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Diffusion-based Negative Sampling on Graphs for Link Prediction
Anonymous

ABSTRACT
Link prediction is a fundamental task for graph analysis with im-

portant applications on the Web, such as social network analysis

and recommendation systems, etc.Modern graph link prediction

methods often employ a contrastive approach to learn robust node

representations, where negative sampling is pivotal. Typical neg-

ative sampling methods aim to retrieve hard examples based on

either predefined heuristics or automatic adversarial approaches,

which might be inflexible or difficult to control. Furthermore, in the

context of link prediction, most previous methods sample negative

nodes from existing substructures of the graph, missing out on

potentially more optimal samples in the latent space. To address

these issues, we investigate a novel strategy of multi-level negative
sampling that enables negative node generation with flexible and

controllable “hardness” levels from the latent space. Our method,

called Conditional Diffusion-based Multi-level Negative Sampling

(DMNS), leverages the Markov chain property of diffusion models

to generate negative nodes in multiple levels of variable hardness

and reconcile them for effective graph link prediction. We further

demonstrate that DMNS follows the sub-linear positivity principle

for robust negative sampling. Extensive experiments on several

benchmark datasets demonstrate the effectiveness of DMNS.
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1 INTRODUCTION
Graph, which consists of nodes and links between them, is a ubiq-

uitous data structure for real-world networks and systems. Link

prediction [27] is a fundamental problem in graph analysis, aiming

to model the probability that two nodes relate to each other in a net-

work or system. Alternatively, given a query node, link prediction

aims to rank other nodes based on their probability of linking to the

query node. Graph link prediction enables a wide range of appli-

cations on the Web, such as friend suggestions in social networks

[6], products recommendation in e-commerce platforms [48], and

knowledge graph completion [1] for many Web-scale knowledge

bases.
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A prominent approach that has been extensively studied for link

prediction is graph representation learning. It trains an encoder

to produce low-dimensional node embeddings that capture the

original graph topology in a latent space. Toward link prediction,

many graph representation learning methods [13, 41, 47] follow

the noise contrastive estimation approach [12], which resorts to

sampling a set of positive and negative nodes for any query node.

Specifically, the encoder is trained to capture graph topology by

bringing positive node pairs closer while separating the negative

pairs in the embedding space. While sampling the positive exam-

ples for link prediction is relatively straightforward (e.g., one-hop
neighbors of the query node), sampling negative examples involves

a huge search space that is quadratic in the number of nodes and a

significant fraction of unlinked node pairs could be false negatives

since not all links may be observed. Hence, studying negative sam-

pling for contrastive link prediction on graphs is a crucial research

problem.

Many strategies have been proposed for negative sampling on

graphs, yet it is often challenging to flexibly model and control the

quality of negative nodes. While uniform negative sampling [13, 41]

is simple, it ignores the quality of negative examples: Harder neg-

ative examples can often contribute more to model training than

easier ones. Many studies explore predefined heuristics to select

hard negative nodes, such as popularity [29], dynamic selections

based on current predictions [51], 𝑘-hop neighborhoods [1], Per-

sonalized PageRank [48], etc. However, heuristics not only need

elaborate designs, but also tend to be inflexible and may not ex-

tend to different kinds of graph. For instance, homophilous and

heterophilous graphs exhibit different connectivity patterns, which

means a good heuristic for one would not work well for the other.

Besides heuristics, automatic methods leveraging generative adver-

sarial networks (GANs) [4, 43] are also popular. They aim to learn

the underlying distribution of the nodes and retrieve harder ones

automatically. However, it is still difficult to flexibly control the

“hardness” of the negative examples for more optimal contrastive

learning. Furthermore, it has been shown that the hardest nega-

tive examples may impair the performance [9, 44], when they are

nearly indistinguishable from the positive ones particularly in the

early phase of training. To overcome this, we propose a strategy

of multi-level negative sampling, where we can flexibly control

the hardness level of the negative examples according to the need.

For instance, easier negative examples can be used to warm-up

model training, while harder ones are more critical to refining the

decision boundary. Overall, a well-controlled mixture of easy and

hard examples are expected to improve learning.

The idea of multi-level negative sampling immediately brings

up the second question: Where do we find enough negative ex-

amples of variable hardness? Most negative sampling approaches

[1, 13, 29, 41, 48, 51] are limited to sampling nodes from the ob-

served graph. However, observed graphs in real-world scenarios are
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often noisy or incomplete, which are not ideal sources for directly

sampling a sufficient mixture of negative examples at different lev-

els of hardness. To tackle this issue, we propose to synthesize more

negative nodes to complement the real ones in the latent space. The

latent space can potentially provide infinite negative examples with

arbitrary hardness, to aid the generation of multi-level negative

examples in a flexible and controllable manner. Although a few

studies [18, 23] also utilize GANs to generate additional samples

in the latent space, they are not designed to synthesize multi-level

examples.

To materialize our multi-level strategy, a natural choice is diffu-

sion models. Recently, diffusion models have achieved promising

results in generation tasks [15, 38], particularly in visual applica-

tions [7, 16]. While GAN-based models are successful in generating

high-fidelity examples, they face many issues in training such as

vanishing gradients and mode collapse [2, 3]. In contrast, diffusion

models follow a reconstruction mechanism that offers a stable train-

ing process [28]. More specific to our context, a desirable property of

diffusion model is that it utilizes a Markov chain with multiple time

steps to denoise random input, where the sample generated at each

time step is conditioned on the sample in the immediately preceding

step. Hence, during the generation process, we can naturally access

the generated samples at different denoised time steps to achieve

our multi-level strategy. Hence, we propose a novel diffusion-based

framework to generate negative examples for graph link prediction,

named Conditional Diffusion-based Multi-level Negative Sampling

(DMNS). On one hand, we employ a diffusion model to learn the

one-hop connectivity distribution of any given query node, i.e., the
positive distribution in link prediction. The diffusion model allows

us to flexibly control the hardness of each negative example by

looking up a specified time step 𝑡 , ranging from a virtually positive

example (or indistinguishable from the positives) when 𝑡 = 0 and

harder examples as 𝑡 → 0, to easier ones amounting to random

noises as 𝑡 → ∞. On the other hand, we adopt a conditional dif-

fusion model [7, 16], which is designed to explicitly condition the

generation on side information. In graph link prediction, we condi-

tion the positive distribution of a specific query node on the node

itself, and thus obtain query-specific diffusion models. Theoreti-

cally, we show that the density function of our negative examples

obeys the sub-linear positivity principle [47] under some constraint,

ensuring robust negative sampling on graphs.

