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Abstract
Continual learning (CL) in large language mod-001
els (LLMs) is an evolving domain that fo-002
cuses on developing strategies for efficient003
and sustainable training. Our primary em-004
phasis is on continual domain-adaptive pre-005
training, a process designed to equip LLMs006
with the ability to integrate new information007
from various domains while retaining previ-008
ously learned knowledge and enhancing cross-009
domain knowledge transfer without relying on010
domain-specific identification. Unlike previous011
studies, which mostly concentrate on a lim-012
ited selection of tasks or domains and primar-013
ily aim to address the issue of forgetting, our014
research evaluates the adaptability and capa-015
bilities of LLMs to changing data landscapes016
in practical scenarios. To this end, we intro-017
duce a new benchmark designed to measure018
the adaptability of LLMs to these evolving data019
environments, offering a comprehensive frame-020
work for evaluation. We examine the impact021
of model size on learning efficacy and forget-022
ting, as well as how the progression and sim-023
ilarity of emerging domains affect the knowl-024
edge transfer within these models. Our findings025
uncover several key insights: (i) performance026
improves only if the adaptation corpora match027
the original pretraining scale, (ii) smaller mod-028
els are particularly sensitive to continual pre-029
training, showing the most significant rates of030
both forgetting and learning, (iii) when the se-031
quence of domains shows semantic similarity,032
continual pretraining enables LLMs to special-033
ize better compared to stand-alone pretraining,034
and (iv) fine-tuning performance on standard035
benchmarks is indeed influenced by continual036
pretraining domains. We posit that our research037
marks a shift towards establishing a more real-038
istic benchmark for investigating CL in LLMs.039

1 Introduction040

Recent advancements in the field of Natural Lan-041

guage Processing (NLP) have been significantly042

shaped by the development of large language043

models (LLMs) (Devlin et al., 2018; Radford 044

et al., 2019; Brown et al., 2020). These mod- 045

els, trained on vast corpora from diverse domains, 046

have emerged as versatile tools for numerous NLP 047

tasks. However, the increasing scale and complex- 048

ity of LLMs have raised concerns about the finan- 049

cial and ecological costs associated with training 050

them from scratch (Luccioni et al., 2022). This 051

has necessitated more efficient approaches than re- 052

training these models entirely with each new data 053

stream. Continual Learning (CL) emerges as a 054

crucial strategy in this context (Sun et al., 2019; 055

Biesialska et al., 2020) to reduce both financial and 056

environmental costs while maintaining the mod- 057

els’ relevance. CL, particularly through strategies 058

like continual fine-tuning, which involves incre- 059

mentally fine-tuning an LLM on a series of down- 060

stream tasks (Wu et al., 2021; Ramasesh et al., 061

2021; Scialom et al., 2022; Mehta et al., 2023) and 062

continual domain-adaptive pretraining, focusing 063

on incremental updates to adapt the LLM to new 064

domains (Xu et al., 2019; Gururangan et al., 2020; 065

Ke et al., 2023b) avoids the need for exhaustive 066

retraining upon the arrival of new data. 067

In this paper, we delve into the challenges of con- 068

tinual domain-adaptive pretraining of LLMs. This 069

process involves continuous training with large, un- 070

labeled domain-specific corpora (Xu et al., 2019; 071

Gururangan et al., 2020; Ke et al., 2023b). Given 072

the dynamic nature of data and the emergence of 073

new domains, LLMs must adapt to new informa- 074

tion while retaining previously acquired knowl- 075

edge and skills. A critical aspect of this adaptation 076

is ensuring that knowledge transfer occurs seam- 077

lessly across domains without catastrophic forget- 078

ting (CF) (French, 1999) and operate effectively 079

without explicit domain identification for each task. 080

Recent approaches in CL for LLMs have ex- 081

plored diverse methodologies, including parameter- 082

efficient adaptation (Gururangan et al., 2021; Khan 083

et al., 2022; Zhang et al., 2022), instruction fine- 084
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L1 DOMAIN (ABBRV) SIZE #L2 #TOKENS EXAMPLES OF L2 DOMAINS

Culture and The Arts (Culture) 1.8 GB 7 265M Arts and entertainment, Sports and Recreation
History and Events (History) 1.2 GB 3 208M Region, Period

Technology and Applied Sciences (Tech) 1.7 GB 4 268M Agriculture, Computing
Health and Fitness (Health) 739 MB 6 99M Exercise, Nutrition

Religion and belief systems (Religion) 341 MB 3 48 M Belief Systems, Major beliefs of the world
General reference (GeneralRef) 196 MB 2 39M Reference works

Philosophy and thinking (PhilThink) 721 MB 2 124M Philosophy, Thinking

Art 578 MB 1 98 M –
Philosophy 919 MB 1 156M –

Quantitative Biology (Bio) 1.9 GB 11 336M Biomolecules, Cell Behavior
Physics 4.1 GB 22 737M General Physics, Biological Physics

Condensed Matter (CondMat) 3.5 GB 9 570M Materials Science, Quantum Gases
Nonlinear Sciences (Nlin) 730 MB 5 134M Self-Organizing Systems, Chaotic Dynamics

Mathematics (Math) 4.5 GB 30 1.4B Topology, Number Theory
Statistics (Stat) 2.4 GB 6 450M Applications, Methodology

Economics (Econ) 67 MB 3 11M Econometrics, Theory
Computer Science (CS) 4.5 GB 39 1.1B Machine Learning, Graphics

Astrophysics (Astro) 3.1 GB 5 562M Earth/Planetary, Cosmology

Total 32.4 GB 159 6.6B –

Table 1: The details of the L1 domains used in our experiments. Note that Art and Philosophy did not have any
subdomains in M2D2 dataset.

