
RevOrder: A Novel Equation Format for Arithmetic Operations in
Language Models

Anonymous ACL submission

Abstract

This paper proposes to understand arithmetic001
operations in Language Models (LM) by fram-002
ing them as digit-based reasoning challenges.003
We introduce a metric called the Count of Se-004
quential Intermediate Digits (CSID), which005
measures the complexity of arithmetic equa-006
tions by counting the missing steps in digit007
reasoning. Our empirical findings suggest that008
increasing the model size does little to improve009
the handling of equations with high CSID val-010
ues.011

We propose RevOrder, a method that incorpo-012
rates techniques such as reversing the output013
order, step-by-step decomposition, and rollback014
mechanisms to maintain a low CSID, thereby015
enhancing the solvability of arithmetic equa-016
tions in LMs. RevOrder also introduces a more017
compact reasoning process, which reduces the018
token requirements without affecting the CSID,019
significantly enhancing token efficiency.020

Comprehensive testing shows that RevOrder021
achieves perfect accuracy in operations such as022
addition, subtraction, and multiplication, and023
substantially improves performance in division024
tasks, especially with large numbers where tra-025
ditional models falter. Additionally, applying026
RevOrder to fine-tune the LLaMA2-7B model027
on the GSM8K math task led to a significant028
reduction in equation calculation errors by 46%029
and increased the overall score from 41.6 to030
44.4. 1031

1 Introduction032

Arithmetic reasoning has long been a focus for033

improving the capabilities of Language Models034

(LMs) in solving arithmetic problems (Lu et al.,035

2022). A popular alternative involves generating036

solutions step-by-step in a chain-of-thought (COT)037

manner, which have been applied to a range of op-038

erations including subtraction, multiplication and039

1The data and code can be found at GitHub Repository

division(Liu and Low (2023)). Interestingly, recent 040

findings by Lee et al. (2023) have shown that sim- 041

ply reversing the output order of digits significantly 042

enhances performance in addition, subtraction, and 043

2D multiplication, aligning the problem-solving ap- 044

proach more closely with human methods, which 045

typically proceed from lower to higher digits. 046

In this paper, we conceptualize arithmetic prob- 047

lems as digit-based reasoning tasks, where each 048

digit represents a step in the reasoning process. 049

From this perspective, reversing the output digits 050

effectively reorders these reasoning steps into a 051

more logical sequence. This understanding bridges 052

the reversing technique and COT solutions, aim- 053

ing to reduce missing reasoning steps and simplify 054

equation complexity. 055

We introduce a new metric, the Count of Se- 056

quential Intermediate Digit (CSID), to gauge the 057

complexity of an equation. A higher CSID indi- 058

cates more missing reasoning steps. Our empiri- 059

cal evidence suggests that simply enlarging LLMs 060

does not substantially improve their performance 061

on equations with high CSID values. 062

Guided by these insights, we propose RevOrder, 063

a novel equation format designed to enhance the 064

precision of arithmetic operations while minimiz- 065

ing the use of extra tokens. RevOrder fundamen- 066

tally reverses the order of all output digits in inter- 067

mediate steps, keeping the CSID low and ensuring 068

that equations remain solvable by LMs. Figure 1 069

shows an example of mutiplication using different 070

methods. 071

For division tasks, where the CSID for quotient 072

estimation remains high with large digits, we in- 073

troduce a ’Rollback’ technique that enables LMs 074

to detect and correct errors automatically. Addi- 075

tionally, we present a compact equation format that 076

maintains the same CSID while eliminating unnec- 077

essary tokens, further enhancing the efficiency of 078

LMs in arithmetic tasks. 079

RevOrder is evaluated on the Big-bench arith- 080

1

https://anonymous.4open.science/r/RevOrder-D1E1

Figure 1: An example of multiplication using different
methods. Digits enclosed by $ indicate reversed orders.
The simple reverse method (Lee et al., 2023) omits
the total reasoning steps required for decomposition,
thus simplifying the process. In contrast, the GOAT-7b
model (Liu and Low, 2023) does not reverse the output
digits for basic operations such as addition and simple
multiplication, which results in missing reasoning steps.
RevOrder integrates the benefits of both approaches,
minimizing the occurrence of missing reasoning steps
while maintaining clarity in the solution process.

