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ABSTRACT

We study linear contextual bandits in the misspecified setting, where the expected
reward function can be approximated by a linear function class up to a bounded
misspecification level ζ > 0. We propose an algorithm based on a novel data
selection scheme, which only selects the contextual vectors with large uncertainty
for online regression. We show that, when the misspecification level ζ is domi-
nated by Õ(∆/

√
d) with ∆ being the minimal sub-optimality gap and d being the

dimension of the contextual vectors, our algorithm enjoys the same gap-dependent
regret bound Õ(d2/∆) as in the well-specified setting up to logarithmic factors.
Together with a lower bound adapted from Du et al. (2019); Lattimore et al.
(2020), our result suggests an interplay between misspecification level and the
sub-optimality gap: (1) the linear contextual bandit model is efficiently learnable
when ζ ≤ Õ(∆/

√
d); and (2) it is not efficiently learnable when ζ ≥ Ω̃(∆/

√
d).

We also extend our algorithm to reinforcement learning with linear Markov deci-
sion processes (linear MDPs), and obtain a parallel result of gap-dependent regret.
Experiments on both synthetic and real-world datasets corroborate our theoretical
results.

1 INTRODUCTION

Linear contextual bandits (Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011; Agrawal &
Goyal, 2013) have been extensively studied when the reward function can be represented as a linear
function of the contextual vectors. However, such a well-specified linear model assumption some-
times does not hold in practice. This motivates the study of misspecified linear models. In particular,
we only assume that the reward function can be approximated by a linear function up to some worst-
case error ζ called misspecification level. Existing algorithms for misspecified linear contextual
bandits (Lattimore et al., 2020; Foster et al., 2020) can only achieve an Õ(d

√
K + ζK

√
d logK)

regret bound, where K is the total number of rounds and d is the dimension of the contextual vector.
Such a regret, however, suggests that the performance of these algorithms will degenerate to be linear
in K when K is sufficiently large. The reason for this performance degeneration is because existing
algorithms, such as OFUL (Abbasi-Yadkori et al., 2011) and linear Thompson sampling (Agrawal
& Goyal, 2013), utilize all the collected data without selection. This makes these algorithms vulner-
able to “outliers” caused by the misspecified model. Meanwhile, the aforementioned results do not
consider the sub-optimality gap in the expected reward between the best arm and the second best
arm. Intuitively speaking, if the sub-optimality gap is smaller than the misspecification level, there is
no hope to obtain a sublinear regret. Therefore, it is sensible to take into account the sub-optimality
gap in the misspecified setting, and pursue a gap-dependent regret bound.

The same misspecification issue also appears in reinforcement learning with linear function approx-
imation, when a linear function cannot exactly represent the transition kernel or value function of
the underlying MDP. In this case, Du et al. (2019) provided a negative result showing that if the
misspecification level is larger than a certain threshold, any RL algorithm will suffer from an ex-
ponentially large sample complexity. This result was later revisited in the stochastic linear bandit
setting by Lattimore et al. (2020), which shows that a large misspecification error will make the
bandit model not efficiently learnable. However, these results cannot well explain the tremendous
success of deep reinforcement learning on various tasks (Mnih et al., 2013; Schulman et al., 2015;
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2017), where the deep neural networks are used as function approximators with misspecification
error.

In this paper, we aim to understand the role of model misspecification in linear contextual ban-
dits through the lens of sub-optimality gap. By proposing a new algorithm with data selection, we
can achieve a constant regret bound for such a problem. We also extend our algorithm to the lin-
ear Markov decision processes (Jin et al., 2020) and obtain a regret bound of similar flavor. Our
contributions are highlighted as follows:

• We propose a new algorithm called DS-OFUL (Data Selection OFUL). DS-OFUL only learns
from the data with large uncertainty. We prove an Õ(d2∆−1) gap-dependent regret1 bound when
the misspecification level is small (i.e., ζ = Õ(∆/

√
d)) and the minimal sub-optimality gap

∆ is known. Our regret bound improves upon the gap-dependent regret in the well-specified
setting (Abbasi-Yadkori et al., 2011) by a logarithmic factor. To the best of our knowledge, this
is the first constant gap-dependant regret bound for misspecified linear contextual bandits, even
assuming a known minimal sub-optimality gap.

• We also prove a gap-dependent lower bound following the lower bound proof technique in Du
et al. (2019); Lattimore et al. (2020). This together with the upper bound suggests an interplay
between the misspecification level and the sub-optimality gap: the linear contextual bandit is
efficiently learnable if ζ ≤ Õ(∆/

√
d) while it is not efficiently learnable if ζ ≥ Ω̃(∆/

√
d).

• We extend the same idea to the misspecified linear MDP, and propose an algorithm called DS-
LSVI (Data-Selection LSVI). DS-LSVI enjoys a gap-dependent regret bound, which suggests a
similar interplay between the misspecification level and sub-optimality gap in episodic MDPs to
achieve a logarithmic regret bound Õ(H5d3∆−1 log(K))

• Finally, we conduct experiments on the linear contextual bandit with both synthetic and real
datasets, and demonstrate the superior performance of DS-OFUL algorithm. This corroborates
our theoretical results.

Notation. Scalars and constants are denoted by lower and upper case letters, respectively. Vectors
are denoted by lower case bold face letters x, and matrices by upper case bold face letters A. We de-
note by [k] the set {1, 2, · · · , k} for positive integers k. For two non-negative sequence {an}, {bn},
an = O(bn) means that there exists a positive constant C such that an ≤ Cbn, and we use Õ(·) to
hide the log factor in O(·) other than number of rounds T or episode K; an = Ω(bn) means that
there exists a positive constant C such that an ≥ Cbn, and we use Ω̃(·) to hide the log factor. For a
vector x ∈ Rd and a positive semi-definite matrix A ∈ Rd×d, we define ∥x∥2A = x⊤Ax. For any
set C, we use |C| to denote its cardinality.

2 RELATED WORK

In this section, we review the related work for misspecified linear bandits and misspecified rein-
forcement learning. We defer more related work on the function approximation in bandits and RL
to Appendix A.

Misspecified Linear Bandits. Ghosh et al. (2017) is probably the first work considering the mis-
specified linear bandits, which shows that the OFUL (Abbasi-Yadkori et al., 2011) algorithm cannot
achieve a sublinear regret in the presence of misspecification. They, therefore, proposed a new al-
gorithm with a hypothesis testing module for linearity to determine whether to use OFUL (Abbasi-
Yadkori et al., 2011) or the multi-armed UCB algorithm. Their algorithm enjoys the same perfor-
mance guarantee as OFUL in the well-specified setting and can avoid the linear regret under certain
misspecification setting. Lattimore et al. (2020) proposed a phase-elimination algorithm for mis-
specified stochastic linear bandits, which achieves Õ(

√
dK + ζK

√
d) regret bound. For contextual

linear bandits, both Lattimore et al. (2020) and Foster et al. (2020) proved a Õ(d
√
K + ζK

√
d)

regret bound. Takemura et al. (2021); Vial et al. (2022) also provide a similar regret bound without
the knowledge of the misspecification level. Van Roy & Dong (2019) proved a lower bound of sam-
ple complexity, which suggests when ζ

√
d ≥

√
8 log |D|, any best arm identification algorithm will

1we use notationÕ(·) to hide the log factor other than number of rounds T
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suffer a Ω(2d) sample complexity, where D is the decision set. When the outcome is deterministic
and does not contain noise, they provided an algorithm using Õ(d) sample complexity to identify a
∆-optimal arm when ζ ≤ ∆/

√
d. Lattimore et al. (2020) also mentioned that if ζ

√
d ≤ ∆, there

exists a best arm identification algorithm can only use Õ(d) arms to find a ∆-optimal arm with
the knowledge of ζ. Note that although the exponential sample complexity lower bound for best
arm identification can be translated into a regret lower bound in linear contextual bandits, the al-
gorithms for best-arm identification and the corresponding upper bounds cannot be easily extended
to linear contextual bandits. Besides these works on misspecification, He et al. (2022) studies the
linear contextual bandits with adversarial corruptions, which can be considered as a similar setting
of misspecification. They assume the summation of the approximation error over all K rounds is
bounded by the corruption level C. They proposed an algorithm achieving Õ(d

√
K + dC) regret

bound. However, their result in adversarial corrupted bandits cannot be directly translated to the
misspecification setting since letting C = Kζ will lead to a O(d

√
K + dKζ) linear regret. Besides

these series of work, Camilleri et al. (2021) also studies the robustness of kernel bandit algorithms
on the misspecification.

Misspecification in Reinforcement Learning Du et al. (2019) showed that having a good rep-
resentation is insufficient for efficient reinforcement learning unless the approximation error (i.e.,
misspecification level) by the representation is small enough. In particular, Du et al. (2019) sug-
gested that a Ω̃(

√
H/d) misspecification will lead to Ω(2H) sample complexity for RL to find the

optimal policy, even with a generative model. On the other hand, a series of work (Jin et al., 2020;
Zanette et al., 2020b; Foster & Rakhlin, 2020) provided Õ(

√
T + ζT )-type regret bound for RL in

various settings, ignoring the dependence on the dimension of the feature representation d and the
planing horizon H . This suggests that the performance of RL will degenerate as the total number
of interactions with the environment T increases. Also, these results do not consider the minimal
sub-optimality gap of the action-value function. Du et al. (2020) considered the agnostic Q-learning
with misspecified linear function approximation. They proposed an algorithm with the access to a
generative model and showed that if ζ ≤ Õ(∆/

√
d), one can find the optimal policy using O(d) tra-

jectories. Together with the lower bound provided in Du et al. (2019), it suggests that ζ = Õ(∆/
√
d)

is a sufficient and necessary condition to achieve a polynominal sample complexity given the access
to the generative model.

3 PRELIMINARIES OF LINEAR CONTEXTUAL BANDITS

We consider a linear contextual bandit problem. In round k ∈ [K], the agent receives a decision
set Dk ⊂ Rd and selects an arm xk ∈ Dk then observes the reward rk = r(xk) + εk, where
r(·) : Rd 7→ [0, 1] is a deterministic expected reward function and εk is a zero-mean R-sub-Gaussian
random noise. i.e., E[eλεk |x1:k, ε1:k−1] ≤ exp(λ2R2/2),∀k ∈ [K], λ ∈ R.

In this work, we assume that all contextual vector x ∈ Dk satisfies ∥x∥2 ≤ L and the reward
function r(·) : Rd → [0, 1] can be approximated by a linear function r(x) = x⊤θ∗ + η(x),
where η(·) : Rd 7→ [−ζ, ζ] is the unknown misspecification error function. We further assume
∥θ∗∥2 ≤ B and for simplicity, we assume B,L ≥ 1. We denote the optimal reward at round k as
r∗k = maxx∈Dk

r(x) and the optimal arm x∗
k = argmaxx∈Dk

r(x). Our goal is to minimize the
regret defined by Regret(K) :=

∑K
k=1 r

∗
k − r(xk).

In this paper, we focus on the minimal sub-optimality gap condition.

Definition 3.1 (Minimal sub-optimality gap). For each x ∈ Dk, the sub-optimality gap ∆k(x)
is defined by ∆k(x) := r∗k − r(x) and the minimal sub-optimality gap ∆ is defined by ∆ :=
mink∈[K],x∈Dk

{∆k(x) : ∆k(x) > 0}.

