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Abstract

We introduce a generative framework for exchangeable graphs that combines a
Set Transformer-based encoder-decoder architecture with a hierarchical latent
space composed of a global variable and node-specific variables. The global la-
tent is modeled via diffusion process and acts as contextual input for node-level
Gaussian mixtures. The decoder uses self-attention layers with global context
injection to predict edge probabilities, ensuring high expressivity and full permu-
tation invariance. The overall architecture ensures permutation invariance and
can operate without node features, using the information in the adjacency matrix,
which enables broad applicability beyond feature-rich domains. Through extensive
experiments on synthetic benchmarks—including SBM, MMSBM, and the realistic
LFR benchmark—we show that our approach accurately reproduces key graph
statistics, especially for community-based networks. The global and local latent
variables provide meaningful graph and node level context, while the architecture
remains scalable to medium-sized dense graphs (e.g. 500-1000 nodes). Overall, our
framework balances expressiveness, interpretability, and structural fidelity, offering
a versatile tool for modeling complex graph data.

1 Introduction

Graphs are a fundamental and highly flexible data structure, widely used in fields such as biology
(e.g., protein—protein interaction networks), social sciences (e.g., social networks), chemistry (e.g.,
molecular graphs), and transportation (e.g., road networks) [3]]. While generative modeling has seen
remarkable progress in domains such as text, images, and video [[1, 124} |8, [19], developing generative
models for graphs remains a crucial and challenging task due to their combinatorial structure and
properties such as invariance to node relabeling.

Importantly, exchangeability is not a limitation but a desirable property in many contexts. Classical
results from probability theory, such as the Aldous—Hoover representation theorem [2} [13]], show that
a wide range of well-known statistical models for networks and relational data naturally fall within
the exchangeable framework, including Erd6s—Rényi graphs [[7]], stochastic block models [[12} 20],
and latent space models [11]. Exchangeability ensures that the joint distribution of edges remains
consistent under node relabeling, allowing the model to capture complex structural patterns without
depending on any arbitrary ordering of the nodes.
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Building on early approaches such as the Variational Graph Autoencoder (VGAE) [16] and
GraphRNN [28], many subsequent models have aimed to improve graph generation performance.
Some methods extend the VAE framework, as in GraphVAE [23], while others adapt diffusion-based
approaches, such as GDSS [14], EDGE [5], and DiGress [27], or employ flow-matching strategies
like CatFlow [6]. These approaches vary in their assumptions and limitations: some are designed
primarily for small graphs due to computational constraints, others treat the generation process as a
fully black-box diffusion, some do not preserve node exchangeability, and several are specialized for
molecular graphs where rich node and edge features are available.

In contrast, our model assumes only knowledge of the graph structure, i.e., the adjacency matrix,
making it broadly applicable to graphs without node or edge attributes. It maintains an interpretable
latent space, while offering strong generative performance, a flexible decoder architecture, and full
permutation invariance. We show that this combination allows the model to capture both local and
global graph structure, making it suitable for a wide range of graph types and sizes.

2 Background

In this section, we review the key concepts underlying our model. We denote data by = and latent
variables by z.

Variational Autoencoders (VAEs) [15]] learn a probabilistic map from a latent space to the data.
They consist of a prior pg(z) over z, a decoder pg(x|z) defining a likelihood for z, and an encoder
¢4 (z|z) that approximates the posterior p(z|x). Typically pg(z) = N(0, I), and the encoder outputs
Gaussian parameters (14 (), 0'5) (z). As in the original VAE paper [13], we use the reparameterization
trick to make optimization differentiable, e.g. z = uy(z) + og4(x) © €, € ~ N(0,I), where © is
elementwise multiplication. The model is then trained by maximizing the ELBO:

LeLso = Eq, (212) [l0g po(]2)] — Dki(ge(2|2) || p(2))-
Variational Graph Autoencoders (VGAESs) [16] adapt VAEs to graphs by using a Graph Neural
Network (GNN) encoder and a decoder that predicts edge probabilities from inner products of node
embeddings.

Diffusion Models [24}[25] learn the data distribution p(z) by gradually denoising Gaussian noise.
A fixed forward process q(x;|z;—1) corrupts data until it becomes pure noise, and a learned reverse
process pg(x¢—1|x:) removes noise to recover samples. Training minimizes

Lpovm = Et,wo,e[H€ - ee(xt’t)||ﬂ7

where €y predicts the noise in x;. Latent Diffusion Models [21] apply this process in the latent space
of a pretrained VAE, enabling sampling from ¢,4(z|z) without needing x.