tuning (Scialom et al., 2022; Razdaibiedina et al.,085

2023; Luo et al., 2023b), and continual pretrain-086

ing (Qin et al., 2022; Ke et al., 2023a) to mitigate087

forgetting. A recent survey by Wu et al. (2024)088

provides a comprehensive overview of these ef-089

forts. Specifically, within continual pretraining,090

Cossu et al. (2022) explored the characteristics of091

forgetting across ten domains, Gupta et al. (2023)092

examined warm-up strategies, Wang et al. (2023)093

proposed orthogonal adapters to reduce domain in-094

terference, Qin et al. (2022) designed an expanding095

architecture, and Luo et al. (2023a) investigated096

forgetting in continual classification.097

Most related to our work, Gururangan et al.098

(2020) evaluated the transfer capabilities of a099

RoBERTa model continually pretrained across four100

domains. However, given their diverse training101

data and foundational capabilities, one would ex-102

pect LLMs to be adaptable across multiple domains103

rather than limited to just one. Perfect adaptation104

to a series of domains would also prevent the practi-105

tioners from re-training upon new data as promised106

by CL. Unfortunately, the field still lacks a compre-107

hensive assessment of LLMs of various sizes and108

architectures in such a more realistic, large-scale109

setting.110

Our work bridges this gap by pretraining LLMs111

across diverse domains and evaluating their perfor-112

mance throughout the pretraining process, setting113

our research apart from previous studies limited to 114

a narrow domain focus (Cossu et al., 2022; Wang 115

et al., 2023; Ke et al., 2023b). We leverage the 116

Massively Multi-Domain Dataset (M2D2) (Reid 117

et al., 2022), featuring 236 hierarchically organized 118

domains from Wikipedia and Semantic Scholar. 119

This dataset offers an ideal setting for examining 120

CL across various LLMs, facilitating an in-depth 121

analysis of forgetting and knowledge transfer over 122

extensive training sequences. 123

Our key contribution is to evaluate pretrained 124

LLMs within an extensive continual learning set- 125

ting, focusing on the impact of model scale and 126

architecture on their ability to learn new tasks and 127

retain previously learned information. We also 128

investigate the role of domain similarity and the 129

order of appearing domains on knowledge transfer 130

and the overall CL performance. Our findings un- 131

cover several key insights: (i) the amount of data 132

for effective continual domain-adaptive pretrain- 133

ing depends on the size of the adapted model, (ii) 134

continual pretraining influences the smaller mod- 135

els the most, (iii) before pretraining a model on a 136

particular domain, training it on related domains 137

leads to improved forward and backward transfer 138

to that domain, and (iv) fine-tuning performance 139

on standard benchmarks is indeed influenced by 140

continual pretraining domains. 141
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Figure 1: Cosine similarity between our L1 training
domains. We also include OpenWebText (Gokaslan and
Cohen, 2019), an open-source replication of the GPT2
pretraining data set. The two big square blocks along
the diagonal correspond to Wiki and S2ORC portions.

2 Methodology142

In this section, we describe our training process,143

provide an overview of the tasks (domains) used144

for the the continual pretraining and assessment of145

models, and explain the evaluation pipeline.146

Training. We initiate our process with a pre-147

trained LLM M0 that has been already trained148

on a comprehensive corpus D0. It is important149

to note that D0 generally represents a broad or150

general domain, such as a book corpus or web151

content. We then consider a series of domain cor-152

pora, SN = {D1, · · · ,DN}, from N domains. In153

our setting, each task Di is an unlabeled domain-154

specific corpus. Our goal is to continuously pre-155

train an LLM on these sequential domain corpora156

by using the original training objectives, e.g., the157

next token prediction likelihood for autoregressive158

LLMs. At each stage i, the LLM Mi−1 is trained159

on a new corpus Di, resulting in an updated model160

Mi. Unlike conventional continual learning ap-161

proaches where each task is an end-task, in our162

method, once a domain corpus is used for train-163

ing, it is no longer available. In a typical continual164

learning scenario, each task involves end-task fine-165

tuning to evaluate the performance of the continu-166

ally trained LLM.167

Tasks. Our experiments are conducted on the168

M2D2 dataset (Reid et al., 2022), which is an ex-169

tensive and finely categorized corpus specifically170

designed for exploring domain adaptation in lan-171

guage models. It comprises 8.5 billion tokens and 172

covers 236 domains, sourced from Wikipedia and 173

the Semantic Scholar (S2ORC) database (Lo et al., 174

2019). This dataset is unique in its combination of 175

fine domain granularity and a human-curated do- 176

main hierarchy, set within a multi-domain context. 177

The corpus is divided into two levels: L1- 178

domains and L2-domains. In the context of the 179

S2ORC corpus, L1-domains refer to broad fields of 180

academic research, such as Computer Science and 181

Physics, while L2-domains correspond to specific 182

arXiv categories within these fields, like “Computa- 183

tion and Language” under Computer Science. For 184

Wikipedia, L1-domains represent major categories, 185

and L2-domains encompass category pages within 186

each L1 domain. To maintain balance and compu- 187

tational efficiency in our experiments, we excluded 188

domains exceeding 5GB of data, such as Medicine. 189

Ultimately, we utilized 159 domains in our study 190

(see Table 1 for details). 191

To show the cross-domain similarity, we first 192

computed the task embedding by using Sentence- 193

BERT (Reimers and Gurevych, 2019) with 10K 194

samples from each domain and 50K samples from 195

OpenWebText (Gokaslan and Cohen, 2019), an 196

open-source reproduction of GPT2 training dataset 197

(Radford et al., 2019). Then we computed cosine 198

similarities between each task pair (Figure 1). For 199

the similar-order experiments detailed in the next 200

section, we order the training domains based on 201

their similarity, starting with the Culture domain, 202

which is the most similar to OpenWebText, and 203

then proceeding to the next most similar domains. 204

Also see Figure 8 for the average L1 embeddings 205

visualized using t-SNE. 206

Evaluation. Each domain in the M2D2 dataset 207

is split into train, validation, and test sets with no 208

data leakage, as outlined in Reid et al. (2022). Each 209

validation and test set includes over 1 million to- 210

kens, allowing accurate evaluations within specific 211

domains. We measure the effectiveness of all meth- 212

ods by testing perplexity on L2 domain test sets. 213

For continual domain-adaptive pretraining experi- 214

ments, after completing training on a domain for 215

one epoch, we checkpoint the model, and com- 216

pute the test perplexity for current and previous 217

domains. 218

3 Experimental Setup 219

Models and training. We benchmark continual 220

learning of existing pretrained LLMs with dif- 221
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M2D2-SIMILAR M2D2-RANDOM