Our contributions in this work are summarized as follows. 1) We

investigate the strategy of multi-level negative sampling on graphs

for contrastive link prediction. 2) We propose a novel framework

DMNS based on a conditional diffusion model, which generates

multi-level negative examples that can be flexibly controlled to

improve training. 3) We show that the distribution function of

our negative examples follows the sub-linear positivity principle

under a defined constraint. 4) We conduct extensive experiments on

several benchmark datasets, showing that our model outperforms

state-of-the-art baselines on graph link prediction.

2 RELATEDWORK
Link prediction. The success of deep learning has motivated ex-

tensive studies on graph representation learning [13, 22, 42]. On

learned graph representations, a simple strategy for link predic-

tion is to employ a node-pair decoder [11]. More sophisticated

approach exploits the representations of the enclosing subgraphs.

SEAL [50] proposes the usage of local subgraphs based on the 𝛾-

decaying heuristic theory. ScaLED [26] utilizes random walks to

efficiently sample subgraphs for large-scale networks. BUDDY [5]

proposes subgraph sketches to approximate essential features of

the subgraphs without constructing explicit ones.

Negative sampling. Graph representation learning approaches

for link prediction commonly employ contrastive strategies [48, 49].

The contrastivemethods require effective negative sampling to train

the graph encoders. Various negative sampling heuristics have been

proposed, such as based on the popularity of examples [29], current

prediction scores [51] and selecting high-variance samples [8]. On

graphs, SANS [1] select negative examples from 𝑘-hop neighbor-

hoods. MixGCF [19] synthesizes hard negative examples by hop and

positive mixing. MCNS [47] develops a Metropolis-Hasting sam-

pling approach based on the proposed sub-linear positivity theory.

Another line of research utilizes generative adversarial networks

(GANs) for automatic negative sampling. Among them, GraphGAN

[43] and KBGAN [4] learns a distribution over negative candidates,

while others generate new examples not found in the original graph

[18, 23, 24]. However, these methods cannot easily control the hard-

ness of the negative examples, which is the key motivation of our

multi-level strategy.

Diffusion models. Diffusion models [15, 37, 38, 40] have become

state-of-the-art generative models, which gradually inject noises

into the data and then learn to reverse this process for sampling.

Denoising diffusion probabilistic models (DDPMs) [15, 37] aims

to predict noises from the diffused output at arbitrary time steps.

Score-based Generative Models (SGMs) [38–40] aims to predict the

score function ∇ log(𝑝𝑥𝑡 ). They have different approaches but are

shown to be equivalent to optimizing a diffusion model. Condi-

tional diffusion models [7, 16] permit explicit control of generated

samples via additional conditions, which enables a wide range of

applications such as visual generation [35], NLP [10], multi-modal

generation [14, 30], etc. Recently, some studies have adopted diffu-

sion models in graph generation tasks. EDM [17] learns a diffusion

process to work on 3d molecule generation, while GDSS [20] learns

to generate both node features and adjacency matrices. However,

they do not aim to generate multi-level node samples for graph link

prediction. We refer readers to a comprehensive survey [45].

3 PRELIMINARIES
In this section, we briefly introduce the background of graph neural

networks and diffusion models, which are the foundation of our

proposed DMNS.

Graph neural networks. Message-passing GNNs usually resort to

multi-layer neighborhood aggregation, in which each node recur-

sively aggregates information from its neighbors. Specifically, the

representation of node 𝑣 in the 𝑙-th layer, h𝑙𝑣 ∈ R𝑑
𝑙
ℎ , is constructed

as

h𝑙𝑣 = 𝜎

(
Aggr(h𝑙−1

𝑣 , {h𝑙−1

𝑖 : 𝑖 ∈ N𝑣};𝜔𝑙 )
)
, (1)

2
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where 𝑑𝑙
ℎ
is the dimension of node representations in the 𝑙-th layer,

Aggr(·) denotes an aggregation function such as mean-pooling

[22], self-attention [42] or concatenation [13], 𝜎 is an activation

function, N𝑣 denotes the set of neighbors of 𝑣 , and 𝜔
𝑙
denotes the

learnable parameters in layer 𝑙 .

Diffusion models. Denoising diffusion model (DDPM) [15] boils

down to learning the Gaussian transitions of Markov chains. Specif-

ically, DDPM consists of two Markov chains: a forward diffusion

process, and a backward denoising process (also known as the

“reverse” process). The forward chain transforms input data to com-

plete noise by gradually adding Gaussian noise at each step:

𝑞(x1:𝑇 |x0) =
∏𝑇

𝑡=1
𝑞(x𝑡 |x𝑡−1), (2)

𝑞(x𝑡 |x𝑡−1) = N(x𝑡 ;

√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I), (3)

where 𝑇 is the total number of time steps of the diffusion process,

and 𝛽𝑡 denotes the variances in the diffusion process, which can

be learnable or fixed constants via some scheduling strategy. By a

reparameterization trick, the closed form of output x𝑡 at arbitrary
time step 𝑡 can be obtained as

x𝑡 =
√
𝛼𝑡x0 +

√
1 − 𝛼𝑡𝜖𝑡 , (4)

where 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =
∏𝑡

𝑖=1
𝛼𝑖 , and 𝜖𝑡 ∼ N(0, I). The backward

denoising process learns to reconstruct the input from noise:

𝑝𝜃 (x0:𝑇 ) = 𝑝 (x𝑇 )
∏𝑇

𝑡=1
𝑝𝜃 (x𝑡−1 |x𝑡 ) (5)

𝑝𝜃 (x𝑡−1 |x𝑡 ) = N(x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡), Σ𝜃 (x𝑡 , 𝑡)) (6)

𝑝 (x𝑇 ) = N(x𝑇 ; 0, I), (7)

where 𝜃 parameterizes the diffusion model. To model the joint

distribution 𝑝𝜃 (x𝑡−1 |x𝑡 ), DDPM sets Σ𝜃 (x𝑡 , 𝑡) = 𝛽𝑡 I as scheduled
constants, and derive 𝜇𝜃 (x𝑡 , 𝑡) by a reparameterization trick as

𝜇𝜃 (x𝑡 , 𝑡) = 1√
𝛼𝑡
x𝑡 − 1−𝛼𝑡√

𝛼𝑡
√

1−𝛼𝑡
𝜖𝜃 (x𝑡 , 𝑡), (8)

where 𝜖𝜃 (x𝑡 , 𝑡) is a function to estimate the source noise 𝜖 and can

be implemented as a neural network. The objective now learns to

predict added noises instead of means, which has been shown to

achieve better performance.