Set Transformer [18] is an attention-based architecture for sets, enforcing permutation invariance.
Its core components are the Self-Attention Block (SAB) and Pooling by Multihead Attention (PMA),
both built from the Multihead Attention Block (MAB), namely

MAB(X,Y) = LayerNorm(H + rFF(H)), H = LayerNorm(X + MHA(X,Y,Y)),

where rFF is a row-wise feedforward network and MHA is Multihead Attention [[26]. SAB applies
MAB(X, X) to model interactions within a set, while PMA uses MAB(S, X) with p learnable seed
vectors S € RP*? to produce p pooled outputs (e.g., p = 1 for a single graph-level representation).
To reduce attention complexity from O(n?) to O(nm), one can use the Induced Set Attention Block
(ISAB), which introduces m learnable inducing points I and computes MAB(X, MAB(I, X)).

Graph Normalization (GraphNorm) [4]] is a normalization technique for Graph Neural Networks
(GNNS5) that normalizes node features within each graph using a learnable shift parameter, enhancing
convergence speed and generalization performance. Mathematically,

hij —aj - 1y + B
N VR

Ey
j
where fij = £ 3" hiy, 63 = =37 (hij — oy )?, B; and v; are learnable affine parameters

and «; controls the fraction of the mean subtracted before scaling.

GraphNorm(h; ;) = 7;
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3 Method

We introduce a model that retains the overall structure of the VGAE while substantially modifying its
components. We now describe each element in detail.

3.1 Preprocessing

We compute the normalized Laplacian of each graph and use its first d eigenvectors as node embed-
dings. No additional node features are required; the model relies solely on the adjacency structure.
These embeddings are computed once before training and serve as input to the model.

3.2 Generative model

Prior. 'We define the latent space with a global variable 2, for each graph and local variables z; for
eachnode i € [1,...,n|. Specifically, we assume

po(20,2) = po(20) Hpe(zz‘ | 20),
i=1
The global latent variable z is initialized as zo ~ N(0, I) at the start of a Latent Diffusion Model.
It is then evolved through a diffusion process, guided by a simple MLP score network, to generate
samples from g, (2o | ). Conditioned on the global variable, the local variables are assumed a priori
to be distributed according to a K-component Gaussian mixture (denoted GMg), e.g

zi | 20 ~ GMk ({me(20) Yoz, {mr(20) et {o% (20)}izn) -

By conditioning the parameters of the node-level Gaussian mixture on zg, the prior explicitly defines
Zo as a global context for all the nodes, expecting it to capture high-level graph properties.

Decoder. We propose an expressive, learnable decoder that leverages Self-Attention Blocks (SABs)
from the Set Transformer, while injecting information from the global latent zy. For each node i, an
intermediate representation h; is computed after L. SAB layers. These representations incorporate
both local node information and aggregated information from other nodes via attention, as well as
global context derived from zy. Specifically, the global latent is injected into each SAB layer by
concatenating the node embedding h with a linearly transformed version of zy through a small MLP.
Moreover, we alternate attention blocks with Graph Normalization [4] layers.

Edge probabilities between nodes ¢ and j are then computed using a bilinear layer:
P(Ai; = 1]z, 20) = o (bW (z0) by +b(20) )

where W (z() and b(z) are functions of the global latent, allowing the model to assign graph-specific
parameters to the bilinear interaction. This design enables each edge prediction to depend on local
node features, attention-weighted information from other nodes, and graph-level context provided
by zp, making the decoder highly expressive and adaptable to the structure of each graph. The
whole architecture satisfies permutation invariance as it involves only row-wise or set operations.
This means that permuting the nodes in the input of the decoder will result in the same predicted
probabilities.

3.3 Encoder

We replace the GNN encoder of the VGAE with a Set Transformer-inspired encoder ¢(zg, z | ). The
encoder first computes node embeddings from the graph Laplacian eigenvectors. These embeddings
are processed through alternating Self-Attention Blocks (SABs) and Graph Normalization layers to
produce intermediate node representations.