Num. Zero Pre- Continual Last Continual Last
pars. shot training pretraining checkpoint pretraining checkpoint

GPT2-small 117M 27.90 20.36 (-7.54) 19.46 (-8.44) 27.52 (-0.38) 21.04 (-6.86) 22.47 (-5.43)

GPT2-medium 345M 21.54 18.58 (-2.96) 16.58 (-4.96) 20.11 (-1.43) 16.84 (-4.7) 19.01 (-2.53)

GPT2-large 774M 18.89 14.43 (-4.46) 14.33 (-4.56) 18.68 (-0.21) 15.13 (-3.76) 17.19 (-1.7)

GPT2-xlarge 1.5B 17.36 12.43 (-4.93) 12.28 (-5.08) 15.29 (-2.07) 13.89 (-3.47) 15.24 (-2.12)

Llama2-7B 7B 6.87 23.5 8.54 14.86 10.09 12.02

Table 2: This table shows test perplexities (↓) with different model sizes and training orders. For reference, we
include the zero-shot and fine-tuning perplexities. Please see Table 4 for results obtained on Wiki and S2ORC
domains. Inside the parentheses are the perplexity improvements over zero-shot (the smaller the better).

ferent architectures and sizes. In particular, we222

consider (1) decoder-only models (GPT2-small,223

GPT2-medium, GPT2-large and GPT2-xlarge,224

Llama2-7B) as well as (2) encoder-decoder mod-225

els (RoBERTa-base and RoBERTa-large (Liu et al.,226

2020)). Due to space considerations, we present227

RoBERTa findings in the Appendix. We trained228

the models with Adam optimizer (Kingma and229

Ba, 2015) with a batch size of 16 sequences on230

NVIDIA A100 GPUs. We used DeepSpeed (Rasley231

et al., 2020) with auto configuration, which assigns232

a dropout rate of 0.2 and a learning rate of 5e-5.233

Task ordering. In order to investigate how the234

order of training domains impacts our domain-235

incremental continual learning setup, we ordered236

the tasks in our experiments in two different ways:237

(i) similar-order where semantically related do-238

mains follow one another, and (ii) random-order,239

where the domains are shuffled.240

Metrics for assessing continual learning efficacy.241

To evaluate the effectiveness of continual learning,242

we begin by setting two baselines for comparison,243

zero-shot perplexity (ZS) which measures the innate244

ability of the original, unmodified models to pre-245

dict outcomes without any domain-specific tuning246

and pretraining perplexity (PT) which evaluates the247

models after they have been specifically pretrained248

for each domain. ZS acts as a fundamental base-249

line, ensuring that our models have a basic level250

of competence and PT sets a targeted performance251

standard for our continual learning approach to sur-252

pass. Achieving a better perplexity than the PT253

baseline is the primary objective for continual pre-254

training, signifying that longer training horizons is255

more favorable than domain adaptive pretraining. 256

To assess continual learning performance, we 257

compute continual pretraining perplexity (CPT) 258

where we evaluate a model’s performance on the 259

most recent training domain. This measure helps 260

us understand how well the model adapts to new 261

information over time. Moreover, we compute the 262

last checkpoint (LC) against all the training do- 263

mains to examine the final model’s ability to re- 264

tain and transfer knowledge across a broad range 265

of subjects. Finally, we evaluate checkpoints on 266

previously seen/unseen domains to measure back- 267

ward/forward transfer. 268

Through these metrics, we aim to thoroughly 269

understand continual learning dynamics, focus- 270

ing on model adaptability, knowledge retention, 271

and ability to generalize across various domains. 272

To express the metrics more explicitly, let zn 273

and fn denote the zero-shot and pretraining per- 274

plexities on n’th domain. Further, let pcn de- 275

note the perplexity of c’th checkpoint on n’th 276

domain (notice that c > n and c < n corre- 277

spond to backward and forward transfer). Then 278

the main metrics of our interest are computed 279

as follows: ZS = 1
N

∑N
n=1 zn, PT = 1

N

∑N
n=1 fn, 280

CPT = 1
N

∑N
n=1 p

n
n, LC = 1

N

∑N
n=1 p

N
n . 281

4 Results and Findings 282

In this section, we discuss our main findings. We 283

first discuss how the model and data scale impact 284

continual learning. Next, we examine the impli- 285

cations of the order of training domains. Our 286

only positive forward transfer finding follows this 287

and then we analyze fine-tuning performances on 288

benchmark tasks. Finally, we list our remaining 289
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observations. Please see Section A.1 for additional290

