RevOrder: A Novel Equation Format for Arithmetic Operations in
Language Models

Anonymous ACL submission

Abstract

This paper proposes to understand arithmetic
operations in Language Models (LM) by fram-
ing them as digit-based reasoning challenges.
We introduce a metric called the Count of Se-
quential Intermediate Digits (CSID), which
measures the complexity of arithmetic equa-
tions by counting the missing steps in digit
reasoning. Our empirical findings suggest that
increasing the model size does little to improve
the handling of equations with high CSID val-
ues.

We propose RevOrder, a method that incorpo-
rates techniques such as reversing the output
order, step-by-step decomposition, and rollback
mechanisms to maintain a low CSID, thereby
enhancing the solvability of arithmetic equa-
tions in LMs. RevOrder also introduces a more
compact reasoning process, which reduces the
token requirements without affecting the CSID,
significantly enhancing token efficiency.

Comprehensive testing shows that RevOrder
achieves perfect accuracy in operations such as
addition, subtraction, and multiplication, and
substantially improves performance in division
tasks, especially with large numbers where tra-
ditional models falter. Additionally, applying
RevOrder to fine-tune the LLaMA2-7B model
on the GSMS8K math task led to a significant
reduction in equation calculation errors by 46%
and increased the overall score from 41.6 to
44.4.1

1 Introduction

Arithmetic reasoning has long been a focus for
improving the capabilities of Language Models
(LMs) in solving arithmetic problems (Lu et al.,
2022). A popular alternative involves generating
solutions step-by-step in a chain-of-thought (COT)
manner, which have been applied to a range of op-
erations including subtraction, multiplication and

'The data and code can be found at GitHub Repository

division(Liu and Low (2023)). Interestingly, recent
findings by Lee et al. (2023) have shown that sim-
ply reversing the output order of digits significantly
enhances performance in addition, subtraction, and
2D multiplication, aligning the problem-solving ap-
proach more closely with human methods, which
typically proceed from lower to higher digits.

In this paper, we conceptualize arithmetic prob-
lems as digit-based reasoning tasks, where each
digit represents a step in the reasoning process.
From this perspective, reversing the output digits
effectively reorders these reasoning steps into a
more logical sequence. This understanding bridges
the reversing technique and COT solutions, aim-
ing to reduce missing reasoning steps and simplify
equation complexity.

We introduce a new metric, the Count of Se-
quential Intermediate Digit (CSID), to gauge the
complexity of an equation. A higher CSID indi-
cates more missing reasoning steps. Our empiri-
cal evidence suggests that simply enlarging LLMs
does not substantially improve their performance
on equations with high CSID values.

Guided by these insights, we propose RevOrder,
a novel equation format designed to enhance the
precision of arithmetic operations while minimiz-
ing the use of extra tokens. RevOrder fundamen-
tally reverses the order of all output digits in inter-
mediate steps, keeping the CSID low and ensuring
that equations remain solvable by LMs. Figure 1
shows an example of mutiplication using different
methods.

For division tasks, where the CSID for quotient
estimation remains high with large digits, we in-
troduce a ’Rollback’ technique that enables LMs
to detect and correct errors automatically. Addi-
tionally, we present a compact equation format that
maintains the same CSID while eliminating unnec-
essary tokens, further enhancing the efficiency of
LMs in arithmetic tasks.

RevOrder is evaluated on the Big-bench arith-

https://anonymous.4open.science/r/RevOrder-D1E1

Simple Reverse (Lee et al.(2023))

$12 x 18 =612%

COT (Liu and Low(2023))

12 x 18

=12x10+12x 8

=120+ 96

=216

Reverse + COT (RevOrder)
12 x 18

=12x10+12x8
=3$021% + $698
=$612%

Figure 1: An example of multiplication using different
methods. Digits enclosed by $ indicate reversed orders.
The simple reverse method (Lee et al., 2023) omits
the total reasoning steps required for decomposition,
thus simplifying the process. In contrast, the GOAT-7b
model (Liu and Low, 2023) does not reverse the output
digits for basic operations such as addition and simple
multiplication, which results in missing reasoning steps.
RevOrder integrates the benefits of both approaches,
minimizing the occurrence of missing reasoning steps
while maintaining clarity in the solution process.

metic task (Srivastava et al., 2022) and an expanded
set with larger digits, achieved 100% accuracy in
addition, subtraction, multiplication, and low-digit
division tasks, and nearly 100% in large-digit divi-
sion, outperforming baseline methods with a large
margin.

The remainder of this paper is organized as fol-
lows: Section 2 reviews related work, Section 3
introduces the CSID metric, Section 4 details the
RevOrder technique, Section 5 reports on exper-
iments on arithmetic calculation, Section 6 dis-
cusses finetuning on GSMS8K, and Section 7 con-
cludes the paper.

2 Related Works

Equation complexity Dries and Moschovakis
(2009) early obtain lower bounds on the cost of
computing various arithmetic functions (Dries and
Moschovakis, 2009). Gowers and Wolf (2010)
focused on complex linear equations complex-
ity (Gowers and Wolf, 2010). Few have attempted
to evaluate the basic equations complexity. Our
CSID theory provides a framework to assess the
complexity of equations, showing that LLMs’ abil-
ity to perform basic operations diminishes as digit
size grows.

