 1997; Meyn & Tweedie, 2012).

A(w, 6;) = min {1

Discrete Langevin Sampler (DLS) is a gradient-based approach for sampling from high-dimensional
discrete distributions. Inspired by Langevin MCMC, DLS updates all coordinates in parallel from
a single gradient computation to function effectively in discrete settings. Specifically, for a target
distribution 7 o< exp [U(-)], DLS generates a new sample ;. inspired by the Taylor expansion:

ol .- g7
Zo(6))

Q(0i+1 | ;) = , 0,0, € 0. 5)

'For clarity and conciseness, we omit the chain index when there is no need to specify it.
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Here VU (6) is the gradient of the energy function evaluated at 8, and Zg(6) normalizes the distribution:

Zo®)= Y exp (—% | z) ®)

6,,1€0
This proposal distribution allows DLS to make larger, parallel updates while maintaining computa-
tional efficiency. As the dimension d in parameter space grows, the cost of computing (6) becomes
prohibitively expensive. A key insight is that the update rule can be factorized by coordinate:

a

01— 0, —
+1 27

VU,

1 Oir1.d — 6:0)?
0414 ~ Categorical | Softmax | —VU(6:)y(6i41.0 — 0ia) — M s @)
’ 2T ’ ’ 2a
where d = 1,2, ...,d is the dimension index, and 6, ; represents the i-th sample in the d-th dimension.

This algebraic expansion, following the binomial theorem, works because (VU (6;)4)* is independent
of 6;11 4. It makes DLS scalable and computationally efficient for complex distributions (Zhang et al.,
2022b). Furthermore, the first term in (7) biases the proposal towards low-energy regions, where the
gradient points towards increasing probability; the second term acts as a regularizing factor, which
penalizes large jumps unless they are strongly favored by the gradient.

DLS can operate with or without MH corrections. Without corrections, it is simplified to the Discrete
Unadjusted Langevin Algorithm (DULA), which is computationally efficient but may introduce bias.
With corrections in (4), it becomes the Discrete Metropolis-adjusted Langevin algorithm (DMALA),
which corrects bias at an increased computational cost. Both DULA and DMALA employ non-local
proposals specifically for the heat kernel to enable more efficient sampling (Sun et al., 2023a).

4  DiScRETE LANGEVIN SAMPLER WITH REPLICA EXCHANGE

The proposed DLS variants are present here, which incorporate replica exchange and a customized
sampler swap mechanism to ensure detailed balance. The complete algorithm is provided at the end.

4.1 DISCRETE SAMPLERS WITH DIFFERENT TEMPERATURES

A key challenge with the naive DLS is the tendency to become trapped in local modes, particularly
in non-convex landscapes. To mitigate this, we introduce DREXEL, which incorporates replica
exchange to enable efficient exploration across different local modes. Specifically, we employ two
samplers separately with distinct step sizes and temperatures to approximate the target distribution:
k ©)2
_ 9(1()) _ (9§+)1,d B Gfd))
id

k=1,2. 8
Y ; ®)

1
Categorical | Softmax 2_7'1<VU (Of.k) )a (91(.?1 d

Here 7 < 7, and @) < a3, with k = 1 being the low-temperature and k = 2 the high-temperature
sampler. Intuitively, larger step sizes and higher temperatures encourage more exploratory moves,
which allows the sampler to escape local modes through non-local jumps and explore different regions
of the energy landscapes. This, on the downside, raises the rejection rate, as large jumps often land in
low-probability regions, and introduce additional bias when approximating the target distribution.

To mitigate the bias, we further propose DREAM, which incorporates MH steps post-generation of
new samples. Once the new samples are produced through (8), the acceptance rates 3{(053, 051)) and
ﬂ(Ofr)l , 052)) are estimated with (4). The new samples are accepted with probability A or rejected
with 1 — A. The acceptance rates of two samplers are independent of one another. While the
high-temperature sampler typically exhibits a lower acceptance rate than the low-temperature one,

the rejection mechanism ensures that both samplers in DREAM converge to the target asymptotically.

It should be noted that while decaying step sizes are commonly advantageous in Langevin MCMC for
handling big data (Teh et al., 2016), they present potential challenges in discrete sampling. In discrete
spaces, small steps do not equate to gradual movements as they do in continuous spaces. Instead, they
tend to repeatedly propose nearly identical samples, which causes the sampler to become trapped in
local regions. This problem becomes severe when dealing with non-convex energy landscapes, where
a decaying step size worsens the issue of local traps. For this reason, the MH step is often favored as
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a solution in discrete sampling. With the MH step and fixed step sizes, the sampler can make large
jumps to facilitate global exploration. This feature is essential for navigating highly structured state
spaces, where the sampler needs flexibility to move between distant states.

In practice, high-temperature samplers may have difficulty exploiting certain regions due to abrupt
exploration, which requires excessive time to fully characterize local modes and achieve mixing.

4.2 SAMPLE SWAPS BETWEEN DISCRETE SAMPLERS

A typical solution is to implement a swap function that enables sample exchanges between samplers
at different temperatures. This helps cross energy barriers by combining the exploration of high-
temperature samplers with the exploitation of low-temperature ones, which improves mixing rates.

The naive swap function (3) of reMCMC relies on energy calculations at the current samples and
corresponding temperatures. However, it is not practical to handle large-scale data in mini-batch

settings. Intuitively, while U (Bf.i)l) and U (053)1) are both unbiased in mini-batches, a non-linear

transformation of these estimators fail to provide an unbiased estimator for S (051)1 , 01(.?1) (Deng et al.,

2020). Under normality assumption for the energy estimate, we consider a bias correction term:

) = dE-Huei-vei (L)

S’ (0(1) 0(2)

i+1° Y+l

; €))

where o> compensates for noise in the stochastic gradient and removes swap bias. This adjustment

ensures that the swap function behaves as a Martingale and matches the expected value obtained from
exact gradients. Although this correction is not strictly necessary in discrete sampling, we retain
this design in practice and examine the potential need for bias correction in the experiments. The
bias-corrected versions of DREXEL and DREAM are referred to as bDREXEL and bDREAM.

When reMCMC is applied to discrete spaces, a notable challenge arises: the decaying step sizes
commonly employed in continuous settings are not applicable. To ensure asymptotic convergence
to the target distribution with fixed step sizes, we must maintain detailed balance not only between
the low-temperature and high-temperature samplers but also between the current and next output
samples. The swap designs in (3) and (9), however, overlook energy and temperature differences.
This potentially violates detailed balance and slows down mixing in discrete sampling tasks. To
mitigate the imbalance, we propose a swap function tailored for discrete sampling:

S“(g(l) 0(2)

L_L)u@)+u@)-v@>)-ve?
0 g2 |0§n,ggz>):e(r2 vy -ver)-ve) (10)

This swap function incorporates energy estimates at the last samples, which respects the energy
landscape and preserves detailed balance. Importantly, since the previous samples are treated as
constants during the swap, the detailed balance between replicas remains unaffected. We will
demonstrate how this correction guarantees asymptotic convergence to the target distribution in the
next section.

4.3 THE PROPOSED ALGORITHMS

As outlined in Algorithm 1, we present DREXEL and DREAM for discrete sampling. The approaches
employ two DLSs with distinct temperatures and step sizes, which allows for sample swaps between
them. At each iteration, the current samples are updated, followed by MH steps in DREAM. The
swap mechanism exchanges samples when the high-temperature sampler locates a lower-energy
mode. After [ iterations, the low-temperature sampler outputs samples to characterize the energy
landscape. This approach, discussed further in 5.1, improves the mixing rate over DLSs by balancing
exploration and exploitation.
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Algorithm 1 DREXEL and DREAM.