Then we further assume this minimal sub-optimality gap is strictly positive, i.e., ∆ > 0.

4 PROPOSED ALGORITHM

In this section, we propose our algorithm, DS-OFUL, in Algorithm 1. The algorithm runs for K
rounds. In each round, the algorithm first estimates the underlying parameter θ∗ by solving the
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following ridge regression problem in Line 3

θk = argminθ
∑

i∈Ck−1

(
ri − x⊤

i θ
)2

+ λ∥θ∥22,

where Ck−1 is the index set of the selected contextual vectors for regression and is initialized as
an empty set at the beginning. After receiving the contextual vectors set Dk, the algorithm selects
an arm from the optimistic estimation powered by the Upper Confidence Bound (UCB) bonus in
Line 4. In line 5, the algorithm adds the index of current round into Ck if the UCB bonus of the
chosen arm xk, denoted by ∥xk∥U−1

k
, is greater than the threshold Γ. Intuitively speaking, since the

UCB bonus reflects the uncertainty of the model about the given arm x, Line 5 discards the data that
brings little uncertainty (∥x∥U−1

k
) to the model. Finally we denote the total number of selected data

in Line 5 by |CK |. We will declare the choices of the parameter Γ, β and λ in the next section.

Algorithm 1 Data Selection OFUL (DS-OFUL)

Input: Threshold Γ, radius β and regularizor λ
1: Initialize C0 = ∅,U0 = λI,θ0 = 0
2: for k = 1, . . . ,K do
3: Set Uk = λI+

∑
i∈Ck−1

xix
⊤
i , θk = U−1

k

∑
i∈Ck−1

rixi.
4: Receive decision set Dk, select xk = argmaxx∈Dk

{
x⊤θk + β∥x∥U−1

k

}
, receive reward rk

5: if ∥xk∥U−1
k

≥ Γ then Ck = Ck−1 ∪ {k} else Ck = Ck−1

6: end for

5 REGRET ANALYSIS

In this section, we provide the regret upper bound of Algorithm 1 and the regret lower bound for
learning the misspecified linear contextual bandit.

Theorem 5.1 (Upper Bound). For any 0 < δ < 1, let λ = B−2 and Γ = ∆/(2
√
dι1) where

ι1 = (24 + 18R) log((72 + 54R)LB
√
d∆−1) +

√
8R2 log(1/δ). Set β = 1 + 4

√
dι2 + R

√
2dι3

where ι2 = log(3LBΓ−1), ι3 = log((1 + 16L2B2Γ−2ι2)/δ). If the misspecification level is
bounded by 2

√
dζι1 ≤ ∆, then with probability at least 1− δ, the cumulative regret of Algorithm 1

is bounded by

Regret(K) ≤
32β

√
2d3ι2 log(1 + 16dΓ−2ι2)ι1

∆
.

Remark 5.2. Since β = Õ(
√
d), Theorem 5.1 suggests an Õ(d2∆−1) constant regret bound in-

dependent of the total number of rounds K when ζ ≤ Õ(∆/
√
d). This suggests an Õ(d2∆−1)

constant regret bound if the misspecification level is reasonably small, which improves the loga-
rithmic regret Õ(d2∆−1 log(K) in Abbasi-Yadkori et al. (2011) to a constant regret2. Note that
our constant regret bound relies on the knowledge of the minimal sub-optimality gap ∆, while the
OFUL algorithm in Abbasi-Yadkori et al. (2011) does not need prior knowledge about the minimal
sub-optimality gap ∆.

Remark 5.3. Our high probability constant regret bound does not violate the lower bound proved
in Hao et al. (2020), which says that certain diversity condition on the contexts is necessary to
achieve an expected constant regret bound (Papini et al., 2021). In contrast, we only provide a high-
probability constant regret bound. When extending this high probability constant regret bound to
expected regret bound, we have

E[Regret(K)] ≤ Õ(d2∆−1 log(1/δ))(1− δ) + δK,

which depends on K. To obtain a sub-linear expected regret, we can set δ = 1/K which yields a
logarithmic regret Õ(d2∆−1 log(K)) and does not violate the lower bound in Hao et al. (2020).

2When we say constant regret, we ignore the log(1/δ) factor in the regret as we choose δ to be a constant.
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Furthermore, following the similar idea in Lattimore et al. (2020), we can prove a gap-dependent
lower bound for misspecified stochastic linear bandits. Note that stochastic linear bandit can be seen
as a special case of linear contextual bandits with a fixed decision set Dk = D across all round
k ∈ [K]. Similar result and proof can be found in Du et al. (2019) for episodic reinforcement
learning.
Theorem 5.4 (Lower Bound). Given the dimension d and the number of arms |D|, for any ∆ ≤ 1

and ζ ≥ 3∆
√
8 log(|D|)/(d− 1), there exists a set of stochastic linear bandit problems Θ with

minimal sub-optimality gap ∆ and misspecification error level ζ, such that for any algorithm that
has a sublinear expected regret bound for all θ ∈ Θ, i.e., E[Regretθ(K)] ≤ CKα with C > 0 and
0 ≤ α < 1, we have

• When K ≤ O(|D|), the expected regret is lower bounded by Eθ∼Unif.(Θ)[Regretθ(K)] ≥ K∆.

• When K ≥ Ω(|D|), the expected regret is lower bounded by supθ∈Θ E[Regretθ(K)] ≥
Ω̃(|D| log(K)∆−1).

Remark 5.5. Theorem 5.4 shows two regimes under the case ζ ≥ Ω̃(∆/
√
d). In the first regime

K ≤ O(|D|) where the decision set is large (e.g., |D| = d100), any algorithm will suffer from a
linear regret Õ(∆K), which suggests that the regime cannot be efficiently learnable. In the second
regime K ≥ O(|D|), Theorem 5.4 suggests a Ω̃(|D|∆−1 log(K)) regret lower bound, which is
matched by the multi-armed bandit algorithm with an upper bound Õ(|D|∆−1 log(K)) (Lattimore
& Szepesvári, 2020). Therefore, in this easier regime, linear function approximation cannot provide
any performance improvement and one can simply adopt the multi-armed bandit algorithm to learn
the bandit model.
Remark 5.6. Theorems 5.1 and 5.4 provide a holistic picture about the role of misspecification in
linear contextual bandits. Here we focus on the more difficult regime K ≤ |D|. In the regime K ≤
|D|, when ζ ≤ Õ(∆/

√
d), Theorem 5.1 suggests that the bandit problem is efficiently learnable,

and our algorithm DS-OFUL can achieve a constant regret, which improves upon the logarithmic
regret bound in the well-specified setting (Abbasi-Yadkori et al., 2011). On the other hand, when
ζ ≥ Ω̃(∆/

√
d), Theorem 5.4 provides a linear regret lower bound suggesting that the bandit model

can not be efficiently learned.

6 PROOF SKETCH OF THEOREM 5.1

In this section, we give an overview of the main technical difficulty and our proof technique to derive
Theorem 5.1. The detailed proof is deferred to Appendix C.

First, we aim at controlling the number of rounds in the index set CK . Since we only select the data
with ∥xk∥U−1

k
≥ Γ for ridge regression, we can lower bound the summation of the selected UCB

terms as
∑

k∈CK
∥xk∥U−1

k
≥ |CK |Γ. On the other hand, noticing that Uk =

∑
i∈Ck−1

xkx
⊤
k , we

can upper bound the summation of UCB terms by using the elliptical potential lemma from Abbasi-
Yadkori et al. (2011) as

∑
k∈CK

∥xk∥U−1
k

≤ Õ(
√
d|CK |). Combining the upper bound and lower

bound together we can bound the total number of the selected data |CK | as Γ|CK | ≤ Õ(
√
d|CK |),

which suggests that |CK | ≤ Õ(dΓ−2) which is irreverent with the total number of rounds K.

Second, we control the fluctuations in the regression with misspecification error by |x⊤(θk−θ∗)| ≤
Õ(R

√
d+ζ

√
|CK |)∥x∥U−1

k
. Compare this result with the original result |x⊤(θk−θ∗)| ≤ Õ(R

√
d+

ζ
√
dK)∥x∥U−1

k
in Jin et al. (2020), our confidence radius Õ(R

√
d+ ζ

√
|CK |) does not grow with

the total number of rounds K. In fact, directly use the result in Jin et al. (2020) and follow the proof
outline in Abbasi-Yadkori et al. (2011) will lead to the following regret bound:

Regret(K) ≤ Õ
(
R
√
d+ ζ

√
dK
)∑K

k=1∥x∥U−1
k

≤ Õ
(
Rd

√
K + ζdK

)
,

which suggests a linear regret bound. As a comparison, with the help of data selection rule in our
work, the regression set CK is finite and we can avoid the linear regret when using all data into
regression. In addition, our result provides a

√
d tighter bound compared with Jin et al. (2020) by

using the result provided in Zanette et al. (2020c)
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Based on these two key observations, we overcome the linear regret bound by partitioning the total
round K into two different sets. The first set contains all non-selected round, i.e. [K] \ CK . In this
situation, the uncertainty satisfies ∥xk∥U−1

k
< Γ and we can prove that when ζ ≤ Õ(∆/

√
d), the

instantaneous regret for the un-selected round is bounded by

r∗k − r(xk) ≤ 2ζ + 2Õ(R
√
d+ ζ

√
d|CK |)Γ < ∆,

which suggests that the non-selected data is optimal and incur no regret.

For the data in the finite set CK , we follows the gap-dependent regret bound in Abbasi-Yadkori et al.
(2011) to show that

∑
k∈G r∗k − r(xk) ≤ Õ(d2∆−1) log(|CK |). As a result, by partition the set [K]

into two subsets [K] \ CK , CK , we get the claimed cumulative regret bound by

Regret(K) =
∑

[K]\CK

Reg(k) +
∑
CK

Reg(k) ≤ Õ
(
d2 log(|CK |)

∆

)
+ 0,

where we denote Reg(k) as the instantaneous regret in round k (i.e. r∗k − r(xk)).

7 MISSPECIFIED LINEAR MDPS

7.1 PRELIMINARIES OF LINEAR MDPS

We consider the episodic Markov Decision Process (MDP). Each episodic MDP is defined by a tuple
M(S,A, H, {rh}Hh=1, {Ph}Hh=1) where S is the state space, A is the action space, H is the length
of each episode and rh : S ×A 7→ [0, 1] is the reward function at stage h. Ph is the transition kernel
where Ph(s

′|s, a) denotes the transition probability from state s to s′ with action a at stage h. At the
beginning of each episode, the agent determines a policy π := {πh}Hh=1 where πh : S 7→ A. Then
from stage h = 1 to h = H , the agent repeatedly receives state sh, takes the action ah = πh(sh),
receives the reward rh(sh, ah) and the next state sh+1. For any policy π, the value function and the
Q-function at stage h is defined by

V π
h (s) = E

[∑H
h′=hrh′(sh′ , πh′(sh′))

∣∣∣sh = s
]
,

Qπ
h(s, a) = rh(s, a) + E

[
V π
h+1(sh+1)|sh = s, ah = a

]
.