findings that do not fit into the main manuscript291

and Section A.2 for ablation studies.292

4.1 Model scale293

Is continual learning even necessary? Compar-294

ing the zero-shot performance against all other295

metrics in Table 2, we most strikingly observe296

that Llama2 does not benefit from CL or domain-297

adaptive pretraining. In contrast, test perplexities298

of all GPT2 models improve thanks to CL. These299

findings imply that models trained on enormous300

data corpora may already perform better than their301

domain-adapted versions. Please note that we did302

not observe any training issues during learning, i.e.,303

training perplexity always improved.304

Final performance correlates with model size305

In agreement with the recent research on scaling306

laws (Kaplan et al., 2020; Bahri et al., 2021), CL307

of bigger models results in better CPT and LC per-308

formance regardless of the training order. However,309

this consistent pattern cannot solely be attributed to310

CL since model size heavily influences zero-shot311

performance. Taking the zero-shot performance as312

a baseline (see the values inside the parentheses in313

Table 2), we observe that GPT2-small benefits the314

most from continual pretraining by a large margin315

in three out of four evaluated scenarios.316

4.2 Recency effect in continual learning317

CPT is more favorable to standard PT when do-318

mains are semantically ordered Comparing the319

PT column against CPT columns reveals that con-320

tinual pretraining outperforms stand-alone pretrain-321

ing only if subsequent training domains have high322

similarity. This observation aligns with the premise323

that a model’s performance on a current task is in-324

trinsically linked to its starting checkpoint. Mean-325

ing, when training domains are ordered based on326

similarity, the last checkpoint Mi naturally trans-327

fers better to the next domain Di+1 compared to328

the original model M0. On the other hand, when329

training domain order is randomized, starting from330

the original model M0 is found to be more benefi-331

cial. This observation aligns with recent studies on332

continual test-time adaptation (Press et al., 2023)333

and checkpoint selection strategies (Fisch et al.,334

2023), highlighting the strategic value of starting335

points in training sequences.336

Similar training order facilitates backward337

transfer to recent past Figure 3 demonstrates338

the interplay between backward transfer and train- 339

ing horizon. In particular, x-axis shows how 340

many tasks have passed between a checkpoint 341

and a domain it is tested onx, i.e., we plot 342
1

N−x

∑N
c=x(p

c
c−x − zc−x) against x. The panel 343

on the left reveals that a high conceptual overlap 344

between subsequent domains leads to positive back- 345

ward transfer up to 30 domains back. Naturally, 346

the improvement worsens over time as the recent 347

training domains become significantly dissimilar to 348

tested domains. Notably, the smallest GPT model 349

shows the most significant fluctuations in perfor- 350

mance, experiencing both the highest gains and the 351

most pronounced declines. 352

Average backward transfer performance de- 353

pends heavily on domain order We present the 354

average backward perplexities in Figure 2. We 355

normalize the perplexities by subtracting zero-shot 356

perplexities obtained on the same domains, i.e., we 357

plot 1
x−1

∑x−1
n=1(p

x
n − zn) against checkpoint id x. 358

On the one hand, we never observe positive back- 359

ward transfer with similar-order training, and test 360

perplexity notably degrades when we switch the 361

training portion. On the other hand, training in 362

random order generally enhances test perplexity 363

compared to the zero-shot baseline. The most sig- 364

nificant improvement over the initial model M0 is 365

observed early in training and saturates after about 366

25 tasks. 367

4.3 Random-order training enables positive 368

transfer to S2ORC 369

The previous finding demonstrates that training 370

in random order significantly enhances transfer 371

to past tasks. Figure 4 visually shows a similar 372

effect for future transfer: the perplexity tends to 373

improve, compared to zero-shot baseline, as a func- 374

tion of the number of continual pretraining do- 375

mains before forward transfer. Specifically, we 376

plot 1
|S|

∑
n∈S p

x
n − zn against x, where S is the set 377

of future Wikipedia and S2ORC domains for the 378

green and pink curves. 379

Noticeably, positive forward transfer is possible 380

only to the S2ORC portion since all values corre- 381

sponding to the Wikipedia test portion are positive, 382

implying no perplexity improvement when tested 383

on the Wikipedia portion. This discrepancy is 384

rather expected as the S2ORC portion is about five 385

times larger than the Wikipedia portion. Further, 386

test perplexity on the S2ORC portion consistently 387

improves with the number of pretraining tasks, i.e., 388
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Figure 2: Backward transfer perplexity (averaged over all past domains, y axes) during the course of learning (x
axes). The grey background highlights Wiki domains. Similar-order always leads to negative backward transfer
while randomizing the domains significantly improves transfer.

Figure 3: Average backward transfer performance (normalized by zero-shot, y axes) as a function of the number of
tasks between the checkpoint and the tested domain (x axes). The first points in each curve correspond to continual
pretraining (no backward transfer, upper bound). The benefits of continual learning when trained in similar-order
steadily degrade with the transfer distance while it tends to improve with random-order training.

longer training improves forward transfer. We con-389

clude that the model accumulates knowledge that390

is on average beneficial to predict next tokens on391

unseen finer-grained domains.392

4.4 Preservation of general knowledge393

through benchmark tasks394

We utilized a selection of tasks from BIG-395

bench (bench authors, 2023) aimed at assessing396

whether the general knowledge embedded in the397

original language model remains intact, experi-398

ences significant loss, or achieves effective knowl-399

edge integration post-training. Specifically, we400

chose five tasks aligned with our benchmark do-401

mains: Arithmetic, General Knowledge, Physics,402

CS Algorithms, and Few-shot Natural Language403

Generation (NLG). Given space limitations, we de-404

tail the results for Arithmetic and General Knowl-405

edge in Figure 5, while comprehensive task de-406

scriptions, metrics, and additional outcomes are407

provided in the Appendix A.3.408

Until now, our evaluation has centered on as-409

sessing the language modeling capabilities of our410

models, specifically using perplexity as our perfor-411

mance metric. Moving forward, we assess their412

performance on different tasks, revealing that con- 413

tinuing pretraining on domains relevant to these 414

tasks generally enhances model performance, while 415

pretraining on unrelated domains often leads to for- 416

getting, thereby negatively affecting the model’s 417

initial task proficiency. As depicted in Figure 5, a 418

consistent decrease in Arithmetic task performance 419

was noted when models were continually trained 420

on Wiki domains which then improves upon switch- 421

ing to S2ORC domains, with the exception of the 422

Nonlinear Sciences and Astrophysics domains. In 423

contrast, performance on General Knowledge tasks 424

improved with Wiki domain training but declined 425

with S2ORC training, except for slight increases in 426

the CS and Statistics domains. 427

4.5 Additional observations 428

Within GPT family, the final checkpoint 429

achieves better perplexity than zero-shot Our 430

study demonstrates that the final model consis- 431

tently outperforms or matches the zero-shot base- 432

line in terms of perplexity across different domain 433

sequences and model sizes. We report the aver- 434

age perplexity over all domains, suggesting that 435

the knowledge accumulated throughout CL never 436
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Figure 4: Forward transfer results with random training
order. The x axis shows the number of domains the
model is trained on before forward transfer. Curves
show the perplexity (normalized by zero-shot). Clear
positive/negative forward transfer to S2ORC/Wiki por-
tions is observed.