Decomposition of formulas For addition and
subtraction, Lee et al. (2023) proposed reversing
the output digits, significantly improving sampling
efficiency. However, their methods are primarily
effective for simpler addition and subtraction op-
erations and do not extend to solving division or
large-digit multiplication challenges.

GOAT-7b (Liu and Low, 2023) solves more com-
plex arithmetic operations by decomposing them
into a series of simpler operations (Liu and Low,
2023). Differently, our method incorporate the re-
verse method in the intermediate decomposition
step, which greatly improves the computational
efficiency and efficiently deal with the solving di-
vision or large-digit multiplication challenges. No-
tably, we employ unique rollback strategies in our
approach when tackling division tasks.

Token economy RevOrder introduces an effi-
cient method to keep equations’ CSID low, en-
suring their manageability within constrained to-
ken budgets. XVal presents another approach by
directly encoding numerical values into LLMs,
offering greater token efficiency compared to
RevOrder (Golkar et al., 2023). However, inte-
grating such a method with modern LLM architec-
tures is challenging due to the requisite changes in
network structure. Additionally, the current perfor-
mance of XVal is falling far behind RevOrder.
Performance Almost all current methods of
arithmetic computation fail to achieve 100% accu-
racy, especially when dealing with large numbers
and division problems. In contrast, our method
succeeds in achieving 100% accuracy.

3 Sequential Intermediate Digits in
Arithmetic Computation

Arithmetic reasoning in language models (LMs) is
challenging, mainly due to the sequential predic-
tion of digits(Lee et al., 2023). This complexity
is exacerbated when contextual digits required for
accurate predictions are not inferred from previous
steps. For example, in addition, LMs may predict
higher-order digits before lower-order ones, contra-
dicting the logical computation order. This paper
introduces a novel metric to quantify and under-
stand this complexity.

3.1 Definition of Sequential Intermediate
Digits (SIDs)

A Sequential Intermediate Digit (SID) is a numeral
crucial for the accurate prediction of the next digit

in a sequence, yet not present in the preceding se-
quence. Within the framework of chain-of-thought
reasoning, SIDs represent indispensable steps that,
despite being missing, are vital for the computa-
tional process. Consequently, the Count of SIDs
(CSIDs) is employed as a metric to assess the com-
plexity of a generation step, with a higher CSID
denoting a more demanding and intricate task. The
CSID of an equation is thus defined as the maxi-
mum CSID required for generating each step of the
result.

The primary types of SIDs include:

* Carry-over or borrow digits in addition and
subtraction. For example, in 125 + 179 =
304, the digit 3 in the hundreds place requires
the carry-over from the tens and units places,
resulting in a maximum CSID of 2.

* Digits from omitted reasoning steps, such as
the intermediate sum 3in1 +2+4 = 7.

It is postulated that basic operations like 1D by
1D addition, subtraction, multiplication, division,
counting, and copying do not require SIDs, as their
straightforward nature falls within the capabilities
of modern LMs. Directly generating results for
complex operations, such as multi-digit multipli-
cation and division, requires more SIDs due to the
omitted steps for decomposing these into multiple
basic operations.

Reducing an equation’s CSIDs, thereby lowering
its solving difficulty, can be achieved by expand-
ing the equation step-by-step in a chain-of-thought
manner. For instance, the CSID for the calculation
1+2+4 =3+4 =T7islowerthanfor14+24+4 =7
because the intermediate sum 3 is included in the
reasoning process, effectively reducing the number
of SIDs.

3.2 The CSIDs for Plain Arithmetic
Operations

In our CSID analysis of standard arithmetic op-
erations, which is akin to analyzing space or
time complexity in algorithms, we focus on the
worst-case scenario. Consider two numbers a =
anln—1 -..a2a1 and b = b,,by—1 ... baby, result-
ing in ¢ = ¢i¢p—1 ... coc1, with m < n. When
involving negative numbers, the minus sign ’-’ is
also treated as a digit.

e In addition and subtraction, the com-

putation sequence apQn_1...a207 =+

= 250M
© 1000M
A 7B

L0 &——8—4
0.9 LA

0.8

>

0.6 .

Precision
-
)

0.4+

0.3

o)

0.2

T T T T T T T T T T
o 1 2 3 1 5 6 7 8 9
CSID

Figure 2: Performance of LLMs on equations with vary-
ing CSIDs. This graph illustrates how CSID values
affect LLM accuracy, with data obtained under the train-
ing protocols outlined in Section 5.

bmbm—1...bab1 = cici—1 ... coc1 depends
on each ¢; involving a;, b;, and possibly
c;—1 for carry-overs or borrows. Hence, the
CSID for ¢; includes all lower digits as SIDs,
indicating a complexity of O(n).

* For multiplication and division, the CSIDs
are O(n?) and O(n? — m?) respectively, as
detailed in Appendix A.

3.3 LLM Performance on Large CSID
Equations

We trained various models on arithmetic tasks in-
volving 15D+15D calculations, maintaining iden-
tical hyper-parameters, training data, and training
steps across all models to ensure a fair comparison.
The test equations, strictly in 15D+15D format,
were classified into various CSID levels according
to the maximum number of continuous carry-over
digits. The findings, as depicted in Fig. 2, demon-
strate that:

* CSID effectively measures the complexity of
arithmetic equations, where the performance
consistently declines with increasing CSIDs.

