
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Diffusion-based Negative Sampling on Graphs for Link Prediction
Anonymous

ABSTRACT
Link prediction is a fundamental task for graph analysis with im-

portant applications on the Web, such as social network analysis

and recommendation systems, etc.Modern graph link prediction

methods often employ a contrastive approach to learn robust node

representations, where negative sampling is pivotal. Typical neg-

ative sampling methods aim to retrieve hard examples based on

either predefined heuristics or automatic adversarial approaches,

which might be inflexible or difficult to control. Furthermore, in the

context of link prediction, most previous methods sample negative

nodes from existing substructures of the graph, missing out on

potentially more optimal samples in the latent space. To address

these issues, we investigate a novel strategy of multi-level negative
sampling that enables negative node generation with flexible and

controllable “hardness” levels from the latent space. Our method,

called Conditional Diffusion-based Multi-level Negative Sampling

(DMNS), leverages the Markov chain property of diffusion models

to generate negative nodes in multiple levels of variable hardness

and reconcile them for effective graph link prediction. We further

demonstrate that DMNS follows the sub-linear positivity principle

for robust negative sampling. Extensive experiments on several

benchmark datasets demonstrate the effectiveness of DMNS.

ACM Reference Format:
Anonymous. 2018. Diffusion-based Negative Sampling on Graphs for Link

Prediction. In Proceedings of Make sure to enter the correct conference title
from your rights confirmation emai (Conference acronym ’XX). ACM, New

York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph, which consists of nodes and links between them, is a ubiq-

uitous data structure for real-world networks and systems. Link

prediction [27] is a fundamental problem in graph analysis, aiming

to model the probability that two nodes relate to each other in a net-

work or system. Alternatively, given a query node, link prediction

aims to rank other nodes based on their probability of linking to the

query node. Graph link prediction enables a wide range of appli-

cations on the Web, such as friend suggestions in social networks

[6], products recommendation in e-commerce platforms [48], and

knowledge graph completion [1] for many Web-scale knowledge

bases.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

A prominent approach that has been extensively studied for link

prediction is graph representation learning. It trains an encoder

to produce low-dimensional node embeddings that capture the

original graph topology in a latent space. Toward link prediction,

many graph representation learning methods [13, 41, 47] follow

the noise contrastive estimation approach [12], which resorts to

sampling a set of positive and negative nodes for any query node.

Specifically, the encoder is trained to capture graph topology by

bringing positive node pairs closer while separating the negative

pairs in the embedding space. While sampling the positive exam-

ples for link prediction is relatively straightforward (e.g., one-hop
neighbors of the query node), sampling negative examples involves

a huge search space that is quadratic in the number of nodes and a

significant fraction of unlinked node pairs could be false negatives

since not all links may be observed. Hence, studying negative sam-

pling for contrastive link prediction on graphs is a crucial research

problem.

Many strategies have been proposed for negative sampling on

graphs, yet it is often challenging to flexibly model and control the

quality of negative nodes. While uniform negative sampling [13, 41]

is simple, it ignores the quality of negative examples: Harder neg-

ative examples can often contribute more to model training than

easier ones. Many studies explore predefined heuristics to select

hard negative nodes, such as popularity [29], dynamic selections

based on current predictions [51], 𝑘-hop neighborhoods [1], Per-

sonalized PageRank [48], etc. However, heuristics not only need

elaborate designs, but also tend to be inflexible and may not ex-

tend to different kinds of graph. For instance, homophilous and

heterophilous graphs exhibit different connectivity patterns, which

means a good heuristic for one would not work well for the other.

Besides heuristics, automatic methods leveraging generative adver-

sarial networks (GANs) [4, 43] are also popular. They aim to learn

the underlying distribution of the nodes and retrieve harder ones

automatically. However, it is still difficult to flexibly control the

“hardness” of the negative examples for more optimal contrastive

learning. Furthermore, it has been shown that the hardest nega-

tive examples may impair the performance [9, 44], when they are

nearly indistinguishable from the positive ones particularly in the

early phase of training. To overcome this, we propose a strategy

of multi-level negative sampling, where we can flexibly control

the hardness level of the negative examples according to the need.

For instance, easier negative examples can be used to warm-up

model training, while harder ones are more critical to refining the

decision boundary. Overall, a well-controlled mixture of easy and

hard examples are expected to improve learning.

The idea of multi-level negative sampling immediately brings

up the second question: Where do we find enough negative ex-

amples of variable hardness? Most negative sampling approaches

[1, 13, 29, 41, 48, 51] are limited to sampling nodes from the ob-

served graph. However, observed graphs in real-world scenarios are

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

often noisy or incomplete, which are not ideal sources for directly

sampling a sufficient mixture of negative examples at different lev-

els of hardness. To tackle this issue, we propose to synthesize more

negative nodes to complement the real ones in the latent space. The

latent space can potentially provide infinite negative examples with

arbitrary hardness, to aid the generation of multi-level negative

examples in a flexible and controllable manner. Although a few

studies [18, 23] also utilize GANs to generate additional samples

in the latent space, they are not designed to synthesize multi-level

examples.

To materialize our multi-level strategy, a natural choice is diffu-

sion models. Recently, diffusion models have achieved promising

results in generation tasks [15, 38], particularly in visual applica-

tions [7, 16]. While GAN-based models are successful in generating

high-fidelity examples, they face many issues in training such as

vanishing gradients and mode collapse [2, 3]. In contrast, diffusion

models follow a reconstruction mechanism that offers a stable train-

ing process [28]. More specific to our context, a desirable property of

diffusion model is that it utilizes a Markov chain with multiple time

steps to denoise random input, where the sample generated at each

time step is conditioned on the sample in the immediately preceding

step. Hence, during the generation process, we can naturally access

the generated samples at different denoised time steps to achieve

our multi-level strategy. Hence, we propose a novel diffusion-based

framework to generate negative examples for graph link prediction,

named Conditional Diffusion-based Multi-level Negative Sampling

(DMNS). On one hand, we employ a diffusion model to learn the

one-hop connectivity distribution of any given query node, i.e., the
positive distribution in link prediction. The diffusion model allows

us to flexibly control the hardness of each negative example by

looking up a specified time step 𝑡 , ranging from a virtually positive

example (or indistinguishable from the positives) when 𝑡 = 0 and

harder examples as 𝑡 → 0, to easier ones amounting to random

noises as 𝑡 → ∞. On the other hand, we adopt a conditional dif-

fusion model [7, 16], which is designed to explicitly condition the

generation on side information. In graph link prediction, we condi-

tion the positive distribution of a specific query node on the node

itself, and thus obtain query-specific diffusion models. Theoreti-

cally, we show that the density function of our negative examples

obeys the sub-linear positivity principle [47] under some constraint,

ensuring robust negative sampling on graphs.

Our contributions in this work are summarized as follows. 1) We

investigate the strategy of multi-level negative sampling on graphs

for contrastive link prediction. 2) We propose a novel framework

DMNS based on a conditional diffusion model, which generates

multi-level negative examples that can be flexibly controlled to

improve training. 3) We show that the distribution function of

our negative examples follows the sub-linear positivity principle

under a defined constraint. 4) We conduct extensive experiments on

several benchmark datasets, showing that our model outperforms

state-of-the-art baselines on graph link prediction.