Input Step Sizes ay, a;

Input Temperatures 7y, 75.

Input Swap Intensity p > 0.

Input Initial Samples Og‘) €0, k=1,2.
1: Fori=1,2,---,Ido
2:  Sampling Steps:

3 For k=0,1,2do:

4 Ford=1,2,--- ,d do:

5: Construct ¢ (6% | 6) following (8)
6 Sample 0}’ ~ ¢'(- | 6°)

7 End For

8 End For

9:  MH Steps (for DREAM):
10:  Fork=1,2do:

11: Compute AB", 6%) following (4)

12: Generate a number u ~ U[0, 1]

13: Set 0% — w® if u < Aeclse 67 — 6
14:  End For

15:  Swapping Steps:
16:  Generate a number u ~ U[0, 1].
17:  Compute S(6'",6,) following (10)
18:  Swap 6}, and 62 if u < pmin{1, 5
19: End For 0

I
Output Samples {6, ’};_,.

5 THEORETICAL ANALYSIS

In the previous section, we introduced DREXEL and DREAM, which use factorization to allow
parallel updates and employ swap mechanisms to improve non-convex exploration. While these
features are beneficial, the overall performance heavily relies on their convergence properties and
theoretical guarantees. In this section, we provide asymptotic convergence guarantees for DREXEL
(i.e. the version without the MH correction).

5.1 Asymprotric CONVERGENCE ON L0oG-QUADRATIC DISTRIBUTIONS

Our focus is first on the asymptotic behaviors of DREXEL. The analysis aims to show that as step
sizes approach zero, the algorithm exhibits zero asymptotic bias, which ensures accurate sampling
from the target distribution. Specifically, we focus on log-quadratic energy () « exp (67J60 + b ),
where J € R4 is a symmetric matrix, and b € RY is a vector. If J is asymmetric, we apply spectral
decomposition to obtain a symmetric matrix, which enables an analytically tractable solution.

Zhang et al. (2022b) showed that DLS with temperature 1 is reversible for log-quadratic energy
distributions when the step size is sufficiently small. However, this result does not directly extend to
the proposed algorithm, as the swap mechanism (3) introduces potential imbalances. This imbalance
is due to discontinuous transitions between neighboring states in discrete space, which makes the
swap acceptance rule insufficient to maintain a detailed balance. This further introduces bias during
the sampling process and leads to inaccurate modeling. To address this, we carefully control the swap
probability in (10) to regulate transitions between high- and low-temperature samplers.

Theorem 1. Let o) and «; be the step sizes for the low- and high-temperature samplers, and let
q(-|0) be the Markov chain transition kernel. Suppose the target n(0) is log-quadratic, then:

e The Markov chain induced by DREXEL is reversible with respect to an intermediate distribution
7, i.e., for all 0,0" € O, 7(0)q(@'|0) = 7(0")q(0)0").
o As ay,ay — 0, the stationary distribution n’ converges weakly to the target distribution n.



Under review as a conference paper at ICLR 2025

This analysis focuses on the state transition of the low-temperature sampler, as the high-temperature
sampler only facilitates exploration and does not produce final samples. Intuitively, with probability
oS, the next low-temperature sample is drawn from the high-temperature sampler, and with probability
p(1 =38, it selects from the low-temperature sampler. The transition simplifies to DLS without swaps
and directly maintains the detailed balance, but the swap probability becomes essential for preserving
this balance once swaps are considered in discrete sampling. Our designed swap function ensures
that the overall transition dynamics remain balanced, as demonstrated in Appendix D.1.

6 EXPERIMENTS

To illustrate the effectiveness of our approach, we evaluate the proposed samplers across distinct
discrete sampling and generative tasks. Our approach is compared against baselines including DLS
(DULA and DMALA from Zhang et al. (2022b)), Any-scale Balanced sampling (AB) (Sun et al.,
2023a), and the Automatic Cyclical Sampler (ACS) (Pynadath et al., 2024). More details such as
experimental setups, hyper-parameters, and additional experimental results can refer to Appendix E.

6.1 SAMPLING FROM 2D SyYNTHETIC PROBLEMS

We explore the challenges of sampling from 2D discrete multi-modal distributions defined over
the domain ® = {1,2,... ,N}d, where N = 256 and d = 101 x 101. Each coordinate takes one of
the discrete values. Figure 2 (top) highlights the challenges of approximating non-convex energy
landscapes, where samplers often struggle to explore the landscapes effectively with limited samples.

wave 8gaussian 16gaussian moon 2moon twist flower

Figure 2: Top: Visualization of the true energy landscapes. Middle: Empirical energy distributions
from DMALA. Bottom: Empirical energy distributions from DREAM.

Table 1: Experiment results with exploring 2D synthetic distributions, recorded with KL. and MMD.

Metric | Sampler | wave  8gaussian l6gaussian  moon 2moon twist flower
DMALA 2.419 1.337 7.690 2.397 4.848 3.767 2.765

KL(10-2) | AB 1.028 0.851 3.373 2.567 4.127 3.033 2421
( ACS 0.930 0.521 3.145 2.059 4.207 2.154 2.479
DREAM 0.914 0.519 3.017 1.652 4.252 2.145 2.277

DMALA 2.085 2.084 1.977 2.095 2.019 2.049 2.100

MMD| AB 2.036 2.057 1.910 1.911 2.070 2.059 1.983
ACS 2.014 2.028 1.984 1.996 2.068 2.047 1.966

DREAM 1.969 2.007 1.922 1.908 2.014 1.976 1.913

DREAM is compared with DMALA, AB, and ACS in these tasks. With automatic differentiation for
gradient computation, we generate 640,000 samples to form the empirical distributions. Figure 2
(bottom) provides a qualitative analysis, showing that DREAM can effectively capture the underlying
complex distributions. In the wave, 8gaussians, and 16gaussians, DMALA (mid) captures only 50%
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modes due to its tendency to get stuck in local minima. DREAM, by contrast, recovers all modes,
which reflects its robust exploration across different tasks. For quantitative evaluation, we report
Kullback—Leibler (KL) divergence and maximum mean discrepancy (MMD) as performance metrics
(Blessing et al., 2024). As shown in Table 1, DREAM consistently outperforms the baselines across
all distributions.

6.2 SAMPLING FROM ISING MODELS

The Ising model (Newman & Barkema, 1999) is a mathematical structure used to describe systems of
interacting binary variables, which are commonly represented as spins in physical systems (MacKay,
2003). Each spin can assume binary states and interact with adjacent spins within a lattice. The
interactions between these neighboring spins are governed by the energy function U(0) = w@™ J6 +
b70, where 0 € {—1, 1}d is binary random variable, J € {0, 1}9xd jg 5 binary adjacency matrix, w € R*
denote the connectivity strength, and b € {0, 1}d is the bias vector.

0 —— DULA  —— mh-ACS | — puA  — mn-Acs Sampler MH logRMSE |
_1 DMALA ——— DREXEL -1 DMALA = DREXEL
—— ACS —— DREAM — ACS —— DREAM DULA X -2.992 + 0.046
o T~ ol S~ | ACS X -2314+0.101
z x DREXEL X  -3.863 +0.098
£ €3 DMALA v  -4577 +0.099
-4 -4 mh-ACS v -3.824 £0.075
5 DREAM v -4.915 £ 0.096
5 10k 20k 30k 40k S0k > 5.0 10.0 150  20.0
# Samples Times

Figure 3: Ising model sampling results, evaluated by log RMSE. DREAM yields the best scores.