metic task (Srivastava et al., 2022) and an expanded081

set with larger digits, achieved 100% accuracy in082

addition, subtraction, multiplication, and low-digit083

division tasks, and nearly 100% in large-digit divi-084

sion, outperforming baseline methods with a large085

margin.086

The remainder of this paper is organized as fol-087

lows: Section 2 reviews related work, Section 3088

introduces the CSID metric, Section 4 details the089

RevOrder technique, Section 5 reports on exper-090

iments on arithmetic calculation, Section 6 dis-091

cusses finetuning on GSM8K, and Section 7 con-092

cludes the paper.093

2 Related Works094

Equation complexity Dries and Moschovakis095

(2009) early obtain lower bounds on the cost of096

computing various arithmetic functions (Dries and097

Moschovakis, 2009). Gowers and Wolf (2010)098

focused on complex linear equations complex-099

ity (Gowers and Wolf, 2010). Few have attempted100

to evaluate the basic equations complexity. Our101

CSID theory provides a framework to assess the102

complexity of equations, showing that LLMs’ abil-103

ity to perform basic operations diminishes as digit104

size grows.105

Decomposition of formulas For addition and 106

subtraction, Lee et al. (2023) proposed reversing 107

the output digits, significantly improving sampling 108

efficiency. However, their methods are primarily 109

effective for simpler addition and subtraction op- 110

erations and do not extend to solving division or 111

large-digit multiplication challenges. 112

GOAT-7b (Liu and Low, 2023) solves more com- 113

plex arithmetic operations by decomposing them 114

into a series of simpler operations (Liu and Low, 115

2023). Differently, our method incorporate the re- 116

verse method in the intermediate decomposition 117

step, which greatly improves the computational 118

efficiency and efficiently deal with the solving di- 119

vision or large-digit multiplication challenges. No- 120

tably, we employ unique rollback strategies in our 121

approach when tackling division tasks. 122

Token economy RevOrder introduces an effi- 123

cient method to keep equations’ CSID low, en- 124

suring their manageability within constrained to- 125

ken budgets. XVal presents another approach by 126

directly encoding numerical values into LLMs, 127

offering greater token efficiency compared to 128

RevOrder (Golkar et al., 2023). However, inte- 129

grating such a method with modern LLM architec- 130

tures is challenging due to the requisite changes in 131

network structure. Additionally, the current perfor- 132

mance of XVal is falling far behind RevOrder. 133

Performance Almost all current methods of 134

arithmetic computation fail to achieve 100% accu- 135

racy, especially when dealing with large numbers 136

and division problems. In contrast, our method 137

succeeds in achieving 100% accuracy. 138

3 Sequential Intermediate Digits in 139

Arithmetic Computation 140

Arithmetic reasoning in language models (LMs) is 141

challenging, mainly due to the sequential predic- 142

tion of digits(Lee et al., 2023). This complexity 143

is exacerbated when contextual digits required for 144

accurate predictions are not inferred from previous 145

steps. For example, in addition, LMs may predict 146

higher-order digits before lower-order ones, contra- 147

dicting the logical computation order. This paper 148

introduces a novel metric to quantify and under- 149

stand this complexity. 150

3.1 Definition of Sequential Intermediate 151

Digits (SIDs) 152

A Sequential Intermediate Digit (SID) is a numeral 153

crucial for the accurate prediction of the next digit 154

2

in a sequence, yet not present in the preceding se-155

quence. Within the framework of chain-of-thought156

reasoning, SIDs represent indispensable steps that,157

despite being missing, are vital for the computa-158

tional process. Consequently, the Count of SIDs159

(CSIDs) is employed as a metric to assess the com-160

plexity of a generation step, with a higher CSID161

denoting a more demanding and intricate task. The162

CSID of an equation is thus defined as the maxi-163

mum CSID required for generating each step of the164

result.165

The primary types of SIDs include:166

• Carry-over or borrow digits in addition and167

subtraction. For example, in 125 + 179 =168

304, the digit 3 in the hundreds place requires169

the carry-over from the tens and units places,170

resulting in a maximum CSID of 2.171

• Digits from omitted reasoning steps, such as172

the intermediate sum 3 in 1 + 2 + 4 = 7.173

It is postulated that basic operations like 1D by174

1D addition, subtraction, multiplication, division,175

counting, and copying do not require SIDs, as their176

straightforward nature falls within the capabilities177

of modern LMs. Directly generating results for178

complex operations, such as multi-digit multipli-179

cation and division, requires more SIDs due to the180

omitted steps for decomposing these into multiple181

basic operations.182

Reducing an equation’s CSIDs, thereby lowering183

its solving difficulty, can be achieved by expand-184

ing the equation step-by-step in a chain-of-thought185

manner. For instance, the CSID for the calculation186

1+2+4 = 3+4 = 7 is lower than for 1+2+4 = 7187

because the intermediate sum 3 is included in the188

reasoning process, effectively reducing the number189

of SIDs.190

3.2 The CSIDs for Plain Arithmetic191

Operations192

In our CSID analysis of standard arithmetic op-193

erations, which is akin to analyzing space or194

time complexity in algorithms, we focus on the195

worst-case scenario. Consider two numbers a =196

anan−1 . . . a2a1 and b = bmbm−1 . . . b2b1, result-197

ing in c = ctct−1 . . . c2c1, with m ≤ n. When198

involving negative numbers, the minus sign ’-’ is199

also treated as a digit.200

• In addition and subtraction, the com-201

putation sequence anan−1 . . . a2a1 ±202

Figure 2: Performance of LLMs on equations with vary-
ing CSIDs. This graph illustrates how CSID values
affect LLM accuracy, with data obtained under the train-
ing protocols outlined in Section 5.