2 RELATEDWORK
Link prediction. The success of deep learning has motivated ex-

tensive studies on graph representation learning [13, 22, 42]. On

learned graph representations, a simple strategy for link predic-

tion is to employ a node-pair decoder [11]. More sophisticated

approach exploits the representations of the enclosing subgraphs.

SEAL [50] proposes the usage of local subgraphs based on the 𝛾-

decaying heuristic theory. ScaLED [26] utilizes random walks to

efficiently sample subgraphs for large-scale networks. BUDDY [5]

proposes subgraph sketches to approximate essential features of

the subgraphs without constructing explicit ones.

Negative sampling. Graph representation learning approaches

for link prediction commonly employ contrastive strategies [48, 49].

The contrastivemethods require effective negative sampling to train

the graph encoders. Various negative sampling heuristics have been

proposed, such as based on the popularity of examples [29], current

prediction scores [51] and selecting high-variance samples [8]. On

graphs, SANS [1] select negative examples from 𝑘-hop neighbor-

hoods. MixGCF [19] synthesizes hard negative examples by hop and

positive mixing. MCNS [47] develops a Metropolis-Hasting sam-

pling approach based on the proposed sub-linear positivity theory.

Another line of research utilizes generative adversarial networks

(GANs) for automatic negative sampling. Among them, GraphGAN

[43] and KBGAN [4] learns a distribution over negative candidates,

while others generate new examples not found in the original graph

[18, 23, 24]. However, these methods cannot easily control the hard-

ness of the negative examples, which is the key motivation of our

multi-level strategy.

Diffusion models. Diffusion models [15, 37, 38, 40] have become

state-of-the-art generative models, which gradually inject noises

into the data and then learn to reverse this process for sampling.

Denoising diffusion probabilistic models (DDPMs) [15, 37] aims

to predict noises from the diffused output at arbitrary time steps.

Score-based Generative Models (SGMs) [38–40] aims to predict the

score function ∇ log(𝑝𝑥𝑡). They have different approaches but are

shown to be equivalent to optimizing a diffusion model. Condi-

tional diffusion models [7, 16] permit explicit control of generated

samples via additional conditions, which enables a wide range of

applications such as visual generation [35], NLP [10], multi-modal

generation [14, 30], etc. Recently, some studies have adopted diffu-

sion models in graph generation tasks. EDM [17] learns a diffusion

process to work on 3d molecule generation, while GDSS [20] learns

to generate both node features and adjacency matrices. However,

they do not aim to generate multi-level node samples for graph link

prediction. We refer readers to a comprehensive survey [45].

3 PRELIMINARIES
In this section, we briefly introduce the background of graph neural

networks and diffusion models, which are the foundation of our

proposed DMNS.

Graph neural networks. Message-passing GNNs usually resort to

multi-layer neighborhood aggregation, in which each node recur-

sively aggregates information from its neighbors. Specifically, the

representation of node 𝑣 in the 𝑙-th layer, h𝑙𝑣 ∈ R𝑑
𝑙
ℎ , is constructed

as

h𝑙𝑣 = 𝜎

(
Aggr(h𝑙−1

𝑣 , {h𝑙−1

𝑖 : 𝑖 ∈ N𝑣};𝜔𝑙)
)
, (1)

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Diffusion-based Negative Sampling on Graphs for Link Prediction Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

where 𝑑𝑙
ℎ
is the dimension of node representations in the 𝑙-th layer,

Aggr(·) denotes an aggregation function such as mean-pooling

[22], self-attention [42] or concatenation [13], 𝜎 is an activation

function, N𝑣 denotes the set of neighbors of 𝑣 , and 𝜔
𝑙
denotes the

learnable parameters in layer 𝑙 .

Diffusion models. Denoising diffusion model (DDPM) [15] boils

down to learning the Gaussian transitions of Markov chains. Specif-

ically, DDPM consists of two Markov chains: a forward diffusion

process, and a backward denoising process (also known as the

“reverse” process). The forward chain transforms input data to com-

plete noise by gradually adding Gaussian noise at each step:

𝑞(x1:𝑇 |x0) =
∏𝑇

𝑡=1
𝑞(x𝑡 |x𝑡−1), (2)

𝑞(x𝑡 |x𝑡−1) = N(x𝑡 ;

√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I), (3)

where 𝑇 is the total number of time steps of the diffusion process,

and 𝛽𝑡 denotes the variances in the diffusion process, which can

be learnable or fixed constants via some scheduling strategy. By a

reparameterization trick, the closed form of output x𝑡 at arbitrary
time step 𝑡 can be obtained as

x𝑡 =
√
𝛼𝑡x0 +

√
1 − 𝛼𝑡𝜖𝑡 , (4)

where 𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =
∏𝑡

𝑖=1
𝛼𝑖 , and 𝜖𝑡 ∼ N(0, I). The backward

denoising process learns to reconstruct the input from noise:

𝑝𝜃 (x0:𝑇) = 𝑝 (x𝑇)
∏𝑇

𝑡=1
𝑝𝜃 (x𝑡−1 |x𝑡) (5)

𝑝𝜃 (x𝑡−1 |x𝑡) = N(x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡), Σ𝜃 (x𝑡 , 𝑡)) (6)

𝑝 (x𝑇) = N(x𝑇 ; 0, I), (7)

where 𝜃 parameterizes the diffusion model. To model the joint

distribution 𝑝𝜃 (x𝑡−1 |x𝑡), DDPM sets Σ𝜃 (x𝑡 , 𝑡) = 𝛽𝑡 I as scheduled
constants, and derive 𝜇𝜃 (x𝑡 , 𝑡) by a reparameterization trick as

𝜇𝜃 (x𝑡 , 𝑡) = 1√
𝛼𝑡
x𝑡 − 1−𝛼𝑡√

𝛼𝑡
√

1−𝛼𝑡
𝜖𝜃 (x𝑡 , 𝑡), (8)

where 𝜖𝜃 (x𝑡 , 𝑡) is a function to estimate the source noise 𝜖 and can

be implemented as a neural network. The objective now learns to

predict added noises instead of means, which has been shown to

achieve better performance.

4 PROPOSED MODEL: DMNS
In this section, we introduce the proposed method DMNS to gener-

ate multi-level negative examples for graph link prediction. Before

we begin, we first present the overall framework of DMNS in Fig. 1.

We employ a standard GNN encoder to obtain node embeddings,

which captures content and structural neighborhood information.

Next, we train a diffusion model to learn the neighborhood distri-

bution conditioned on the query node. From the model we sample

several output embeddings at different time steps, to serve as nega-

tive examples at multi-level hardness for contrastive learning.

4.1 Multi-level Negative Sample Generation
Given a query node, we aim to learn the distribution of its 1-hop

neighbors, i.e., its positive distribution for the link prediction task.

Vanilla diffusion model only generates generic examples without

the ability to personalize for the query node. To this end, we lever-

age the conditional diffusion model [7, 16], taking query node em-

beddings as additional information for sample generation. From

that, we can perform multi-level negative sampling by extracting

generated node embeddings from multiple time steps. The choice

of time steps empowers us to control the hardness of negative ex-

amples. For instance, the embedding output from the final step of

the denoise (reverse) process (𝑡 = 0) is the hardest to distinguish

from the positive nodes in the latent space, while its counterparts

from earlier steps (larger 𝑡 ’s) can be taken as progressively easier

negative nodes. In general, the time step 𝑡 is a proxy to the hardness

of negative examples: a smaller 𝑡 gives harder examples. Thus, we

can automatically incorporate such multi-level negative examples

into training the link prediction task.