4 PROPOSED MODEL: DMNS
In this section, we introduce the proposed method DMNS to gener-

ate multi-level negative examples for graph link prediction. Before

we begin, we first present the overall framework of DMNS in Fig. 1.

We employ a standard GNN encoder to obtain node embeddings,

which captures content and structural neighborhood information.

Next, we train a diffusion model to learn the neighborhood distri-

bution conditioned on the query node. From the model we sample

several output embeddings at different time steps, to serve as nega-

tive examples at multi-level hardness for contrastive learning.

4.1 Multi-level Negative Sample Generation
Given a query node, we aim to learn the distribution of its 1-hop

neighbors, i.e., its positive distribution for the link prediction task.

Vanilla diffusion model only generates generic examples without

the ability to personalize for the query node. To this end, we lever-

age the conditional diffusion model [7, 16], taking query node em-

beddings as additional information for sample generation. From

that, we can perform multi-level negative sampling by extracting

generated node embeddings from multiple time steps. The choice

of time steps empowers us to control the hardness of negative ex-

amples. For instance, the embedding output from the final step of

the denoise (reverse) process (𝑡 = 0) is the hardest to distinguish

from the positive nodes in the latent space, while its counterparts

from earlier steps (larger 𝑡 ’s) can be taken as progressively easier

negative nodes. In general, the time step 𝑡 is a proxy to the hardness

of negative examples: a smaller 𝑡 gives harder examples. Thus, we

can automatically incorporate such multi-level negative examples

into training the link prediction task.

Specifically, for a query node 𝑣 , we obtain its embedding h𝑣 ∈
R𝑑ℎ from a GNN encoder, as well as its neighbors’ embeddings

h𝑢 , ∀𝑢 ∈ N𝑣 whereN𝑣 denotes the neighbor set of 𝑣 . The node em-

beddings will be fed into the diffusion model to learn the neighbor

(positive) distribution of the query node. In the forward diffusion

process, we gradually add bite-sized noise to the neighbor node 𝑢’s

embedding. Following the reparameterization trick [15, 28], we can

obtain the closed form of the output h𝑢,𝑡 at an arbitrary time step 𝑡

without relying on the intermediate output:

h𝑢,𝑡 =
√
𝛼𝑡h𝑢 +

√
1 − 𝛼𝑡𝜖𝑡 , ∀𝑢 ∈ N𝑣, (9)

In the denoise process, we aim to predict the added noise from

the diffused node 𝑢 at time step 𝑡 given the query node 𝑣 , which is

formulated as

𝜖𝑡,𝜃 |𝑣 = 𝜏 (h𝑢,𝑡 , t, h𝑣 ;𝜃 ), ∀𝑢 ∈ N𝑣, (10)

where t ∈ R𝑑ℎ is a continuous embedding vector for time 𝑡 , and 𝜃

denotes learnable parameters. Following earlier work [15], we em-

ploy the sinusoidal positional encoding for the time steps, such that

[t]2𝑖 = sin(𝑡/10000

2𝑖
𝑑ℎ ) and [t]2𝑖+1 = cos(𝑡/10000

2𝑖
𝑑ℎ ), followed by

a multilayer perceptron (MLP). 𝜏 (·;𝜃 ) is a learnable transformation

function, which estimates the transformation of diffused embed-

dings at time 𝑡 to predict the noise. In our model, we implement

𝜏 as a feature-wise linear modulation (FiLM) [34] layer, which is

conditioned on both the time step 𝑡 and query node embedding h𝑣 .
Specifically,

𝜖𝑡,𝜃 |𝑣 = (𝛾 + 1) ⊙ h𝑢,𝑡 + 𝜂, (11)

where 𝛾 and 𝜂 ∈ R𝑑ℎ are scaling and shifting vectors to transform

the diffused node embedding, respectively; 1 denotes a vector of

ones to center the scaling around one, and ⊙ denotes element-wise

multiplication. The transformation vectors are learnable, condi-

tioned on the diffusion time embedding t and the query node em-

bedding h𝑣 . We implement 𝛾 and 𝛽 as fully connected layers (FCLs),

dependent upon the conditional embeddings as follows.

𝛾 = FCL(t + h𝑣 ;𝜃𝛾 ), 𝜂 = FCL(t + h𝑣 ;𝜃𝜂 ), (12)

where 𝜃𝛾 , 𝜃𝜂 are parameters of the FCLs. We aggregate the time

step and query node information by summation, yet other methods

such as a neural network can also be considered. Also note that in

practical implementations, multiple FiLM layers can be stacked to

enhance model capacity.

4.2 Training Objective
The diffusion model and GNN encoder are trained simultaneously

in an alternating manner. In the outer loop, the GNN encoder is

3
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Figure 1: Overall framework of DMNS.

updated for link prediction, taking into account the multi-level

negative nodes generated by the diffusion model conditioned on

the query node. In the inner loop, the diffusion model is updated

to generate the positive neighbor distribution of the query node,

based on the current GNN encoder. More details of the training

process are outlined in Appendix A. In the following, we discuss

the loss functions for the diffusion and GNN-based link prediction.