bmbm−1 . . . b2b1 = ctct−1 . . . c2c1 depends 203

on each ci involving ai, bi, and possibly 204

ci−1 for carry-overs or borrows. Hence, the 205

CSID for ct includes all lower digits as SIDs, 206

indicating a complexity of O(n). 207

• For multiplication and division, the CSIDs 208

are O(n2) and O(n2 − m2) respectively, as 209

detailed in Appendix A. 210

3.3 LLM Performance on Large CSID 211

Equations 212

We trained various models on arithmetic tasks in- 213

volving 15D+15D calculations, maintaining iden- 214

tical hyper-parameters, training data, and training 215

steps across all models to ensure a fair comparison. 216

The test equations, strictly in 15D+15D format, 217

were classified into various CSID levels according 218

to the maximum number of continuous carry-over 219

digits. The findings, as depicted in Fig. 2, demon- 220

strate that: 221

• CSID effectively measures the complexity of 222

arithmetic equations, where the performance 223

consistently declines with increasing CSIDs. 224

• Larger models exhibit improved performance 225

on equations with higher CSIDs. 226

• The benefit of increasing model size dimin- 227

ishes on high CSID equations. For instance, 228

a 7B model shows more significant improve- 229

ment on equations with CSIDs of 4 and 5 230

than on those with 6-9. This trend suggests 231

that even advanced LLMs, like GPT-4, en- 232

counter difficulties with large digit addition 233

tasks. Given that CSIDs have a complexity of 234

at least O(n), arithmetic problems quickly sur- 235

pass the capacity of LLMs when dealing with 236

3

large digits. Therefore, LLMs cannot serve237

as reliable calculators for immediate result238

generation in complex arithmetic tasks.239

4 RevOrder: Reducing the CSID for240

Equations241

We introduce RevOrder, an innovative technique242

devised to maintain low CSID in equations, thereby243

ensuring their solvability by LMs. Additionally,244

RevOrder is designed to minimize token usage,245

enhancing overall efficiency.246

4.1 Addition and Subtraction247

Following Lee et al. (2023), we reverse the output248

digits for addition and subtraction.249

a± b = $c1c2 . . . ct$250

Numbers enclosed within $ symbols are repre-251

sented in reversed order. Lee et al. (2023) demon-252

strated that this formatting enables the model to253

generate the least significant digit (LSB) first, mim-254

icking the typical human approach to addition and255

subtraction.256

We present an analysis of the CSID for this method.257

To generate each ci in $c1c2 . . . ct$, only ai, bi, and258

at most a SID for the carry-over or borrow number259

from ci−1 are required. Thus, both addition and260

subtraction only consume at most 1 SID regardless261

of number length. Therefore, the complexity of262

CSID drop to O(1) from O(n), by reversing the263

order of the output digits.264

Note that we make a slight modification in our im-265

plementation compared to Lee et al. (2023). Their266

format is:267

$a± b = c1c2 . . . ct$268

Enclosing the entire equation within $ symbols269

complicates the use of addition and subtraction as270

basic components for more complex operations.271

4.2 Multiplication and Division272

RevOrder skillfully integrates the chain-of-thought273

(COT) technique (Liu and Low, 2023) with the re-274

versing output digits technique (Lee et al., 2023),275

effectively maintaining a low CSID for both multi-276

plication and division equations.277

4.2.1 Multiplication278

Firstly, consider the simplest form of multiplica-279

tion, nD by 1D, e.g, 12*7=48, which consistently280

requires only 1 SID. This efficiency originates from281

the definition that 1D by 1D multiplication does 282

not incur any SIDs, with the only one SID being 283

the carry-over number in the addition. 284

Next, let’s examine a more general multiplication 285

example. 286

12× 4567 287

=12× 4000 + 12× 500 + 12× 60 + 12× 7
(1)