It’s obvious that for all policy π, for all h ∈ [H], s ∈ S and a ∈ A, the value function and the
Q-function is bounded by 0 ≤ V π

h (s) ≤ H , 0 ≤ Qπ
h(s, a) ≤ H since rh(s, a) ∈ [0, 1]. We further

define the optimal value function and the optimal Q-function as

V ∗
h (s) = max

π
V π
h (s), Q∗

h(s, a) = max
π

Qπ
h(s, a).

For simplicity, we denote [PhV ](s, a) = Es′∼Ph(·|s,a)[V (s′)] and we have the Bellman equation
along with the Bellman optimality equation as

Qπ
h(s, a) = rh(s, a) + [PhV

π
h+1](s, a), Q∗

h(s, a) = rh(s, a) + [PhV
∗
h+1](s, a). (7.1)

We consider the ζ-approximate linear MDP setting (Jin et al., 2020) in this work to study the impact
of misspecification on function approximations in reinforcement learning.
Definition 7.1 (ζ-approximate linear MDP, Jin et al. 2020). For any ζ ≤ 1, we say that MDP
M(S,A, H, {rh}, {Ph}) is a ζ-approximate linear MDP with feature map ϕ : S × A 7→ Rd, if
for any h ∈ [H], there exists d unknown (signed) measures µh =

(
µ
(1)
h , · · · , µ(d)

h

)
over S and an

unknown vector θ∗
h ∈ Rd such that for any (s, a) ∈ S ×A,

∥Ph(·|s, a)− ⟨ϕ(s, a),µh(·)⟩ ∥TV ≤ ζ, |rh(s, a)− ⟨ϕ(s, a),θ∗
h⟩ | ≤ ζ,

w.l.o.g. we assume ∥ϕ(s, a)∥2 ≤ 1 for all (s, a) ∈ S × A and max{∥µh(S)∥2, ∥θ∗
h∥2} ≤

√
d for

all h ∈ [H].

Under Definition 7.1, it is easy to show that the Q-function under a certain policy π is close to a
linear function of the feature map ϕ.
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Lemma 7.2 (Lemma C.1, Lemma C.2, Jin et al. 2020). For a ζ-approximate linear MDP, for any
policy π, there exists a corresponding {wπ

h}h such that for any (s, a, h) ∈ S ×A× [H]:

|Qπ
h(s, a)− ⟨ϕ(s, a),wπ

h⟩| ≤ 2Hζ, ∥wπ
h∥2 ≤ 2H

√
d.

We are concerning about minimizing the cumulative regret defined by Regret(K) =∑K
k=1 V

∗
1 (s

k
1)− V πk

1 (sk1), where πk is the policy used in the k-th episode. Similar to linear contex-
tual bandits, we introduce the minimal sub-optimality gap ∆ originally defined in He et al. (2021a)
Definition 7.3 (Minimal sub-optimality gap, He et al. 2021a). For each (s, a, h) ∈ S × A × [H],
the sub-optimality gap ∆h(s, a) is defined as ∆h(s, a) := V ∗

h (s) −Q∗
h(s, a) and the minimal sub-

optimality gap is defined as ∆ = minh,s,a{∆h(s, a) : ∆h(s, a) > 0}.

We further assume this minimal sub-optimality gap is strictly positive, i.e., ∆ > 0.

7.2 PROPOSED ALGORITHM

We propose our algorithm, DS-LSVI, for misspecified linear MDP in Algorithm 2. It applies the idea
of DS-OFUL to the LSVI-UCB (Jin et al., 2020). For simplicity, we denote ϕk

h = ϕ(skh, a
k
h), r

k
h =

rh(s
k
h, a

k
h) for short when there is no confusion. The algorithm runs for K episodes. In the k-

th episode, the algorithm estimates the optimal Q-function using a linear function as indicated by
Lemma 7.2. In detail, at each stage h, after acquiring the estimated value function V k

h+1(·) at state
h+ 1, in Line 4, the algorithm solves the following ridge regression problem

wk
h = argminw∥w∥22 +

∑
i∈Ck−1

(〈
ϕi

h,w
〉
− rih − V k

h+1(s
i
h+1)

)2
,

where Ck−1 contains the indices of episodes selected for regression and rih+V k
h+1(s

i
h+1) is the esti-

mated Q-function by Bellman optimality equation (7.1). Then the algorithm takes the greedy policy
based on the estimated Q-function and receives the full episode. In Line 12, the algorithm adds the
episode k into the regression index set Ck if the data on k-th episode provides more uncertainty (i.e.
∥ϕ∥U−1 ≥ Γ) at any stage h ∈ [H]. The intuition behind this selection is the same as Line 5 in
Algorithm 1 when dealing with linear bandits: when one episode provide a data sample with large
uncertainty at any stage, we add it to the regression. Otherwise, the episode will be ignored if the
whole episode provide few uncertainty.

Algorithm 2 Data Selection LSVI (DS-LSVI)

Input: Threshold Γ, radius β
1: Initialize C0 = ∅,U0

h = I,w0
h = 0 for all h ∈ [H], V k

H+1(s) = Qk
H+1(s, a) = 0 for all (s, a)

2: for episodes k = 1, . . . ,K do
3: for stage h = H, . . . , 1 do
4: Uk

h = I+
∑

i∈Ck−1
ϕi

h(ϕ
i
h)

⊤ wk
h =

(
Uk

h

)−1∑
i∈Ck−1

ϕi
h

(
rih + V k

h+1(s
i
h+1)

)
5: Qk

h(·, ·) =
〈
ϕ(·, ·),wk

h

〉
+ β∥ϕ(·, ·)∥(Uk

h)
−1

6: V k
h (·) = min{maxa{Qk

h(·, a)}, H}, πk
h(·) = argmaxa{Qk

h(·, a)}
7: end for
8: Receive initial state sk1
9: for stage h = 1, . . . ,H do

10: Take action akh = πk
h(s

k
h) and receive reward rkh and next state skh+1

11: end for
12: Ck = Ck−1 ∪ {k} if ∃h ∈ [H], ∥ϕk

h∥(Uk
h)

−1 ≥ Γ else = Ck−1

13: end for

7.3 REGRET ANALYSIS

We provide the regret upper bound of Algorithm 2 for the ζ-approximate linear MDP. The proof is
deferred to Appendix F.

Theorem 7.4 (Upper Bound). Let Γ = Θ̃(∆d−1H−2), β = Õ(Hd), with probability at least
1 − δ, if ζ = Õ(∆d−0.5H−2.5), the cumulative regret of Algorithm 2 is bounded by Regret(K) ≤
Õ(H5d3∆−1 log(K)).

7
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Remark 7.5. Theorem 7.4 suggests that if the misspecification level ζ is upper bounded by
O(∆d−0.5H−2.5), we can achieve the same logarithmic regret bound Õ(H5d3∆−1) as the well-
specified setting (He et al., 2021a). This result indicates that a reasonably small misspecification
will not deteriorate the performance. Our result improves the original regret bound Õ(

√
d3H4K +

ζdH2K) for the misspecified linear MDP provided in Jin et al. (2020).

Remark 7.6. Compared with the linear contextual bandit results, our result in the linear MDP set-
ting also suggests the same relationship among ζ, ∆ and dimension d, ignoring the horizon factor
H . Du et al. (2019) showed that when ζ ≥ Ω̃(∆/

√
d), any reinforcement learning algorithm suf-

fers an O(2H) sample complexity. In addition, Du et al. (2020) provided algorithm for agnostic
Q-learning which takes Õ(d) trajectories to find the optimal policy when ζ < ∆/

√
d. However,

their algorithm relies on a generative model which takes multiple actions a for the same state s at
the same time. In contrast, Theorem 7.4 suggests that an Õ(∆d−0.5H−2.5) misspecification level
can lead to a logarithmic regret without accessing the generative model.

8 EXPERIMENTS

Table 1: Averaged cumulative regret and
elapsed time (E.T.) of DS-OFUL over 32 runs.

Γ Regret (mean±std.) E.T.(sec)

0 2 305.15± 43.98 10.26
0.02 332.28± 76.17 7.75
0.05 256.265± 61.28 5.96
0.08 184.75± 61.91 5.21
0.20 374.63± 277.51 4.56
LSW 348.73± 69.28 4046
RLB 415.52± 65.37 8.66

2 When Γ = 0, our algorithm degrades to OFUL
LSW: Using Eq. (6) in Lattimore et al. (2020)

RLB: Robust Linear Bandit (Ghosh et al., 2017)

To verify the performance improvement by data
selection using the UCB bonus in Algorithm 1,
we conduct experiments for bandit tasks on both
synthetic and real-world datasets, which we will
describe in detail below. We also carry out exper-
iments for linear MDPs on a synthetic dataset in
Appendix B.4.

8.1 SYNTHETIC DATASET

The synthetic dataset is composed as follows: we
set d = 16 and generate parameter θ∗ ∼ N (0, Id)
and contextual vectors {xi}Ni=1 ∼ N (0, Id) where
N = 100. The generated parameter and vec-
tors are later normalized to be ∥θ∗∥2 = ∥xi∥2 =
1. The reward function is calculated by ri =
⟨θ∗,xi⟩ + ηi where ηi ∼ Unif{−ζ, ζ}. The con-
textual vectors and reward function is fixed after generated. The random noise on the receiving
rewards εt are sampled from the standard normal distribution.

We set the misspecification level ζ = 0.02 and verified that the sub-optimality gap over the N
contextual vectors ∆ ≈ 0.18. We do a grid search for β = {1, 3, 10}, λ = {1, 3, 10} and report
the cumulative regret of Algorithm 1 with different parameter Γ = {0, 0.02, 0.05, 0.08, 0.2} over
32 independent trials with total rounds K = 2000. It’s obvious that when Γ = 0, our algorithm
degrades to the standard OFUL algorithm (Abbasi-Yadkori et al., 2011) which uses data from all
rounds into regression.

The result is shown in Figure 1(b) and the average cumulative regret on the last round is reported in
Table 1 with its variance over 32 trials. We can see that by setting Γ ≈ ∆/

√
d≈ 0.18/

√
16 ≈ 0.05,

Algorithm 1 can achieve less cumulative regret compared with OFUL (Γ = 0). The algorithm with
a proper choice of Γ also convergences to zero instantaneous regret faster than OFUL. It is also
evident that a slightly larger Γ = 0.08 will not affect the performance but a too large Γ = 0.20 ≥ ∆
will cause the algorithm to fail to learn the contextual vectors and induce a linear regret. Also, our
algorithm shows that using a larger Γ can significantly boost the speed of the algorithm by reducing
the number of regressions needed in the algorithm.

We also compare with the algorithm (LSW) in Equation (6) of Lattimore et al. (2020) and the
RLB in Ghosh et al. (2017) in Figure 1(b) and Table 1. For Lattimore et al. (2020), the estimated
reward is updated by r(x) = x⊤θk + β∥x∥U−1

k
+ ε

∑k
s=1 |x⊤U−1

k x−1
s |. However, since the term

ε
∑k

s=1 |x⊤U−1
k x−1

s | is hard to be updated incrementally w.r.t. k, this algorithm is less efficient
than OFUL Abbasi-Yadkori et al. (2011) as well as our algorithm. For the RLB algorithm in Ghosh
et al. (2017), we did the hypothesis test for k = 10 rounds and then decided whether to use OFUL

8
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or multi-armed UCB. The results show that both LSW and RLB achieve a worse regret than OFUL
since in our setting ζ is relatively small.
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(a) Cumulative regret comparison of DS-OFUL
(with difference choices of Γ), Lattimore et al.
(2020) and RLB over 2000 rounds. Results are
averaged over 32 replicates.
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(b) Cumulative regret of DS-OFUL on the Asirra
dataset over 1M rounds with different Γ under misspec-
ification level ζ = 0.01. Results are averaged over 8
runs with standard errors shown as shaded areas.