Diffusion loss. We employ a mean squared error (MSE) between

sampled noises from the forward process and predicted noises from

the reverse process [15]. That is, at time step 𝑡 ,

L𝐷 = ∥𝜖𝑡 − 𝜖𝑡,𝜃 |𝑣 ∥2
(13)

After the diffusion model is updated, we utilize it to synthesize

node embeddings for the main link prediction task. Starting from

complete noises (𝑡 = 𝑇 ), we obtain generated samples by sequen-

tially removing predicted noises at each time step.

h𝑑,𝑇 |𝑣 ∼ N(0, I), (14)

h𝑑,𝑡−1 |𝑣 =
1√
𝛼𝑡

(
h𝑑,𝑡 |𝑣 − 1−𝛼𝑡√

1−𝛼𝑡
𝜖𝑡,𝜃 |𝑣

)
+ 𝜎𝑡 z, (15)

where the standard deviation 𝜎𝑡 =
√︁
𝛽𝑡 and z ∼ N(0, I).

The sequence of generated samples {h𝑑,𝑡 |𝑣 : 0 ≤ 𝑡 ≤ 𝑇 } repre-
sents multi-level negative nodes in the latent space, w.r.t. a query

node 𝑣 . We can easily control the number and hardness requirement

of the negative sampling, by choosing certain time steps between 0

and𝑇 . On the one hand, sampling from too many smaller time steps

consumes more memory but brings little diversity. On the other

hand, sampling from larger time steps may bring in trivial noises

which are easier to distinguish. In our implementation, we balance

the multi-level strategy by choosing the output from a range of

well-spaced steps to form our generated negative set for the query

node 𝑣 : 𝐷𝑣 = {h𝑑,𝑡 |𝑣 : 𝑡 = 𝑇
10
, 𝑇

8
, 𝑇

4
, 𝑇

2
}, which are both efficient

and robust.

Link prediction loss. We adopt the log-sigmoid loss [13] for the

link prediction task. Consider a quadruplet (𝑣,𝑢,𝑢′, 𝐷𝑣), where 𝑣
is a query node, 𝑢 is a positive node linked to 𝑣 , 𝑢′ is an existing

negative node randomly sampled from the graph, and 𝐷𝑣 is a set

of multi-level negative nodes w.r.t. the query 𝑣 , which are latent

node embeddings generated from the diffusion model at chosen

time steps. Note that we still employ existing nodes from the graph

as negative nodes, to complement the samples generated in the

latent space. Then, the loss is formulated as

L = − log𝜎 (h⊤𝑣 h𝑢 ) − log𝜎 (−h⊤𝑣 h𝑢′ )
−∑

𝑑𝑖 ∈𝐷𝑣
𝑤𝑖 log𝜎 (−h⊤𝑣 h𝑑𝑖 )) (16)

where 𝜎 (·) is the sigmoid activation, and𝑤𝑖 is the weight parameter

for each negative example generated at different time steps. The

idea is, given different levels of hardness associated with different

time steps, the importance of the examples from different steps also

varies. While various strategies for𝑤 can be applied, we use a sim-

ple linearly decayed sequence of weights with the assumption that

closer steps (harder examples) are more important. Further investi-

gation on the choice and weighting of samples will be discussed in

Sect. 5.

4.3 Theoretical Analysis
We present a theoretical analysis to justify the samples generated

from our conditional diffusion model. Specifically, a Sub-linear
Positivity Principle [47] has been established earlier for robust

negative sampling on graph data. The principle states that the

negative distribution should be positively but sub-linearly correlated
to the positive distribution, which has been shown to be able to

balance the trade-off between the embedding objective and expected

risk. Here, we show that the negative examples generated from the

4
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diffusion model are in fact drawn from a negative distribution that

follows the principle.

Theorem 1 (Sub-linear Positivity Diffusion). Consider a
query node 𝑣 . Let x𝑛 ∼ N(𝜇𝑡,𝜃 , Σ𝑡,𝜃 ) and x𝑝 ∼ N(𝜇

0,𝜃 , Σ0,𝜃 ) repre-
sent samples drawn from the negative and positive distributions of
node 𝑣 , respectively. Suppose the parameters of the two distributions
are specified by a diffusion model 𝜃 conditioned on the query node
𝑣 at time 𝑡 > 0 and 0, respectively. Then, the density function of the
negative samples 𝑓𝑛 is sub-linearly correlated to that of the positive
samples 𝑓𝑝 :

𝑓𝑛 (x𝑛 |𝑣) ∝ 𝑓𝑝 (x𝑝 |𝑣)𝜆, for some 0 < 𝜆 < 1, (17)

as long asΨ ≥ 0, which is a random variable given byΨ = 2Δ⊤√𝛼𝑡 (x0−
𝜇0) + Δ⊤Δ ≥ 0, where Δ =

√
𝛼𝑡 𝜇0 +

√
1 − 𝛼𝑡𝜖0 − 𝜇𝑡 , x0 is generated

by the model 𝜃 at time 0, and 𝜖0 ∼ N(0, I). □

Proof. Note that conditional diffusion 𝜃 aims to learn neigh-

bor (positive) distribution of query node 𝑣 , the samples generated

from time step 0 can be regarded as positive samples while their

counterparts from larger 𝑡 > 0 treated as negative ones. Then the

density functions of the generated positive and negative sampling

distributions are as follows:

𝑓𝑝 (x𝑝 |𝑣) = N(x0; 𝜇0, Σ
2

1
)

=
1

2𝜋𝑘/2
det(Σ1 )1/2

exp

{
− 1

2

(x0 − 𝜇0 )⊤Σ−1

1
(x0 − 𝜇0 )

}
=

1

2𝜋𝑘/2𝛽
𝑘/2

1

exp

{
− 1

2𝛽1

(x0 − 𝜇0 )⊤ (x0 − 𝜇0 )
} (18)

𝑓𝑛 (x𝑛 |𝑣) = N(x𝑡 ; 𝜇𝑡 , Σ
2

𝑡+1
)

=
1

2𝜋𝑘/2
det(Σ𝑡+1 )1/2

exp

{
− 1

2

(x𝑡 − 𝜇𝑡 )⊤Σ−1

𝑡+1
(x𝑡 − 𝜇𝑡 )

}
=

1

2𝜋𝑘/2𝛽
𝑘/2

𝑡+1

exp

{
− 1

2𝛽𝑡+1

(x𝑡 − 𝜇𝑡 )⊤ (x𝑡 − 𝜇𝑡 )
} (19)

where 𝜇0 = 𝜇𝜃 (x1, 1, v), 𝜇𝑡 = 𝜇𝜃 (x𝑡+1, 𝑡 + 1, v), Σ𝑖 = 𝛽𝑖 I, 𝑘 is the

vector dimension.