288

=00084 + 0006 + 027 + 48 (2) 289

=(00084 + 0006) + (027 + 48) (3) 290

=00045 + 408 (4) 291

=40845 292

First, decompose the multiplication as shown in 293

Eqn. (1), which does not require any SIDs (require 294

only count and copy operations that does not use 295

SID in our definition). Second, output the results of 296

each sub-multiplication in reverse order, as demon- 297

strated in Eqn. (2). The zeros in these results can 298

be efficiently generated through a copy operation 299

from previous sequences. The nD by 1D multipli- 300

cation in reverse order has a CSID of 1. Finally, 301

iteratively combine the adjacent addition results 302

until the final outcome is achieved, as illustrated in 303

Eqn. (3) and (4). 304

As each addition operation involves only two num- 305

bers, the CSID remains constant at 1 throughout 306

the process. In contrast to the merge operation 307

in Eqn. (3), which requires approximately log2m 308

iterations, GOAT-7B (Liu and Low, 2023) com- 309

bines numbers one at a time and requires about m 310

iterations. In conclusion, the CSID in this multipli- 311

cation process never exceeds 1, with a complexity 312

of O(1). 313

4.2.2 Division 314

Consider the division 948÷ 12 = 79: 315

948÷ 12 316

=7 Rem (948− 12× 70) (5) 317

=7 Rem (948− 048) 318

=7 Rem 801 319

=79 Rem (801− 12× 9) (6) 320

=79 Rem (801− 801) 321

=79 Rem (0) 322

=79 323

RevOrder utilizes traditional long division for step- 324

by-step decomposition and reverses all output dig- 325

its in intermediate addition, subtraction, and nD 326

4

by 1D multiplications. The overall CSID complex-327

ity remains O(m), primarily due to the quotient328

estimation steps, as noted in Eqn. (5) and Eqn. (6),329

while other components sustain a CSID complexity330

of O(1). The CSID analysis for quotient estima-331

tion is detailed in Appendix A, confirming that the332

CSID complexity for division within RevOrder is333

O(m).334

Quotient estimation represents a bottleneck and335

accounts for the majority of errors in practice. To336

address this challenge, we have proposed a novel337

rollback mechanism. If an incorrect quotient is338

detected, as illustrated in Eqn. (7), we insert a339

symbol ‘W‘ following the line. This serves as a340

signal to adjust the process and re-estimate the341

quotient, as demonstrated in Eqn. (8). This method342

ensures more accurate quotient estimations in the343

long division process. A proportion of rollback344

scenarios are included in the training data to teach345

the model how to correct such errors.346

948÷ 12347

=8 Rem (948− 12× 80)348

=8 Rem (948− 069)349

=8 Rem (−21)W (7)350

=7 Rem (948− 12× 70) (8)351

...352

Although rollback technique can correct most of353

the errors, unlike other arithmetic operations, the354

CSID for division cannot be consistently main-355

tained at O(1). This limitation makes division with356

RevOrder less robust compared to addition, sub-357

traction, and multiplication, as will be evidenced358

in our experimental results.359

4.3 Towards More Compact Forms360

To further reduce token usage, we propose compact361

forms while maintaining CSID unchangeable.362

For the multiplication example, it can be succinctly363

rewritten as: ’12×4567 = 12×4000 + 12×500 +364

12×60+ 12×7=00084 + 0006 + 027 + $48$365

= 00045 + 408 = 40845 = 54804’.366

Similarly, the division example can be condensed367

to: ’948÷12 = 7R - (12×70)(048)(801) # 9R368

- (12×9)(801)(0) = 79’, where R denotes REM369

and # denotes a new quotient estimation.370

Two principles guide these simplifications: 1.371

Maintaining CSID: No digits essential for generat-372

ing subsequent tokens are removed, ensuring the373

CSID remains unchanged. 2. Eliminating Redun-374

dancy: Duplicated digits are removed, but care is375

Method + − × ÷

Plain O(n) O(n) O(n2) O(n2 −m2)
Simple Reverse O(1) O(1) O(n2) −−

GOAT-7b O(n) O(n) O(n) O(n+m)
RevOrder O(1) O(1) O(1) O(m)

Table 1: The CSID complexity for different methods.
"Plain" denotes the direct generation of results.