From Figure 3, for samplers without MH corrections, DREXEL shows a fast and consistent reduction
in log RMSE, while DULA and ACS converge more slowly. Note that ACS exhibits periodic
fluctuations due to its cyclical step size, where error initially decreases but then increases as the
step size decays. For discrete sampling, it implies small step sizes do not effectively exploit local
modes, and decaying step sizes may not be as effective as MH corrections in discrete settings. Among
samplers with MH corrections, DREAM delivers the most efficient error reduction, which benefits
from a strong exploration-exploitation balance. DMALA follows a more gradual path, while mh-ACS
mirrors the periodic behavior of ACS due to its similar step-size schedule. These findings indicate
that the proposed samplers generally offer better and more reliable mixing rates.

6.3 SAMPLING FROM RESTRICTED BOLTZMANN MACHINES

Restricted Boltzmann Machines (RBMs) are generative stochastic neural networks designed to model
complex distributions over discrete data (Fischer & Igel, 2012). RBMs typically consist of binary-
valued hidden and visible units, where the visible units represent observed data and the hidden units
capture latent dependencies in the data. The energy function U(8) = log[1 + exp (JO+¢)] + b"0,
where 6 € {0, 1} represents the binary state vector for the visible layer, J € R™4 is the weight
matrix, ¢ € R™ and b € RY denote biases for hidden units and visible units correspondingly.

Dataset DMALA ACS AB DREAM

MNIST -5.249  -5439 -5.638 -6.002
eMNIST -3.852 -3.979 -3.967 -4.027
KMNIST -3.557 -3.587 -3.586 -4.181
Fashion -5.879 -5976 -5979 -6.074
Omniglot -6.579 -6.792 -6.805 -6.994
Caltech -4.100 -4.208 -4.205 -4.415

D (Fashion)

| | I |
oA wow
U o U o

log MMD (
o & o
o v o

0 1k 2k 3k 4k 5k
# Samples

Figure 4: RBM sampling results, quantified by MMD. DREAM outperforms across various datasets.

We trained RBMs with 500 hidden units on the MNIST dataset using contrastive divergence (Hinton,
2002). To benchmark the effectiveness of various samplers, we reported MMDs between outputs
generated by each sampler and the one by the structured Block-Gibbs sampler specific to RBMs.
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Figure 4 highlights DREAM as the most effective sampler, which consistently achieves the best log
MMD across all datasets and suggests superior convergence in sampling from RBMs. AB and ACS
perform nearly as well but with slightly higher MMD values. Overall, DREAM provides the most
robust sampling, followed by AB and ACS, while DMALA trails behind.

6.4 LearRNING ENERGY-BASED MODELS

Deep Energy-Based Models (EBMs) (Ngiam et al., 2011; Bond-Taylor et al., 2021) are a class
of probabilistic models where the energy function is parameterized by a ResNet (He et al., 2016).
Specifically, the probability of a data point x is given by Pg(x) = exp [E¢(x)] /Zy, where Eg(x) is the
energy function parameterized by 6, and Zy = Eg.g exp [Eg(x)] normalizes the distribution.

With DULA and DMALA as baselines, we evaluate DREXEL and DREAM? by learning Deep EBMs.
During training, the intractable likelihood gradient of the model is approximated through Persistent
Contrastive Divergence (Tieleman & Hinton, 2009), while a replay buffer (Du & Mordatch, 2019)
containing 1,000 past samples is implemented to improve both the efficiency and stability of the
training process. Each sampler runs for 40 steps per iteration. Upon completing training, Annealed
Importance Sampling (Neal, 2001) is conducted with DULA to estimate the test log-likelihoods.

Table 2: Test log-likelihoods of Deep EBMs evaluated on image datasets.

Dataset DULA DMALA bDREXEL bDREAM DREXEL DREAM
Static MNIST -84.579  -85.145 -85.638 -84.823 -84.509 -83.929
Dynamic MNIST  -86.625 -84.799 -86.907 -85.104 -83.984 -82.963
Omniglot -118.541 -111.820  -102.405 -100.042  -101.930  -98.454
Caltech -108.626  -107.820  -108.199 -107.899 -93.481 -92.003

We trained Deep EBMs for 20,000 iterations on binary images from Static MNIST, Dynamic MNIST,
Omniglot, and Caltech Silhouettes datasets. The test log-likelihoods for trained models across
different samplers are recorded in Table 2. Among the samplers, DREAM consistently achieved
the highest log-likelihoods across all datasets, with notable improvements on Omniglot and Caltech
Silhouettes. For MNIST datasets, DREXEL and DREAM also showed competitive performance,
particularly on Static MNIST. In contrast, bDREXEL and bDREAM generally performed worse, with
DREXEL and DREAM showing clear superiority across most datasets. These findings confirm that
MH steps are essential for improving performance in discrete sampling tasks. Also, the proposed swap
mechanism in (10) is effective at correcting imbalance and yielding better log-likelihood estimates
across diverse image datasets.

7 CONCLUSION AND DIscussION

In this work, we addressed the challenge of balancing global exploration and local exploitation
in non-convex discrete energy landscapes by proposing DREXEL and DREAM. These samplers
integrate DLS with replica exchange to overcome the limitations of traditional samplers, which tend
to get trapped in local modes due to reliance on local gradients and small disturbances.

We theoretically prove that the proposed samplers are reversible, which guarantees the accurate
preservation of the target distribution. Moreover, these samplers achieve faster mixing than the naive
DLS. The empirical evidence suggests that the proposed samplers and swap mechanism significantly
improve exploration and mixing in non-convex discrete spaces. Furthermore, while DREXEL main-
tains detailed balance throughout the process, MH corrections are critical for optimizing performance
in certain tasks.

Our current work focuses on designing a single low-temperature and a single high-temperature
sampler. Future research could extend this framework by introducing multiple parallel samplers to
enhance exploration. We will also study theoretical guarantees to quantify the acceleration effect of
the swap mechanism in the future.

2Unless stated otherwise, DREXEL and DREAM refer to samplers based on the swap design from (10).
bDREXEL and bDREAM apply the swap function described in (9).



Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

We adhere to the ICLR Code of Ethics and confirm that our experiments use only public datasets.
While our results are primarily based on standard benchmarks, we recognize the potential for misuse
and encourage responsible application of our methods on real-world data.

REPRODUCIBILITY STATEMENT

To facilitate the reproducibility of our proposed method, the implementation of the synthetic task
related to this work is made available at the following anonymous link: https://anonymous.
4open.science/r/dream-F7E6.

REFERENCES

Sungjin Ahn, Anoop Korattikara, and Max Welling. Bayesian Posterior Sampling via Stochastic
Gradient Fisher Scoring. In International Conference on Machine Learning, pp. 1771-1778, 2012.

Patrick Billingsley. Probability and Measure. John Wiley & Sons, 2017.

Denis Blessing, Xiaogang Jia, Johannes Esslinger, Francisco Vargas, and Gerhard Neumann. Beyond
elbos: A large-scale evaluation of variational methods for sampling. In International Conference
on Machine Learning, 2024.

Sam Bond-Taylor, Adam Leach, Yang Long, and Chris G Willcocks. Deep Generative Modelling:
A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive
Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):7327-7347,
2021.

Andrew Campbell, Wenlong Chen, Vincent Stimper, Jose Miguel Hernandez-Lobato, and Yichuan
Zhang. A Gradient Based Strategy for Hamiltonian Monte Carlo Hyperparameter Optimization. In
International Conference on Machine Learning, pp. 1238—-1248. PMLR, 2021.