* Larger models exhibit improved performance
on equations with higher CSIDs.

* The benefit of increasing model size dimin-
ishes on high CSID equations. For instance,
a 7B model shows more significant improve-
ment on equations with CSIDs of 4 and 5
than on those with 6-9. This trend suggests
that even advanced LLMs, like GPT-4, en-
counter difficulties with large digit addition
tasks. Given that CSIDs have a complexity of
atleast O(n), arithmetic problems quickly sur-
pass the capacity of LLMs when dealing with

large digits. Therefore, LLMs cannot serve
as reliable calculators for immediate result
generation in complex arithmetic tasks.

4 RevOrder: Reducing the CSID for
Equations

We introduce RevOrder, an innovative technique
devised to maintain low CSID in equations, thereby
ensuring their solvability by LMs. Additionally,
RevOrder is designed to minimize token usage,
enhancing overall efficiency.

4.1 Addition and Subtraction

Following Lee et al. (2023), we reverse the output
digits for addition and subtraction.

aib:$C102...Ct$

Numbers enclosed within $ symbols are repre-
sented in reversed order. Lee et al. (2023) demon-
strated that this formatting enables the model to
generate the least significant digit (LSB) first, mim-
icking the typical human approach to addition and
subtraction.

We present an analysis of the CSID for this method.
To generate each ¢; in $cics . . . ¢;$, only a;, b;, and
at most a SID for the carry-over or borrow number
from ¢;_; are required. Thus, both addition and
subtraction only consume at most 1 SID regardless
of number length. Therefore, the complexity of
CSID drop to O(1) from O(n), by reversing the
order of the output digits.

Note that we make a slight modification in our im-
plementation compared to Lee et al. (2023). Their
format is:

$a:|:b26162...0t$

Enclosing the entire equation within $ symbols
complicates the use of addition and subtraction as
basic components for more complex operations.

4.2 Multiplication and Division

RevOrder skillfully integrates the chain-of-thought
(COT) technique (Liu and Low, 2023) with the re-
versing output digits technique (Lee et al., 2023),
effectively maintaining a low CSID for both multi-
plication and division equations.

4.2.1

Firstly, consider the simplest form of multiplica-
tion, nD by 1D, e.g, 12*7=48, which consistently
requires only 1 SID. This efficiency originates from

Multiplication

the definition that 1D by 1D multiplication does
not incur any SIDs, with the only one SID being
the carry-over number in the addition.

Next, let’s examine a more general multiplication
example.

12 x 4567
=12 x 40004+ 12 x 5004+ 12 x 60 + 12 x 7
(1)
=00084 + 0006 + 027 + $48% 2)
=($00084% + $00063%) + ($027% + $48%) (3)
=$00045% + $408% ()
=$40845%

First, decompose the multiplication as shown in
Eqn. (1), which does not require any SIDs (require
only count and copy operations that does not use
SID in our definition). Second, output the results of
each sub-multiplication in reverse order, as demon-
strated in Eqn. (2). The zeros in these results can
be efficiently generated through a copy operation
from previous sequences. The nD by 1D multipli-
cation in reverse order has a CSID of 1. Finally,
iteratively combine the adjacent addition results
until the final outcome is achieved, as illustrated in
Eqn. (3) and (4).

As each addition operation involves only two num-
bers, the CSID remains constant at 1 throughout
the process. In contrast to the merge operation
in Eqn. (3), which requires approximately log, m
iterations, GOAT-7B (Liu and Low, 2023) com-
bines numbers one at a time and requires about m
iterations. In conclusion, the CSID in this multipli-
cation process never exceeds 1, with a complexity
of O(1).

4.2.2 Division
Consider the division 948 = 12 = 79:

948 = 12
=7 Rem (948 — 12 x 70) ©)
—7 Rem (948 — $0489)
=7 Rem 801%
=79 Rem (801 — 12 x 9) 6)
=79 Rem ($801% — $8018%)
=79 Rem (0)
=79

RevOrder utilizes traditional long division for step-
by-step decomposition and reverses all output dig-
its in intermediate addition, subtraction, and nD

by 1D multiplications. The overall CSID complex-
ity remains O(m), primarily due to the quotient
estimation steps, as noted in Eqn. (5) and Eqn. (6),
while other components sustain a CSID complexity
of O(1). The CSID analysis for quotient estima-
tion is detailed in Appendix A, confirming that the
CSID complexity for division within RevOrder is
O(m).

Quotient estimation represents a bottleneck and
accounts for the majority of errors in practice. To
address this challenge, we have proposed a novel
rollback mechanism. If an incorrect quotient is
detected, as illustrated in Eqn. (7), we insert a
symbol ‘W* following the line. This serves as a
signal to adjust the process and re-estimate the
quotient, as demonstrated in Eqn. (8). This method
ensures more accurate quotient estimations in the
long division process. A proportion of rollback
scenarios are included in the training data to teach
the model how to correct such errors.