taken to avoid introducing ambiguities that might 376

confuse the LM. 377

4.4 A Comparison of CSID Among Different 378

Methods 379

Table 1 compares the CSID complexity of 380

RevOrder with other methods. The complexities 381

for Plain, Simple Reverse and GOAT-7b are de- 382

tailed in Appendix A. It is evident that RevOrder 383

offers advantages across all types of arithmetic op- 384

erations. 385

5 Experiments on Arithmetic Operations 386

In this section, we aim to address two key research 387

questions (RQs): 388

• RQ1: Does RevOrder enable a language 389

model to function as a reliable calculator? 390

(Section 5.2 - 5.3) 391

• RQ2: Is RevOrder a token efficient format? 392

(Section 5.4) 393

5.1 Setup 394

5.1.1 Dataset 395

Our training dataset is synthetically generated 396

using a Python script, with each sample be- 397

ing an equation formatted with RevOrder, e.g., 398

’123+46=961’. Note this experiment aims at 399

testing the LM’s capability of doing arithmetic op- 400

erations, hence no prompt engineering is included. 401

The dataset comprises positive integers, except in 402

subtraction where negative numbers may result. 403

Each division equation is assigned a probability 404

of 0.5 to be selected for generating a rollback ver- 405

sion. This involves intentionally misestimating a 406

quotient step by a number ±1, followed by a cor- 407

rection through the rollback process to the accurate 408

estimation. The detailed of the training data is 409

shown in Appendix B. 410

5

5.1.2 Training and evaluation protocol411

We train a model named RevOrder-1B, which has412

1.1 billion parameters. This model is trained on the413

TinyLLaMA 1.1B framework (Zhang et al., 2024),414

utilizing their released finetuning script. Specif-415

ically, the learning rate is set to 1e-4 for first 2416

epochs and 1e-5 for the last epoch. The batch size417

is 500.418

For evaluation, we employ the BIG-bench Arith-419

metic sub-task (Srivastava et al., 2022) and addi-420

tional challenging tasks proposed in the GOAT-7B421

paper (Liu and Low, 2023). Each task has 1000422

equations. We meticulously ensure that there is423

no overlap between the evaluation datasets and our424

training dataset, except for unavoidable overlaps in425

small digits tasks. The evaluation metric is exact426

match precision.427

5.1.3 Baselines428

As baselines, we compare against three methods:429

• GOAT-7B (Liu and Low, 2023): This model,430

finetuned with 1 million instruction data on431

LLAMA-7B (Touvron et al., 2023), decom-432

poses multiplication and division similarly to433

our approach. However, it relies on direct434

result generation for subtraction and addition.435

• MathGLM-2B (Yang et al., 2023): Finetuned436

on the GLM-2B model for various arithmetic437

tasks, MATHGLM-2B claims that a huge438

amount training data (1m-50m instances) en-439

ables GPT models to solve math problems440

without external calculators.441

• Simple Reverse (Lee et al., 2023): This442

method initially proposed reversing the order443

of output digits. It is important to note that444

the Simple Reverse method cannot be applied445

to division.446

5.2 Main Results (RQ1)447

The results, as presented in Table 2, demonstrate448

several key findings. Firstly, RevOrder-1B proves449

to be a reliable method for addition, subtraction,450

multiplication, and low-digit division tasks, achiev-451

ing 100% accuracy across all corresponding tasks.452

In contrast, the accuracy of all baseline methods453

decreases with the increase in digit size. Secondly,454

while RevOrder-1B shows slight imperfections in455

large-digit division tasks, it still significantly out-456

performs baseline models. For instance, RevOrder-457

1B attains a 99.4% accuracy on the challenging458

Figure 3: An error example of division by RevOrder.

12D ÷ 6D tasks, with an increasing of 10.1% than 459

that of the best-performing baseline, GOAT-7B. 460

The major success of RevOrder in multiplication 461

and division can be attributed to its precise execu- 462

tion of basic operations, including addition, subtrac- 463

tion, and nD-1D multiplication. While GOAT-7B 464

also decomposes these operations into basic ones, 465

minor errors in these fundamental steps are ampli- 466

fied in subsequent composite operations, leading to 467

a rapid decline in accuracy with larger digits. 468

In summary, RevOrder emerges as an effective tech- 469

nique, enabling language models to perform ex- 470

act arithmetic calculations in addition, subtraction, 471

multiplication, and low-digit division tasks. 472

5.3 In-Depth Analysis on Division 473

Large-digit division represents the sole operation 474

where RevOrder encounters notable difficulties, 475

warranting additional focus. 476

Upon examining division errors case by case, we 477

discovered that all errors stemmed from incorrect 478

quotient estimations. Fig. 3 illustrates such an 479

error, where RevOrder-1B erroneously estimated 480

the 3rd quotient as 8 (marked in red) instead of 9, 481

without triggering the ’W’ symbol for a rollback. 482

Consequently, this led to a series of nonsensical 483

outputs. It’s notable that when a constant CSID of 484

1 is maintained in all four arithmetic operations, no 485

errors occur. Errors only arise during quotient esti- 486

mation, where CSID complexity is O(m). These 487

results validate our theory regarding CSID. 488

We also assessed the effectiveness of the rollback 489

mechanism. Fig. 4(a) presents the test precision for 490

12D ÷ 6D division across varying rollback ratios. 491

A stark precision decline to 0.84 is observed with 492

no rollback (ratio = 0). Precision does not signifi- 493

cantly improve when the ratio exceeds 0.4, though 494

this is partly due to the high baseline precision of 495

6

Task BIG-bench Extra Tasks

ADD 1D 2D 3D 4D 5D 8D+8D 16D+8D 16D+16D

Simple Reverse 100 100 100 100 100 100 100 100
GOAT-7B 100 100 99.4 98.3 98.1 97.8 97.1 97.6

MathGLM-2B 100 100 100 100 99.4 - - -
RevOrder-1B 100 100 100 100 100 100 100 100

SUB 1D 2D 3D 4D 5D 8D-8D 16D-8D 16D-16D

Simple Reverse 100 100 100 100 100 100 100 100
GOAT-7B 100 100 99.7 98.6 98.4 96.8 95.8 96.3

MathGLM-2B 100 100 99.9 99.8 98.9 - - -
RevOrder-1B 100 100 100 100 100 100 100 100

MUL 1D 2D 3D 4D 5D 16D × 1D 8D × 4D 6D×6D

Simple Reverse 100 100 80.4 35.5 10.7 100 0.0 2.1
GOAT-7B 100 100 97.8 96.9 96.7 99.7 88.1 96.8

MathGLM-2B 100 99.9 98.3 94.9 89.9 - - -
RevOrder-1B 100 100 100 100 100 100 100 100

DIV 1D 2D 3D 4D 5D 16D÷1D 6D÷3D 12D÷6D

Simple Reverse - - - - - - - -
GOAT-7B 100 100 99.5 99 96.5 99 94.1 89.3

MathGLM-2B 100 100 99.4 100 94.9 - - -
RevOrder-1B 100 100 100 100 100 99.2 100 99.4

Table 2: Performance comparison on various arithmetic operations. The results of the baseline methods are taken
from their original paper, while the result of Simple Reverse is based on our implementation.

Figure 4: Analysis of the rollback ratio in division. (a)
Test precision vs. rollback ratio for 12D ÷ 6D division.
(b) Probability of rollbacks during testing across differ-
ent digit sizes.