Figure 5: GPT2-medium performance on Arithmetic
and General Knowledge tasks from BIG-Bench, cap-
tured at L1 domain transitions. The initial data point
represents the baseline performance of GPT2-medium.

hurts the predictions on the learned domains on av-437

erage. Notably, randomizing the training sequence438

results in a more favorable average perplexity than439

a similar-order domain sequence. We present a440

detailed comparison of perplexity values for Wiki441

and S2ORC portions in Table 4, highlighting the442

GPT family’s tendency to forget the Wiki portion443

while improving perplexity on S2ORC.444

Longer CL improves backward transfer if do-445

main order is randomized The right panel in446

Figure 3 reflects a rather surprising finding that447

when the training domains are presented in a ran-448

domized order, we observe positive backward trans-449

fer (w.r.t. zero-shot performance). This is consis-450

tent across different model sizes and the number451

of tasks between the checkpoint and test domain.452

Remarkably, the perplexity improvement increases453

when a checkpoint is tested further back in time454

(evidenced by the downward trend in the curves).455

We interpret this finding as an indicator for knowl-456

edge accumulation, i.e., performance on previously457

learned domains increases on average when the458

model is trained longer on a randomized set of459

domains, even if only a handful of which are con-460

ceptually similar.461

5 Related work462

We discuss two related but separate lines of re-463

search in the context of CL for LLMs: (i) contin-464

ual fine-tuning, which aims at fine-tuning LLMs465

on a series of downstream tasks, and (ii) contin-466

ual domain-adaptive pretraining, focusing on incre-467

mental updates to adapt an LLM to new domains468

without exhaustive retraining from scratch upon469

new data.470

Continual fine-tuning A large body of CL works 471

for LLMs tries to mitigate forgetting during con- 472

tinual fine-tuning. (Luo et al., 2023a) investigate 473

forgetting and distribution drift during continual 474

learning on a series of eight downstream classifi- 475

cation tasks. In a recent work, (Luo et al., 2023b) 476

examines evolution of forgetting during continual 477

fine-tuning. Scialom et al. (2022) instruct fine-tune 478

an LLM for eight tasks. Khan et al. (2022) intro- 479

duce an adapter-based fine-tuning strategy for three 480

downstream tasks. Zhang et al. (2022) propose to 481

add new modules to a sequence generator (such as 482

an LLM) to continually adapt to five tasks. Razdai- 483

biedina et al. (2023) introduce progressive prompts, 484

where a growing number of prompts, are learned 485

during continual learning, fine-tunes on 15 classi- 486

fication datasets. Wang et al. (2023) propose to 487

learn orthogonal adapters to minimize interference 488

between 15 classification tasks. Qin et al. (2022) 489

propose efficient lifelong pretraining for emerging 490

data (ELLE), where they expand a network during 491

learning and include domain-identifying prompts 492

during pretraining to help the PLM identify the 493

type of knowledge it is learning. 494

Continual domain-adaptive pretraining An al- 495

ternative research direction, closer to our work, 496

aims to continually pretrain LLMs to adapt them 497

to new domains. In one of the earliest studies, Gu- 498

rurangan et al. (2020) introduce a growing mixture 499

of expert architecture for domain-adaptive contin- 500

ual pretraining. Chen et al. (2023) study lifelong 501

learning from a sequence of online pretraining cor- 502

pus distributions based on a progressively growing 503

mixture-of-experts (MoE) architecture. Likewise, 504

Gururangan et al. (2021) introduce a mixture archi- 505

tecture for continual adaptation. Ke et al. (2023a) 506

show how a soft-masking mechanism for gradients 507
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of RoBERTa model could be useful for domain-508