Changyou Chen, Nan Ding, and Lawrence Carin. On the Convergence of Stochastic Gradient MCMC
Algorithms with High-Order Integrators. Advances in Neural Information Processing Systems, 28,
2015.

Yi Chen, Jinglin Chen, Jing Dong, Jian Peng, and Zhaoran Wang. Accelerating Nonconvex Learning
via Replica Exchange Langevin Diffusion. In International Conference on Learning Representation,
2019.

Sinho Chewi, Chen Lu, Kwangjun Ahn, Xiang Cheng, Thibaut Le Gouic, and Philippe Rigollet.
Optimal Dimension Dependence of the Metropolis-Adjusted Langevin Algorithm. In Conference
on Learning Theory, pp. 1260-1300. PMLR, 2021.

Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, and Dale Schuurmans. Learning Discrete
Energy-Based Models via Auxiliary-Variable Local Exploration. Advances in Neural Information
Processing Systems, 33:10443-10455, 2020.

Wei Deng, Qi Feng, Liyao Gao, Faming Liang, and Guang Lin. Non-convex Learning via Replica
Exchange Stochastic Gradient MCMC. In International Conference on Machine Learning, pp.
2474-2483. PMLR, 2020.

Wei Deng, Qi Feng, Georgios Karagiannis, Guang Lin, and Faming Liang. Accelerating Convergence
of Replica Exchange Stochastic Gradient MCMC via Variance Reduction. In International
Conference on Learning Representation, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-Training of Deep
Bidirectional Transformers for Language Understanding. In North American Chapter of the
Association for Computational Linguistics, 2019.

Persi Diaconis and David Freedman. On Markov Chains with Continuous State Space. Annals of
Probability, 1997.

10


https://anonymous.4open.science/r/dream-F7E6
https://anonymous.4open.science/r/dream-F7E6

Under review as a conference paper at ICLR 2025

Jing Dong and Xin T Tong. Spectral Gap of Replica Exchange Langevin Diffusion on Mixture
Distributions. Stochastic Processes and Their Applications, 151:451-489, 2022.

David L Donoho. Compressed Sensing. IEEE Transactions on information theory, 52(4):1289-1306,
2006.

Yilun Du and Igor Mordatch. Implicit Generation and Modeling with Energy Based Models. Advances
in Neural Information Processing Systems, 32, 2019.

Alain Durmus and Eric Moulines. Non-asymptotic Convergence Analysis for the Unadjusted
Langevin Algorithm. The Annals of Applied Probability, pp. 1551-1587, 2017.

Raaz Dwivedi, Yuansi Chen, Martin J Wainwright, and Bin Yu. Log-Concave Sampling: Metropolis-
Hastings Algorithms Are Fast. Journal of Machine Learning Research, 20(183):1-42, 2019.

Asja Fischer and Christian Igel. An Introduction to Restricted Boltzmann Machines. In Progress
in Pattern Recognition, Image Analysis, Computer Vision, and Applications, pp. 14-36. Springer,
2012.

Gerald B Folland. Real Analysis: Modern Techniques and Their Applications, volume 40. John
Wiley & Sons, 1999.

Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris Maddison. Oops I
Took a Gradient: Scalable Sampling for Discrete Distributions. In International Conference on
Machine Learning, pp. 3831-3841. PMLR, 2021.

Firas Hamze and Nando de Freitas. From Fields to Trees. In Conference on Uncertainty in Artificial
Intelligence, pp. 243-250, 2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.

Geoffrey E Hinton. Training Products of Experts by Minimizing Contrastive Divergence. Neural
Computation, 14(8):1771-1800, 2002.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet Classification with Deep Convo-
lutional Neural Networks. Advances in Neural Information Processing Systems, 25, 2012.

Holden Lee, Andrej Risteski, and Rong Ge. Beyond Log-Concavity: Provable Guarantees for
Sampling Multi-modal Distributions Using Simulated Tempering Langevin Monte Carlo. Advances
in Neural Information Processing Systems, 31, 2018.

Xuechen Li, Yi Wu, Lester Mackey, and Murat A Erdogdu. Stochastic Runge-Kutta Accelerates

Langevin Monte Carlo and Beyond. Advances in Neural Information Processing Systems, 32,
2019.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete Diffusion Modeling by Estimating the
Ratios of the Data Distribution. In International Conference on Machine Learning, 2024.

David JC MacKay. Information Theory, Inference and Learning Algorithms. Cambridge university
press, 2003.

Evan Z Macosko, Anindita Basu, Rahul Satija, James Nemesh, Karthik Shekhar, Melissa Goldman,
Itay Tirosh, Allison R Bialas, Nolan Kamitaki, Emily M Martersteck, et al. Highly Parallel
Genome-Wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell, 161(5):
1202-1214, 2015.

Stephane G Mallat. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674—693, 1989.

Enzo Marinari and Giorgio Parisi. Simulated Tempering: A New Monte Carlo Scheme. Europhysics
Letters, 19(6):451, 1992.

Michael L Metzker. Sequencing Technologies—the Next Generation. Nature Reviews Genetics, 11
(1):31-46, 2010.

11



Under review as a conference paper at ICLR 2025

Sean P Meyn and Richard L Tweedie. Markov Chains and Stochastic Stability. Springer Science &
Business Media, 2012.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Estimation of Word Represen-
tations in Vector Space. In International Conference on Learning Representation, 2013.

Radford M Neal. Annealed Importance Sampling. Statistics and Computing, 11:125-139, 2001.

Radford M. Neal. MCMC Using Hamiltonian Dynamics. In Handbook of Markov Chain Monte
Carlo, volume 54, pp. 113-162. Chapman and Hall/CRC, 2012.

Von Neumann. Various Techniques Used in Connection with Random Digits. Notes by GE Forsythe,
pp. 36-38, 1951.

Mark EJ Newman and Gerard T Barkema. Monte Carlo Methods in Statistical Physics. Clarendon
Press, 1999.

Jiquan Ngiam, Zhenghao Chen, Pang W Koh, and Andrew Y Ng. Learning Deep Energy Models. In
International Conference on Machine Learning, pp. 1105-1112, 2011.

Patrick Pynadath, Riddhiman Bhattacharya, Arun Hariharan, and Ruqi Zhang. Gradient-Based
Discrete Sampling with Automatic Cyclical Scheduling. arXiv preprint arXiv:2402.17699, 2024.

Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. Advances in
Neural Information Processing Systems, 20, 2007.

Gareth O Roberts and Richard L Tweedie. Exponential Convergence of Langevin Distributions and
Their Discrete Approximations. Bernoulli, 2(4):341-363, 1996.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical
Image Segmentation. In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 234-241. Springer, 2015.

Umut Simsekli, Roland Badeau, Taylan Cemgil, and Gaél Richard. Stochastic Quasi-Newton
Langevin Monte Carlo. In International Conference on Machine Learning, pp. 642—-651. PMLR,
2016.

Haoran Sun, Hanjun Dai, Wei Xia, and Arun Ramamurthy. Path Auxiliary Proposal for MCMC in
Discrete Space. In International Conference on Learning Representation, 2021.

Haoran Sun, Bo Dai, Charles Sutton, Dale Schuurmans, and Hanjun Dai. Any-Scale Balanced
Samplers for Discrete Space. In International Conference on Learning Representation, 2023a.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-Based Continuous-Time
Discrete Diffusion Models. In International Conference on Learning Representation, 2023b.

Robert H Swendsen and Jian-Sheng Wang. Nonuniversal Critical Dynamics in Monte Carlo Simula-
tions. Physical Review Letters, 58(2):86, 1987.