0.99. Fig. 4(b) illustrates the frequency of rollbacks496

during testing, indicating a higher incidence of roll-497

backs with larger digits. This trend underscores the498

importance of the rollback technique, particularly499

as it compensates for the increased likelihood of500

errors in quotient estimation with larger numbers.501

5.4 The Cost of RevOrder (RQ2)502

By maintaining a low CSID, RevOrder simpli-503

fies the learning process for arithmetic problems,504

thereby reducing the volume of training data re-505

quired. Table 3 compares the number of training506

equations needed for various methods. Despite be-507

ing a smaller model, RevOrder-1B achieves perfect508

precision with at most half the training equations509

compared to other methods. Recent studies indicate510

Model # Equations 100% ACC

RevOrder-1B 0.5m Yes
MathGLM-2B 1m-50m No

GOAT-7B 1.7m No

Table 3: Number of training equations for different
methods. This table reports the dataset size required
for RevOrder-1B to achieve 100% accuracy on all Big-
bench arithmetic sub-tasks. # Equations denotes the
number of training equations.

that larger models often require less training data 511

for task mastery (Hoffmann et al., 2022; Xia et al., 512

2022). Consequently, the training cost advantage 513

of RevOrder is likely to be even more pronounced 514

with larger LLMs. 515

The inference cost is assessed based on the num- 516

ber of additional tokens required for performing 517

arithmetic calculations with RevOrder. We make 518

two assumptions: 1) Each character (digit, symbol, 519

etc.) is counted as one token, and 2) if the final 520

result is output in reverse, the recovery process is 521

handled by the tokenizer’s decode function. 522

For addition and subtraction equations, only a pair 523

of extra tokens (’$’) is required. For multiplication 524

and division equations, the number of extra tokens 525

used is illustrated in Fig. 5. RevOrder is more 526

token-efficient in both types of equations. Firstly, 527

7

Figure 5: The number of extra tokens required for mul-
tiplication and division.

the compact form introduced in Section 4.3 signifi-528

cantly reduces the token requirement for division,529

approximately halving the number of extra tokens.530

Secondly, the iterative combination approach in531

multiplication, as exemplified in Eqn. (3), also532

notably reduces token usage in multiplication.533

6 Additional Experiments on Math Word534

Problems535

In this section, we delve into finetuning scenarios536

to address the research question:537

• RQ3: How does applying RevOrder af-538

fect finetuning performance on mathematical539

tasks?540

6.1 Setup541

The experiment is conducted on GSM8K (Cobbe542

et al., 2021). Our experiments utilize LLAMA2-543

7B (Touvron et al., 2023) as the foundational model.544

We modified the equations in the GSM8K training545

set to adopt the RevOrder format. This adaptation546

involved two major updates: Firstly, we presented547

the outcomes for addition, subtraction, and multi-548

plication in reverse order. Secondly, polynomial549

equations were expanded and solved iteratively, in550

pairs. Noted that we did not decompose multi-digit551

multiplications and divisions, as these cases are in-552

frequent in the GSM8K dataset. To further enhance553

the model’s proficiency with RevOrder, we supple-554

mented the training set with a small, synthetically555

generated dataset using a Python script. The com-556

prehensive details of the dataset and the training557

parameters are provided in Appendix C.558

Baseline RevOrder

Score 41.6 44.4 (+2.8)

Equation Acc 88.9 94.1 (+5.2)
Acc of + 96.7 99.8 (+2.1)
Acc of - 97.0 99.6 (+2.6)
Acc of * 95.8 98.8 (+3)

Table 4: Fine-tuning results on GSM8K Dataset. This ta-
ble compares the performance of models fine-tuned with
the original GSM8K dataset (baseline) against those
finetuned using the RevOrder-modified GSM8K dataset.
The Score is measured by the correctness ratio of final
results.