Figure 1: Experiment results on (a): synthetic dataset, and (b): real-world dataset.

8.2 REAL-WORLD DATASET

To demonstrate that the proposed algorithm can be easily applied to modern machine learning tasks,
we carried out experiments on the Asirra dataset (Elson et al., 2007). The task of agent is to dis-
tinguish the image of cats from the image of dogs. At each round k, the agent receives the feature
vector ϕ1,k ∈ R512 of a cat image and another feature vector ϕ2,k ∈ R512 of a dog image. Both
feature vectors are generated using ResNet-18 (He et al., 2016) pretrained on ImageNet (Deng et al.,
2009). We normalize ∥ϕ1,k∥2 = ∥ϕ2,k∥2 = 1. The agent is required to select the cat from these
two vectors. It receives reward rt = 1 if it selects the correct feature vector, and receives rt = 0
otherwise. It is trivial that the sub-optimality gap of this task is ∆ = 1. To better demonstrate
the influence of misspecification on the performance of the algorithm, we only select the data with
|ϕ⊤

i θ
∗ − ri| ≤ ζ with ri = 1 if it is a cat and ri = 0 otherwise. θ∗ is a pretrained parameter on the

whole dataset using linear regression θ∗ = argminθ
∑N

i=1(ϕ
⊤
i θ − ri)

2, which the agent does not
know.

For hyper-parameter tuning, we select β = {1, 0.3, 0.1} and λ = {1, 3, 10} by doing a grid search
and repeat the experiments for 8 times over 1M rounds for each parameter configuration. As shown
in Figure 1(a), when ζ = 0.01, though the OFUL algorithm (setting Γ = 0) will have a better
performance at the very beginning, setting Γ = 0.05 ≈ ∆/

√
d = 1/

√
512 will eventually improve

the performance of the algorithm. As a sensitivity analysis, we also set ζ = {0.5, 0.1, 0.05} to
test the impact of misspecification on the performance of algorithm choices of Γ. More experiment
configurations and results are deferred to Appendix B.

9 CONCLUSION AND FUTURE WORK

We study the misspecified linear contextual bandit from a gap-dependent perceptive. We propose
an algorithm and show that if the misspecification level ζ ≤ Õ(∆/

√
d), the proposed algorithm can

achieve the same gap-dependent regret bound as in the well-specified case. Along with Lattimore
et al. (2020); Du et al. (2019), we provide a complete picture on the interplay between misspecifica-
tion and sub-optimality gap, in which ∆/

√
d plays an important role on the phase transition of ζ to

decide if the bandit model can be efficiently learned. The algorithm and analysis have been extended
to linear Markov decision processes and verified via experiments as well.

The promising result suggests a few interesting directions for future research. For example, it re-
mains unclear if we can get rid of the prior knowledge of the minimum sub-optimality gap to achieve
similar regret guarantees. It would also be interesting to incorporate the Lipschitz continuity or
smoothness properties of the reward function to derive fine-grained results.
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A ADDITIONAL RELATED WORK

Linear Contextual Bandits. There is a large body of literature on linear contextual bandits. For
example, Auer (2002); Chu et al. (2011); Agrawal & Goyal (2013) studied linear contextual bandits
when the number of arms is finite. Abbasi-Yadkori et al. (2011) proposed an algorithm called OFUL
to deal with the infinite arm set. All these works come with an Õ(

√
K) problem-independent regret

bound, and an O(d2∆−1 log(K)) gap-dependent regret bound is also given by Abbasi-Yadkori et al.
(2011).

RL with Linear Function Approximation. To tackle RL tasks in large state space, a line of work
on RL with linear function approximation has emerged in the past years. For example, linear
MDPs (Yang & Wang, 2019; Jin et al., 2020) is probably one of the most widely studied models
where both the transition kernel and the reward function are linear functions of a known feature
mapping. Typical algorithms in this setting include LSVI-UCB (Jin et al., 2020) and randomized
LSVI (Zanette et al., 2020a), both of which can achieve a sublinear regret. Besides, linear mix-
ture/kernel MDPs (Modi et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021) has
emerged as a popular model for model-based RL with linear function approximation, in which the
transition kernel is defined as a mixture of feature mappings defined on the triplet of state, action, and
next state. In this setting, nearly minimax optimal regret has been attained for both finite-horizon
episodic MDPs and infinite-horizon discounted MDPs (Zhou et al., 2021). The aforementioned
works are focused on the problem-independent regret bound, while He et al. (2021a) provided a
gap-dependent regret bound for both linear MDPs (i.e., Õ(d3H5∆−1)) and linear mixture MDPs
(i.e., Õ(d2H5∆−1)).

B EXPERIMENT DETAILS AND ADDITIONAL RESULTS

B.1 EXPERIMENT CONFIGURATION

The experiment on synthetic dataset is conducted on Google Colab with a 2-core Intel® Xeon® CPU
@ 2.20GHz. The experiment on the real-world Asirra dataset (Elson et al., 2007) is conducted on
an AWS p2-xlarge instance.

B.2 DATA PREPROCESSING FOR THE ASIRRA DATASET

Table 2: The number of remaining data samples after data
processing with expected misspecification level

ζ # of cats # of dogs

∞ (without preprocessing) 12500 12500
0.5 (linear separable) 10316 10511

0.1 3182 3248
0.05 2408 2442
0.01 1886 1905

To demonstrate how our algorithm
can deal with different levels of mis-
specification, we do data preprocess-
ing before feeding the data into the
agent. As described in Section 8.2,
the remaining data with expected
misspecification level ζ are shown
in Table 2. It can be verified that
even with the smallest misspecifica-
tion level, there are still more than
10% of the data is selected.

B.3 ADDITIONAL RESULT ON
THE ASIRRA DATASET

As a sensitivity analysis, we change the misspecification level in the preprocessing part in the Asirra
dataset. The result is shown in Figure 2. This result suggests that when the misspecification is
small enough, setting Γ = ∆/

√
d can deliver a reasonable result. It is aligned with the parameter

setting in our theorem. Meanwhile, we found that when ζ = 0.5, which means it is strictly larger
than the threshold ∆/

√
d, the algorithm cannot achieve a similar performance with of ζ < 0.1,

regardless of the setting of parameter Γ. This also verifies the theoretical understanding of how a
large misspecification level will harm the performance of the algorithm.
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Figure 2: The performance of DS-OFUL under different misspecification level ζ. Results are aver-
aged over 8 runs with standard errors shown as shaded areas.

B.4 ADDITIONAL EXPERIMENTS ON MISSPECIFIED LINEAR MDPS

To further verify the performance of our algorithm in misspecified linear MDPs, we generate a
synthetic MDP as follows. We select S = 6, A = 4, H = 2 and generate ϕ(s, a) and µ(s′) ∼
Unif.(0d,1d) where d = 3 respectively. Since H = 2, we define the first-stage transition kernel as

P1(s
′|s, a) = ⟨ϕ(s, a),µh(s

′)⟩+ η(s′)/S

with normalization ϕ(s, a) = ϕ(s, a)/
∑

s∈[S] ⟨ϕ(s, a),µh(s
′)⟩. The misspecification error η(s′)

satisfies that |η(s′)| ≤ 2 × 10−3 and
∑

s′∈[S] η(s
′) = 0. The reward is generated by r(s, a) =

⟨ϕ(s, a),θ⟩ + η(s, a) with |η(s, a)| ≤ 5 × 10−3. It is easy to verify that the generated MDP is
a ζ-approximate linear MDP with ζ = 5 × 10−3 according to Definition 7.1. Then with the true
transition kernel and the reward function, we can calculate that the minimal sub-optimality gap for
the generated MDP is ∆ ≈ 0.0101.

According to our theory, we choose β = {1, 3, 10} and report the cumulative regret with different
choices of Γ. The results are shown in Table 3 and Figure 3. Three key observations can be revealed
from the experiment result in Table 3. First, choosing Γ = 0.01 can achieve the best performance
(lowest cumulative regret). Second, choosing 0.005 ≤ Γ ≤ 0.01 can also lead to a comparable
constant regret, according to Table 3, but smaller Γ may not lead to zero instantaneous regret within
200K rounds. Third, setting Γ > ∆ will lead to a linear regret.

In addition, our algorithm degrades to LSVI-UCB algorithm Jin et al. (2020) by setting Γ = 0.
For misspecified linear MDPs, the algorithm studied in Theorem 3.2 of Jin et al. (2020) is still
LSVI-UCB with a different choices of confidence radius β. In our experiments the β is tuned as
a hyper-parameter. Therefore, the experiment results suggest that our algorithm outperforms the
LSVI-UCB algorithm in the misspecified setting.
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(a) Averaged cumulative regret of DS-LSVI over
8 replicates with different choices of Γ.
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Figure 3: The performance of DS-LSVI with different choices of Γ. (a): averaged cumulative regret
w.r.t number of rounds. (b): cumulative regret after 200K rounds with different choices of Γ.
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Table 3: Averaged cumulative and instantaneous regret of DS-LSVI over 8 replicates for 200K
rounds with different choice of Γ (see the footnote for the specific choice of Γ). “Last 1K rounds
cumulative regret” means the total regret incurred in the very last 1K rounds, in order to verify the
final performance of the algorithm. “Total 200K rounds cumulative regret” means the total regret
incurred during the entire 200K rounds.

Γ
Last 1K rounds cumulative regret

(mean±std.)
Total 200K round cumulative regret

(mean±std.)

0.01 0.133± 0.291 541.9± 27.0
0.001 0.118± 0.215 557.1± 44.2
0.002 0.295± 0.480 563.7± 36.5
0.003 0.523± 0.323 551.2± 13.6
0.004 0.185± 0.133 548.3± 19.5
0.0052 0.00± 0.00 527.7± 23.0
0.006 0.00± 0.00 455.6± 21.4
0.007 0.00± 0.00 413.6± 19.2
0.008 0.00± 0.00 373.4± 13.3
0.009 0.00± 0.00 350.7± 10.3
0.01 0.00± 0.00 310.6± 14.3
0.011 2.053± 1.185 624.2± 194.5

1 When Γ = 0, our algorithm degrades to LSVI-UCB
2 Γ = 0.005 ≈ ∆/

√
d = 0.0101/

√
3 in this setting

C DETAILED PROOF OF THEOREM 5.1

In this section, we provide the detailed proof for Theorem 5.1. First, we present a technical lemma
to bound the total number of data used in the online linear regression in Algorithm 1.
Lemma C.1. Given 0 < Γ ≤ 1, set λ = B−2. For any k ∈ [K], |Ck| ≤ 16dΓ−2 log(3LBΓ−1).