Yee Whye Teh, Alexandre Thiéry, and Sebastian J Vollmer. Consistency and Fluctuations for
Stochastic Gradient Langevin Dynamics. Journal of Machine Learning Research, 17(7), 2016.

Tijmen Tieleman and Geoffrey Hinton. Using Fast Weights to Improve Persistent Contrastive
Divergence. In International Conference on Machine Learning, pp. 1033—1040, 2009.

Sebastian J Vollmer, Konstantinos C Zygalakis, and Yee Whye Teh. Exploration of the (non-)
asymptotic bias and variance of stochastic gradient Langevin dynamics. Journal of Machine
Learning Research, 17(159):1-48, 2016.

Fugao Wang and David P Landau. Efficient, Multiple-Range Random Walk Algorithm to Calculate
the Density of States. Physical Review Letters, 86(10):2050, 2001.

Max Welling and Yee W Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In
International Conference on Machine Learning, pp. 681-688. Citeseer, 2011.

12



Under review as a conference paper at ICLR 2025

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Hard
Prompts Made Easy: Gradient-Based Discrete Optimization for Prompt Tuning and Discovery.
Advances in Neural Information Processing Systems, 36, 2024.

Ulli Wolff. Collective Monte Carlo Updating for Spin Systems. Physical Review Letters, 62(4):361,
1989.

Giacomo Zanella. Informed Proposals for Local MCMC in Discrete Spaces. Journal of the American
Statistical Association, 115(530):852-865, 2020.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua Ben-
gio. Generative Flow Networks for Discrete Probabilistic Modeling. In International Conference
on Machine Learning, pp. 26412-26428. PMLR, 2022a.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cyclical
Stochastic Gradient MCMC for Bayesian Deep Learning. In International Conference on Learning
Representation, 2020.

Rugqi Zhang, Xingchao Liu, and Qiang Liu. A Langevin-Like Sampler for Discrete Distributions. In
International Conference on Machine Learning, pp. 26375-26396. PMLR, 2022b.

13



Under review as a conference paper at ICLR 2025

A FutHER DiscussioN oN RELATED WORK

Modeling Non-Convex Discrete Distributions is important in modern machine learning tasks.
Swendsen & Wang (1987) designed cluster updates in Monte Carlo simulations to efficiently navigate
complex energy landscapes by updating groups of variables simultaneously. Wolff (1989) further
improved sampling efficiency by flipping single large clusters of spins, thereby reducing autocorre-
lation times near critical points in non-convex distributions. Marinari & Parisi (1992) considered
temperature as a dynamic variable and allowed the system to overcome energy barriers and explore
multiple modes of a non-convex distribution effectively. While these models might work for specific
discrete structures, they rely on random walk or Gibbs sampling. Their extensions to gradient-based
discrete sampling may significantly improve their efficiency in non-convex exploration.

Related Discrete Methods have been made in modeling and optimizing discrete distributions. Zhang
et al. (2022a) introduced energy-based generative flow networks to amortize expensive MCMC
exploration into a fixed number of actions. Discrete Diffusion Models (Sun et al., 2023b; Lou et al.,
2024) extended continuous-time diffusion models to discrete spaces with well-defined score functions
for discrete variables. Wen et al. (2024) proposed an efficient gradient-based discrete optimization
method for generative models. These approaches to discretizing continuous methods and handling
complex discrete data offer valuable insights for developing DLSs.

Stochastic Gradient Langevin MCMC (Welling & Teh, 2011) has become a favored MCMC
method in big data due to its effective transition from optimization to sampling. However, its lack
of adaptive step sizes to the energy curvature limits the use of this crucial information. To further
leverage curvature information, Quasi-Newton methods (Ahn et al., 2012; Simsekli et al., 2016)
exploit curvature information by adjusting step sizes, while Hamiltonian Monte Carlo (Neal, 2012;
Campbell et al., 2021) and higher-order approaches (Chen et al., 2015; Li et al., 2019) employ larger
step sizes to improve stability. These approaches, however, still encounter difficulties in avoiding
local traps, which is where advanced reMCMC methods help balance exploration and exploitation
when navigating non-convex energy landscapes.

B DREXEL anp DREAM witH BINARY VARIABLES

When the variable domain @ is binary {0, 1}9, Algorithm 1 can be further simplified. In this binary
setting, the Hadamard product, denoted by ©, simplifies several operations. This streamlined version
demonstrates that both DREXEL and DREAM can be efficiently parallelized across CPUs and GPUs,
which leads to reduced computational cost.

Binary variables are particularly advantageous in this context. The binary domain facilitates the use
of efficient bitwise operations, which not only speed up the computation but also enable the algorithm
to scale better in high-dimensional spaces. Moreover, the simplicity of the binary domain reduces
algorithmic complexity, which can facilitate computational efficiency.

C DREXEL anpo DREAM wita CATEGORICAL VARIABLES

We further examine how DREXEL and DREAM can be formulated for categorical variables using
one-hot vectors and ordinal integers.

In one-hot encoding, each categorical variable 6); is represented as a vector in {0, 1} where exactly
one element is 1, and the rest are 0. The update rule for one-hot encoded variables is given by:
g(k)

e - ),
%) ivld ~ Vid||, B
_Gf’d)_T , k=12

1
Categorical | Softmax 2_Tk VU (OEk))d (91@1 d

In this setting, the difference 05?1 - 051‘) results in a vector with exactly two non-zero elements, which
reflects a transition between categories.

For ordinal variables, where categories have a natural ordering, 6; can be represented as integers in
{0,1,---,N — 1}. The update rule becomes:

14



Under review as a conference paper at ICLR 2025

- 9(k>) _ (gﬁf)l,d — gg,kd))z
id

1
Categorical | Softmax —VU(H(,")),, (0(,")
2Tk ¢ 2(l/k

i+1,d

Here, the scalar difference (95?1 i 052) captures the magnitude and direction of the transition between
ordered categories. This representation leverages the ordering information to inform the proposal

distribution more precisely.

Algorithm 2 DREXEL or DREAM with Binary Variables.

Input Step Sizes «, a,, Temperatures 7, T2, and Swap Intensity p > 0.
Input Initial Samples 6 € ©, k = 1,2.

1: Fori=1,2,---,1do

2:  Sampling Steps:

3: Fork=0,1,2do:

1 (k) (k) 1
B Compute PA(d") = exp 2,kvu(kév, )© (2}(0, H-5-)
exp (- VU@E) 0 28 - 1) - 5 ) + 1
5: Sample u ~ U([0, 1]9)
6: Set I, « dim(u < P(0"))
7: Set w® « flipdim(y)
8 End For

9:  MH Steps (for DREAM):
10: Fork=1,2do:

11: Compute ge(@®16{") = Tyer, PO}, - Tlaer, (1 - PO)a)
12: Compute gi(6"lw®) = Myer, P(@®)y - Tygr, (1= P@®),)
1 (k) (k) 1
exp(—5- VU(0") 0 Qw™ - 1) = 5——
13: Compute Pi(w®) = ( 2 2 k)
exp (— - VU(0®) 0 Qo® - 1) - =) + 1
14: Compute Aw®, §°) follows (4)
15: Generate a number u ~ U[0, 1]
16: Set 6% — w® if u < Aelse 67 — 6
17:  End For

18:  Swapping Steps:

19:  Generate a number u ~ U[O0, 1].
20:  Compute S (Ofl)l R 01(.?1) follows (10)
21:  Swap 05.1)1 and Oﬁ)l if u < pmin {1, S’}
22: End For

Output Samples {6"}_,.
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D THEORETICAL ANALYSIS

In this section, we first validate the assumptions of smoothness, dissipativity, and the fine grid used in
our analysis. Next, we provide an asymptotic analysis to show the weak convergence of DREXEL to
the target distribution. We conclude with a detailed examination of its non-asymptotic behavior.