6.2 Results 559

From Table 4, it is evident that RevOrder signifi- 560

cantly reduces calculation errors, by 94% for addi- 561

tion, 87% for subtraction, and 46% for overall equa- 562

tion errors, thereby enhancing the final score. This 563

improvement underscores the potential of seam- 564

lessly integrating RevOrder into fine-tuning pro- 565

cesses to achieve substantial performance gains. 566

We also observe the errors, and find most of the 567

errors are due to lack of enough training. Therefor, 568

the model cannot well follow the instructions of 569

RevOrder. Some examples are presented in Ap- 570

pendix C. 571

7 Conclusion 572

In this paper, we introduce the CSID as a metric to 573

evaluate the complexity of arithmetic equations and 574

demonstrate that even large-scale LLMs struggle 575

with high-CSID equations. We propose RevOrder, 576

an innovative technique that ensures accurate arith- 577

metic calculations by minimizing CSID, thereby 578

enhancing precision while reducing both training 579

and inference costs. Our experiments confirm that 580

RevOrder significantly outperforms previous meth- 581

ods in terms of accuracy and efficiency. 582

For future work, we identify two possible paths: 583

Firstly, developing token-efficient decomposition 584

algorithms suitable for larger LLMs, which can 585

handle higher CSIDs for complex arithmetic opera- 586

tions. Secondly, integrating RevOrder into LLMs’ 587

pretraining could enhance arithmetic capabilities 588

more fundamentally than finetuning, reducing the 589

risk of catastrophic forgetting and ensuring broader 590

model proficiency. 591

8

8 Limitations592

Firstly, RevOrder struggles with large-digit divi-593

sion, requiring significantly more training samples594

for this operation than others. An alternative algo-595

rithm that bypasses traditional quotient estimation596

may mitigate this issue.597

Secondly, improvements in finetuning accuracy on598

the GSM8K dataset through RevOrder have not599

met our expectations. Increasing the dataset with600

arithmetic equations risks diminishing the LLM’s601

overall performance. Finding an effective method602

to enhance arithmetic accuracy with minimal train-603

ing data remains an unresolved challenge.604

References605

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,606
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-607
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al.608
2021. Training verifiers to solve math word problems.609
arXiv preprint arXiv:2110.14168.610

Lou Van Den Dries and Yiannis N Moschovakis. 2009.611
Arithmetic complexity. ACM Transactions on Compu-612
tational Logic (TOCL).613

Siavash Golkar, Mariel Pettee, Michael Eickenberg, Al-614
berto Bietti, Miles Cranmer, Geraud Krawezik, Fran-615
cois Lanusse, Michael McCabe, Ruben Ohana, Liam616
Parker, et al. 2023. xval: A continuous number en-617
coding for large language models. arXiv preprint618
arXiv:2310.02989.619

William T Gowers and Julia Wolf. 2010. The true com-620
plexity of a system of linear equations. Proceedings of621
the London Mathematical Society.622

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-623
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-624
ford, Diego de Las Casas, Lisa Anne Hendricks, Jo-625
hannes Welbl, Aidan Clark, et al. 2022. Training626
compute-optimal large language models. arXiv preprint627
arXiv:2203.15556.628

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kang-629
wook Lee, and Dimitris Papailiopoulos. 2023. Teach-630
ing arithmetic to small transformers. arXiv preprint631
arXiv:2307.03381.632

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat:633
Fine-tuned llama outperforms gpt-4 on arithmetic tasks.634
arXiv preprint arXiv:2305.14201.635

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-636
Wei Chang. 2022. A survey of deep learning for mathe-637
matical reasoning. arXiv preprint arXiv:2212.10535.638

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,639
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,640
Adam R Brown, Adam Santoro, Aditya Gupta, Adrià641
Garriga-Alonso, et al. 2022. Beyond the imitation game:642

Quantifying and extrapolating the capabilities of lan- 643
guage models. arXiv preprint arXiv:2206.04615. 644

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, 645
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, 646
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. 647
2023. Llama 2: Open foundation and fine-tuned chat 648
models. arXiv preprint arXiv:2307.09288. 649

Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Vic- 650
toria Lin, Ramakanth Pasunuru, Danqi Chen, Luke 651
Zettlemoyer, and Ves Stoyanov. 2022. Training trajec- 652
tories of language models across scales. arXiv preprint 653
arXiv:2212.09803. 654

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, 655
Zehai He, Yuyi Guo, Jinfeng Bai, and Jie Tang. 2023. 656
Gpt can solve mathematical problems without a calcula- 657
tor. arXiv preprint arXiv:2309.03241. 658

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and 659
Wei Lu. 2024. Tinyllama: An open-source small lan- 660
guage model. 661

A The CSID Analysis for Multiplication 662

and Division 663

This section extends the CSID analysis to nD by 664

nD multiplication and nD by mD division. 665

A.1 Multiplication 666

A.1.1 The CSID for Plain Multiplication 667

We assume the plain method adopts a similar de- 668

composition method in Section 4.2, but without 669

reversing the output digits. 670

The decomposition of an nD by nD multiplication 671

into n sub-multiplications, each an nD by 1D oper- 672

ation, serves as the initial step. This phase does not 673

generate SIDs, as all required digits for a× b are 674

immediately accessible. 675

Addressing these sub-multiplications yields up to 676

n2 + n× (n+ 1) = 2n2 + n SIDs, with n2 SIDs 677

allocated for the sub-multiplications and n×(n+1) 678

SIDs dedicated to storing the outcomes. 679

Aggregating the results of these sub-multiplications 680

necessitates a maximum of 4n2 SIDs, with each 681

addition consuming 4n SIDs, 2n for carry-overs 682

and another 2n for storing the results. 683

Consequently, directly generating an nD by nD 684

multiplication outcome requires a maximum of 685

6n2 + n SIDs, indicating a complexity of O(n2). 686

This substantial complexity explains the difficulty 687

models face with even 2D by 2D multiplications. 688

A.1.2 The CSID for Multiplication in Simple 689

Reverse 690

Simple Reverse (Lee et al., 2023) only omits n 691

SID by the reversing operation, leaves the overall 692

9

http://arxiv.org/abs/2401.02385
http://arxiv.org/abs/2401.02385
http://arxiv.org/abs/2401.02385