By applying reparameterization trick [15, 28] we derive:

x𝑡 =
√
𝛼𝑡x0 +

√
1 − 𝛼𝑡𝜖0 (20)

where 𝜖0 ∼ N(0, I). Replacing 𝑥𝑡 by 𝑥0 in 𝑓𝑛 (x𝑛 |𝑣) we obtain:

𝑓𝑛 (x𝑛 |𝑣) = 1

2𝜋𝑘/2𝛽
𝑘/2

𝑡+1

exp

{
− 1

2𝛽𝑡+1

(
√
𝛼𝑡 x0 +

√
1 − 𝛼𝑡𝜖0 − 𝜇𝑡 )⊤

(
√
𝛼𝑡 x0 +

√
1 − 𝛼𝑡𝜖0 − 𝜇𝑡 )

} (21)

=
1

2𝜋𝑘/2𝛽
𝑘/2

𝑡+1

exp

{
− 1

2𝛽𝑡+1

[√
𝛼𝑡 (x0 − 𝜇0 ) + Δ

]⊤
[√

𝛼𝑡 (x0 − 𝜇0 ) + Δ
]} (22)

=
1

2𝜋𝑘/2𝛽
𝑘/2

𝑡+1

exp

{
− 1

2𝛽𝑡+1

[
𝛼𝑡 (x0 − 𝜇0 )⊤ (x0 − 𝜇0 )

+2Δ⊤
√
𝛼𝑡 (x0 − 𝜇0 ) + Δ⊤Δ

]} (23)

with Δ =
√
𝛼𝑡 𝜇0 +

√
1 − 𝛼𝑡𝜖0 − 𝜇𝑡 . We denote Ψ = 2Δ⊤√𝛼𝑡 (x0 −

𝜇0) + Δ⊤Δ. If Ψ ≥ 0, then:

𝛼𝑡 (x0 − 𝜇0 )⊤ (x0 − 𝜇0 ) + Ψ ≥ 𝛼𝑡 (x0 − 𝜇0 )⊤ (x0 − 𝜇0 ) (24)

≡ − 1

2𝛽𝑡+1

[
𝛼𝑡 (x0 − 𝜇0 )⊤ (x0 − 𝜇0 ) + Ψ

]
(25)

≤ − 1

2𝛽𝑡+1

𝛼𝑡 (x0 − 𝜇0 )⊤ (x0 − 𝜇0 ) (26)
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Figure 2: Empirical distributions (histograms) of Ψ on (a1–a4)
Cora, (b1–b4) Citeseer, (c1–c4) Coauthor-CS, (d1–d4) Actor,
across different time steps.

≡ 𝑓𝑛 (x𝑛 |𝑣) ≤ 1

2𝜋𝑘/2𝛽
𝑘/2

𝑡+1

exp

{
− 1

2𝛽𝑡+1

𝛼𝑡 (x0 − 𝜇0 )⊤ (x0 − 𝜇0 )
}

(27)

≤
𝛽
𝑘/2

1

𝛽
𝑘/2

𝑡+1

1

2𝜋𝑘/2𝛽
𝑘/2

1

exp

{
− 𝛽1
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𝛼𝑡 (x0 − 𝜇0 )⊤ (x0 − 𝜇0 )
}

(28)

≤
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𝑘/2

1

𝛽
𝑘/2

𝑡+1

1

2𝜋𝑘/2𝛽
𝑘/2

1

exp

{
− 1

2𝛽1

(x0 − 𝜇0 )⊤ (x0 − 𝜇0 )
}𝜆

(29)

∝ 𝑓𝑝 (x𝑝 |𝑣)𝜆 (30)

where 0 < 𝜆 =
( 𝛽1

𝛽𝑡+1

)
𝛼𝑡 < 1

(
𝛽1 < 𝛽𝑡+1 through variances sched-

uling and 0 < 𝛼𝑡 < 1

)
. Therefore, the density function of negative

samples is sub-linearly correlated to that of positive samples under

the constraint Ψ = 2Δ⊤√𝛼𝑡 (𝑥0 − 𝜇0) + Δ⊤Δ ≥ 0. □

Specifically, we run an experiment to verify the distribution

of Ψ. We use our diffusion model to generate a large number of

examples at time 0 and a given 𝑡 , to compute their mean 𝜇0 and 𝜇𝑡 ,

respectively. We present the empirical distributions (histograms) of

Ψ on the four datasets, across time steps
𝑇
10
, 𝑇

8
, 𝑇

4
, 𝑇

2
in Fig. 2. The

probabilities that Ψ ≥ 0 averaged over samples from 4 time steps on

Cora, Citeseer, Coauthor-CS and Actor are 80.14%, 81.62%, 81.65%

and 84.31%, respectively. The results indicate that the majority of

generated examples from DMNS adhere to the sub-linear positivity

theorem in practice.

4.4 Algorithm and Complexity
We outline the model training for DMNS in Algorithm 1. In line 1,

we initialize the model parameters. In line 3, we sample a batch of

triplets from training data. In lines 4–6, we obtain embeddings for all

nodes in training batch by the GNN encoder. In lines 8–16, we train
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Algorithm 1Model Training for DMNS

Input: Graph𝐺 = (𝑉 , 𝐸 ) , training triplets𝑇 = (𝑣,𝑢,𝑢′ )
Output: GNN model parameters 𝜔 , Diffusion model parameters 𝜃 .