Node-level latent variables z; are then obtained by applying ResNets [[10] to the final node represen-
tations from the last SAB and GraphNorm layer, predicting the mean and variance of a Gaussian
distribution for each node. The global latent zy is computed by pooling the node representations
with a Pooling by Multihead Attention (PMA) block, followed by ResNets that predict its Gaussian
parameters.

Permutation invariance is maintained throughout, as all operations are either applied row-wise to
individual nodes or are inherently set-based.



3.4 Training and Loss

Training occurs in two stages. First, the VAE is optimized using the ELBO, extended to account
for the global latent, i.e., ¢(z, zo | «) instead of the standard ¢(z | ). Given that the prior over the
node-level latents involves a Gaussian Mixture, part of the KL term (the cross term with the prior)
requires Monte Carlo estimation, as it has no closed form. Second, the latent diffusion score network
is trained using the encoded zj as target data, minimizing the corresponding diffusion loss.

4 Experiments and results

This section presents experiments on both well-known and synthetic datasets. In all experiments, we
set d = 20, i.e., we use the first 20 eigenvectors of the normalized Laplacian as input for the model.
Moreover, we split the Community, MMSBM and LFR datasets into 80% for training and 20% for
testing.

Community First, we conduct a preliminary evaluation of our model on the Community dataset
[28] (see Appendix [A.T), comparing it against GraphRNN using the MMD [9] between degree,
clustering coefficient, and average orbit count statistics. Table[I|shows that our model consistently
improves all metrics on Community.

Table 1: Comparison of our model with GraphRNN on the Community dataset using MMD. The
maximum number of nodes and edges is indicated in brackets. The results for the baseline models
are taken from the original GraphRNN paper [28]].

Community (160,1945)
Degree Clustering Orbit
GraphRNN-S 0.02 0.15 0.01
GraphRNN 0.03 0.03 0.01
Our Model 0.003 0.015 0.00001

MMSBM We evaluate our model on the more challenging Mixed Membership Stochastic Block-
models (MMSBM) after confirming good performance on standard SBMs. We simulated 1,000
graphs with node counts drawn from a Poisson distribution (mean 500), each with a 50% chance of
having 3 or 5 clusters. Cluster sizes and inter-/intra-community connection probabilities vary across
graphs (details in Appendix [A.2). This high variability makes MMSBM a challenging test of model
flexibility. Figure[T|shows that the model accurately approximates the degree distribution and that the
global variable is able to differentiate between the 3-cluster and the 5-cluster graphs
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Figure 1: Latent representation and degree distribution for MMSBM graphs. Left: 2D PCA projection
of the global latent variable zj, where each point represents a graph and colors indicate whether it has
3 or 5 clusters. Right: degree distributions for test graphs (histogram) and generated graphs (KDE),
with dashed vertical lines showing their mean degrees.



LFR. We demonstrate that our model can generate realistic graphs and that the global latent
variable captures meaningful graph-level information. In order to do that, we use the Lanci-
chinetti—Fortunato—Radicchi (LFR) benchmark [[17]. The LFR is commonly regarded as a realistic
and challenging benchmark, reproducing heavy-tailed degree and community distributions commonly
observed in real-world networks [22]]. We generate 3,000 graphs with 500 nodes each. Specifically,
we generate 500 graphs for each of six settings varying based on the fraction of inter-community
edges 1 € {0.1,0.3,0.5} and the maximum degree kmax € {100,200}. The choice of i allows us
to explore graphs with different levels of community strength, ranging from well-separated to highly
mixed communities, while different combinations of p and ky,,x induce variability in the number
of communities in the graphs. For generating all graphs, we set the power-law degree exponent to
71 = 2, the power-law exponent of the community size distribution to 75 = 1 and the average degree
to d = 50. Figure shows that our model is able to correctly approximate the degree distribution of
the test data and that the global variable is able to capture different graph-level information, as the
number of clusters and the maximum degree. For additional results on this experiment, see Appendix

A3
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Figure 2: Latent representation analysis and degree distribution for LFR graphs. Left: 2D PCA
projection of the global latent variable zg, with each point representing a graph and colored by the
number of clusters. Center: same PCA projection, now highlighting graphs with maximum degree
equal to 100 (green) or 200 (purple). Right: comparison between the degree distribution of test graphs
(histogram) and generated graphs (KDE), with dashed lines indicating their means.