complexity being unchanged O(n2).693

A.1.3 The CSID for Multiplication in694

GOAT-7b695

Decomposition methods, as applied in models like696

GOAT-7B, reduce the CSID to O(n), by omitting697

intermediate decomposition results from the SID698

count, though carry-overs are still considered.699

A.2 Division700

A.2.1 The CSID for Quotient Estimation701

Estimating a quotient c when dividing by a divisor702

b = bmbm−1 . . . b1 typically requires only the first703

m or m+ 1 digits of the dividend a. We consider704

the scenario where the length of a is m and am >705

bm. The case where the length of a is m + 1 and706

am < bm is omitted for brevity, as the analysis and707

results are analogous.708

In an optimal scenario where am = 9 and bm = 8,709

c can be deterministically set to 1, and no SID710

is incurred. However, in the least favorable case711

where am = 9 and bm = 1, c could potentially be712

any of 5, 6, 7, 8, or 9. To accurately determine the713

quotient, it is necessary to evaluate each candidate714

quotient ĉ:715

d = a− ĉ× b716

The candidate ĉ is deemed correct if d is a non-717

negative number less than b. Calculating d requires718

approximately 2m SIDs when using RevOrder (m719

for storing the results of the multiplication and m720

for storing d), or 4m when not using RevOrder,721

making the total CSID in the worst scenario about722

10m or 20m. Therefore, the complexity of quotient723

estimation remains O(m).724

A.2.2 The CSID for Plain Division725

For an nD by mD division, typically n−m itera-726

tions are needed, each estimating a quotient digit.727

Each iteration involves an nD by 1D multiplication728

and a subtraction, with the multiplication incurring729

2m SIDs for result and carry-over digit storage,730

and the subtraction using up to 2n SIDs for result731

storage and borrow digits, and 20m for quotient732

estimation.733

Thus, the total CSID for an nD by mD division734

reaches (22m + 2n) ∗ (n − m), amounting to a735

complexity of O(n2 −m2).736

A.2.3 The CSID for Division in GOAT-7b737

In models like GOAT-7B , using decomposition738

methods keeps the CSID at O(n + m), with the739

Figure 6: The distribution of the equations in training
set.

subtraction’s borrow digits and the quotient estima- 740

tion being the primary complexity factors. 741

B Training Data for Arithmetic 742

Experiments 743

The training dataset comprises 1.7 million equa- 744

tions. For addition and subtraction tasks, equations 745

involve numbers as large as 16D on both sides. 746

Multiplication tasks are capped at 8D by 8D, sup- 747

plemented by 16D by 1D equations to enhance 748

generalization in the test set. Division tasks fea- 749

ture dividends up to 16D. Fig. 6 illustrates the 750

distribution of these equations. The major training 751

samples are division, since the quotient estimation 752

steps require more training samples to achieve a 753

high precision. 754

C Settings for Math Word Experiments 755

C.1 Training Data 756

Our approach involved two types of instructional 757

data to train models on arithmetic tasks using 758

RevOrder. 759

Firstly, we modified the original GSM8K dataset 760

to reflect RevOrder formatting. An example of this 761

adaptation is illustrated in Fig. 7. 762

Secondly, to further bolster the model’s proficiency 763

in RevOrder calculations, we compiled an addi- 764

tional enhancement dataset. A sample from this 765

dataset is depicted in Fig. 8. 766

C.2 Training Details 767

The models were trained with a batch size of 32 768

and a learning rate of 5e-5, employing a warm-up 769

10

Figure 7: A data sample from the GSM8K dataset formatted in RevOrder.

Figure 8: A sample from the additional enhancement dataset for RevOrder calculations.

11

ratio of 0.08 over 3 epochs. During each epoch, the770

model was exposed to both the additional datasets771

and the GSM8K datasets sequentially.772

C.3 Equation Errors773

Fig. 9 showcases representative errors encountered774

in the GSM8K test set, attributable to difficulties775

in adhering to RevOrder instructions. For instance,776

while the model successfully solved the second777

equation in reverse order, it faltered in performing778

the simple task of reversing the solution to arrive779

at the final result.780

12

Figure 9: Illustrative errors from the GSM8K test set encountered by the model trained with RevOrder.

13

	Introduction
	Related Works
	Sequential Intermediate Digits in Arithmetic Computation
	Definition of Sequential Intermediate Digits (SIDs)
	The CSIDs for Plain Arithmetic Operations
	LLM Performance on Large CSID Equations

	RevOrder: Reducing the CSID for Equations
	Addition and Subtraction
	Multiplication and Division
	Multiplication
	Division

	Towards More Compact Forms
	A Comparison of CSID Among Different Methods

	Experiments on Arithmetic Operations
	Setup
	Dataset
	Training and evaluation protocol
	Baselines

	Main Results (RQ1)
	In-Depth Analysis on Division
	The Cost of RevOrder (RQ2)

	Additional Experiments on Math Word Problems
	Setup
	Results

	Conclusion
	Limitations
	The CSID Analysis for Multiplication and Division
	Multiplication
	The CSID for Plain Multiplication
	The CSID for Multiplication in Simple Reverse
	The CSID for Multiplication in GOAT-7b

	Division
	The CSID for Quotient Estimation
	The CSID for Plain Division
	The CSID for Division in GOAT-7b

	Training Data for Arithmetic Experiments
	Settings for Math Word Experiments
	Training Data
	Training Details
	Equation Errors