adaptive pretraining for eight tasks. Cossu et al.509

(2022) investigate the characteristics of the con-510

tinual pretraining across ten domains. Jin et al.511

(2021) continually pretrain RoBERTa-base over512

a domain-incremental research paper stream and513

a chronologically-ordered tweet stream with dif-514

ferent continual learning algorithms. Gupta et al.515

(2023) examine different warm-up strategies for516

continual pretraining. Finally, Fisch et al. (2023)517

introduce a benchmark of task sequences that po-518

tentially lead to positive and negative transfer and519

further propose a simple strategy for robust forward520

transfer, which aims to pick the checkpoint with521

the biggest positive knowledge transfer among all522

past task checkpoints. Our work diverges from the523

others in that we continually pretrain the original524

model without any expansion on a much longer525

horizon of 159 domains, and further investigate the526

impact of domain order.527

6 Discussion528

Prior studies in CL for LLMs have mainly focused529

on parameter-efficient fine-tuning or adaptation530

for a limited selection of target domains or tasks.531

While beneficial, these methods often do not fully532

address the broader challenge of lifelong learning533

for LLMs. Our research diverges by exploring con-534

tinual domain-adaptive pretaining of LLMs across535

an extensive set of domains to better understand536

the dynamics of knowledge preservation, new in-537

formation retention and knowledge transfer. Below,538

we highlight three key insights and discuss three539

notable observations from our research, supported540

by indicative evidence:541

Semantic similarity enhances domain special-542

ization in CL. We found that when consecutive543

domains are semantically similar, CL allows LLMs544

to specialize more effectively in the current domain545

than stand-alone pretraining. This is supported by546

two findings: (i) continual pretraining is more ad-547

vantageous than pretraining alone, likely due to548

the accumulated knowledge from slowly evolving549

domains, and (ii) models exhibit positive transfer550

to recent past domains but not to more distant do-551

mains in the training chronology.552

Randomizing training domain order signif-553

icantly improves knowledge accumulation.554

With the randomized training order, we notice (i)555

the last checkpoint demonstrates superior perfor-556

mance on average than similar-order training, (ii) a 557

majority of checkpoints exhibit positive backward 558

transfer on average to the past, effectively implying 559

that previous knowledge remains somewhat intact, 560

and (iii) continually pretraining for longer improves 561

forward transfer, signifying better generalization 562

ability of the model. 563

Continual pretraining enhances downstream 564

task performance. Our experiments on Big- 565

Bench indicate that the performance on down- 566

stream tasks such as question-answering is closely 567

related to the domains the model was trained on. 568

This evidences that further generative pretraining 569

prior to fine-tuning can enhance downstream per- 570

formance in comparison to fine-tuning alone. 571

Evidence for knowledge saturation. Categoriz- 572

ing checkpoints based on their timestamp reveals 573

that forgetting becomes more severe over time. 574

This pattern shows that the model’s capacity for 575

integrating new information gradually reaches a 576

plateau, which we refer to as knowledge saturation. 577

Rethinking scaling laws for CL. In almost 578

all experiments with GPT2 model family, CL 579

caused the biggest improvement or forgetting on 580

GPT2-small models compared to other model sizes. 581

However, the relationship between model size and 582

performance improvements is not always straight- 583

forward. For instance, GPT2-large demonstrated 584

poorer backward transfer perplexity compared to 585

both GPT2-medium and GPT2-xlarge, challenging 586

the conventional wisdom that larger models uni- 587

formly translate to better performance. Besides, 588

the performance of the Llama2-7B deteriorated as 589

a result of continual pretraining. It is important to 590

note that Llama2-7B models are initially trained on 591

a vast dataset comprising 2 trillion tokens from a 592

wide array of domains. In contrast, GPT-2 models 593

are trained using the OpenWebText dataset, which 594

contains 9 billion tokens. This observation sug- 595

gests that continual pretraining may not be benefi- 596

cial for models like Llama2-7B that have already 597

been trained on an extensive and diverse corpus. 598

Therefore, we infer that unless there is a substan- 599

tial amount of domain-specific data available, fur- 600

ther pretraining of Llama2-7B models is unlikely 601

to yield performance improvements. This finding 602

underscores the importance of having sufficient 603

and relevant data when considering additional pre- 604

training for models that are already well-trained on 605

diverse datasets. 606
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7 Limitations607

Our research highlights CL as a powerful paradigm608

for learning in LLMs, providing valuable insights609

into its mechanisms and benefits. However, we610

acknowledge several limitations in our study: (i)611

For our random-order training, domains were shuf-612

fled only once. We perform an ablation study613

with GPT2-medium by considering two more ran-614

dom shuffles, whose conclusions may not imme-615

diately transfer to other experiments. (ii) Explor-616

ing how backward transfer performance to a do-617

main is affected by its size or similarity to Webtext618

could yield interesting insights. (iii) Since part of619

RoBERTa training data contains Wikipedia entries,620

which may overlap with our training set, this could621

influence our RoBERTa results.622

To report average backward transfer perplexity,623

we exhaustively tested all checkpoints on all past624

domains, resulting in 12561 evaluations per model625

per setup. Consequently, we evaluated forward626

transfer after completing all L2 domains in a certain627

L1 domain, which still required 171 evaluations per628

model per setup.629

The computation time is an inevitable limitation630

in our experimental setup. For instance, one pre-631

training run and backward evaluation for GPT2-632

Large takes approximately two months on two633

A100 GPUs. Given that we run our experiments634

on 159 tasks, the incremental nature of continual635

pretraining prevents parallelization of the training636

process.637
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Section A.1 Additional findings

Section A.2 Ablation studies

Section A.3 Details and discussion of the BIG-Bench experiment

Section A.4 RoBERTa results

Table 4 Perplexities computed on Wiki and S2ORC portions separately

Table 5 RoBERTa results

Figure 6 Forgetting in two different stages of CL

Figure 7 Visualization of the BIG-Bench results

Figure 8 t-SNE embeddings of L1-domains

Figure 9 GPT2-large backward transfer performance for four example domains

Figure 10 CPT and LC perplexities obtained with batch size 16 vs 64

Figure 11 CPT and LC perplexities obtained when the dataset is balanced

Figure 12 CPT and LC perplexities obtained when portions are swapped

Figure 13 Forward transfer results for all L1 domains (GPT2 and RoBERTa)

Figure 14 RoBERTa-large backward transfer performance for four example domains

Table 3: A summary of our appendix

A Appendix816

A.1 Additional findings817

LLMs forget more in the later stages of818

continual learning We divide the check-819

points in random-order training into two groups820

based on their recency (checkpoints[50-100]821

and checkpoints[100-150]). We evaluate each822

checkpoint on 50 domains back and compute the823

perplexity change (caused by additional training824

on 50 domains). Histograms in Figure 6 show that825

earlier checkpoints transfer to the past slightly826

better. We hypothesize that in the earlier stages of827

training, the parameters that are not important to828

the recently learned tasks are updated and the lack829

of such parameters causes more forgetting in the830

later stages.831

Positive forward transfer is rarely possible in832

similar training order Each plot in Figure 13833

shows the forward transfer performance to the do-834

main stated in the title. Most notably, the left-835

most panel reflects that pretraining on a handful of836

domains leads to significantly worse performance837

compared to zero-shot (the dotted horizontal lines).838

In contrast, extended pretraining across a variety839

of domains occasionally leads to positive forward840

transfer (panels 2 and 3). Further, we notice a re-841

Figure 6: We divide the checkpoints in random-order
training into two groups based on their recency, showing
that earlier checkpoints transfer better to the past.