Lemma C.1 suggests that up to Õ(dΓ−2) contextual vectors has a UCB bonus greater than Γ. A
similar result is also provided in He et al. (2021b), suggesting a Õ(Γ−2) Uniform-PAC sample
complexity. Lemma C.1 also suggests that the numbers of data added in regression set C is finite,
thus the regression procedure is not affected critically by the noise and the misspecification error.

For a linear regression with up to |Ck| data, the next lemma is crucial in controlling the fluctuations
with misspecification error.
Lemma C.2. Let λ = B−2. For all δ > 0, with probability at least 1− δ, for all x ∈ Rd, k ∈ [K],
the estimation error is bounded by:

|x⊤(θk − θ∗)| ≤
(
1 +R

√
2dι+ ζ

√
|Ck|
)
∥x∥U−1

k
,

where ι = log((d+ |Ck|L2B2)/(dδ)) and |Ck| is the total number of data used in regression at k-th
round.

Lemma C.2 provides a similar decomposition as the well-specified linear contextual bandits algo-
rithms like OFUL (Abbasi-Yadkori et al., 2011). However, comparing the confidence radius here
Õ(R

√
d + ζ

√
|Ck−1|) with the conventional radius in OFUL Õ(R

√
d), one can find that the mis-

specification term will affect the radius in an
√
|CK | order. If we directly use all data to do the

regression, the confidence radius will be in the order of Õ(
√
K) and therefore would lead to a

O(K
√
logK) regret bound (see Lemma 11 in Abbasi-Yadkori et al. (2011)). This makes the regret

bound trivial since it goes beyond the trivial regret upper bound O(K) when K grows larger. In
ours, however, the confidence radius is only

√
|CK | where |CK | is finite given Lemma C.1. As a

result, our regret bound will not grow with K as OFUL, and will have a more stable prediction.

When the misspecification level is well bounded by ζ = Õ(∆/
√
d), the following corollary is a

direct result of Lemmas C.2 by replacing the term |CK | with its upper bound provided in Lemma C.1.

Corollary C.3. Suppose 2
√
dζι1 ≤ ∆, let λ = B−2 and 0 < Γ ≤ 1. Let β = 1+2∆Γ−1√ι2/ι1+

R
√
2dι3 where ι2 = log(3LBΓ−1), ι3 = log((1+16L2B2Γ−2ι2)/δ), then with probability at least
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1−δ, for all x ∈ Rd, k ∈ [K], the estimation error at round k ∈ [K] is bounded by: |x⊤(θk−θ∗)| ≤
β∥x∥Uk

−1 .

Proof. By Lemma C.1, replacing |CK | with its upper bound yields

|x⊤(θk − θ∗)| ≤ (1 + 4
√
dζΓ−1√ι2 +R

√
2dι3)∥x∥U−1

k
≤ β∥x∥U−1

k
,

where the second inequality is due to the condition 2
√
dζ ≤ ∆/ι1.

Next we introduce an auxiliary lemma controlling the instantaneous regret bound using the UCB
bonus and the misspecification level.

Lemma C.4. Suppose Corollary C.3 holds, for all k ∈ [K], the instantaneous regret at round k is
bounded by

∆k(xk) = r∗k − r(xk) ≤ 2ζ + 2β∥xk∥U−1
k
.

The next auxiliary lemma from He et al. (2021a) bounds the summation of a subset of the self-
normalized vectors.

Lemma C.5 (Lemma 6.6, He et al. 2021a). For any subset G = {c1, · · · , ci} ⊆ CK , we have∑
k∈G

∥xk∥2U−1
k

≤ 2d log(1 + |G|L2/λ).

The next two technical algebra lemma is used to control the dominated terms

Lemma C.6. Let ι1 = (24+18R) log((72+54R)LB
√
d∆−1)+

√
8R2 log(1/δ), Γ = ∆/(2

√
dι1),

ι2 = log(3LBΓ−1), ι3 = log((1 + 16L2B2Γ−2ι2)/δ), we have ι1 > 2 + 4
√
ι2 +R

√
2ι3.

Equipped with these lemmas, we can start the proof of Theorem 5.1.

Proof of Theorem 5.1. First, it worth mentioning that by setting Γ = ∆/(2
√
dι1), the confidence

radius β becomes 1 + 4
√
dι2 + R

√
2dι3. Then our proof starts with assuming that Corollary C.3

holds with probability at least 1− δ. We decompose the index set [K] into two subsets. The first set
is [K] \ CK indicating the non-selected data, the second set is the selected set CK . We will bound
the cumulative regret within two set separately.

First, for those non-selected data k /∈ Ck, i.e. ∥xk∥U−1
k

< Γ, combining Lemma C.4 with Corol-
lary C.3 yields

r∗k − r(xk) < 2ζ + 2βΓ = 2ζ +
∆√
dι1

+

√
2ι3R∆

ι1
+

4∆
√
ι2

ι1
, (C.1)

where ι1, ι2, ι3 are the same as Theorem 5.1, and the second equation is from Γ = ∆/(2
√
dι1).

When misspecification condition 2
√
dζ ≤ ∆/ι3 holds, (C.1) suggests that

r∗k − r(xk) <
2∆√
dι1

+
4∆

√
ι2

ι1
+

√
2ι3R∆

ι1
. (C.2)

Lemma C.6 suggests that when ι1 = (24 + 18R) log((72 + 54R)LB
√
d∆−1) +

√
8R2 log(1/δ)

ι1 > 2 + 4
√
ι2 +R

√
2ι3, (C.2) yields that the instantaneous regret r∗k − r(xk) < ∆ at round k. By

Definition 3.1, the instantaneous regret is zero for all k /∈ Ck, indicating the non-selected data can
incur zero instantaneous regret.
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Then Lemma C.4 suggests that the instantaneous regret for those k ∈ CK is bounded by∑
k∈CK

r∗k − r(xk) ≤
∑
k∈CK

(
2β∥ϕk∥U−1

k
+ 2ζ

)
≤ 2β

√
|CK |

√∑
k∈CK

∥ϕk∥2U−1
k

+ 2|CK |ζ

≤ 8βΓ−1
√

dι2
√
2d log(1 + 16dΓ−2ι2) + 32ζdΓ−2ι2

≤ 16β
√
2d3ι2 log(1 + 16dΓ−2ι2)ι1/∆+ 64

√
d3ι1ι2/∆

≤ 32β
√
2d3ι2 log(1 + 16dΓ−2ι2)ι1/∆, (C.3)

where the second inequality follows the C.S. inequality, the third one yields from Lemma C.5 while
the fourth utilize the fact that Γ = ∆/(2

√
dι1) and ζ ≤ ∆/(2

√
dι1). The last one is due to the fact

that the second term in the forth inequality is dominated by the first one.

To warp up, the cumulative regret can be decomposed by

Regret(K) =
∑
k/∈CK

(r∗k − r(xk)) +
∑
k∈CK

(r∗k − r(xk)) ≤ 0 +
32β

√
2d3ι2 log(1 + 16dΓ−2ι2)ι1

∆
,

where the first two zeros are given by the fact that for k /∈ CK , we have r∗k − r(xk) = 0. the regret
bound for k ∈ G is given by (C.3).

D PROOF OF TECHNICAL LEMMAS IN APPENDIX C

D.1 PROOF OF LEMMA C.1

To prove this lemma, we introduce the well known elliptical potential lemma by Abbasi-Yadkori
et al. (2011)

Lemma D.1 (Lemma 11, Abbasi-Yadkori et al. 2011). Let {ϕi}Ii=1 be a sequence in Rd, define
Ui = λI+

∑i
j=1 ϕjϕ

⊤
j , then

I∑
i=1

min
{
1, ∥ϕi∥2U−1

i−1

}
≤ 2d log

(
λd+ IL2

λd

)
.

Then the following auxiliary lemma and its corollary are useful

Lemma D.2 (Lemma A.2, Shalev-Shwartz & Ben-David 2014). Let a ≥ 1 and b > 0. Then
x ≥ 4a log(2a) + 2b yields x ≥ a log(x) + b.

Lemma D.2 can easily indicate the following lemma.

Lemma D.3. Let a ≥ 1. Then x ≥ 4 log(2a) + a−1 yields x ≥ log(1 + ax).

Proof. Let y = 1 + ax, x = (y − 1)/a. Then x ≥ 4 log(2a) + a−1 is equivalent with y ≥
4a log(2a)+2. By Lemma D.2, this implies y ≥ a log(y)+1 which is exactly x ≥ log(1+ax).

Equipped with these technical lemmas, we can start our proof.

Proof of Lemma C.1. Since the cardinality of set Ck is monotonically increasing w.r.t. k, we fix k
to be K in the proof and only provide the bound of CK . For all selected data k ∈ CK , we have
∥ϕk∥U−1

k
≥ Γ. Therefore when Γ ≤ 1, the summation of the UCB bonus over data k ∈ CK is lower

bounded by ∑
k∈CK

min
{
1, ∥ϕk∥2U−1

k

}
≥ |CK |min{1,Γ2} = |CK |Γ2. (D.1)
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On the other hand, Lemma D.1 implies∑
k∈CK

min
{
1, ∥ϕk∥2U−1

k

}
≤ 2d log

(
λd+ |CK |L2

λd

)
. (D.2)

Combining (D.2) and (D.1), the total number of the selected samples |CK | is bounded by

Γ2|CK | ≤ 2d log

(
λd+ |CK |L2

λd

)
.

This result can be re-organized as

Γ2|CK |
2d

≤ log

(
1 +

2L2

Γ2λ

Γ2|CK |
2d

)
. (D.3)

Let λ = B−2 and since 2L2B2 ≥ 2 ≥ Γ2, Lemma D.3 suggests that if

Γ2|CK |
2d

> 4 log

(
4L2B2

Γ2

)
+ 1 ≥ 4 log

(
4L2B2

Γ2

)
+

Γ2

2L2B2
,

then (D.3) will not hold. Thus the necessary condition for (D.3) is

Γ2|CK |
2d

≤ 4 log

(
4L2B2

Γ2

)
+ 1 = 8 log

(
2LB

Γ

)
+ log(e) = 8 log

(
2LBe

1
8

Γ

)
< 8 log

(
3LB

Γ

)
.

By basic calculus we get the claimed bound for |CK | and complete the proof of Lemma C.1.

D.2 PROOF OF LEMMA C.2

The proof follows the standard technique for linear bandits, we first introduce the self-normalized
bound for vector-valued martingales from Abbasi-Yadkori et al. (2011).
Lemma D.4 (Theorem 1, Abbasi-Yadkori et al. 2011). Let {Ft}∞t=0 be a filtration. Let {εt}∞t=1 be a
real-valued stochastic process such that εt is Ft-measurable and εt is conditionally R-sub-Gaussian
for some R ≥ 0. Let {ϕt}∞t=1 be an Rd-valued stochastic process such that ϕt is Ft−1 measurable
and ∥ϕ∥2 ≤ L for all t. For any t ≥ 0, define Ut = λI +

∑t
k=1 ϕkϕk. Then for any δ > 0, with

probability at least 1− δ, for all t ≥ 0∥∥∥∥∥
t∑

k=1

ϕkεk

∥∥∥∥∥
2

U−1
t

≤ 2R2 log

( √
det(Ut)√
det(U0)δ

)
.