Specifically, for a query node 𝑣 , we obtain its embedding h𝑣 ∈
R𝑑ℎ from a GNN encoder, as well as its neighbors’ embeddings

h𝑢 , ∀𝑢 ∈ N𝑣 whereN𝑣 denotes the neighbor set of 𝑣 . The node em-

beddings will be fed into the diffusion model to learn the neighbor

(positive) distribution of the query node. In the forward diffusion

process, we gradually add bite-sized noise to the neighbor node 𝑢’s

embedding. Following the reparameterization trick [15, 28], we can

obtain the closed form of the output h𝑢,𝑡 at an arbitrary time step 𝑡

without relying on the intermediate output:

h𝑢,𝑡 =
√
𝛼𝑡h𝑢 +

√
1 − 𝛼𝑡𝜖𝑡 , ∀𝑢 ∈ N𝑣, (9)

In the denoise process, we aim to predict the added noise from

the diffused node 𝑢 at time step 𝑡 given the query node 𝑣 , which is

formulated as

𝜖𝑡,𝜃 |𝑣 = 𝜏 (h𝑢,𝑡 , t, h𝑣 ;𝜃), ∀𝑢 ∈ N𝑣, (10)

where t ∈ R𝑑ℎ is a continuous embedding vector for time 𝑡 , and 𝜃

denotes learnable parameters. Following earlier work [15], we em-

ploy the sinusoidal positional encoding for the time steps, such that

[t]2𝑖 = sin(𝑡/10000

2𝑖
𝑑ℎ) and [t]2𝑖+1 = cos(𝑡/10000

2𝑖
𝑑ℎ), followed by

a multilayer perceptron (MLP). 𝜏 (·;𝜃) is a learnable transformation

function, which estimates the transformation of diffused embed-

dings at time 𝑡 to predict the noise. In our model, we implement

𝜏 as a feature-wise linear modulation (FiLM) [34] layer, which is

conditioned on both the time step 𝑡 and query node embedding h𝑣 .
Specifically,

𝜖𝑡,𝜃 |𝑣 = (𝛾 + 1) ⊙ h𝑢,𝑡 + 𝜂, (11)

where 𝛾 and 𝜂 ∈ R𝑑ℎ are scaling and shifting vectors to transform

the diffused node embedding, respectively; 1 denotes a vector of

ones to center the scaling around one, and ⊙ denotes element-wise

multiplication. The transformation vectors are learnable, condi-

tioned on the diffusion time embedding t and the query node em-

bedding h𝑣 . We implement 𝛾 and 𝛽 as fully connected layers (FCLs),

dependent upon the conditional embeddings as follows.

𝛾 = FCL(t + h𝑣 ;𝜃𝛾), 𝜂 = FCL(t + h𝑣 ;𝜃𝜂), (12)

where 𝜃𝛾 , 𝜃𝜂 are parameters of the FCLs. We aggregate the time

step and query node information by summation, yet other methods

such as a neural network can also be considered. Also note that in

practical implementations, multiple FiLM layers can be stacked to

enhance model capacity.

4.2 Training Objective
The diffusion model and GNN encoder are trained simultaneously

in an alternating manner. In the outer loop, the GNN encoder is

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

GNN
Encoder

(a) Input Graph (c) Prediction(b) DMNS

Link Prediction Loss

v9 v6

v8

v1

v2

v3

v4

v5

v7

positive negativequery

Conditional Diffusion

Denoising

Diffusion

u: a neighbor of query v1, e.g. v2
example query Multi-level negative samples

d: generated sample for query v1

Figure 1: Overall framework of DMNS.

updated for link prediction, taking into account the multi-level

negative nodes generated by the diffusion model conditioned on

the query node. In the inner loop, the diffusion model is updated

to generate the positive neighbor distribution of the query node,

based on the current GNN encoder. More details of the training

process are outlined in Appendix A. In the following, we discuss

the loss functions for the diffusion and GNN-based link prediction.

Diffusion loss. We employ a mean squared error (MSE) between

sampled noises from the forward process and predicted noises from

the reverse process [15]. That is, at time step 𝑡 ,

L𝐷 = ∥𝜖𝑡 − 𝜖𝑡,𝜃 |𝑣 ∥2
(13)

After the diffusion model is updated, we utilize it to synthesize

node embeddings for the main link prediction task. Starting from

complete noises (𝑡 = 𝑇), we obtain generated samples by sequen-

tially removing predicted noises at each time step.

h𝑑,𝑇 |𝑣 ∼ N(0, I), (14)

h𝑑,𝑡−1 |𝑣 =
1√
𝛼𝑡

(
h𝑑,𝑡 |𝑣 − 1−𝛼𝑡√

1−𝛼𝑡
𝜖𝑡,𝜃 |𝑣

)
+ 𝜎𝑡 z, (15)

where the standard deviation 𝜎𝑡 =
√︁
𝛽𝑡 and z ∼ N(0, I).

The sequence of generated samples {h𝑑,𝑡 |𝑣 : 0 ≤ 𝑡 ≤ 𝑇 } repre-
sents multi-level negative nodes in the latent space, w.r.t. a query

node 𝑣 . We can easily control the number and hardness requirement

of the negative sampling, by choosing certain time steps between 0

and𝑇 . On the one hand, sampling from too many smaller time steps

consumes more memory but brings little diversity. On the other

hand, sampling from larger time steps may bring in trivial noises

which are easier to distinguish. In our implementation, we balance

the multi-level strategy by choosing the output from a range of

well-spaced steps to form our generated negative set for the query

node 𝑣 : 𝐷𝑣 = {h𝑑,𝑡 |𝑣 : 𝑡 = 𝑇
10
, 𝑇

8
, 𝑇

4
, 𝑇

2
}, which are both efficient

and robust.

Link prediction loss. We adopt the log-sigmoid loss [13] for the

link prediction task. Consider a quadruplet (𝑣,𝑢,𝑢′, 𝐷𝑣), where 𝑣
is a query node, 𝑢 is a positive node linked to 𝑣 , 𝑢′ is an existing

negative node randomly sampled from the graph, and 𝐷𝑣 is a set

of multi-level negative nodes w.r.t. the query 𝑣 , which are latent

node embeddings generated from the diffusion model at chosen

time steps. Note that we still employ existing nodes from the graph

as negative nodes, to complement the samples generated in the

latent space. Then, the loss is formulated as

L = − log𝜎 (h⊤𝑣 h𝑢) − log𝜎 (−h⊤𝑣 h𝑢′)
−∑

𝑑𝑖 ∈𝐷𝑣
𝑤𝑖 log𝜎 (−h⊤𝑣 h𝑑𝑖)) (16)

where 𝜎 (·) is the sigmoid activation, and𝑤𝑖 is the weight parameter

for each negative example generated at different time steps. The

idea is, given different levels of hardness associated with different

time steps, the importance of the examples from different steps also

varies. While various strategies for𝑤 can be applied, we use a sim-

ple linearly decayed sequence of weights with the assumption that

closer steps (harder examples) are more important. Further investi-

gation on the choice and weighting of samples will be discussed in

Sect. 5.