D.1 Proor oF THEOREM 1

To explore the reversibility of the discrete replica exchange Langevin sampler, we follow the proof of
Zhang et al. (2022b). For the discrete replica exchange Langevin sampler, we denote the update rule
as follows:

1 ( 0(1))2
q1 (01 6) o Categorical [Softmax[ VU@)(6] -6 - T])

1 ( 9(2))2
9 (0’ | 0(2)) o Categorical (Softmax(—VU (0(2))[1(6;, (2)) - —D ,
T2 2(1/2
where d = 1,2,---,d, YOV, 0® € ©, ® € RY. 6P denotes the current sample from the low-
temperature sampler, and §% is the sample from the high-temperature sampler.

Proof. We consider the transition probability ¢ (9’ | 0(1)). Different from the direct transition in DLS,

we consider two scenarios to transition from 6V to ': with probability 1 — S, there is no chain swap,
and the model parameter change from 8" to @’ in the low-temperature sampler; with probability S,
there is a chain swap, and the high-temperature sampler generate new sample from 8 to . We
recall the definition of the proposed swap function S (-, -) in (10) as follows:

(0“) e 0(1)’0§2>) — e (m . )[U(g(l))JrU(g“)) U(Of.f)])fU(()?))]'

i+1° 7+l |

Following this, we rewrite the transition probability ¢ (6" | 6) of the discrete replica exchange Langevin

sampler as:
0/ 0(1) Z Z 0(2) +)1 | 052))[ (0/ 0(2) )]q (0' 0(1))

9(2) 0(2>

i+l
-3 S A)e 01 )s @) (o 1).

0(2) o

i+1

where the first term on the right-hand side of (11) is the probability change from 6 to €' in the
low-temperature sampler, and the second term is the probability that the low-temperature sampler

starts with 051), the high-temperature chain ends on €', with a probability S to have the sample swap.

To further demonstrate the reversibility of the proposed discrete replica exchange Langevin sampler,
we multiply 7, (6) from both sides?:

Ta (0<”) (0’ 16"

= > > 7 (07) a2 (62 167)[1-5 (6,63 7 (6,") a1 (67 16)

0(2> 0(2)

i+l

33 0) 01 6)5 (2.0 6) o 621

67 6o (12)

© 33 o)1) - LN ()

2 g2
0 0:+l

o« (6P q2 (6 167 7, (67) g1 (616" (&-2 Jlu@du(e)-ver-ve)]
+;9(Zl) (l)qz(|l)7r(l) (z+l| )21

i i+l

3We ignore the subscript of the step size from «, to a for the stationary distribution , for simplicity.
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where (a) replace the swap function with (10).

Recall the assumption that the target distribution is defined as log-quadratic (@) =
exp(07JO+b70)/Z, where J € RIxd i5 4 symmetric matrix, b € RY is a vector, and Z normal-
izes the distribution. We then have VU() = 2J76 + b and V?U(6) = 2J is a constant.

We further denote Z,(6) = Y, exp|[3(U(x) - U®) - (x—0)" (£1+ 1J)(x - 6)] and 7,(6) =
Z,(Or(0)] Y. Zo(x)m(x). According to Theorem 1 in Zhang et al. (2022b), we have the transi-
tion from 01(.2) to Oﬁ)l multiplying the stationary distribution 7, (052)) as:

20 () el (0(02) - U - (02 0P (1 ) 6

)

Mo (052)) q1 (0&)1 | 0,(2)) =S Zom) 7 (0(2))

exp[3(U(65) + U@) - (617 - 67)" (51 + 37) (617 - 67)]

- Z- 3 Z(x)ma(x) ’
which is symmetric. Similarly, we can expand the following distributions according to the definition
of log-quadratic targets and the transition probabilities 7, (05')) qi (0’ | 01(.')), Ty (052)) Q> (0’ | 052)), and
Ty (051)) q1 (01(.1)1 | 051)). Similarly, all of them are symmetric, which indicates that 7, (051)) q (0’ | 051))
is also symmetric. Therefore, we conclude that g (0’ [ 051)) give in (12) is reversible and the stationary
distribution is (051)).

To further prove the stationary distribution r, converges weakly to the target  as the step sizes are
close to zero, we first observe that for any 6 € ©,

1 1 1
Z,(0) = Z exp (5 Ux)-U@)-(x-6)" (ZI + EJ) (x - 0)).

xeb

As @ — 0, the term involving ﬁl dominates the quadratic form unless x = 6. Specifically, for x # 6,

1 1 1
PN R 0> —lr— oI
(x=6) (20[1 + 21) (x—6) = 5 llx — 6P,
which tends to infinity as @ — 0. Therefore, the terms in the sum for x # 6 become negligible, which
means exp (—(x -07 (il + %J) (x - 0)) — 0 as @ — 0. For x = 6, the exponent simplifies to zero:
exp (%(U @ -U@) - 0) = 1. Thus, we can conclude that lim,_,o Z,(6) = 1.
We denote the denominator of 7,(0) is D, = ) cg Zo(x)n(x). Following the above derivation, we

can easily find that Z,(x) — 1 as @« — 0 for each x € ®. Therefore, we also have lim,_,o D, =
er() 71'()(:) =1.

Combining the above results, we have lim,_,o 7,(6) = lim,_,
a conclusion that ,(6) converges point-wisely to 7(6) as @ — 0.

w = ”TO) = n1(0). Thus, we derive

Since 7, and r are probability mass functions on a discrete space 6, and ,(0) — 7(0) point-wisely,
according to Scheffé’s Lemma (Billingsley, 2017), it further implies that lim,_,g D gcg |72 (6) — 7(0)| =
0.

This convergence implies weak convergence of 7, to 7: from Dominated Convergence Theorem
(Folland, 1999), we have for any bounded function f : ® — R,

lim > f(@)70(6) = ) f(O)n(6).
0cO®

54

This completes the proof that &, converges weakly to 7 as @ — 0.

E AbpbitioNaL EXPERIMENTAL RESULTS

The experiments were run on a server featuring an Intel(R) Core(TM) i9-14900K processor, RTX
4090 GPUs, and 128 GB DDR4 memory.
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E.1 SamPLING FROM 2D SYNTHETIC ENERGIES

To evaluate the efficiency of MCMC algorithms in exploring non-convex discrete energy landscapes,
we consider a set of energy functions that present varying degrees of complexity and multimodality.
These functions are designed to test the algorithms’ ability to navigate challenging landscapes
characterized by multiple local minima, sharp ridges, and disconnected modes.

Wave energy function is a periodic sinusoidal surface with alternating peaks and valleys:
U(x,y) = sin(3x) sin(3y).

Its highly rugged landscape arises from repeated oscillations, which makes it a suitable test for an
algorithm’s ability to navigate sharp and oscillating energy contours without getting trapped in local
minima.

Eight Gaussian energy function (Dai et al., 2020) consists of eight equally spaced Gaussian compo-
nents arranged in a circular pattern:

8 _ —x)2 —v)2
U= |Cx x,>20+2(y y,)],

i=1

g, i#), with o = 1.0 for all modes.

This function presents multiple well-separated basins of attraction, testing the algorithm’s ability to
explore disconnected modes effectively.

where the centers (x;, y;) are located at (+1,0), (0, £1), and (J_r

Moon energy function creates a complex, asymmetric landscape resembling a crescent shape:

10 2 5

With deep valley and steep ridge features, this non-convex structure evaluates the algorithm’s capacity
to explore non-uniform, curved regions and traverse narrow channels between high-energy barriers.