Lemma D.5 (Lemma 8, Zanette et al. (2020c)). Let {ai}di=1 be any sequence of vectors in Rd and
{bi}di=1 be any sequence of scalars such that |bi| ≤ ϵ. For any λ > 0:∥∥∥∥∥

n∑
i=1

aibi

∥∥∥∥∥
2

[
∑n

i=1 aia⊤
i +λI]

−1

≤ nϵ2.

The next lemma is to bound the perturbation of the misspecification
Lemma D.6. Let {ηk}k be any sequence of scalars such that |ηk| ≤ ζ for any k ∈ [K]. For any
index subset C ⊆ [K], define U = λI+

∑
k∈C xkx

⊤
k , then for any x ∈ Rd, we have∣∣∣∣x⊤U−1

∑
k∈C

xkηk

∣∣∣∣ ≤ ζ
√
|C|∥x∥U−1 .

Proof. By Cauchy-Schwartz inequality we have∣∣∣∣∣x⊤U−1
∑
k∈C

xkηk

∣∣∣∣∣ ≤ ∥x∥U−1

∥∥∥∥∥∑
k∈C

xkηk

∥∥∥∥∥
U−1

≤ ζ
√

|C|∥x∥U−1 ,

where the second inequality dues to lemma D.5.
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The next lemma provides the Determinant-Trace inequality.
Lemma D.7. Suppose sequence {xk}Kk=1 ⊂ Rd and for any k ∈ [K], ∥xk∥2 ≤ L. For any index
subset C ⊆ [K], define U = λI+

∑
k∈C xkx

⊤
k for some λ > 0, then det(U) ≤ (λ+ |C|L2/d)d.

Proof. The proof of this lemma is almost the same with Lemma 10 in Abbasi-Yadkori et al. (2011)
by replacing the index set [K] with any subset C. We refer the readers to check Abbasi-Yadkori et al.
(2011) for details.

Equipped with these lemmas, we can start our proof.

Proof of Lemma C.2. For any k ∈ [K], considering the data samples k′ ∈ Ck−1 used for regression
at round k. Following the update rule of Uk and θk yields

Uk(θk − θ∗) = UkU
−1
k

( ∑
k′∈Ck−1

xk′rk′

)
−
(
λI+

∑
k′∈Ck−1

xk′x⊤
k′

)
θ∗

=
∑

k′∈Ck−1

xk′rk′ − λθ∗ −
∑

k′∈Ck−1

xk′x⊤
k′θ∗

= −λθ∗ +
∑

k′∈Ck−1

xk′(rk′ − x⊤
k′θ∗)

= −λθ∗ +
∑

k′∈Ck−1

xk′εk′ +
∑

k′∈Ck−1

xk′ηk′ ,

where the first equation is due to the fact that Uk = λI +
∑

k′∈Ck−1
xkx

⊤
k and θk =

U−1
k

∑
k′∈Ck−1

xk′rk′ . The last equation follows the fact that rk′ is generated from rk′ =

r(xk′) + εk′ = x⊤
k′θ∗ + η(xk′) + εk′ , where we denote η(xk′) as ηk′ for the model misspecifi-

cation error and εk′ is the random noise. Therefore, consider any contextual vector x ∈ Rd, we
have ∣∣x⊤(θk − θ∗)

∣∣ = ∣∣x⊤U−1
k Uk(θk − θ∗)

∣∣
≤ λ

∣∣x⊤U−1
k θ∗∣∣︸ ︷︷ ︸

q1

+

∣∣∣∣x⊤U−1
k

∑
k′∈Ck−1

ϕk′εk′

∣∣∣∣︸ ︷︷ ︸
q2

+

∣∣∣∣x⊤U−1
k

∑
k′∈Ck−1

ϕk′ηk′

∣∣∣∣︸ ︷︷ ︸
q3

,

where the inequality is due to the triangles inequality. Lemma D.6 yields q3 ≤ ζ
√
|Ck−1|∥x∥U−1

k
.

From the fact that |x⊤Ay| ≤ ∥x∥A∥y∥A, we can bound term q1 by

q1 ≤ ∥x∥U−1
k
∥θ∗∥U−1

k
≤ λ−1/2B∥x∥U−1

k
. (D.4)

where the last inequality is due to the fact that U−1
i ⪯ λ−1I. Term q2 is also bounded as

q2 ≤ ∥x∥U−1
k

∥∥∥∥∥ ∑
k′∈Ck−1

xk′εk′

∥∥∥∥∥
U−1

k

= ∥x∥U−1
k

∥∥∥∥∥
K∑

k′=1

1 [k′ ∈ Ck−1]xk′εk′

∥∥∥∥∥
U−1

k︸ ︷︷ ︸
I1

, (D.5)

where the second equation uses the indicator to replace the summation over subset Ck−1. Denoting
yk′ = 1 [k′ ∈ Ck−1]xk′ , noticing that ∥yk∥2 ≤ ∥xk∥2 ≤ L and

Uk =
∑

k′∈Ck−1

xk′x⊤
k′ =

K∑
k′=1

1 [k′ ∈ Ck−1]xk′x⊤
k′ =

K∑
k′=1

yk′y⊤
k′ ,

by Lemma D.4, I1 can be further bounded by

I1 ≤

√√√√2R2 log

( √
det(Uk)√
det(U0)δ

)
≤ R

√
2 log

(
det(Uk)

det(U0)δ

)
= R

√
2 log

(
det(Uk)

λdδ

)
, (D.6)
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where the second inequality follows the fact that det(Uk) ≥ det(U0) = λd. Notice that Uk =
λI +

∑
k′∈Ck−1

xk′x⊤
k′ , lemma D.7 suggests that det(Uk) ≤ (λ + |Ck−1|L2/d)d, plugging this

into (D.6) we have I1 can be finally bounded by

I1 ≤ R

√
2 log

(
(λ+ |Ck−1|L2/d)d

λdδ

)
≤ R

√
2d log

(
dλ+ |Ck−1|L2

dλδ

)
.

Plugging the bound of I1 into (D.5) and combining with (D.4) and Lemma D.6 together, replacing
|Ck−1| with its upper bound |CK | we have with probability at least 1− δ, for all k ∈ [K],x ∈ Rd,

|x⊤(θk − θ∗)| ≤

(
R

√
2d log

(
dλ+ |CK |L2

dλδ

)
+Bλ−1/2 + ζ

√
|CK |

)
∥ϕ∥U−1

k
.

Letting λ = B−2 we get the claimed results.

D.3 PROOF OF LEMMA C.4

Proof. According to the definition of expected reward function r(x), we have for all k ∈ [K],
suppose the condition in Lemma C.2 holds, then

r∗k − rk = η(x∗
k)− η(xk) + (x∗

k)
⊤
θ∗ − x⊤

k θ
∗

≤ 2ζ + (x∗
k)

⊤
θ∗ − x⊤

k θ
∗

= 2ζ + (x∗
k)

⊤
θk + (x∗

k)
⊤
(θ∗ − θk)− x⊤

k θk + x⊤
k (θ

∗ − θk)

≤ 2ζ + (x∗
k)

⊤
θk + β∥x∗

k∥U−1
k

− x⊤
k θk + β∥xk∥U−1

k

≤ 2ζ + x⊤
k θk + β∥xk∥U−1

k
− x⊤

k θk + β∥xk∥U−1
k

≤ 2ζ + 2β∥xk∥U−1
k
,

where the second inequality utilize the fact that |η(x)| ≤ ζ for all x ∈ Dk. The inequality on
the forth line follows Corollary C.3. The inequality on the fifth line is due to the fact that xk =
argmaxx∈Dk

x⊤θk + β∥x∥U−1
k

, which is executed in Line 4 in Algorithm 1.

D.4 PROOF OF LEMMA C.6

Proof. First it is clear to see that
√
2ι3 =

√
2 log(1 + 16L2B2Γ−2ι2) + 2 log(1/δ). Using the fact

that
√
a+ b ≤

√
a+

√
b, it can be further bounded by
√
2ι3 ≤

√
2 log(1 + 16L2B2Γ−2ι2) +

√
2 log(1/δ).

Assuming L ≥ 1, B ≥ 1,Γ = ∆/(2
√
dι1) ≤ 1 yields LBΓ−1 ≥ 1, then by basic calculus one can

verify that

2 + 4
√
ι2 ≤ 6 log(3LBΓ−1),

√
2 log(1 + 16L2B2Γ−2ι2) ≤ 3 log(3LBΓ−1),

therefore we have that

2 + 4
√
ι2 +R

√
2ι3 ≤ (6 + 3R) log(3LBΓ−1) +

√
2 log(1/δ)R

= (6 + 3R) log(6LB
√
d∆−1ι1) +

√
2 log(1/δ)R,

where the last equality is from the fact that Γ = ∆/(2
√
dι1). Lemma D.2 suggests that the necessary

condition for

(6LB
√
d∆−1)ι1︸ ︷︷ ︸
x

≥ (6LB
√
d∆−1)(6 + 3R)︸ ︷︷ ︸

a

log(6LB
√
d∆−1ι1) + (6LB

√
d∆−1)

√
2 log(1/δ)R︸ ︷︷ ︸

b

(D.7)
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is that

(6LB
√
d∆−1)ι1 ≥ 4(6LB

√
d∆−1)(6 + 3R) log(2(6LB

√
d∆−1)(6 + 3R))

+ 2(6LB
√
d∆−1)

√
2 log(1/δ)R,

which suggests that setting

ι1 = (24 + 18R) log((72 + 54R)LB
√
d∆−1) +

√
8R2 log(1/δ)

implies the fact that ι1 ≥ 2 + 4
√
ι2 +R

√
2ι3

E PROOF OF THEOREM 5.4

To begin with, we introduce the lemma providing a sparse vector set in Rd.

Lemma E.1 (Lemma 3.1, Lattimore et al. 2020). For any ε > 0 and d < [|D|] such that d ≥
⌈8 log(|D|)ε−2⌉, there exists a vector set D ⊂ Rd such that ∥x∥2 = 1 for all x ∈ D and | ⟨x,y⟩ | ≤ ε
for all x,y ∈ D and x ̸= y.

Next, we present the Bretagnolle–Huber inequality providing the lower bound to distinguish a sys-
tem.

Lemma E.2 (Bretagnolle–Huber inequality). Let P and Q be probability measures on the same
measurable space (Ω,F), let A ∈ F be an arbitary event. Then

P (A) +Q(Ac) ≥ 1

2
exp(−KL(P,Q)).

For stochastic linear bandit problem with finite arm, we can denote Ti(k) as the number of rounds
the algorithm visit the i-th arm over total k rounds. Then We have the KL-divergence decomposition
lemma.