4.3 Theoretical Analysis
We present a theoretical analysis to justify the samples generated

from our conditional diffusion model. Specifically, a Sub-linear
Positivity Principle [47] has been established earlier for robust

negative sampling on graph data. The principle states that the

negative distribution should be positively but sub-linearly correlated
to the positive distribution, which has been shown to be able to

balance the trade-off between the embedding objective and expected

risk. Here, we show that the negative examples generated from the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Diffusion-based Negative Sampling on Graphs for Link Prediction Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

diffusion model are in fact drawn from a negative distribution that

follows the principle.

Theorem 1 (Sub-linear Positivity Diffusion). Consider a
query node 𝑣 . Let x𝑛 ∼ N(𝜇𝑡,𝜃 , Σ𝑡,𝜃) and x𝑝 ∼ N(𝜇

0,𝜃 , Σ0,𝜃) repre-
sent samples drawn from the negative and positive distributions of
node 𝑣 , respectively. Suppose the parameters of the two distributions
are specified by a diffusion model 𝜃 conditioned on the query node
𝑣 at time 𝑡 > 0 and 0, respectively. Then, the density function of the
negative samples 𝑓𝑛 is sub-linearly correlated to that of the positive
samples 𝑓𝑝 :

𝑓𝑛 (x𝑛 |𝑣) ∝ 𝑓𝑝 (x𝑝 |𝑣)𝜆, for some 0 < 𝜆 < 1, (17)

as long asΨ ≥ 0, which is a random variable given byΨ = 2Δ⊤√𝛼𝑡 (x0−
𝜇0) + Δ⊤Δ ≥ 0, where Δ =

√
𝛼𝑡 𝜇0 +

√
1 − 𝛼𝑡𝜖0 − 𝜇𝑡 , x0 is generated

by the model 𝜃 at time 0, and 𝜖0 ∼ N(0, I). □

Proof. Note that conditional diffusion 𝜃 aims to learn neigh-

bor (positive) distribution of query node 𝑣 , the samples generated

from time step 0 can be regarded as positive samples while their

counterparts from larger 𝑡 > 0 treated as negative ones. Then the

density functions of the generated positive and negative sampling

distributions are as follows:

𝑓𝑝 (x𝑝 |𝑣) = N(x0; 𝜇0, Σ
2

1
)

=
1

2𝜋𝑘/2
det(Σ1)1/2

exp

{
− 1

2

(x0 − 𝜇0)⊤Σ−1

1
(x0 − 𝜇0)

}
=

1

2𝜋𝑘/2𝛽
𝑘/2

1

exp

{
− 1

2𝛽1

(x0 − 𝜇0)⊤ (x0 − 𝜇0)
} (18)

𝑓𝑛 (x𝑛 |𝑣) = N(x𝑡 ; 𝜇𝑡 , Σ
2

𝑡+1
)

=
1

2𝜋𝑘/2
det(Σ𝑡+1)1/2

exp

{
− 1

2

(x𝑡 − 𝜇𝑡)⊤Σ−1

𝑡+1
(x𝑡 − 𝜇𝑡)

}
=

1

2𝜋𝑘/2𝛽
𝑘/2

𝑡+1

exp

{
− 1

2𝛽𝑡+1

(x𝑡 − 𝜇𝑡)⊤ (x𝑡 − 𝜇𝑡)
} (19)

where 𝜇0 = 𝜇𝜃 (x1, 1, v), 𝜇𝑡 = 𝜇𝜃 (x𝑡+1, 𝑡 + 1, v), Σ𝑖 = 𝛽𝑖 I, 𝑘 is the

vector dimension.

By applying reparameterization trick [15, 28] we derive:

x𝑡 =
√
𝛼𝑡x0 +

√
1 − 𝛼𝑡𝜖0 (20)

where 𝜖0 ∼ N(0, I). Replacing 𝑥𝑡 by 𝑥0 in 𝑓𝑛 (x𝑛 |𝑣) we obtain:

𝑓𝑛 (x𝑛 |𝑣) = 1

2𝜋𝑘/2𝛽
𝑘/2

𝑡+1

exp

{
− 1

2𝛽𝑡+1

(
√
𝛼𝑡 x0 +

√
1 − 𝛼𝑡𝜖0 − 𝜇𝑡)⊤

(
√
𝛼𝑡 x0 +

√
1 − 𝛼𝑡𝜖0 − 𝜇𝑡)

} (21)

=
1

2𝜋𝑘/2𝛽
𝑘/2

𝑡+1

exp

{
− 1

2𝛽𝑡+1

[√
𝛼𝑡 (x0 − 𝜇0) + Δ

]⊤
[√

𝛼𝑡 (x0 − 𝜇0) + Δ
]} (22)

=
1

2𝜋𝑘/2𝛽
𝑘/2

𝑡+1

exp

{
− 1

2𝛽𝑡+1

[
𝛼𝑡 (x0 − 𝜇0)⊤ (x0 − 𝜇0)

+2Δ⊤
√
𝛼𝑡 (x0 − 𝜇0) + Δ⊤Δ

]} (23)

with Δ =
√
𝛼𝑡 𝜇0 +

√
1 − 𝛼𝑡𝜖0 − 𝜇𝑡 . We denote Ψ = 2Δ⊤√𝛼𝑡 (x0 −

𝜇0) + Δ⊤Δ. If Ψ ≥ 0, then:

𝛼𝑡 (x0 − 𝜇0)⊤ (x0 − 𝜇0) + Ψ ≥ 𝛼𝑡 (x0 − 𝜇0)⊤ (x0 − 𝜇0) (24)

≡ − 1

2𝛽𝑡+1

[
𝛼𝑡 (x0 − 𝜇0)⊤ (x0 − 𝜇0) + Ψ

]
(25)

≤ − 1

2𝛽𝑡+1

𝛼𝑡 (x0 − 𝜇0)⊤ (x0 − 𝜇0) (26)

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(a1) Time step T
10

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(a2) Time step T8

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(a3) Time step T4

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(a4) Time step T2

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(b1) Time step T
10

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(b2) Time step T8

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(b3) Time step T4

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(b4) Time step T2

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(c1) Time step T
10

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(c2) Time step T8

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(c3) Time step T4

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(c4) Time step T2

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(d1) Time step T
10

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(d2) Time step T8

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(d3) Time step T4

0
< 0

0.2 0.0 0.2 0.4
 value

0

100

200

300

400

Fr
eq

ue
nc

y

(d4) Time step T2

0
< 0

Figure 2: Empirical distributions (histograms) of Ψ on (a1–a4)
Cora, (b1–b4) Citeseer, (c1–c4) Coauthor-CS, (d1–d4) Actor,
across different time steps.