1 1 24\?
U(x,y) = ——y4 - = (4)c—y2 + —) .

Two Moons energy function describes a landscape with two prominent crescent-shaped modes
separated by a low-energy region:
2 2 N 142
Ux,y) = s (x2 +y% - 2) + log [e_%(¥) +e72(%)
This function challenges MCMC methods to jump between distinct modes, and tests their efficiency
in exploring multi-modal distributions where modes are not directly connected.

Twist energy function represents a twisted sinusoidal landscape where energy levels change smoothly

along a sinusoidal curve:
1 x\)?
=4y 5
()= =5 [y =sin(3
The narrow, twisted valleys require careful gradient following, which tests the algorithm’s ability to
sample from highly structured, nonlinear regions of the energy landscape.

Flower energy function combines radial symmetry with angular variations, forming a complex
landscape with a petal-like structure:

U(x,y) = sin(,/x2 +y2) + cos (5 tan(%)).

With multiple local minima and ridges radiating from the center, this intricate landscape tests the
algorithm’s capability to explore multi-modal, rotationally symmetric energy landscapes with sharp
transitions between regions.

In our experiments, we evaluate different samplers using Kullback-Leibler (KL) divergence and
Maximum Mean Discrepancy (MMD).

KL divergence measures the difference between two probability distributions. Given two distributions
m and 7, the KL divergence is defined as:

(7]
Dialr 17 = Y m(@)log o).

6O
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8gaussian 16gaussian

Figure 5: Visualization of the true energy function and the empirical energy functlon yield by
DMALA, AB, ACS, and DREAM. Seven energy functions are tested here, which include wave, eight
Gaussians, sixteen Gaussians, moon, two moons, twist, and flower energy functions. Red colors
denote high-density regions, and blue colors represent low-density regions.

where m(6) represents the probability of @ under the target distribution, and (@) represents the
probability of @ under the empirical distribution from the samplers. This metric quantifies how much
information is lost when 7 is used to approximate 7, with lower values indicating better performance.

MMD is a kernel-based test used to compare distributions. It is computed as:
MMD? (7, 1) = By o[ k(x, X)] + By yr 2 [k(p, )] = 2B y-x (¥, )],

where k(x,y) is a positive-definite kernel function. MMD measures the similarity between the
empirical distributions of the generated and target samples.

In practice, however, directly computing MMD is computationally expensive. Therefore, we use an
approximation based on Random Fourier Features (RFF) (Rahimi & Recht, 2007).

For two distributions 7 and 7, we first map the data samples X ~ w and ¥ ~ 7 to a new feature space
using the random Fourier transformation: ¢(X) = /% cos(WXT + b), where W € RP* are random

Gaussian variables sampled from N (0, 1/ 5'2), and b are random uniform variables in the range [0, 27].
The parameter & controls the kernel bandwidth, and D is the number of random features. Once
mapped, the empirical mean feature embeddings for X and Y are computed for both distributions
X = % 2 d(Xy), uy = % 2, ¢(Y;). Finally, the MMD is approximated by the squared difference
of the mean embeddings:
MMD*(z, 7) ~ llux = gyl
This approach allows us to efficiently compute the MMD between two distributions using RFFs.

To evaluate the effectiveness of the proposed sampler, we explore its performance on a set of non-
convex discrete energy landscapes that vary in complexity and multimodality. We further compare it
with baselines such as DMALA, ACS, and AB. Unless specified otherwise, the default temperature
for each sampler is set at 1.0. DMALA is implemented with a step size of 0.15. AB is used with
parameters o = 0.10 and @ = 0.50. For ACS, a cyclical step size scheduler with an initial step size
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of 0.60 across 10 cycles is applied. DREAM uses small and large step sizes of 0.15 and 0.60 and
temperatures of 1.0 and 5.0.

Figure 5 illustrates a comparison between the empirical distributions obtained from different samplers
and the ground truth (top row). A clear distinction can be observed between the discrete samplers
in terms of their ability to capture the full complexity of the landscape. From the figure, DREAM
produces the most balanced and comprehensive empirical distribution, which captures all significant
modes of the energy landscape. The improvements are significant in tasks of approximating wave
and multi-Gaussian energy functions. While other discrete samplers (such as DMALA, AB, ACS)
fail to capture all modes, DREAM exhibits the most comprehensive exploration, as reflected in the
uniformity of the empirical distribution across all modes. Its ability to distribute samples effectively,
even in the presence of disconnected modes and sharp energy barriers, demonstrates its robustness in
navigating complex discrete energy landscapes. By contrast, DMALA shows a heavy concentration
of samples around certain modes, which indicates that it struggles to escape local minima. This
leads to poor coverage of the landscape and a lack of diversity in the sampled regions. ACS and AB
perform better in terms of covering multiple modes but still show uneven sample distributions. Some
modes are under-sampled, while others are over-sampled, particularly in regions with shallow energy
gradients.

E.2 SAMPLING FROM ISING MODELS

We sampled from the Ising model using multiple samplers with a default temperature of 1.0, unless
otherwise specified. DULA utilized a step size of 0.20, while DMALA had a step size of 0.40. For
ACS, we employed a cyclical step size scheduler with 10 cycles and an initial step size of 0.30. ACS
with MH corrections used an initial step size of 5.0. For DREXEL, small and large step sizes were set
at 0.15 and 0.50, with temperatures at 1.0 and 5.0. DREAM followed a similar temperature schedule,
with a small step size of 0.35 and a large size of 0.50.

In this study, different samplers are evaluated with log Root Mean Square Error (log RMSE). Log
RMSE evaluates prediction accuracy for comparing the true values from 7 and the predictions from
7, which can be adapted as:

log RMSE = log {J % Z(ﬂ(xi) - ﬁ(xi))z] ,
i=1

where 7(x;) is the true value under the target distribution, and 7(x;) is the corresponding approximation
from the empirical distribution.

We further examine the influence of bias correction terms in DREXEL and DREAM with bias
corrections ()(DREXEL and bDREAM) on the experimental results of Ising models. For comparison,
we also evaluate DREXEL and DREAM, which incorporate historical energy corrections. Specifically,
we modify the swap function (10) by directly adding bias corrections and adjusting 0% in (9). Each
experiment is repeated 20 times with different random seeds, and the average and standard deviation
of log RMSE are reported. The results are shown in Figure 6.

The results demonstrate that DREAM achieves the lowest log RMSE values when corrections are
small, which indicates the minimal influence of bias correction on its performance. In contrast, the
performance of bDREXEL and bDREAM becomes better with increasing o2, which suggests its
performance may heavily rely on a good selection of bias correction. bDREAM and DREAM show
comparable log RMSEs, with log RMSE across different bias correction magnitudes. However,
DREAM yields the lowest log RMSE with no correction, while bBDREAM has the lowest one when
the correction increases.

E.3 SAMPLING FROM RESTRICTED BOLTZMANN MACHINES

We trained RBMs with the Adam optimizer with a learning rate of 0.001, over 1,000 iterations, and a
batch size of 128. For training, we used contrastive divergence (CD), which approximates the log-
likelihood gradient by performing k = 10 Gibbs sampling steps. The gradient of the log-likelihood
for an RBM is given by:

Vglog Po(x) = Ep,,,[Vglog Pe(x)] — Ep,[Vglog Pe(x)],
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Figure 6: Log RMSE results for bDREXEL, bDREAM, DREXEL, and DREAM under varying
correction terms. Solid and dashed lines denote the log RMSE average values, and a lighter shade
represents 95% confidence intervals. Lower log RMSE values indicate better performance.

where x is the visible layer, and 6 are the model parameters. The first term corresponds to the data
distribution, while the second term is the expectation under the model’s distribution. It should be noted
that direct computation of the model distribution expectation is expensive, and CD approximates the
second term by running k-step Gibbs sampling to obtain samples from the model. This approximation
enables efficient training of RBMs by focusing on the contrast between the observed and modeled
distributions.