948 =12
=8 Rem (948 — 12 x 80)

—8 Rem (948 — $069%)
—8 Rem (—21)W 7
=7 Rem (948 — 12 x 70) (8)

Although rollback technique can correct most of
the errors, unlike other arithmetic operations, the
CSID for division cannot be consistently main-
tained at O(1). This limitation makes division with
RevOrder less robust compared to addition, sub-
traction, and multiplication, as will be evidenced
in our experimental results.

4.3 Towards More Compact Forms

To further reduce token usage, we propose compact
forms while maintaining CSID unchangeable.

For the multiplication example, it can be succinctly
rewritten as: *12x4567 = 12x4000 + 12x500 +
12x60+ 12 x7=00084 + 0006 + 027 + $48%
= 00045 + 408 = $40845% = 54804°.
Similarly, the division example can be condensed
to: *948-+-12 = 7R - (12x70)(048)($801%) # 9R
- (12x9)(801)(0) = 79°, where R denotes REM
and # denotes a new quotient estimation.

Two principles guide these simplifications: 1.
Maintaining CSID: No digits essential for generat-
ing subsequent tokens are removed, ensuring the
CSID remains unchanged. 2. Eliminating Redun-
dancy: Duplicated digits are removed, but care is

Method + — X
Plain O(n) Om) Om?) On?—m?)
Simple Reverse O(1) O(1) O(n?) —
GOAT-7b O(n) O(n) O(n) On+m)
RevOrder o) o) 0@ O(m)

Table 1: The CSID complexity for different methods.
"Plain" denotes the direct generation of results.

taken to avoid introducing ambiguities that might
confuse the LM.

4.4 A Comparison of CSID Among Different
Methods

Table 1 compares the CSID complexity of
RevOrder with other methods. The complexities
for Plain, Simple Reverse and GOAT-7b are de-
tailed in Appendix A. It is evident that RevOrder
offers advantages across all types of arithmetic op-
erations.

5 Experiments on Arithmetic Operations

In this section, we aim to address two key research
questions (RQs):

* RQI1: Does RevOrder enable a language
model to function as a reliable calculator?
(Section 5.2 - 5.3)

* RQ2: Is RevOrder a token efficient format?
(Section 5.4)

5.1 Setup
5.1.1 Dataset

Our training dataset is synthetically generated
using a Python script, with each sample be-
ing an equation formatted with RevOrder, e.g.,
123+46=$961%’. Note this experiment aims at
testing the LM’s capability of doing arithmetic op-
erations, hence no prompt engineering is included.
The dataset comprises positive integers, except in
subtraction where negative numbers may result.
Each division equation is assigned a probability
of 0.5 to be selected for generating a rollback ver-
sion. This involves intentionally misestimating a
quotient step by a number +1, followed by a cor-
rection through the rollback process to the accurate
estimation. The detailed of the training data is
shown in Appendix B.

5.1.2 Training and evaluation protocol

We train a model named RevOrder-1B, which has
1.1 billion parameters. This model is trained on the
TinyLLaMA 1.1B framework (Zhang et al., 2024),
utilizing their released finetuning script. Specif-
ically, the learning rate is set to le-4 for first 2
epochs and 1e-5 for the last epoch. The batch size
is 500.

For evaluation, we employ the BIG-bench Arith-
metic sub-task (Srivastava et al., 2022) and addi-
tional challenging tasks proposed in the GOAT-7B
paper (Liu and Low, 2023). Each task has 1000
equations. We meticulously ensure that there is
no overlap between the evaluation datasets and our
training dataset, except for unavoidable overlaps in
small digits tasks. The evaluation metric is exact
match precision.

5.1.3 Baselines
As baselines, we compare against three methods:

¢ GOAT-7B (Liu and Low, 2023): This model,
finetuned with 1 million instruction data on
LLAMA-7B (Touvron et al., 2023), decom-
poses multiplication and division similarly to
our approach. However, it relies on direct
result generation for subtraction and addition.

* MathGLM-2B (Yang et al., 2023): Finetuned
on the GLM-2B model for various arithmetic
tasks, MATHGLM-2B claims that a huge
amount training data (1m-50m instances) en-
ables GPT models to solve math problems
without external calculators.

* Simple Reverse (Lee et al., 2023): This
method initially proposed reversing the order
of output digits. It is important to note that
the Simple Reverse method cannot be applied
to division.

5.2 Main Results (RQ1)

The results, as presented in Table 2, demonstrate
several key findings. Firstly, RevOrder-1B proves
to be a reliable method for addition, subtraction,
multiplication, and low-digit division tasks, achiev-
ing 100% accuracy across all corresponding tasks.
In contrast, the accuracy of all baseline methods
decreases with the increase in digit size. Secondly,
while RevOrder-1B shows slight imperfections in
large-digit division tasks, it still significantly out-
performs baseline models. For instance, RevOrder-
1B attains a 99.4% accuracy on the challenging

Correct result: 939007

429661432990/457570=

9R -9x45757000000(000000318114)($099234848718)#
3R -3x4575700000($000001727318)($0992331214$)#
8R -8x457570000(50000650663$)($099277064$)#

9R -9x45757000(0003181148)($099959848) W+

OR -0x45757000($08)($09927706$)#

9R -9x4575700($003181168)($013804-$)W#

=93808325498165

Figure 3: An error example of division by RevOrder.