≡ 𝑓𝑛 (x𝑛 |𝑣) ≤ 1

2𝜋𝑘/2𝛽
𝑘/2

𝑡+1

exp

{
− 1

2𝛽𝑡+1

𝛼𝑡 (x0 − 𝜇0)⊤ (x0 − 𝜇0)
}

(27)

≤
𝛽
𝑘/2

1

𝛽
𝑘/2

𝑡+1

1

2𝜋𝑘/2𝛽
𝑘/2

1

exp

{
− 𝛽1

2𝛽1𝛽𝑡+1

𝛼𝑡 (x0 − 𝜇0)⊤ (x0 − 𝜇0)
}

(28)

≤
𝛽
𝑘/2

1

𝛽
𝑘/2

𝑡+1

1

2𝜋𝑘/2𝛽
𝑘/2

1

exp

{
− 1

2𝛽1

(x0 − 𝜇0)⊤ (x0 − 𝜇0)
}𝜆

(29)

∝ 𝑓𝑝 (x𝑝 |𝑣)𝜆 (30)

where 0 < 𝜆 =
(𝛽1

𝛽𝑡+1

)
𝛼𝑡 < 1

(
𝛽1 < 𝛽𝑡+1 through variances sched-

uling and 0 < 𝛼𝑡 < 1

)
. Therefore, the density function of negative

samples is sub-linearly correlated to that of positive samples under

the constraint Ψ = 2Δ⊤√𝛼𝑡 (𝑥0 − 𝜇0) + Δ⊤Δ ≥ 0. □

Specifically, we run an experiment to verify the distribution

of Ψ. We use our diffusion model to generate a large number of

examples at time 0 and a given 𝑡 , to compute their mean 𝜇0 and 𝜇𝑡 ,

respectively. We present the empirical distributions (histograms) of

Ψ on the four datasets, across time steps
𝑇
10
, 𝑇

8
, 𝑇

4
, 𝑇

2
in Fig. 2. The

probabilities that Ψ ≥ 0 averaged over samples from 4 time steps on

Cora, Citeseer, Coauthor-CS and Actor are 80.14%, 81.62%, 81.65%

and 84.31%, respectively. The results indicate that the majority of

generated examples from DMNS adhere to the sub-linear positivity

theorem in practice.

4.4 Algorithm and Complexity
We outline the model training for DMNS in Algorithm 1. In line 1,

we initialize the model parameters. In line 3, we sample a batch of

triplets from training data. In lines 4–6, we obtain embeddings for all

nodes in training batch by the GNN encoder. In lines 8–16, we train

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Algorithm 1Model Training for DMNS

Input: Graph𝐺 = (𝑉 , 𝐸) , training triplets𝑇 = (𝑣,𝑢,𝑢′)
Output: GNN model parameters 𝜔 , Diffusion model parameters 𝜃 .

1: initialize parameters 𝜔 , 𝜃

2: while not converged do
3: sample a batch of triplets𝑇

b
⊂ 𝑇 ;

4: for each node 𝑣 in the batch𝑇
b
do

5: h𝑣 = 𝜎 (Aggr(h𝑣, {h𝑖 : 𝑖 ∈ N𝑣 };𝜔)) ;
6: //Train diffusion

7: while not converged do
8: for each query node 𝑣 in the batch𝑇

b
do

9: 𝑢 ∼ 𝑁𝑣 , 𝜖 ∼ N(0, I) ;
10: 𝑡 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 (1, ..,𝑇) , t = 𝑀𝐿𝑃 (𝑡) ;
11: 𝜖𝑡,𝜃 |𝑣 = 𝜏 (h𝑢,𝑡 , t, h𝑣 ;𝜃) ;
12: L𝐷 = ∥𝜖𝑡 − 𝜖𝑡,𝜃 |𝑣 ∥2

;

13: update 𝜃 by minimizing L𝐷 with 𝜔 fixed;

14: //Sampling multi-level generated negative nodes

15: for each query node 𝑣 in the batch𝑇
b
do

16: h𝑑,𝑇 |𝑣 ∼ N(0, I) ,
17: for 𝑡 = T-1,.., 0 do
18: z ∼ N(0, I) if 𝑡 > 1 else z = 0 ;

19: h𝑑,𝑡−1|𝑣 = 1√
𝛼𝑡

(
h𝑑,𝑡 |𝑣 − 1−𝛼𝑡√

1−�̄�𝑡
𝜖𝑡,𝜃 |𝑣

)
+ 𝜎𝑡 z;

20: 𝐷𝑣 = {h𝑑,𝑡 |𝑣 : 𝑡 = 𝑇
10
, 𝑇

8
, 𝑇

4
, 𝑇

2
}

21: Calculate L as Eqn. (15);

22: update 𝜔 by minimizing L with 𝜃 fixed;

23: return 𝜔 , 𝜃 .

conditional diffusion model to learn the neighborhood distribution

of given query node 𝑣 . Specifically, we calculate the predicted noise

at arbitrary time step 𝑡 conditioned on query node in line 12. We

compute the diffusion loss and update diffusion parameters in lines

14–15. In lines 18–25, we sample a set multi-level negative nodes for

query node by diffusion model. In lines 26-27, we compute the main

link prediction loss and update the parameters of GNN encoder.

We analyze the complexity of DMNS for one node. Taking GCN

as base encoder, the neighborhood aggregation for one node in the

𝑙-th layer has complexity 𝑂 (𝑑𝑙𝑑𝑙−1

¯𝑑), where 𝑑𝑙 is the dimension of

the 𝑙-th layer and
¯𝑑 is the average node degree. The computation

for diffusion model includes time embeddings module and noise

estimation module. The time embeddings module employs a MLP

of 𝐿1 layers, where a 𝑙-layer has complexity 𝑂 (𝑑𝑙𝑑𝑙−1
), with 𝑑𝑙

is the layer dimension. The noise estimation module employs a

neural network of 𝐿2 FiLM layers, where 𝑙-th layer has complexity

of 𝑂 (2𝑑𝑙𝑑𝑙−1
) with 𝑑𝑙 is the layer dimension. Thus, the diffusion

training takes 𝑁 iterations has complexity 𝑂 (𝑁𝐿1𝐿2𝑑𝑙𝑑𝑙−1
). After

that, the sampling runs the reverse process of 𝑇 steps (lines 20–

23) has complexity 𝑂 (2𝑇𝑑𝑙𝑑𝑙−1
). Compared to the base GCN, the

overhead of diffusion part has complexity 𝑂
(
(2𝑇 + 𝑁𝐿1𝐿2)𝑑𝑙𝑑𝑙−1

)
.

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

effectiveness of DMNS
1
on several benchmark datasets, and analyze

several key aspects of the model.

1
Code & data at https://github.com/Anonymous235876/DMNS.git for review.

Table 1: Summary of datasets.

Datasets Nodes Edges Features Property

Cora 2708 5429 1433 homophilous

Citeseer 3327 4732 3703 homophilous

Coauthor-CS 18333 163788 6805 homophilous

Actor 7600 30019 932 heterophilous

5.1 Experimental Setup
Datasets. We employ four public graph datasets, summarized in

Table 1. Cora and Citeseer [46] are two citation networks, where

each node is a document and the edges represent citation links.

Coauthor-CS [36] is a co-authorship network, where each node is

an author and an edge exists if they co-authored a paper. Actor

[33] is an actor co-occurrence network, where each node denotes

an actor and each edge connects two actors both occurring on the

same Wikipedia page.