Lemma E.3 (Lemma 15.1, Lattimore & Szepesvári (2020)). Let ν = (P1, · · · , Pn) be the reward
distributions associated with one n-armed bandit and let ν′ = (P ′

1, · · · , P ′
n) be another n-armed

bandit. Fix some algorithm π and let Pν = Pνπ,Pν′ = Pν′,π be the probability measures on the
canonical bandit model induced by the k-round interconnection of π and ν (respectively, π and ν′).
Then KL(Pν ,Pν′) =

∑n
i=1 Eν [Ti(n)]KL(Pi, P

′
i )

Proof of Theorem 5.4. The proof starts from inheriting the idea from Lattimore et al. (2020). Given
dimension d and the number of arms |D|, setting ε =

√
8 log(|D|)/(d− 1), we can provide the

contextual vector set D such that

∥x∥2 = 1,∀x ∈ D, | ⟨x,y⟩ | ≤
√

8 log(|D|)
d− 1

,∀x,y ∈ D,x ̸= y,

For simplicity, we index the decision set as x1, · · · ,x|D|. Given the minimal sub-optimality gap ∆,
we provide the parameter set Θ as follows:

Θ =
{
θ(i,j) = ∆xi + 2∆xj ,xi,xj ∈ D, i ̸= j

}⋃
{θi = ∆xi,xi ∈ D}.

It can be verified that Θ contains two kinds of θ. The first one θ(i,j) is a mixture of two different
contexts xi,xj with different strength ∆ and 2∆. The second one is θi which only contains features
from one context xi. We can further verify that the size of |Θ| = |D|2 and ∥θ∥2 ≤

√
5∆ for θ ∈ Θ.

For different parameter θ, the reward function is sampled from a Gaussian distribution N (rθ(x), 1),
where the expected reward function is defined as

rθ(i,j)
(x) =


2∆ if x = xj

∆ if x = xi

0 otherwise
, rθi

(x) =

{
∆ if x = xi

0 otherwise
.
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We can verify that the minimal sub-optimality of all these bandit problem is ∆. For different param-
eter θ and input x, by utilizing the sparsity of the set D (i.e. |x⊤y| ≤ ε if x ̸= y), we can verify the
misspecification level as

|rθ(i,j)
(x)− θ⊤

(i,j)x| =


|2∆− 2∆x⊤

j x−∆x⊤
i x| ≤ ∆ε if x = xj

|∆− 2∆x⊤
j x−∆x⊤

i x| ≤ 2∆ϵ if x = xi

|0− 2∆x⊤
j x−∆x⊤

i x| ≤ 3∆ε otherwise

|rθi(x)− θ⊤
i (x)| =

{
|∆−∆x⊤

i x| = 0 if x = xi

|0−∆x⊤
i x| ≤ ∆ε otherwise.

Therefore we have verified that the misspecification level is bounded by ζ = 3∆ε.

The provided bandit structure is hard for any linear algorithm to learn since any algorithm cannot
get any information before it encounters non-zero expected rewards, even regardless of the noise of
the rewards. We following the same method in Lattimore & Szepesvári (2020). If the algorithm
choose arm i at the first round, there would be |D| parameters (i.e. θi,θ(i,·) receiving a non-zero
expected reward. On the second round if the algorithm choose a different arm j, there would be |D|
parameters (i.e. θj ,θ(j,k:k ̸=i) receiving a non-zero expected reward. Therefore the average time of
receiving zero expected reward should be

|D|−2

|D|∑
i=1

(i− 1)(|D| − i+ 1) = |D|−2

|D|−1∑
i=0

i(|D| − i)

= |D|−2

|D|
|D|−1∑
i=0

i−
|D|−1∑
i=0

i2


= |D|−2

(
|D|2(|D| − 1)

2
− |D|(|D| − 1)(2|D| − 1)

6

)
=

|D| − 1

2

(
1− 2|D| − 1

3|D|

)
≥ |D| − 1

6
,

where the third equation is from the fact that
∑n

i=1 i = n(n+ 1)/2 and
∑n

i=1 i
2 = n(n+ 1)(2n+

1)/6. The last inequality is from the fact that 2|D| − 1)/(3|D|) ≤ 2/3. Therefore, even without
of the random noise, any algorithm is expected to receive min{K, (|D| − 1)/6} uninformative data
with expected reward to be zero. Therefore any algorithm will receive a ∆min{K, (|D| − 1)/6}
regret considers the suboptimality as ∆.

Next, we consider the effect of random noise. For any algorithm running on this parameter set Θ,
we find two parameter θi and θi,j where j ̸= i. Define the event as A = {Tj(k) ≥ k/2} and
Ac = {Tj(k) < k/2}. By Lemma E.2 and Lemma E.3,

Pθi

(
Tj(k) ≥

k

2

)
+ Pθ(i,j)

(
Tj(k) <

k

2

)
≥ 1

2
exp(−KL(Pθi

,Pθ(i,j)
))

≥ 1

2
exp

(
−
∑
n∈D

Eθi
[Tn(k)]KL

(
Pθ(i,j),n,Pθj ,n

))
.

(E.1)

Noticing the minimal sub-optimality gap is ∆. Also the j-th arm is the sub-optimal arm for pa-
rameter θi. Therefore, once Tj(k) ≥ k/2, the algorithm will at least suffer from ∆k/2 regret for
parameter θi. Also, since the j-th arm is the optimal arm for bandit θ(i,j). If Tj(k) < k/2, the
algorithm will also at least suffer from ∆k/2 regret for θ(i,j). Denoting Rθ(k) as the expected
cumulative regret over k rounds, that is to say

Rθi(k) ≥
∆k

2
Pθi

(Tj(k) ≥ k/2) Rθj
(k) ≥ ∆k

2
Pθi

(Tj(k) < k/2). (E.2)
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On the other hand since the bandit using θi and θj only differ in the j-th arm. Since standard
Gaussian noise is adapted, KL(Pθi,n,Pθ(i,j),n) = ∆2 1[n = j]/2. Combining this with (E.2), (E.1)
suggests that

Rθi(k) +Rθj (k) ≥
∆k

2
exp

(
−∆2

2
Eθi [Tj(k)]

)
,

which suggests that

Eθi
[Tj(k)] ≥

log(∆k)− log 2− log(Rθi
(k) +Rθj

(k))

∆2/2
, (E.3)

For any algorithm seeking to get a sublinear expected regret bound of Rθ(k) ≤ Ckα with C >
0, 0 ≤ α < 1 for all θ ∈ Θ, (E.3) becomes

Eθi
[Tj(k)] ≥

log(∆k)− log 2− log(2Ckα)

∆2/2
=

log(∆k)− log(4C)− α log k

∆2/2
. (E.4)

Since that the regret on θi can be decomposed by

Rθi
(k) = ∆

|D|∑
n=1,n̸=i

Tn(k), (E.5)

combining (E.5) with (E.4) yields

Rθi
(k) ≥ 2(|D| − 1)

∆
max {log(∆k)− log(4C)− α log k, 0} ,

where the max operator is trivially taken for Rθ(k) ≥ 0.

F PROOF OF THEOREM 7.4

In this section we provide the proof of Theorem 7.4, we start from the technical lemmas for the
proof. The first lemma is similar with Lemma C.1 by setting λ = L = 1 as in Definition 7.1 and
taking union for H possible cases

Lemma F.1. Given 0 < Γ ≤ 1. For any k ∈ [K], |Ck| ≤ 8HdΓ−2 log(6HΓ−2).

Then the next lemma extends Lemma C.2 and Lemma C.4 to H > 1 setting and is similar with
Lemma C.5 in Jin et al. (2020), by replacing the total number K with |CK | used in regression

Lemma F.2 (Lemma C.5, Jin et al. 2020). Let β̃ = cβH(d
√
ι2 + ζΓ−1

√
8Hdι1), where ι1 =

log(6HΓ−2), ι2 = log((16H2d2Γ−2ι1)/δ) and cβ is an absolute constant. With probability at least
1− δ, for any fixed policy π and (s, a, h, k) ∈ S ×A× [H]× [K],

ϕ⊤(s, a)wk
h −Qπ

h(s, a) = Ph(V
k
h+1 − V π

h+1)(s, a) + ρkh(s, a),

where |ρkh(s, a)| ≤ β̃∥ϕ(s, a)∥(Uk
h)

−1 + 4Hζ.

Given Lemma F.2 we can provide the rate of confidence radius β by adapting the condition and
parameters setting: on the misspecification level and the parameter setting

Corollary F.3. Let the misspecification level be bounded by ζ = Õ(∆d−0.5H−2.5) and choose
the threshold parameter to be Γ = Θ̃(∆d−1H−2), one can verify that the β̃ in Lemma F.2 can be
bounded by β̃ ≤ β = Õ(Hd).

Given this corollary, we show that the sub-optimality gap is controlled by three parts: summation of
the UCB bonus, misspecification level and the noise induced by the probability transition kernel.
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Lemma F.4. Suppose Corollary F.3 and Lemma F.2 holds, for any subset K ⊆ [K] and h ∈ [H] we
have ∑

k∈K

∆h(s
k
h, a

k
h) ≤

∑
k∈K

V ∗
h (s

k
h)− V πk

h (skh)

≤ 2β
∑
k∈K

H∑
h′=h

∥ϕk
h′∥(Uk

h′)
−1 + 4H2|K|ζ +

∑
k∈K

H∑
h′=h+1

εkh′ ,

where εkh := [Ph(V
k
h+1 − V πk

h+1)](s
k
h, a

k
h) − (V k

h+1(s
k
h+1) − V πk

h+1(s
k
h+1)) is a zero-mean random

variable conditioned on all randomness before episode k.

Then the next lemma suggests that the cumulative regret can be bounded by the summation of sub-
optimality gap at all stage, with high probability
Lemma F.5 (Lemma 6.1, He et al. 2021a). For each MDP M(S,A, H, {rh}, {Ph}), with proba-
bility at least 1− δ, the cumulative regret over K episode is bounded by

Regret(K) ≤ 2
K∑

k=1

H∑
h=1

∆h(s
k
h, a

k
h) +

16H3

3
log

(
log(HK) + 1

δ

)
+ 2.

Equipped with these lemmas, we can start our proof.

Proof of Theorem 7.4. For simplicity, we denote the non-selected episode set as C̃K := [K] \ CK .
We first assume Lemma F.2 holds. We fix stage h and then define the following sequence to apply
the peeling technique which is also used in He et al. (2021a). For 0 ≤ l ≤ log(H/∆)/ log(2), l ∈ N,
let kl0 = 0 and

kli = min{k : k > kli−1, 2
l∆ ≤ ∆h(s

k
h, a

k
h) < 2l+1∆, k ∈ [K]}.