12D =+ 6D tasks, with an increasing of 10.1% than
that of the best-performing baseline, GOAT-7B.
The major success of RevOrder in multiplication
and division can be attributed to its precise execu-
tion of basic operations, including addition, subtrac-
tion, and nD-1D multiplication. While GOAT-7B
also decomposes these operations into basic ones,
minor errors in these fundamental steps are ampli-
fied in subsequent composite operations, leading to
a rapid decline in accuracy with larger digits.

In summary, RevOrder emerges as an effective tech-
nique, enabling language models to perform ex-
act arithmetic calculations in addition, subtraction,
multiplication, and low-digit division tasks.

5.3 In-Depth Analysis on Division

Large-digit division represents the sole operation
where RevOrder encounters notable difficulties,
warranting additional focus.

Upon examining division errors case by case, we
discovered that all errors stemmed from incorrect
quotient estimations. Fig. 3 illustrates such an
error, where RevOrder-1B erroneously estimated
the 3rd quotient as 8 (marked in red) instead of 9,
without triggering the "W’ symbol for a rollback.
Consequently, this led to a series of nonsensical
outputs. It’s notable that when a constant CSID of
1 is maintained in all four arithmetic operations, no
errors occur. Errors only arise during quotient esti-
mation, where CSID complexity is O(m). These
results validate our theory regarding CSID.

We also assessed the effectiveness of the rollback
mechanism. Fig. 4(a) presents the test precision for
12D =+ 6D division across varying rollback ratios.
A stark precision decline to 0.84 is observed with
no rollback (ratio = 0). Precision does not signifi-
cantly improve when the ratio exceeds 0.4, though
this is partly due to the high baseline precision of

Task | BIG-bench Extra Tasks
ADD | ID 2D 3D 4D 5D | 8D+8D 16D+8D 16D+16D
Simple Reverse | 100 100 100 100 100 100 100 100
GOAT-7B 100 100 994 983 98.1 97.8 97.1 97.6
MathGLM-2B | 100 100 100 100 99.4 - - -
RevOrder-1B 100 100 100 100 100 100 100 100
SUB | ID 2D 3D 4D 5D | 8D-8D 16D-8D 16D-16D
Simple Reverse | 100 100 100 100 100 100 100 100
GOAT-7B 100 100 99.7 98.6 984 96.8 95.8 96.3
MathGLM-2B | 100 100 999 99.8 98.9 - - -
RevOrder-1B 100 100 100 100 100 100 100 100
MUL | ID 2D 3D 4D 5D | 16D x ID 8D x 4D 6Dx6D
Simple Reverse | 100 100 804 355 10.7 100 0.0 2.1
GOAT-7B 100 100 97.8 969 96.7 99.7 88.1 96.8
MathGLM-2B | 100 999 983 949 899 - - -
RevOrder-1B 100 100 100 100 100 100 100 100
DIV | ID 2D 3D 4D 5D | 16D+1D 6D+3D 12D+6D
Simple Reverse - - - - - - - -
GOAT-7B 100 100 995 99 96.5 99 94.1 89.3
MathGLM-2B | 100 100 994 100 949 - - -
RevOrder-1B 100 100 100 100 100 99.2 100 99.4

Table 2: Performance comparison on various arithmetic operations. The results of the baseline methods are taken
from their original paper, while the result of Simple Reverse is based on our implementation.

Precision
Rollback Ratio in Test

o 0.2 04 0.6 08 10 2 4 6 8 10 12 1 18

Rollback Ratio in Training Digit
(a) (b)

Figure 4: Analysis of the rollback ratio in division. (a)
Test precision vs. rollback ratio for 12D = 6D division.
(b) Probability of rollbacks during testing across differ-
ent digit sizes.

0.99. Fig. 4(b) illustrates the frequency of rollbacks
during testing, indicating a higher incidence of roll-
backs with larger digits. This trend underscores the
importance of the rollback technique, particularly
as it compensates for the increased likelihood of
errors in quotient estimation with larger numbers.

5.4 The Cost of RevOrder (RQ2)

By maintaining a low CSID, RevOrder simpli-
fies the learning process for arithmetic problems,
thereby reducing the volume of training data re-
quired. Table 3 compares the number of training
equations needed for various methods. Despite be-
ing a smaller model, RevOrder-1B achieves perfect
precision with at most half the training equations
compared to other methods. Recent studies indicate

Model # Equations 100% ACC
RevOrder-1B 0.5m Yes
MathGLM-2B 1m-50m No
GOAT-7B 1.7m No

Table 3: Number of training equations for different
methods. This table reports the dataset size required
for RevOrder-1B to achieve 100% accuracy on all Big-
bench arithmetic sub-tasks. # Equations denotes the
number of training equations.

that larger models often require less training data
for task mastery (Hoffmann et al., 2022; Xia et al.,
2022). Consequently, the training cost advantage
of RevOrder is likely to be even more pronounced
with larger LLMs.

The inference cost is assessed based on the num-
ber of additional tokens required for performing
arithmetic calculations with RevOrder. We make
two assumptions: 1) Each character (digit, symbol,
etc.) is counted as one token, and 2) if the final
result is output in reverse, the recovery process is
handled by the tokenizer’s decode function.