Baselines. We employ a comprehensive suite of baselines for the

link prediction task. (1) Classical GNNs: GCN [22] and VGAE [21],

which are classical GNNs models for link prediction. (2) Heuris-
tic negative sampling: PNS [29], DNS [51] and MCNS [47], which

employ various heuristics to retrieve hard negative examples. (3)

Generative adversarial methods: GraphGAN [43], ARVGA [32] and

KBGAN [4], which leverages GANs to learn the negative distribu-

tion and select hard examples. (4) Subgraph-based GNNs: SEAL [50]

and ScaLed [26], which utilizes local subgraphs surrounding the

candidate nodes. See Appendix A for a more detailed description

of the baselines.

Task setup and evaluation. On each graph, we randomly split its

links for training, validation and testing following the proportions

90%:5%:5%. Note that the graphs used in training are reconstructed

from only the training links. We adopt a ranking-based link pre-

diction during testing. Given a query node 𝑣 , we sample a positive

candidate 𝑢 such that (𝑣,𝑢) is a link in the test set, and further

sample 9 nodes that are not linked to 𝑣 as negative candidates. For

evaluation, we rank the 10 candidate nodes based on their dot prod-

uct with the query node 𝑣 . Based on the ranked list, we report two

ranking-based metrics, namely, NDCG and MAP [25], averaged

over five runs.

Parameters and settings. For our model DMNS, by default, we

employ GCN [22] as the base encoder. To further evaluate the

effectiveness of DMNS on different encoders, we also conduct ex-

periments using GAT [42] and GraphSAGE (SAGE) [13]. For GCN,

we employ two layers with dimension 32. For the diffusion model,

we use two FiLM layers with output dimension 32, set the total

time step as 𝑇 = 50, and assign the variances 𝛽 as constants in-

creasing linearly from 10
−4

to 0.02. We set the weights of negative

examples to {1, 0.9, 0.8, 0.7} in Eq. (16), corresponding to time steps

{ 𝑇
10
, 𝑇

8
, 𝑇

4
, 𝑇

2
}. For all baselines, we adopt the same GNN architec-

ture and settings as in DMNS for a fair comparison. They also

employ a log-sigmoid objective [13] consistent with our link pre-

diction loss. For those baselines which do not propose a negative

sampling method, we perform the uniform negative sampling if

6

https://github.com/Anonymous235876/DMNS.git

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Diffusion-based Negative Sampling on Graphs for Link Prediction Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: Evaluation of link prediction against baselines using GCN as the base encoder.

Methods

Cora Citeseer Coauthor-CS Actor

MAP NDCG MAP NDCG MAP NDCG MAP NDCG

GCN .742 ± .003 .805 ± .003 .735 ± .011 .799 ± .008 .823 ± .004 .867 ± .003 .521 ± .004 .634 ± .003

GVAE .783 ± .003 .835 ± .002 .743 ± .004 .805 ± .003 .843 ± .011 .882 ± .008 .587 ± .004 .684 ± .003

PNS .730 ± .008 .795 ± .006 .748 ± .006 .809 ± .005 .817 ± .004 .863 ± .003 .517 ± .006 .631 ± .006

DNS .735 ± .007 .799 ± .005 .777 ± .005 .831 ± .004 .845 ± .003 .883 ± .002 .558 ± .006 .663 ± .005

MCNS .756 ± .004 .815 ± .003 .750 ± .006 .810 ± .004 .824 ± .004 .868 ± .004 .555 ± .005 .659 ± .004

GraphGAN .739 ± .003 .802 ± .002 .740 ± .011 .803 ± .008 .818 ± .007 .863 ± .005 .534 ± .007 .644 ± .005

ARVGA .732 ± .011 .797 ± .009 .689 ± .005 .763 ± .004 .811 ± .003 .858 ± .002 .526 ± .012 .638 ± .009

KBGAN .615 ± .004 .705 ± .003 .568 ± .006 .668 ± .005 .852 ± .002 .888 ± .002 .472 ± .003 .596 ± .002

SEAL .751 ± .007 .812 ± .005 .718 ± .002 .784 ± .002 .850 ± .001 .886 ± .001 .536 ± .001 .641 ± .001

ScaLed .676 ± .004 .752 ± .003 .630 ± .004 .712 ± .003 .828 ± .001 .869 ± .001 .459 ± .001 .558 ± .001

DMNS .793 ± .003 .844 ± .002 .790 ± .004 .841 ± .003 .871 ± .002 .903 ± .001 .600 ± .002 .696 ± .002

∗
Best is bolded and runner-up underlined.

Table 3: Evaluation of link prediction on DMNS with various base encoders.

Methods

Cora Citeseer Coauthor-CS Actor

MAP NDCG MAP NDCG MAP NDCG MAP NDCG

GAT .766 ± .006 .824 ± .004 .767 ± .007 .763 ± .062 .833 ± .003 .874 ± .002 .479 ± .004 .603 ± .003

DMNS-GAT .813 ± .004 .859 ± .003 .788 ± .007 .840 ± .006 .851 ± .002 .889 ± .002 .573 ± .007 .675 ± .005

SAGE .598 ± .014 .668 ± .013 .622 ± .012 .713 ± .009 .768 ± .005 .826 ± .004 .486 ± .004 .604 ± .003

DMNS-SAGE .700 ± .007 .773 ± .005 .669 ± .013 .749 ± .010 .843 ± .004 .883 ± .003 .582 ± .017 .682 ± .013

required for training. Additional settings of our method and the

baselines can be found in Appendix B.

5.2 Evaluation on Link Prediction
We evaluate the performance of DMNS on link prediction against

various baselines and with different base encoders.

Comparison with baselines. We report the results of DMNS and

the baselines in Table 2. Overall, DMNS significantly outperforms

competing baselines across all datasets and metrics. The results in-

dicate that our strategy of multi-level negative sampling is effective.

We make three further observations. First, heuristic negative sam-

pling methods generally improve the performance upon the base

encoder with uniform sampling (i.e., GCN), showing the utility of

harder examples. Among them, DNS and MCNS are more robust as

they leverage more sophisticated heuristics to select better negative

examples. Second, GAN-based methods are often worse than classi-

cal GNNs, which is potentially due to the difficulty in training GANs.

For instance, GVAE achieves a relatively competitive performance,

while ARVGA—its variant with an adversarial regularizer—suffers

from a considerable drop. Third, subgraph-based GNNs achieve

mixed results, suggesting that the local structures can be effective

to some extent yet high-quality negative examples are still needed

for training.

Evaluation with other encoders. We further utilize GAT and SAGE

as the base encoders, and the corresponding model DMNS-GAT and

DMNS-SAGE, respectively. From the results reported in Table 3, we

observe that DMNS achieves significant improvements compared

to its corresponding base encoders in all cases, which demonstrates

the flexibility of DMNS to effectively work with various encoders.

5.3 Model Analyses
Finally, we investigate various aspects of DMNS through ablation

studies, parameter sensitivity analysis and visualization on the four

datasets.

Ablation studies. The first study investigates the ablation on

model design, to demonstrate the effectiveness of each module in

DMNS. We compare with two variants: (1) unconditional diffusion,
by removing the condition on the query node (and its associated

neighboring nodes) such that the diffusion model now generates

arbitrary node embeddings from noises; (2) unweighted negative

examples, by setting all𝑤𝑖 = 1 in Eq. (16). We report the results in

Fig. 3, and make the following observations. First, unconditional

diffusion performs significantly worse than its conditional coun-

terpart, since the generated negative examples are not optimized

for a specific query node. Second, the unweighted variant also ex-

hibits a drop in performance, implying that negative examples from

different levels of hardness have different importance.