Since ∆h(s, a) ≤ H , there exists 1 + log(H/∆)/ log(2) levels. We further denote Kl =
{kl1, · · · , kl|Kl|} to be the set of the sequence {kli}i. We fix one level l in the following proof.
On the one hand, due to the fact that ∆h(s

k
h, a

k
h) is lower bounded, we have∑

k∈Kl

∆h(s
k
h, a

k
h) ≥ 2l∆|Kl|. (F.1)

On the other hand, Lemma F.4 yields∑
k∈Kl

∆h(s
k
h, a

k
h) ≤ 2β

∑
k∈Kl

H∑
h′=h

∥ϕk
h′∥(Uk

h′)
−1︸ ︷︷ ︸

Il
1

+4H2|Kl|ζ +
∑
k∈Kl

H∑
h′=h

εkh′︸ ︷︷ ︸
Il
2

. (F.2)

By Azuma-Hoeffding’s inequality, with probability at least 1− δ/H , I l2 is bounded by

I l2 ≤

√
2|Kl|H3 log

(
HK

δ

)
. (F.3)

Since [K] = C̃K ∪ CK , term I l1 is be decomposed as

I l1 =
∑
k∈Kl

H∑
h′=h

∥ϕk
h′∥(Uk

h′)
−1 =

∑
k∈Kl∩C̃K

H∑
h′=h

∥ϕk
h′∥(Uk

h′)
−1 +

∑
k∈Kl∩CK

H∑
h′=h

∥ϕk
h′∥(Uk

h′)
−1

≤ HΓ|Kl ∩ C̃K |+H
√

|Kl ∩ CK |
√ ∑

k∈Kl∩CK

∥ϕk
h′∥2

(Uk
h′)

−1

≤ HΓ|Kl ∩ C̃K |+H
√

|Kl ∩ CK |
√
2d log(1 + |Kl ∩ CK |),

≤ HΓ|Kl|+H
√

|Kl|
√
2d log(1 +K), (F.4)
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where the first term in the first inequality utilizes that ∥ϕk
h∥ ≤ Γ for all h if k ∈ C̃K and the second

term is from triangle’s inequality. The second inequality utilizes Lemma C.5. The third inequality
is because both |Kl ∩ CK | and |Kl ∩ C̃K | is smaller than |Kl| as well as K. Plugging (F.3) and (F.4)
into (F.2) then combining (F.2) with (F.1) yields

2l∆|Kl| ≤ (2βHΓ + 4H2ζ)︸ ︷︷ ︸
I3

|Kl|+ βH
√
8|Kl|d log(1 +K) +

√
2|Kl|H3 log

(
HK

δ

)
. (F.5)

Recall the parameter setting β = Õ(Hd), Γ = Õ(∆d−0.5H−2), as long as ζ = Õ(∆d−1H−2.5), it
can be guaranteed that I3 ≤ ∆/2 ≤ 2l∆/2. The calculation of the logarithmic terms can follow the
proof of Theorem 5.1 where we ignore it for simplicity. Plugging this into (F.5) we have that when
the condition on ζ is satisfied,

2l∆|Kl| ≤ βH
√
32|Kl|d log(1 +K) +

√
8|Kl|H3 log

(
HK

δ

)
,

by the fact that (
√
a+

√
b)2 ≤ 2a+ 2b, this implies

4l∆2|Kl| ≤ 64β2H2d log(1 +K) + 16H3 log

(
HK

δ

)
:= I4. (F.6)

This suggests that |Kl| ≤ 4−l∆−2I4 with probability at least 1 − δ/H . Since for all k ∈ Kl,
∆h(s

k
h, a

k
h) < 2l+1∆, the cumulative sub-optimality gap in set Kl is bounded by∑

k∈Kl

∆h(s
k
h, a

k
h) ≤ 2l+1∆× 4−l∆−2I4 ≤ 2× 2−l∆−1I4. (F.7)

Replacing δ with δ/(1+ log(H∆−1)/ log(2)), we have that with probability at least 1− δ/H , (F.7)
holds for all 0 ≤ l ≤ log(H∆−1)/ log(2), l ∈ N by union bound. Therefore we have that

⌊log(H/∆)/ log(2)⌋∑
l=0

∑
k∈Kl

∆h(s
k
h, a

k
h) ≤ 2

∞∑
l=0

2−l∆−1I4 = 4∆−1I4. (F.8)

By union bound we have with probability at least 1− δ, (F.8) holds for all h ∈ [H] thus

K∑
k=1

H∑
h=1

∆h(s
k
h, a

k
h) ≤ 4H∆−1I4. (F.9)

By Lemma F.5, plugging the value of I4 in (F.6) back to (F.9) yields

Regret(K) ≤ 2

K∑
k=1

H∑
h=1

∆h(s
k
h, a

k
h) +

16H3

3
log

(
log(HK) + 1

δ

)
+ 2

≤ 8H∆−1I4 +
16H3

3
log

(
log(HK) + 1

δ

)
+ 2

= 512β2H3d∆−1 log(1 +K) + 128H4∆−1 log(HK/δ)

+
16H3

3
log

(
log(HK) + 1

δ

)
+ 2,

with probability at least 1−3δ by union bound over the probability event in Lemma F.2, Lemma F.5
and (F.9). By Corollary F.3, β = Õ(Hd+

√
H3dζΓ−1) = Õ(Hd), replace δ with δ/3, we have the

regret is bounded by

Regret(K) ≤ Õ(H5d3∆−1 log(K))

with probability at least 1− δ.
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G PROOF OF LEMMAS IN APPENDIX F

G.1 PROOF OF LEMMA F.1

The proof technique is similar with Lemma C.1 equipped with Lemma D.1 and the Lemma D.3.

Proof of Lemma F.1. Since the selected data samples follows that there exists an h ∈ [H] such that
∥ϕk

h∥(Uk
h)

−1 ≥ Γ, therefore the summation of the data is lower bounded by

∑
i∈Ck

H∑
h=1

min

{
1, ∥ϕi

h∥2(Ui
h)

−1

}
≥ |Ck|Γ2, (G.1)

on the other hand, Lemma D.1 yields∑
i∈Ck

H∑
h=1

min

{
1, ∥ϕi

h∥2(Ui
h)

−1

}
≤ 2dH log(1 + |Ck|/d), (G.2)

where λ = L = 1. Combining (G.1) with (G.2) yields

Γ2|Ck| ≤ 2dH log(1 + |Ck|/d), (G.3)

then following the same rule as the proof of Lemma C.1 we have the necessary condition for (G.3)
is

|Ck| ≤ 8HdΓ−2 log(6HΓ−2). (G.4)

G.2 PROOF OF LEMMA F.2

Proof of Lemma F.2. The proof of this lemma follows the proof of Lemma C.5 in Jin et al. (2020),
from which we have

wk
h −wπ

h = −λ(Uk
h)

−1wπ
h︸ ︷︷ ︸

q1

+(Uk
h)

−1
∑

t∈Ck−1

ϕ(sth)[V
t
h+1(s

t
h+1)− [PhV

t
h+1](s

t
h, a

t
h)]︸ ︷︷ ︸

q2

+ (Uk
h)

−1
∑

t∈Ck−1

ϕ(sth, a
t
h)[P̃h(V

t
h+1 − V π

h+1)](s
t
h, a

t
h)︸ ︷︷ ︸

q3

+ (Uk
h)

−1
∑

t∈Ck−1

ϕ(sth, a
t
h)[r

t
h −

〈
ϕ⊤(sth, a

t
h)θh

〉
+ [(Ph − P̃h)V

t
h+1](s

t
h, a

t
h)︸ ︷︷ ︸

q4

where P̃ (·|s, a) is the well-specified transition kernel defined by P̃ (·|s, a) = ⟨µ(·),ϕ(s, a)⟩. From
the proof in Jin et al. (2020) we have that for any (s, a) ∈ S ×A,

| ⟨ϕ(s, a),q1⟩ | ≤
√
λ∥wπ

h∥2∥ϕ(s, a)∥(Uk
h)

−1 ≤
√
λB∥ϕ(s, a)∥(Uk

h)
−1

| ⟨ϕ(s, a),q2⟩ | ≤ Õ(dH)∥ϕ(s, a)∥(Uk
h)

−1

⟨ϕ(s, a),q3⟩ = P̃h(V
k
h+1 − V π

h+1)(s, a) + p2, |p2| ≤ 2H
√
dλ∥ϕ(s, a)∥(Uk

h)
−1 .

For the fourth term, by Lemma D.6, which improves the Lemma C.4 in Jin et al. (2020) by a factor
of

√
d, we have

| ⟨ϕ(s, a),q4⟩ | ≤ 2Hζ
√
|Ck−1∥ϕ(s, a)∥(Uk

h)
−1 .

Finally, since
〈
ϕ(s, a),wk

h −wπ
h

〉
= ⟨ϕ(s, a),q1 + q2 + q3 + q4⟩ we have that

|
〈
ϕ(s, a),wk

h

〉
−Qπ

h(s, a)− [Ph(V
k
h+1 − V π

h+1)](s, a)| ≤ Õ(Hd+Hζ
√
|Ck−1|)∥ϕ(s, a)∥(Uk

h)
−1 ,

plugging the bound of |Ck−1| in Lemma F.1 back we will have the claimed results.
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G.3 PROOF OF LEMMA F.4

The proof of Lemma F.4 follows the same technique from Jin et al. (2020) and we warp it here for
completeness. The first lemma shows that the estimation of Q function is still optimistic regardless
the misspecification.
Lemma G.1 (Lemma C.5, Jin et al. 2020). Under the parameter setting in Theorem 7.4 and
Lemma F.2 holds, we have Qk

h(s, a) ≥ Q∗
h(s, a) − 4H(H + 1 − h)ζ for all (s, a, h, k) ∈

S ×A× [H]× [K].

Next lemma provides the recursive error bound for the estimated value function V k
h (·)

Lemma G.2 (Lemma C.6, Jin et al. 2020). Suppose Lemma F.2 holds, we have for all (h, k) ∈
[H]× [K],

V k
h (skh)− V πk

h (skh) ≤ V k
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)+

[PV k
h+1 − V πk

h+1](s
k
h, a

k
h) + 2β∥ϕ(skh, akh)∥(Uk

h)
−1 ,

where Vh+1(·) = 0.

Proof of Lemma F.4. We first denote εkh as [P (V k
h+1−V πk

h+1)](s
k
h, a

k
h), it’s easy to verify that εkh is a

zero-mean random variable conditioned on all randomness before k-th episode. By Lemma G.1, for
all (s, a, h, k) ∈ S ×A× [H]× [K], we have Qk

h(s, a) ≥ Q∗
h(s, a)− 4H2ζ. Also, by the definition

of minimal sub-optimality gap in Definition 7.3, we have

∆h(s
k
h, a

k
h) = V ∗

h (s
k
h)−Q∗

h(s
k
h, a

k
h)

= Q∗
h(s

k
h, π

∗
h(s

k
h))−Q∗

h(s
k
h, a

k
h)

≤ Qk
h(s

k
h, π

∗
h(s

k
h)) + 4H2ζ −Q∗

h(s
k
h, a

k
h).

Since Algorithm 2 is taking the greedy policy akh = argmaxa Q
k
h(s

k
h, a), the sub-optimality gap is

bounded by

∆h(s
k
h, a

k
h) ≤ Qk

h(s
k
h, a

k
h)−Q∗

h(s
k
h, a

k
h) + 4H2ζ ≤ V k

h (skh)− V π
h (skh) + 4H2ζ, (G.5)

since V πk

h (skh) ≤ V ∗
h (s

k
h). Following Lemma G.2 by telescoping we have

V k
h (skh, a

k
h)− V πk

h (skh, a
k
h) =

H∑
h′=h+1

εkh′ + 2β

H∑
h′=h

∥ϕ(skh′ , akh′)∥(Uk
h′)

−1 . (G.6)

Plugging (G.6) back into (G.5) we will have the result as

∆h(s
k
h, a

k
h) = 4H2ζ +

H∑
h′=h+1

εkh′ + 2β

H∑
h′=h

∥ϕ(skh′ , akh′)∥(Uk
h′)

−1 .

Since it holds for all k ∈ [K], we can take an additional summation over k ∈ K ⊆ [K] to get the
claimed result.
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