For addition and subtraction equations, only a pair
of extra tokens (’$’) is required. For multiplication
and division equations, the number of extra tokens
used is illustrated in Fig. 5. RevOrder is more
token-efficient in both types of equations. Firstly,

1200 @ Goat7b, x
4 Goat7b, + °
1000 v RevOrder, x
4 RevOrder, -+
[}
,_\é []
S 800 7
«
s o
M 600
[T
o .
2 400 ,
g .
Z) & *
200 T " i
— v
8 z & : ¢ v
0 —

T T T T T T T T T

2 3 4 5 6 7 8 9 10
Number of Digits

Figure 5: The number of extra tokens required for mul-
tiplication and division.

the compact form introduced in Section 4.3 signifi-
cantly reduces the token requirement for division,
approximately halving the number of extra tokens.
Secondly, the iterative combination approach in
multiplication, as exemplified in Eqn. (3), also
notably reduces token usage in multiplication.

6 Additional Experiments on Math Word
Problems

In this section, we delve into finetuning scenarios
to address the research question:

* RQ3: How does applying RevOrder af-
fect finetuning performance on mathematical
tasks?

6.1 Setup

The experiment is conducted on GSM8K (Cobbe
et al., 2021). Our experiments utilize LLAMAZ2-
7B (Touvron et al., 2023) as the foundational model.
We modified the equations in the GSMS8K training
set to adopt the RevOrder format. This adaptation
involved two major updates: Firstly, we presented
the outcomes for addition, subtraction, and multi-
plication in reverse order. Secondly, polynomial
equations were expanded and solved iteratively, in
pairs. Noted that we did not decompose multi-digit
multiplications and divisions, as these cases are in-
frequent in the GSMS8K dataset. To further enhance
the model’s proficiency with RevOrder, we supple-
mented the training set with a small, synthetically
generated dataset using a Python script. The com-
prehensive details of the dataset and the training
parameters are provided in Appendix C.

Baseline RevOrder

Score 41.6 44 .4 (+2.8)

Equation Acc 88.9 94.1 (+5.2)

Acc of + 96.7 99.8 (+2.1)

Acc of - 97.0 99.6 (+2.6)
Acc of * 95.8 98.8 (+3)

Table 4: Fine-tuning results on GSM8K Dataset. This ta-
ble compares the performance of models fine-tuned with
the original GSM8K dataset (baseline) against those
finetuned using the RevOrder-modified GSM8K dataset.
The Score is measured by the correctness ratio of final
results.

6.2 Results

From Table 4, it is evident that RevOrder signifi-
cantly reduces calculation errors, by 94% for addi-
tion, 87% for subtraction, and 46% for overall equa-
tion errors, thereby enhancing the final score. This
improvement underscores the potential of seam-
lessly integrating RevOrder into fine-tuning pro-
cesses to achieve substantial performance gains.

We also observe the errors, and find most of the
errors are due to lack of enough training. Therefor,
the model cannot well follow the instructions of
RevOrder. Some examples are presented in Ap-
pendix C.

7 Conclusion

In this paper, we introduce the CSID as a metric to
evaluate the complexity of arithmetic equations and
demonstrate that even large-scale LLMs struggle
with high-CSID equations. We propose RevOrder,
an innovative technique that ensures accurate arith-
metic calculations by minimizing CSID, thereby
enhancing precision while reducing both training
and inference costs. Our experiments confirm that
RevOrder significantly outperforms previous meth-
ods in terms of accuracy and efficiency.

For future work, we identify two possible paths:
Firstly, developing token-efficient decomposition
algorithms suitable for larger LLLMs, which can
handle higher CSIDs for complex arithmetic opera-
tions. Secondly, integrating RevOrder into LLMs’
pretraining could enhance arithmetic capabilities
more fundamentally than finetuning, reducing the
risk of catastrophic forgetting and ensuring broader
model proficiency.

8 Limitations

Firstly, RevOrder struggles with large-digit divi-
sion, requiring significantly more training samples
for this operation than others. An alternative algo-
rithm that bypasses traditional quotient estimation
may mitigate this issue.

Secondly, improvements in finetuning accuracy on
the GSM8K dataset through RevOrder have not
met our expectations. Increasing the dataset with
arithmetic equations risks diminishing the LLM’s
overall performance. Finding an effective method
to enhance arithmetic accuracy with minimal train-
ing data remains an unresolved challenge.

References

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al.
2021. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168.

Lou Van Den Dries and Yiannis N Moschovakis. 2009.
Arithmetic complexity. ACM Transactions on Compu-
tational Logic (TOCL).

Siavash Golkar, Mariel Pettee, Michael Eickenberg, Al-
berto Bietti, Miles Cranmer, Geraud Krawezik, Fran-
cois Lanusse, Michael McCabe, Ruben Ohana, Liam
Parker, et al. 2023. xval: A continuous number en-

coding for large language models. arXiv preprint
arXiv:2310.02989.

William T Gowers and Julia Wolf. 2010. The true com-
plexity of a system of linear equations. Proceedings of
the London Mathematical Society.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, et al. 2022. Training
compute-optimal large language models. arXiv preprint
arXiv:2203.15556.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kang-
wook Lee, and Dimitris Papailiopoulos. 2023. Teach-
ing arithmetic to small transformers. arXiv preprint
arXiv:2307.03381.