The second study involves the ablation on the sampling choice.

Instead of sampling a mixture of examples from well-spaced time

steps, we now only use output from a single time step for each

query node. We vary the time step between
𝑇
10

and
𝑇
2
, as shown in

Fig. 4. The performance of each single time step varies but all are

worse than combining them together (i.e., DMNS), demonstrating

the effectiveness of multi-level sampling. It is also observed that

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Cora Citeseer CS Actor0.5

0.6

0.7

0.8

0.9
M

AP
unconditional
unweighted
DMNS

Figure 3: Ablation on model design.

Cora Citeseer CS Actor0.5

0.6

0.7

0.8

0.9

M
AP

T/2
T/4
T/8
T/10
DMNS

Figure 4: Ablation on sampling choices.

50 100 200

0.6

0.7

0.8

0.9

M
AP

Cora
Citeseer

CS
Actor

Figure 5: Impact of total timestep 𝑇 .

Cora Citeseer CS Actor0.5

0.6

0.7

0.8

0.9

M
AP

linear
cosine
sigmoid

Figure 6: Impact of variances 𝛽 .

smaller time steps (
𝑇
10
, 𝑇

8
) often outperform larger time steps (

𝑇
4
, 𝑇

2
),

indicating that harder examples could be more useful.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Distance

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

positive
DMNS
uniform

Figure 7: Histogram of embedding distances from query.

Parameter studies. We showcase the impact of two important

hyperparameters, including the total time step 𝑇 for the diffusion

process, and the scheduling for diffusion variances 𝛽 . In Fig. 5, we

observe that increasing total time steps may not boost the perfor-

mance while requiring more computation. In Fig. 6, results show

that linear scheduling achieves the best performance among several

standard scheduling policies including cosine and sigmoid schedul-

ing [31].

Visualization. We further investigate the quality of the negative

examples generated by DMNS. For each query node, we construct a

positive set consisting of its neighbors, a negative set consisting of

negative examples from DMNS at time
𝑇
10
, and a second negative

set consisting of uniformly sampled nodes from the graph. We cal-

culate the Euclidean distance between the query node embedding

and the embeddings in each set, and plot the empirical distribution

(histogram) of the distances in Fig. 7. For the positive set, we natu-

rally expect smaller distances to the query node. For the negative

sets, the distance can be regarded as a proxy to hardness: Smaller

distances from the query node imply harder examples. As we can

see, DMNS produces harder examples than uniform sampling, but

are not too hard (i.e., not closer to the query node than the positives)
to impair the performance [9, 44].

6 CONCLUSION
In this paper, we investigated a novel strategy of multi-level nega-

tive sampling for graph link prediction. Existing methods aim to

retrieve hard examples heuristically or adversarially, but they are

often inflexible or difficult to control the “hardness”. In response,

we proposed a novel sampling method named DMNS based on

a conditional diffusion model, which empowers the sampling of

negative examples at different levels of hardness. In particular, the

hardness can be easily controlled by sampling from different time

steps of the denoise process within the diffusion model. Moreover,

we showed that DMNS largely obeys the sub-linear positivity prin-

ciple for robust negative sampling. Finally, we conducted extensive

experiments to demonstrate the effectiveness of DMNS. A limita-

tion of our work is the focus on the effectiveness and robustness

of negative sampling for link prediction. Hence, one promising

future direction is to optimize the sampling process for efficiency

on large-scale graphs. Alternatively, we can investigate the poten-

tial of diffusion model in other graph learning tasks such as node

classification.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Diffusion-based Negative Sampling on Graphs for Link Prediction Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Kian Ahrabian, Aarash Feizi, Yasmin Salehi, William L Hamilton, and

Avishek Joey Bose. 2020. Structure aware negative sampling in knowledge

graphs. arXiv preprint arXiv:2009.11355 (2020).
[2] Martin Arjovsky and Léon Bottou. 2017. Towards principled methods for training

generative adversarial networks. arXiv preprint arXiv:1701.04862 (2017).
[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein genera-

tive adversarial networks. In International conference on machine learning. PMLR,

214–223.

[4] Liwei Cai and William Yang Wang. 2017. Kbgan: Adversarial learning for knowl-

edge graph embeddings. arXiv preprint arXiv:1711.04071 (2017).
[5] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca,

Thomas Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire.

2022. Graph Neural Networks for Link Prediction with Subgraph Sketching.

arXiv preprint arXiv:2209.15486 (2022).
[6] Liang Chen, Yuanzhen Xie, Zibin Zheng, Huayou Zheng, and Jingdun Xie. 2020.

Friend recommendation based on multi-social graph convolutional network.

IEEE Access 8 (2020), 43618–43629.
[7] Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion models beat gans on

image synthesis. Advances in Neural Information Processing Systems 34 (2021),
8780–8794.

[8] Jingtao Ding, Yuhan Quan, Quanming Yao, Yong Li, and Depeng Jin. 2020. Sim-

plify and robustify negative sampling for implicit collaborative filtering. Advances
in Neural Information Processing Systems 33 (2020), 1094–1105.

[9] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler. 2017. Vse++:

Improving visual-semantic embeddings with hard negatives. arXiv preprint
arXiv:1707.05612 (2017).

[10] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. 2022.

Diffuseq: Sequence to sequence text generation with diffusion models. arXiv
preprint arXiv:2210.08933 (2022).

[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[12] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation: A

new estimation principle for unnormalized statistical models. In Proceedings of
the thirteenth international conference on artificial intelligence and statistics. JMLR

Workshop and Conference Proceedings, 297–304.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS. 1024–1034.
[14] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey

Gritsenko, Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet,

et al. 2022. Imagen video: High definition video generation with diffusion models.

arXiv preprint arXiv:2210.02303 (2022).
[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic

models. Advances in Neural Information Processing Systems 33 (2020), 6840–6851.
[16] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi,

and Tim Salimans. 2022. Cascaded Diffusion Models for High Fidelity Image

Generation. J. Mach. Learn. Res. 23, 47 (2022), 1–33.
[17] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling.

2022. Equivariant diffusion for molecule generation in 3d. In International
Conference on Machine Learning. PMLR, 8867–8887.

[18] Binbin Hu, Yuan Fang, and Chuan Shi. 2019. Adversarial learning on heteroge-

neous information networks. In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 120–129.

[19] Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu

Wang, and Jie Tang. 2021. Mixgcf: An improved training method for graph neural

network-based recommender systems. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 665–674.

[20] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. 2022. Score-based generative model-

ing of graphs via the system of stochastic differential equations. In International
Conference on Machine Learning. PMLR, 10362–10383.

[21] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[22] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with

graph convolutional networks. In ICLR.
[23] Jianxin Li, Xingcheng Fu, Shijie Zhu, Hao Peng, Senzhang Wang, Qingyun

Sun, S Yu Philip, and Lifang He. 2023. A robust and generalized framework

for adversarial graph embedding. IEEE Transactions on Knowledge and Data
Engineering (2023).

[24] Zemin Liu, Yuan Fang, Yong Liu, and Vincent W Zheng. 2021. Neighbor-

anchoring adversarial graph neural networks. IEEE Transactions on Knowledge
and Data Engineering 35, 1 (2021), 784–795.