cency effect where the forward transfer perplexity 842

improves if a checkpoint is transferred to a domain 843

that is conceptually similar to the most recent train- 844

ing domain: as anticipated, the most successful for- 845

ward transfer to Astrophysics domains is attained 846

after training on Physics. Please see Figure 13 for 847

complete results. 848

A.2 Ablation studies 849

Batch size impacts learning dynamics As an 850

ablation study, we increase the batch size from 16 851

to 64, thereby performing a quarter of gradient 852

updates. Figure 10 compares the results obtained 853
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with different batch sizes. When trained in random-854

order, continual pretraining and last checkpoint855

performances virtually remain the same despite856

varying the batch size. In similar-order, a smaller857

batch size helps to improve continual pretraining858

perplexity but worsens the performance of the last859

checkpoint. We hypothesize that taking more gra-860

dient steps aids the model to better fit the current861

task while promoting forgetting the old tasks.862

Balancing the data size across L2 domains863

does not improve performance We investigate864

whether the imbalance in training data sizes im-865

pacts the overall performance (see Figure 1 for L1866

domain lengths). To address this, we set the number867

of maximum tokens to 100K for each L2 domains868

(if they have less tokens, we used them all), and869

train the original model. Figure 11 shows the re-870

sulting continual pretraining and last checkpoint871

perplexities. For both metrics, test performance on872

almost all L2 domains deteriorates after balancing873

the number of data points per domain. The results874

suggest using all data at hand instead of leaving875

some out for the sake of balanced training.876

Swapping Wiki and S2ORC portions verifies877

previous findings We swap the portions for878

similar-order training, i.e., training first on S2ORC,879

then on the Wiki portion. Arguably, this training880

order still follows conceptual similarity; hence, it881

allows us to see whether our previous findings still882

hold. The left panel in Figure 12 shows that con-883

tinual pretraining perplexity remains almost the884

same. Yet, the last checkpoint perplexity signif-885

icantly changes: while the performance on the886

S2ORC portion substantially degrades, we observe887

the opposite effect for the Wiki portion. Agreeing888

with our previous findings, we conclude that the889

checkpoints perform worse when tested on older890

domains/portion.891

Alternative random orders yield similar findings892

In our random-order experiments, we consider only893

one randomized training sequence. To test whether894

the findings do not generalize to alternative ran-895

domized orders, we re-shuffle the dataset twice and896

repeat the experiments with GPT2-large. These897

experiments resulted in an average CPT of 16.4898

and 16.78 while 16.84 in the main paper. Given899

relatively much larger differences across different900

experiment setups, we conjecture that the standard901

deviation resulting from different random orders902

can be safely ignored.903

A.3 BIG-Bench Experiments 904

Tasks. We selected five tasks that align with our 905

benchmark domains, as described below: 906

Arithmetic evaluates the model’s ability in basic 907

arithmetic operations – addition, subtraction, mul- 908

tiplication, and division – ranging from 1-digit to 909

5-digit numbers. 910

General Knowledge assesses the model’s ability 911

to answer questions across a broad spectrum of gen- 912

eral knowledge, for example, “How many legs does 913

a horse have?”. It draws parallels with benchmarks 914

focused on general-knowledge question-answering, 915

such as those found in (Rajpurkar et al., 2016). 916

Physics aims to test the model’s understanding 917

of physics by asking it to determine which formula 918

is needed to solve a given physics word problem, 919

and evaluating the accuracy of the multiple choice 920

responses. The decision to utilize a multiple-choice 921

format concentrates on the model’s comprehension 922

of the physical principles each formula represents, 923

addressing concerns that generating physics formu- 924

las through text might be overly challenging for 925

current models. 926

CS Algorithms measures the model’s perfor- 927

mance on two core algorithmic concepts: recur- 928

sion (or stack usage) and dynamic programming, 929

evaluating the model’s computational thinking and 930

problem-solving skills. 931

Language Generation from Structured Data and 932

Schema Descriptions (Few-shot NLG) aims to as- 933

sess the ability of a model to generate coherent 934

natural language from structured data, supported 935

by schema descriptions, within the framework of 936

a task-oriented dialogue system. The goal is to 937

determine whether a virtual assistant can learn to 938

generate responses based on the textual description 939

of structured data, enabling rapid adaptation to new 940

domains with minimal additional input. 941

Metric. In plots, we report Normalized Aggre- 942

gate Score, that is normalized preferred metric 943

averaged over all subtasks under that particular 944

task. For example Arithmetic task has 20 subtasks. 945

In (bench authors, 2023), they specify that the best 946

performing language models achieved a score be- 947

low 20 and model scores can be less than 0 on some 948

tasks. 949

Results. Beyond the findings highlighted in Fig- 950

ure 5, additional task outcomes are detailed in Fig- 951

ure 7. The performance trends for the CS Algo- 952

rithms and Physics tasks align with those observed 953
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M2D2-SIMILAR M2D2-RANDOM

Test
Model

Zero Pre- Continual Final Continual Final
portion shot training pretraining model pretraining model

Wiki

GPT2-small 26.71 26.16 29.46 46.05 33.70 37.50

GPT2-medium 20.42 24.11 23.81 28.98 26.65 32.78

GPT2-large 17.77 17.77 20.42 30.18 23.23 28.96

GPT2-xlarge 16.39 15.70 18.63 26.28 21.86 25.64

S2ORC

GPT2-small 28.18 19.00 16.98 23.18 18.07 18.95

GPT2-medium 21.81 17.29 14.88 18.04 14.55 15.79

GPT2-large 19.16 13.65 12.90 15.99 13.24 14.44

GPT2-xlarge 17.59 11.65 10.78 12.72 12.08 12.80

Table 4: A more detailed analysis of our main results table. This time, we compute the test perplexities(↓) on Wiki
and S2ORC portions separately.