To sample from the RBMs, we employed several discrete samplers at a default temperature of 1.0
unless otherwise noted. DMALA used a step size of 0.15, and ACS applied a cyclical step size
scheduler with 10 cycles, starting at a step size of 0.50. The Any-scale Balanced (AB) sampler was
configured with o = 0.10 and @ = 0.50. For DREAM, the small and large step sizes were set between
0.15-0.20 and 0.40-0.50, with temperatures set at 1.0 and 2.0.

E.4 LEearRNING DEep ENERGY-BASED MODELS

We trained Deep EBMs using a ResNet-64 backbone and optimized the model with the Adam
optimizer at a fixed learning rate of 0.001 without gradient clipping. The model was trained for
50,000 iterations with a batch size of 256. we employed Persistent Contrastive Divergence (PCD) to
approximate the intractable likelihood gradient, which builds upon standard contrastive divergence
by maintaining persistent Markov chains throughout training. It allows for more stable and accurate
sampling. Specifically, the model’s log-likelihood gradient is given by:

Vglog Po(x) = Ep,,, [Vglog Pe(x)] — Ep,[Vglog Pe(x)],

where the second term (the model expectation) is intractable. PCD approximates this by updating
samples across training iterations via Gibbs sampling, which ensures that the Markov chain does not
restart after each parameter update. Additionally, a replay buffer containing 1,000 past samples is
used to further stabilize training. The buffer stores past model samples and reuses them to reduce
variance, thus improving both the efficiency and stability of the learning process.

To evaluate Deep EBMs, we applied Annealed Importance Sampling (AIS) with DULA to estimate the
test log-likelihoods. AIS is a technique used to estimate partition functions by smoothly interpolating
between a known distribution and the target distribution. This is achieved by introducing a sequence
of intermediate distributions:

1
Pi(x) = Z exp(—=B:E(x)),

where t denotes the current annealing step, E(x) is the energy function, Z, is the partition function,
and S, is a temperature that gradually transitions between 0 and 1 over the course of the annealing
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process. When 3, = 0, the intermediate distribution is identical to the proposal distribution (which we
can sample from easily). When 3, = 1, the intermediate distribution becomes the target distribution,
which is more complex and generally intractable to sample directly. To adjust 8;, we typically choose
a monotonic schedule that increases smoothly from 0 to 1 over the course of the AIS process. A
common choice is a linear interpolation (3, = ¢/T, t = 0,1,2,...,T) or an exponential schedule
(B, = (t/T)*), where B, increases evenly across T annealing steps. AIS computes an estimate of the
partition function by sampling from these intermediate distributions and adjusting the importance
weights over time:

T
ZB - ZOl—[ PPr(x) ,
= L1 (%)
where Zj is an initial distribution that is easy to sample from, which serves as a starting point for the
annealing process. Typically, Z is chosen to be the partition function of a simple proposal distribution
po(x), which is often a uniform distribution or a Gaussian distribution with parameters that are easy
to compute. In our experiments, we used AIS with 40 samples and 30,000 annealing steps. DULA
was configured with a step size of 0.08 and a temperature of 1.00. Detailed hyperparameters for
training Deep EBMs are listed in Table 3.

Static MNIST DULA DMALA ©bDREXEL bDREAM DREXEL DREAM

Sten size 0.08 0.10 0.05 0.05 0.11 0.10
P - - 0.15 0.15 0.25 0.30

T . 1.0 1.0 1.0 1.0 1.0 1.0
cmperature . - 5.0 5.0 5.0 5.0
Correction - - 0.00 0.00 0.00 0.00

Dynamic MNIST DULA DMALA bDREXEL bDREAM DREXEL DREAM

Sten size 0.08 0.10 0.05 0.05 0.11 0.11
P . . 0.15 0.15 0.25 0.25
T . 1.0 1.0 1.0 1.0 1.0 1.0
emperature . . 5.0 5.0 5.0 5.0
Correction - - 0.00 0.00 0.00 0.00
Omniglot DULA DMALA bDREXEL bDREAM DREXEL DREAM
Sten si 0.08 0.10 0.05 0.05 0.08 0.08
ep s1ze - - 0.15 0.15 0.15 0.15
Temperature 1.0 1.0 1.0 1.0 1.0 1.0
peratu - . 5.0 5.0 5.0 5.0
Correction - - 0.00 0.00 1.00 0.00
Caltech DULA DMALA bDREXEL bDREAM DREXEL DREAM
Sten size 0.08 0.10 0.05 0.05 0.08 0.08
P . . 0.15 0.15 0.20 0.20
Temperatur 1.0 1.0 1.0 1.0 1.0 1.0
emperature - - 5.0 5.0 5.0 5.0
Correction - - 0.00 0.00 0.00 0.00

Table 3: Hyper-parameters used in learning Deep EBMs. From top to bottom, hyper-parameters in
Static MNIST, Dynamic MNIST, Omniglot, and Caltech Silhouettes are recorded.

For a consistent comparison with previous works (Zhang et al., 2022b), we record its log-likelihood
on the test set after 50,000 iterations. In general, Table 4 yields consistently lower log-likelihood
than the results in Table 2 since they train with more iterations. But similar trends are shown in
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Table 2 as well: DREAM consistently achieved the highest log-likelihoods across all datasets, with
significant improvements on Omniglot and Caltech Silhouettes. This demonstrates the proposed
swap mechanism in (10) effectively corrects imbalance, which leads to improved log-likelihood
estimates across diverse image datasets. For the MNIST datasets, both DREXEL and DREAM
showed competitive performance. bDREXEL and bDREAM generally perform worse than DREAM,
with consistently lower log-likelihoods, which further confirms the advantage of historical energy
corrections. These findings suggest that incorporating MH steps is crucial for enhancing performance
in discrete sampling tasks. DULA and DMALA exhibit the lowest performance overall, which
emphasizes the benefits of MH steps and the need to consider DREXEL and DREAM to enhance
exploration.

Dataset DULA DMALA bDREXEL bDREAM DREXEL DREAM
Static MNIST -79.672  -77.581 -77.212 -76.840 -75.685 -74.883
Dynamic MNIST -81.144  -79.411 -81.273 -81.043 -71.091 -70.905
Omniglot -114.203  -109.095 -94.382 -90.807 -89.971 -89.643
Caltech Silhouettes  -102.546  -98.554 -96.073 -93.969 -89.764 -86.624

Table 4: EBM learning results (log-likelihood) on the test set after 50,000 iterations.

Here we provide the generated results (Figure 7) from DREAM across Static MNIST, Dynamic
MNIST, Omniglot, and Caltech Silhouettes. These images demonstrate the ability of trained deep
EBMs to capture the underlying data distribution. The deep EBM is capable of producing high-quality
samples that visually resemble the training data, which indicates that the learned energy function
effectively models the complex, high-dimensional structure of the data.
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Figure 7: Deep RBMs sampling results from DREAM. Top Left: Static MNIST;

Dynamic MNIST; Bottom Left: Omniglot; Bottom Right: Caltech Silhouettes.
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