1: initialize parameters 𝜔 , 𝜃

2: while not converged do
3: sample a batch of triplets𝑇

b
⊂ 𝑇 ;

4: for each node 𝑣 in the batch𝑇
b
do

5: h𝑣 = 𝜎 (Aggr(h𝑣, {h𝑖 : 𝑖 ∈ N𝑣 };𝜔 ) ) ;
6: //Train diffusion

7: while not converged do
8: for each query node 𝑣 in the batch𝑇

b
do

9: 𝑢 ∼ 𝑁𝑣 , 𝜖 ∼ N(0, I) ;
10: 𝑡 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 (1, ..,𝑇 ) , t = 𝑀𝐿𝑃 (𝑡 ) ;
11: 𝜖𝑡,𝜃 |𝑣 = 𝜏 (h𝑢,𝑡 , t, h𝑣 ;𝜃 ) ;
12: L𝐷 = ∥𝜖𝑡 − 𝜖𝑡,𝜃 |𝑣 ∥2

;

13: update 𝜃 by minimizing L𝐷 with 𝜔 fixed;

14: //Sampling multi-level generated negative nodes

15: for each query node 𝑣 in the batch𝑇
b
do

16: h𝑑,𝑇 |𝑣 ∼ N(0, I) ,
17: for 𝑡 = T-1,.., 0 do
18: z ∼ N(0, I) if 𝑡 > 1 else z = 0 ;

19: h𝑑,𝑡−1|𝑣 = 1√
𝛼𝑡

(
h𝑑,𝑡 |𝑣 − 1−𝛼𝑡√

1−�̄�𝑡
𝜖𝑡,𝜃 |𝑣

)
+ 𝜎𝑡 z;

20: 𝐷𝑣 = {h𝑑,𝑡 |𝑣 : 𝑡 = 𝑇
10
, 𝑇

8
, 𝑇

4
, 𝑇

2
}

21: Calculate L as Eqn. (15);

22: update 𝜔 by minimizing L with 𝜃 fixed;

23: return 𝜔 , 𝜃 .

conditional diffusion model to learn the neighborhood distribution

of given query node 𝑣 . Specifically, we calculate the predicted noise

at arbitrary time step 𝑡 conditioned on query node in line 12. We

compute the diffusion loss and update diffusion parameters in lines

14–15. In lines 18–25, we sample a set multi-level negative nodes for

query node by diffusion model. In lines 26-27, we compute the main

link prediction loss and update the parameters of GNN encoder.

We analyze the complexity of DMNS for one node. Taking GCN

as base encoder, the neighborhood aggregation for one node in the

𝑙-th layer has complexity 𝑂 (𝑑𝑙𝑑𝑙−1

¯𝑑), where 𝑑𝑙 is the dimension of

the 𝑙-th layer and
¯𝑑 is the average node degree. The computation

for diffusion model includes time embeddings module and noise

estimation module. The time embeddings module employs a MLP

of 𝐿1 layers, where a 𝑙-layer has complexity 𝑂 (𝑑𝑙𝑑𝑙−1
), with 𝑑𝑙

is the layer dimension. The noise estimation module employs a

neural network of 𝐿2 FiLM layers, where 𝑙-th layer has complexity

of 𝑂 (2𝑑𝑙𝑑𝑙−1
) with 𝑑𝑙 is the layer dimension. Thus, the diffusion

training takes 𝑁 iterations has complexity 𝑂 (𝑁𝐿1𝐿2𝑑𝑙𝑑𝑙−1
). After

that, the sampling runs the reverse process of 𝑇 steps (lines 20–

23) has complexity 𝑂 (2𝑇𝑑𝑙𝑑𝑙−1
). Compared to the base GCN, the

overhead of diffusion part has complexity 𝑂
(
(2𝑇 + 𝑁𝐿1𝐿2)𝑑𝑙𝑑𝑙−1

)
.

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

effectiveness of DMNS
1
on several benchmark datasets, and analyze

several key aspects of the model.

1
Code & data at https://github.com/Anonymous235876/DMNS.git for review.

Table 1: Summary of datasets.

Datasets Nodes Edges Features Property

Cora 2708 5429 1433 homophilous

Citeseer 3327 4732 3703 homophilous

Coauthor-CS 18333 163788 6805 homophilous

Actor 7600 30019 932 heterophilous

5.1 Experimental Setup
Datasets. We employ four public graph datasets, summarized in

Table 1. Cora and Citeseer [46] are two citation networks, where

each node is a document and the edges represent citation links.

Coauthor-CS [36] is a co-authorship network, where each node is

an author and an edge exists if they co-authored a paper. Actor

[33] is an actor co-occurrence network, where each node denotes

an actor and each edge connects two actors both occurring on the

same Wikipedia page.

Baselines. We employ a comprehensive suite of baselines for the

link prediction task. (1) Classical GNNs: GCN [22] and VGAE [21],

which are classical GNNs models for link prediction. (2) Heuris-
tic negative sampling: PNS [29], DNS [51] and MCNS [47], which

employ various heuristics to retrieve hard negative examples. (3)

Generative adversarial methods: GraphGAN [43], ARVGA [32] and

KBGAN [4], which leverages GANs to learn the negative distribu-

tion and select hard examples. (4) Subgraph-based GNNs: SEAL [50]

and ScaLed [26], which utilizes local subgraphs surrounding the

candidate nodes. See Appendix A for a more detailed description

of the baselines.

Task setup and evaluation. On each graph, we randomly split its

links for training, validation and testing following the proportions

90%:5%:5%. Note that the graphs used in training are reconstructed

from only the training links. We adopt a ranking-based link pre-

diction during testing. Given a query node 𝑣 , we sample a positive

candidate 𝑢 such that (𝑣,𝑢) is a link in the test set, and further

sample 9 nodes that are not linked to 𝑣 as negative candidates. For

evaluation, we rank the 10 candidate nodes based on their dot prod-

uct with the query node 𝑣 . Based on the ranked list, we report two

ranking-based metrics, namely, NDCG and MAP [25], averaged

over five runs.