Tiedong Liu and Bryan Kian Hsiang Low. 2023. Goat:
Fine-tuned llama outperforms gpt-4 on arithmetic tasks.
arXiv preprint arXiv:2305.14201.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-
Wei Chang. 2022. A survey of deep learning for mathe-
matical reasoning. arXiv preprint arXiv:2212.10535.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adria
Garriga-Alonso, et al. 2022. Beyond the imitation game:

Quantifying and extrapolating the capabilities of lan-
guage models. arXiv preprint arXiv:2206.04615.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
2023. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288.

Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Vic-
toria Lin, Ramakanth Pasunuru, Danqi Chen, Luke
Zettlemoyer, and Ves Stoyanov. 2022. Training trajec-
tories of language models across scales. arXiv preprint
arXiv:2212.09803.

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang,
Zehai He, Yuyi Guo, Jinfeng Bai, and Jie Tang. 2023.
Gpt can solve mathematical problems without a calcula-
tor. arXiv preprint arXiv:2309.03241.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small lan-
guage model.

A The CSID Analysis for Multiplication
and Division

This section extends the CSID analysis to nD by
nD multiplication and nD by mD division.

A.1 Multiplication
A.1.1 The CSID for Plain Multiplication

We assume the plain method adopts a similar de-
composition method in Section 4.2, but without
reversing the output digits.

The decomposition of an nD by nD multiplication
into n sub-multiplications, each an nD by 1D oper-
ation, serves as the initial step. This phase does not
generate SIDs, as all required digits for a x b are
immediately accessible.

Addressing these sub-multiplications yields up to
n? +n x (n+1) = 2n? + n SIDs, with n? SIDs
allocated for the sub-multiplications and n x (n+1)
SIDs dedicated to storing the outcomes.
Aggregating the results of these sub-multiplications
necessitates a maximum of 4n? SIDs, with each
addition consuming 4n SIDs, 2n for carry-overs
and another 2n for storing the results.
Consequently, directly generating an nD by nD
multiplication outcome requires a maximum of
6n2 + n SIDs, indicating a complexity of O(n?).
This substantial complexity explains the difficulty
models face with even 2D by 2D multiplications.

A.1.2 The CSID for Multiplication in Simple
Reverse

Simple Reverse (Lee et al., 2023) only omits n
SID by the reversing operation, leaves the overall

http://arxiv.org/abs/2401.02385
http://arxiv.org/abs/2401.02385
http://arxiv.org/abs/2401.02385

complexity being unchanged O(n?).

A.1.3 The CSID for Multiplication in
GOAT-7b

Decomposition methods, as applied in models like
GOAT-7B, reduce the CSID to O(n), by omitting
intermediate decomposition results from the SID
count, though carry-overs are still considered.

A.2 Division
A.2.1 The CSID for Quotient Estimation

Estimating a quotient ¢ when dividing by a divisor
b = bymbm—1 ... b1 typically requires only the first
m or m + 1 digits of the dividend a. We consider
the scenario where the length of a is m and a,,, >
bm- The case where the length of a is m + 1 and
am < by, is omitted for brevity, as the analysis and
results are analogous.

In an optimal scenario where a,,, = 9 and b,,, = 8,
c can be deterministically set to 1, and no SID
is incurred. However, in the least favorable case
where a,, = 9 and b,,, = 1, ¢ could potentially be
any of 5,6, 7,8, or 9. To accurately determine the
quotient, it is necessary to evaluate each candidate
quotient ¢:

d=a—¢xb

The candidate ¢ is deemed correct if d is a non-
negative number less than b. Calculating d requires
approximately 2m SIDs when using RevOrder (m
for storing the results of the multiplication and m
for storing d), or 4m when not using RevOrder,
making the total CSID in the worst scenario about
10m or 20m. Therefore, the complexity of quotient
estimation remains O(m).

A.2.2 The CSID for Plain Division

For an nD by mD division, typically n — m itera-
tions are needed, each estimating a quotient digit.

Each iteration involves an nD by 1D multiplication
and a subtraction, with the multiplication incurring
2m SIDs for result and carry-over digit storage,
and the subtraction using up to 2n SIDs for result
storage and borrow digits, and 20m for quotient
estimation.

Thus, the total CSID for an nD by mD division
reaches (22m + 2n) * (n — m), amounting to a
complexity of O(n? — m?).

A.2.3 The CSID for Division in GOAT-7b

In models like GOAT-7B , using decomposition
methods keeps the CSID at O(n + m), with the

10

199500

+

Figure 6: The distribution of the equations in training
set.

subtraction’s borrow digits and the quotient estima-
tion being the primary complexity factors.

B Training Data for Arithmetic
Experiments

The training dataset comprises 1.7 million equa-
tions. For addition and subtraction tasks, equations
involve numbers as large as 16D on both sides.
Multiplication tasks are capped at 8D by 8D, sup-
plemented by 16D by 1D equations to enhance
generalization in the test set. Division tasks fea-
ture dividends up to 16D. Fig. 6 illustrates the
distribution of these equations. The major training
samples are division, since the quotient estimation
steps require more training samples to achieve a
high precision.

C Settings for Math Word Experiments

C.1 Training Data

Our approach involved two types of instructional
data to train models on arithmetic tasks using
RevOrder.

Firstly, we modified the original GSM8K dataset
to reflect RevOrder formatting. An example of this
adaptation is illustrated in Fig. 7.