[25] Zemin Liu, Trung-Kien Nguyen, and Yuan Fang. 2021. Tail-gnn: Tail-node

graph neural networks. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 1109–1119.

[26] Paul Louis, Shweta Ann Jacob, and Amirali Salehi-Abari. 2022. Sampling Enclos-

ing Subgraphs for Link Prediction. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management. 4269–4273.

[27] Linyuan Lü and Tao Zhou. 2011. Link prediction in complex networks: A survey.

Physica A: statistical mechanics and its applications 390, 6 (2011), 1150–1170.
[28] Calvin Luo. 2022. Understanding diffusion models: A unified perspective. arXiv

preprint arXiv:2208.11970 (2022).
[29] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality.

Advances in neural information processing systems 26 (2013).
[30] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin,

Bob McGrew, Ilya Sutskever, and Mark Chen. 2021. Glide: Towards photorealistic

image generation and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741 (2021).

[31] Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising

diffusion probabilistic models. In International Conference on Machine Learning.
PMLR, 8162–8171.

[32] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.

2018. Adversarially regularized graph autoencoder for graph embedding. arXiv
preprint arXiv:1802.04407 (2018).

[33] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang.

2020. Geom-gcn: Geometric graph convolutional networks. arXiv preprint
arXiv:2002.05287 (2020).

[34] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron

Courville. 2018. Film: Visual reasoning with a general conditioning layer. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.
[35] Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim

Salimans, David Fleet, and Mohammad Norouzi. 2022. Palette: Image-to-image

diffusion models. In ACM SIGGRAPH 2022 Conference Proceedings. 1–10.
[36] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[37] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.

2015. Deep unsupervised learning using nonequilibrium thermodynamics. In

International Conference on Machine Learning. PMLR, 2256–2265.

[38] Yang Song and Stefano Ermon. 2019. Generative modeling by estimating gradi-

ents of the data distribution. Advances in neural information processing systems
32 (2019).

[39] Yang Song and Stefano Ermon. 2020. Improved techniques for training score-

based generative models. Advances in neural information processing systems 33
(2020), 12438–12448.

[40] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano

Ermon, and Ben Poole. 2020. Score-based generative modeling through stochastic

differential equations. arXiv preprint arXiv:2011.13456 (2020).
[41] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[42] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.
[43] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng

Zhang, Xing Xie, and Minyi Guo. 2018. Graphgan: Graph representation learning

with generative adversarial nets. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 32.

[44] Hong Xuan, Abby Stylianou, Xiaotong Liu, and Robert Pless. 2020. Hard negative

examples are hard, but useful. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16. Springer,
126–142.

[45] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao,

Yingxia Shao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. 2022. Diffusion

models: A comprehensive survey of methods and applications. arXiv preprint
arXiv:2209.00796 (2022).

[46] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[47] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie

Tang. 2020. Understanding negative sampling in graph representation learning.

In Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining. 1666–1676.

[48] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[49] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
neural information processing systems 33 (2020), 5812–5823.

[50] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural

networks. Advances in neural information processing systems 31 (2018).
[51] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n

collaborative filtering via dynamic negative item sampling. In Proceedings of
the 36th international ACM SIGIR conference on Research and development in
information retrieval. 785–788.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

APPENDICES
A Details of Baselines
In this section, we describe each baseline in more details.

• Classical GNNs: GCN [22] applies mean-pooling aggregates infor-

mation for the target node by over its neighbors. GVAE [21] pro-

poses an unsupervised training for graph representation learning

by reconstructing graph structure.

• Heuristic negative sampling: PNS is adopted from word2vec [29],

where the distribution for negative samples is calculated by the

normalized node degree. DNS [51] dynamically select hard nega-

tive examples from candidates ranked by the current prediction

scores. MCNS [47] proposes a Metropolis-Hasting method for

negative sampling based on the sub-linear positivity principle.

• Generative adversarial methods: GraphGAN [43] samples hard

negative examples from the learned connectivity distribution

through adversarial training. KBGAN [4] samples high quality

negative examples for knowledge graph embeddings by the gen-

erator that learns to produce distribution for negative candidates

conditioned on the positives. ARVGA [32] integrates an adver-

sarial regularizer to GVAE to enforce the model on generating

realistic samples.

• Subgraph-based GNNs: SEAL [50] proposes to sample k-hops

local subgraphs surrounding two candidates for link prediction.

ScaLED [26] improves SEAL by utilizing random walks for effi-

cient subgraphs sampling.

For other base GNN encoders, GAT [42] employs self-attention

mechanism to produce learnable weights to each neighbor of target

node during aggregation. SAGE [13] first aggregates information

from target node neighbors, then concatenates with the node itself

to obtain the node embedding.

B Model Settings
For all the approaches, we use a two layers GCN as encoder with

output dimension as 32 for fair comparison to conduct link predic-

tion. For our model DMNS, we set learning rate as 0.01, dropout

ratio as 0.1. For each query nodes 𝑣 , we sample a neighbor set

𝑁𝑣 = 20 for diffusion training.

For GCN, we set the hidden dimension as 32. For GAT, we use

three attention heads with hidden dimension for each head as 32.

For SAGE, we use mean aggregator for concatenation and set its

hidden dimension as 32. In PNS, we utilize node degree to calculate

the popularity distribution and normalize it to 3/4
th

power. For

DNS, we set the number of negative candidates as 10 and select

1 negative sample as the highest ranked node. For MCNS, we set

the DFS length as 5 and the proposal distribution 𝑞(𝑦 |𝑥) is mixed

betwwen uniform and k-nearest nodes sampling wih 𝑝 = 0.5. In

these methods we set learning rate as 0.01.

For GraphGAN, we use pretrained GCN to obtain initialized

node embeddings and set the learning rates for discriminator 𝐷

and generator 𝐺 as 0.0001. In each iteration, we set the number of

gradient updates for both 𝐷 and𝐺 as 1 for best results. For KBGAN,

we adapt it to the homogeneous graph setting by neglecting all

relation types and use a single embedding to represent a universal

relation. We further set the number of negative examples as 20 and

number of gradient updates for both 𝐷 and 𝐺 as 1. For ARVGA,

learning rates for encoder 𝐸 and discriminator𝐷 are 0.005 and 0.001

respectively, hidden dimension for 𝐷 is 64, the number of gradient

updates 𝐷 for each iteration is 5.

For Subgraph-based GNNs approaches, we replace their original

objective Binary Cross Entropy with our Log Sigmoid and do not

utilize additional node structural embeddings for fair evaluation.

For SEAL, we set learning rate as 0.0001, the number of hop 𝑘 equals

1. On ScaLed, we set random walk length as 3 and number of walks

as 20.

C Environment
All experiments are conducted on a workstation with a 12-core CPU,

128GBRAM, and 2 RTX-A5000GPUs.We implementedDMNS using

Python 3.8 and Pytorch 1.13 on Ubuntu-20.04.

10

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Model: DMNS
	4.1 Multi-level Negative Sample Generation
	4.2 Training Objective
	4.3 Theoretical Analysis
	4.4 Algorithm and Complexity

	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluation on Link Prediction
	5.3 Model Analyses

	6 Conclusion
	References
	A Details of Baselines
	B Model Settings
	C Environment