Parameters and settings. For our model DMNS, by default, we

employ GCN [22] as the base encoder. To further evaluate the

effectiveness of DMNS on different encoders, we also conduct ex-

periments using GAT [42] and GraphSAGE (SAGE) [13]. For GCN,

we employ two layers with dimension 32. For the diffusion model,

we use two FiLM layers with output dimension 32, set the total

time step as 𝑇 = 50, and assign the variances 𝛽 as constants in-

creasing linearly from 10
−4

to 0.02. We set the weights of negative

examples to {1, 0.9, 0.8, 0.7} in Eq. (16), corresponding to time steps

{ 𝑇
10
, 𝑇

8
, 𝑇

4
, 𝑇

2
}. For all baselines, we adopt the same GNN architec-

ture and settings as in DMNS for a fair comparison. They also

employ a log-sigmoid objective [13] consistent with our link pre-

diction loss. For those baselines which do not propose a negative

sampling method, we perform the uniform negative sampling if

6
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Table 2: Evaluation of link prediction against baselines using GCN as the base encoder.

Methods

Cora Citeseer Coauthor-CS Actor

MAP NDCG MAP NDCG MAP NDCG MAP NDCG

GCN .742 ± .003 .805 ± .003 .735 ± .011 .799 ± .008 .823 ± .004 .867 ± .003 .521 ± .004 .634 ± .003

GVAE .783 ± .003 .835 ± .002 .743 ± .004 .805 ± .003 .843 ± .011 .882 ± .008 .587 ± .004 .684 ± .003

PNS .730 ± .008 .795 ± .006 .748 ± .006 .809 ± .005 .817 ± .004 .863 ± .003 .517 ± .006 .631 ± .006

DNS .735 ± .007 .799 ± .005 .777 ± .005 .831 ± .004 .845 ± .003 .883 ± .002 .558 ± .006 .663 ± .005

MCNS .756 ± .004 .815 ± .003 .750 ± .006 .810 ± .004 .824 ± .004 .868 ± .004 .555 ± .005 .659 ± .004

GraphGAN .739 ± .003 .802 ± .002 .740 ± .011 .803 ± .008 .818 ± .007 .863 ± .005 .534 ± .007 .644 ± .005

ARVGA .732 ± .011 .797 ± .009 .689 ± .005 .763 ± .004 .811 ± .003 .858 ± .002 .526 ± .012 .638 ± .009

KBGAN .615 ± .004 .705 ± .003 .568 ± .006 .668 ± .005 .852 ± .002 .888 ± .002 .472 ± .003 .596 ± .002

SEAL .751 ± .007 .812 ± .005 .718 ± .002 .784 ± .002 .850 ± .001 .886 ± .001 .536 ± .001 .641 ± .001

ScaLed .676 ± .004 .752 ± .003 .630 ± .004 .712 ± .003 .828 ± .001 .869 ± .001 .459 ± .001 .558 ± .001

DMNS .793 ± .003 .844 ± .002 .790 ± .004 .841 ± .003 .871 ± .002 .903 ± .001 .600 ± .002 .696 ± .002

∗
Best is bolded and runner-up underlined.

Table 3: Evaluation of link prediction on DMNS with various base encoders.

Methods

Cora Citeseer Coauthor-CS Actor

MAP NDCG MAP NDCG MAP NDCG MAP NDCG

GAT .766 ± .006 .824 ± .004 .767 ± .007 .763 ± .062 .833 ± .003 .874 ± .002 .479 ± .004 .603 ± .003

DMNS-GAT .813 ± .004 .859 ± .003 .788 ± .007 .840 ± .006 .851 ± .002 .889 ± .002 .573 ± .007 .675 ± .005

SAGE .598 ± .014 .668 ± .013 .622 ± .012 .713 ± .009 .768 ± .005 .826 ± .004 .486 ± .004 .604 ± .003

DMNS-SAGE .700 ± .007 .773 ± .005 .669 ± .013 .749 ± .010 .843 ± .004 .883 ± .003 .582 ± .017 .682 ± .013

required for training. Additional settings of our method and the

baselines can be found in Appendix B.

5.2 Evaluation on Link Prediction
We evaluate the performance of DMNS on link prediction against

various baselines and with different base encoders.

Comparison with baselines. We report the results of DMNS and

the baselines in Table 2. Overall, DMNS significantly outperforms

competing baselines across all datasets and metrics. The results in-

dicate that our strategy of multi-level negative sampling is effective.

We make three further observations. First, heuristic negative sam-

pling methods generally improve the performance upon the base

encoder with uniform sampling (i.e., GCN), showing the utility of

harder examples. Among them, DNS and MCNS are more robust as

they leverage more sophisticated heuristics to select better negative

examples. Second, GAN-based methods are often worse than classi-

cal GNNs, which is potentially due to the difficulty in training GANs.

For instance, GVAE achieves a relatively competitive performance,

while ARVGA—its variant with an adversarial regularizer—suffers

from a considerable drop. Third, subgraph-based GNNs achieve

mixed results, suggesting that the local structures can be effective

to some extent yet high-quality negative examples are still needed

for training.

Evaluation with other encoders. We further utilize GAT and SAGE

as the base encoders, and the corresponding model DMNS-GAT and

DMNS-SAGE, respectively. From the results reported in Table 3, we

observe that DMNS achieves significant improvements compared

to its corresponding base encoders in all cases, which demonstrates

the flexibility of DMNS to effectively work with various encoders.

5.3 Model Analyses
Finally, we investigate various aspects of DMNS through ablation

studies, parameter sensitivity analysis and visualization on the four

datasets.

Ablation studies. The first study investigates the ablation on

model design, to demonstrate the effectiveness of each module in

DMNS. We compare with two variants: (1) unconditional diffusion,
by removing the condition on the query node (and its associated

neighboring nodes) such that the diffusion model now generates

arbitrary node embeddings from noises; (2) unweighted negative

examples, by setting all𝑤𝑖 = 1 in Eq. (16). We report the results in

Fig. 3, and make the following observations. First, unconditional

diffusion performs significantly worse than its conditional coun-

terpart, since the generated negative examples are not optimized

for a specific query node. Second, the unweighted variant also ex-

hibits a drop in performance, implying that negative examples from

different levels of hardness have different importance.

The second study involves the ablation on the sampling choice.