Secondly, to further bolster the model’s proficiency
in RevOrder calculations, we compiled an addi-
tional enhancement dataset. A sample from this
dataset is depicted in Fig. 8.

C.2 Training Details

The models were trained with a batch size of 32
and a learning rate of 5e-5, employing a warm-up

Instruction: “ Now it's time to put the reverse order rules into practice to solve some mathematical problems.
Recall the key points from the examples we've previously gone through: 18+51=96=69, 69-51=81=18,
48%13=426=624, 48/4=12, 154+446+375=006+375=600+375=579=975,
64+784+645+78=$848%+$327$=848+723=$1751$=1571,
43+85+6+45+48=821+15+48=128+51+48=971+48=179+48=1751=1571,and
34*73*4=2842*4=2482*4=8299=9928. In these examples, the '$' symbols enclose the reverse order result.
Your task is to answer the following math questions using the same methodology.”

Question: “ Mitchell is trying to chew as many pieces of gum at once as he can. He has 8 packets of gum, There
are 7 pieces in each. If he chews all the gum except for 2 pieces, how many pieces does he chew at once? ”

Response: ““ The packets have 56 pieces in total because 8*7 = << 8*7=865%$=56 >>56
He chews 54 pieces because 56 - 2 = << 56-2=845$=54 >>54#### 54

Figure 7: A data sample from the GSM8K dataset formatted in RevOrder.

Instruction: “As a math aficionado, let's dive into the fascinating concept of reverse order calculations.

This rule dictates: (1) Calculations should be performed in reverse order, starting with lower level operations
followed by higher ones. For instance, in 35+44=$978=79, we first add the lower digits 5 and 4, getting 9,
then we add the higher digits 3 and 4, getting 7. The number '97' is framed within '$', signifying the reverse
order calculation result, which we then reverse again to get '79’.

(2) For polynomials, we use the union method for easier operations.

For instance, 7+11+13=81+13=18+13=13=31, 63+68+44+25=131+96=131+69=002=200,and
15+46+35+2+4=816$+$73$+4=61+37+4=$89$+4=98+4=$201$=102, calculations involving multiple
additions should be done in pairs for accuracy.

(3) In a polynomial with both multiplication and division, to avoid inaccuracies due to endless decimals, we
use the exchange method, performing multiplication before division.

For example, in 36/6*4=(36*4)/6=$441%/6=144/6=24, the exchange method is used.

Please familiarize yourself with these reverse rules. Here are a few additional examples for further practice. ”

Response: “<<10+7=718=17>>, <<562-231=133=331>>, <<100-7=8$398=93>>, <<63+55=$811$=118>>,
<<20*5=001=100>>, <<54*3=82618=162>>, <<200-86=3$411$=114>>, <<27+26=835$=53>>,
<<40*4=061=160>>, <<16*8=8821$=128>>, << 46*2=8298=92 >> <<16+15=13=31>>,
<<4953*7=817643$=34671>>, << 76-28=$84$=48 >>, <<121+48=3961$=169>>, <<47*5=$§5328=235>>, <<
285+89=473=374 >>, <<2514-1983=135=531>>, <<43974+11978=$259558=55952>>,
<<29+41+26+6=307$+$23$=70+32=$201$=102 >>”

Figure 8: A sample from the additional enhancement dataset for RevOrder calculations.

11

ratio of 0.08 over 3 epochs. During each epoch, the
model was exposed to both the additional datasets
and the GSMSK datasets sequentially.

C.3 Equation Errors

Fig. 9 showcases representative errors encountered
in the GSMS8K test set, attributable to difficulties
in adhering to RevOrder instructions. For instance,
while the model successfully solved the second
equation in reverse order, it faltered in performing
the simple task of reversing the solution to arrive
at the final result.

12

33.48+16.64+40.04=520.055+40.04=50.02+40.04=5$60.09$=90.06 x

162/7=23.142857 x

Figure 9: Illustrative errors from the GSMS8K test set encountered by the model trained with RevOrder.

13

	Introduction
	Related Works
	Sequential Intermediate Digits in Arithmetic Computation
	Definition of Sequential Intermediate Digits (SIDs)
	The CSIDs for Plain Arithmetic Operations
	LLM Performance on Large CSID Equations

	RevOrder: Reducing the CSID for Equations
	Addition and Subtraction
	Multiplication and Division
	Multiplication
	Division

	Towards More Compact Forms
	A Comparison of CSID Among Different Methods

	Experiments on Arithmetic Operations
	Setup
	Dataset
	Training and evaluation protocol
	Baselines

	Main Results (RQ1)
	In-Depth Analysis on Division
	The Cost of RevOrder (RQ2)

	Additional Experiments on Math Word Problems
	Setup
	Results

	Conclusion
	Limitations
	The CSID Analysis for Multiplication and Division
	Multiplication
	The CSID for Plain Multiplication
	The CSID for Multiplication in Simple Reverse
	The CSID for Multiplication in GOAT-7b

	Division
	The CSID for Quotient Estimation
	The CSID for Plain Division
	The CSID for Division in GOAT-7b

	Training Data for Arithmetic Experiments
	Settings for Math Word Experiments
	Training Data
	Training Details
	Equation Errors