5 Conclusion

We presented a set transformer-based generative framework for exchangeable graphs, combining a
Gaussian mixture prior with a global latent variable evolved through latent diffusion. This design
allows the model to capture both local and global structure while maintaining permutation invariance
and interpretability. Our experiments on synthetic but challenging and realistic benchmarks, including
MMSBM and LFR, show that the approach accurately reproduces key graph statistics, such as degree
distributions, and that the global latent encodes meaningful graph-level information.

While promising, our method has limitations: scalability to very large graphs remains challenging,
and performance may degrade on strongly non-exchangeable graph families. Future work will
focus on scaling up using inducing-point variants of the Set Transformer, exploring sparse attention
mechanisms to handle large, sparse graphs, and extending the framework to partially exchangeable or
more structured graph settings.
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A Experiments details

A.1 Community

Data description. The dataset consists of 500 two-community graphs from 60 to 160 nodes, with
each community formed as an Erd§s—Rényi graph (p = 0.3) and 0.05|V| inter-community edges
added uniformly at random.

Latent space and reconstruction. Since all the graphs belong to the same type (2 communities
and same inter- and intra-community probabilities) the global variable is not useful in this case. The
local variable is able to cluster the communities in the latent space. Moreover, the model is able to
reconstruct the edge probabilities accurately as shown in Figure
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Figure 3: Visualization of two graphs from the Community test data. Left: true adjacency matrices
ordered by community membership. Center: reconstructed edge probabilities from the model. Notice
the true value for the intra-community probability is 0.3. Right: 2D PCA projection of the latent node
representations, where each point corresponds to a node and colors indicate its true community.

A.2 MMSBM

Data generating process. The Mixed Membership Stochastic Block Model (MMSBM) follows a
hierarchical generative process. Each graph has K clusters. Cluster membership proportions for each
node are drawn from a Dirichlet distribution:

a ~ Dirichlet(B, ..., B), m; ~ Dirichlet(c),

where we set B = 5. The edge probabilities between nodes depend on cluster assignments: for clus-
ters [ and k, the intra- and inter-cluster connection probabilities 6;;, are drawn from Beta distributions:

0 Beta(60,10), if [ = k (within-cluster)
tk Beta(5,40), if # k (between-cluster) -

For each graph, we choose K € {3, 5} with probability 0.5.



Latent space and reconstruction (MMSBM). As Figure[d] shows, the model successfully recovers
the community structure: the reconstructed adjacency shows clear intra- and inter-community patterns.
In the latent space of z, the model is able to distinguish the different clusters. However, in this case,
the clusters are not sharply separated, reflecting the soft memberships of the MMSBM, which is an
expected and desirable behavior.
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Figure 4: Visualization of two MMSBM graphs from the test data. Left: true adjacency matrices
ordered by community membership. Center: reconstructed edge probabilities from the model. Right:
2D PCA projection of the latent node representations, where each point corresponds to a node and
colors indicate its true community.

A3 LFR

Data description. The LFR benchmark produces heterogeneous networks with heavy-tailed degree
and community size distributions. Full details of the generation process are provided in Section @]

Latent space and reconstruction (LFR). FigureE]illustrates the model’s reconstruction and the
latent space of nodes for LFR graphs. The reconstructed adjacency matrices reveal clearly connected
communities with sparser inter-community links. In the latent space of z, nodes from the same
community tend to cluster together, emphasizing the community structure. Nonetheless, due to the
more complex and heterogeneous nature of LFR graphs, further interpretation of the latent geometry
is less straightforward.
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Figure 5: Visualization of two LFR graphs from the test data. Left: true adjacency matrices ordered
by community membership. Center: reconstructed edge probabilities from the model. Right: 2D
PCA projection of the latent node representations, where each point corresponds to a node and colors
indicate its true community.

Table 2: Model architecture and training settings across experiments.

Setting Community MMSBM LFR
Hidden dimension 24 32 24
Node latent dimension (2) 10 10 10
Global latent dimension (zg) 10 10 10
SAB layers (Encoder / Decoder) 4/4 4/4 3/3
Batch size 10 10 5
Epochs 20 10 5
Attention heads 4 4 4
Gaussian mixture components (K) 10 10 10
Score network hidden dimension 128 128 128
Training time ~5 min ~27min  ~53 min
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