Instead of sampling a mixture of examples from well-spaced time

steps, we now only use output from a single time step for each

query node. We vary the time step between
𝑇
10

and
𝑇
2
, as shown in

Fig. 4. The performance of each single time step varies but all are

worse than combining them together (i.e., DMNS), demonstrating

the effectiveness of multi-level sampling. It is also observed that
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smaller time steps (
𝑇
10
, 𝑇

8
) often outperform larger time steps (

𝑇
4
, 𝑇

2
),

indicating that harder examples could be more useful.
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Figure 7: Histogram of embedding distances from query.

Parameter studies. We showcase the impact of two important

hyperparameters, including the total time step 𝑇 for the diffusion

process, and the scheduling for diffusion variances 𝛽 . In Fig. 5, we

observe that increasing total time steps may not boost the perfor-

mance while requiring more computation. In Fig. 6, results show

that linear scheduling achieves the best performance among several

standard scheduling policies including cosine and sigmoid schedul-

ing [31].

Visualization. We further investigate the quality of the negative

examples generated by DMNS. For each query node, we construct a

positive set consisting of its neighbors, a negative set consisting of

negative examples from DMNS at time
𝑇
10
, and a second negative

set consisting of uniformly sampled nodes from the graph. We cal-

culate the Euclidean distance between the query node embedding

and the embeddings in each set, and plot the empirical distribution

(histogram) of the distances in Fig. 7. For the positive set, we natu-

rally expect smaller distances to the query node. For the negative

sets, the distance can be regarded as a proxy to hardness: Smaller

distances from the query node imply harder examples. As we can

see, DMNS produces harder examples than uniform sampling, but

are not too hard (i.e., not closer to the query node than the positives)
to impair the performance [9, 44].

6 CONCLUSION
In this paper, we investigated a novel strategy of multi-level nega-

tive sampling for graph link prediction. Existing methods aim to

retrieve hard examples heuristically or adversarially, but they are

often inflexible or difficult to control the “hardness”. In response,

we proposed a novel sampling method named DMNS based on

a conditional diffusion model, which empowers the sampling of

negative examples at different levels of hardness. In particular, the

hardness can be easily controlled by sampling from different time

steps of the denoise process within the diffusion model. Moreover,

we showed that DMNS largely obeys the sub-linear positivity prin-

ciple for robust negative sampling. Finally, we conducted extensive

experiments to demonstrate the effectiveness of DMNS. A limita-

tion of our work is the focus on the effectiveness and robustness

of negative sampling for link prediction. Hence, one promising

future direction is to optimize the sampling process for efficiency

on large-scale graphs. Alternatively, we can investigate the poten-

tial of diffusion model in other graph learning tasks such as node

classification.
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APPENDICES
A Details of Baselines
In this section, we describe each baseline in more details.

• Classical GNNs: GCN [22] applies mean-pooling aggregates infor-

mation for the target node by over its neighbors. GVAE [21] pro-

poses an unsupervised training for graph representation learning

by reconstructing graph structure.

• Heuristic negative sampling: PNS is adopted from word2vec [29],

where the distribution for negative samples is calculated by the

normalized node degree. DNS [51] dynamically select hard nega-

tive examples from candidates ranked by the current prediction

scores. MCNS [47] proposes a Metropolis-Hasting method for

negative sampling based on the sub-linear positivity principle.

• Generative adversarial methods: GraphGAN [43] samples hard

negative examples from the learned connectivity distribution

through adversarial training. KBGAN [4] samples high quality

negative examples for knowledge graph embeddings by the gen-

erator that learns to produce distribution for negative candidates

conditioned on the positives. ARVGA [32] integrates an adver-

sarial regularizer to GVAE to enforce the model on generating

realistic samples.

• Subgraph-based GNNs: SEAL [50] proposes to sample k-hops

local subgraphs surrounding two candidates for link prediction.

ScaLED [26] improves SEAL by utilizing random walks for effi-

cient subgraphs sampling.

For other base GNN encoders, GAT [42] employs self-attention

mechanism to produce learnable weights to each neighbor of target

node during aggregation. SAGE [13] first aggregates information

from target node neighbors, then concatenates with the node itself

to obtain the node embedding.

B Model Settings
For all the approaches, we use a two layers GCN as encoder with

output dimension as 32 for fair comparison to conduct link predic-

tion. For our model DMNS, we set learning rate as 0.01, dropout

ratio as 0.1. For each query nodes 𝑣 , we sample a neighbor set

𝑁𝑣 = 20 for diffusion training.

For GCN, we set the hidden dimension as 32. For GAT, we use

three attention heads with hidden dimension for each head as 32.

For SAGE, we use mean aggregator for concatenation and set its

hidden dimension as 32. In PNS, we utilize node degree to calculate

the popularity distribution and normalize it to 3/4
th

power. For

DNS, we set the number of negative candidates as 10 and select

1 negative sample as the highest ranked node. For MCNS, we set

the DFS length as 5 and the proposal distribution 𝑞(𝑦 |𝑥) is mixed

betwwen uniform and k-nearest nodes sampling wih 𝑝 = 0.5. In

these methods we set learning rate as 0.01.

For GraphGAN, we use pretrained GCN to obtain initialized

node embeddings and set the learning rates for discriminator 𝐷

and generator 𝐺 as 0.0001. In each iteration, we set the number of

gradient updates for both 𝐷 and𝐺 as 1 for best results. For KBGAN,

we adapt it to the homogeneous graph setting by neglecting all

relation types and use a single embedding to represent a universal

relation. We further set the number of negative examples as 20 and

number of gradient updates for both 𝐷 and 𝐺 as 1. For ARVGA,

learning rates for encoder 𝐸 and discriminator𝐷 are 0.005 and 0.001

respectively, hidden dimension for 𝐷 is 64, the number of gradient

updates 𝐷 for each iteration is 5.

For Subgraph-based GNNs approaches, we replace their original

objective Binary Cross Entropy with our Log Sigmoid and do not

utilize additional node structural embeddings for fair evaluation.

For SEAL, we set learning rate as 0.0001, the number of hop 𝑘 equals

1. On ScaLed, we set random walk length as 3 and number of walks

as 20.

C Environment
All experiments are conducted on a workstation with a 12-core CPU,

128GBRAM, and 2 RTX-A5000GPUs.We implementedDMNS using

Python 3.8 and Pytorch 1.13 on Ubuntu-20.04.
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