for the Arithmetic tasks, as anticipated. Specifi-954

cally, we notice a decline in performance for both955

the CS Algorithms and Physics tasks when mod-956

els continue pretraining on Wiki domains. Perfor-957

mance then improves with a shift to S2ORC do-958

mains and reaches its peak after specialized training959

in the CS and Physics domains, respectively.960

For the Few-shot NLG task, performance trends961

across Wiki and S2ORC domains do not follow a962

consistent pattern. Analysis reveals that domains963

such as Culture, Art, Philosophy, Math, Stat, and964

Econ contribute positively to performance enhance-965

ment in this task, while domains like History, Gen-966

eral Reference, and Nonlinear Sciences are identi-967

fied as the most detrimental to task performance.968

969

A.4 Roberta Results970

To broaden our analysis and gain deeper insights971

into the behavior of different architectures, we have972

repeated all the experiments with RoBERTa and ob-973

tained somewhat counter-intuitive and surprising974

results. First of all, we want to point out that per-975

plexity is not well defined for masked language976

models like RoBERTa1. We used the same perplex-977

ity computation for RoBERTa with the one we used978

for GPT as in the following:979

PPL(X) = exp{−1

t

t∑
i

log pθ(xi|x<i)} (1)980

1https://huggingface.co/docs/transformers/
perplexity

where X = (x0, . . . , xt) is the tokenized sequence 981

and log pθ(xi|x<i) is the log-likelihood of the ith 982

token conditioned on the preceding tokens X<i 983

according to the model. 984

Forgetting in RoBERTa family is not evident 985

In contrast to the GPT family, our analysis re- 986

veals that the RoBERTa family does not exhibit 987

forgetting of old tasks during continual training. 988

This indicates that gradient descent updates do 989

not interfere with old tasks. To illustrate this, we 990

present a visualization of backward transfer perfor- 991

mance across four randomly selected domains in 992

Figure 14. Similar findings with encoder-decoder 993

models were reported in (Cossu et al., 2022). We 994

conjecture that modifying the model architecture 995

by including a bottleneck layer plays a significant 996

role in this behavior. 997

RoBERTa-large always exhibits positive back- 998

ward transfer while GPT2-large transfer per- 999

formance depends heavily on the transferred 1000

domain Looking into Figure 14, we notice that 1001

backward transfer perplexity of RoBERTa-large re- 1002

mains relatively close to fine-tuning performance. 1003

Interestingly, we observe occasional jumps in per- 1004

plexity when trained in random order, whose analy- 1005

sis is an interesting future work. On the other hand, 1006

Figure 9 demonstrates backward transfer to the 1007

same four domains when GPT2-large is trained. In 1008

agreement with our earlier findings, switching from 1009

Wiki portion to S2ORC causes a significant per- 1010

plexity degradation on Wiki domains when trained 1011
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Figure 7: GPT2-medium performance on CS Algorithms, Physics and Few-shot NLG tasks, captured at checkpoints
following training completion on an L1 domain. The initial data point represents the baseline performance of
GPT2-medium.

in similar order. Further, the characteristics of the1012

test domain seem to determine whether the trans-1013

fer is positive or negative. Finally, we observe a1014

less fluctuating backward perplexity with random1015

training order.1016

Encoder-decoder models require just a few L11017

domains for good transfer (i) In stark contrast1018

with the decoder-only models, pretraining even on1019

the first L1 domain helps to exceed zero-shot per-1020

formance (comparing the dotted lines and the first1021

point of each sequence). Interestingly, this holds1022

when the pretraining and test domains belong to1023

different portions of the training set. (ii) We further1024

notice the forward transfer perplexity tends to im-1025

prove for the first ten L1 domains and later slightly1026

degrade. Since it is still considerably above zero-1027

shot performance, we chose not to investigate this1028

in detail. (iii) Lastly, the model size does not seem1029

to influence forward transfer performance, which1030

is again as opposed to decoder-only models.1031

Figure 8: Average L1-domain embeddings visualized
using t-SNE. Wiki domains and natural sciences form
two clear clusters. Note that Art and Philosophy are
from S2ORC portion, but they are closer to Wiki due to
they are social sciences and the rest of S2ORC is natural
sciences.
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Figure 9: Backward transfer illustration with GPT2-large trained in similar and random order (left and right columns).
Each panel shows the backward transfer perplexity (pink) computed on a particular domain as optimization proceeds.
For baseline comparisons, we also plot zero-shot (yellow) and continual pretraining (green) perplexities.

Figure 10: A comparison of GPT2-small training with batch sizes 16 (our default) and 64. For random and similar
training orders (rows), we plot the continual pretraining and last checkpoint perplexities (columns).
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M2D2-SIMILAR M2D2-RANDOM

Test
Model

Zero Pre- Continual Final Continual Final
portion shot training pretraining model pretraining model

All
RoBERTa-base 1.97 1.73 1.54 1.46 1.27 1.26

RoBERTa-large 4.98 3.10 2.43 2.34 1.37 1.28

Wiki
RoBERTa-base 1.93 1.69 1.49 1.43 1.45 1.48

RoBERTa-large 4.73 2.95 2.38 2.32 1.61 1.54

S2ORC
RoBERTa-base 1.56 1.37 1.26 1.26 1.25 1.26

RoBERTa-large 2.56 1.61 2.15 2.15 1.35 1.29

Table 5: Test perplexities obtained with RoBERTa family.

Figure 11: A comparison of GPT2-small training with all available data (our default) as well as a subsample of data
with equally many data points per L2 domain. We only train in similar orders and plot the continual pretraining
(left) and last checkpoint perplexities (right).

Figure 12: A comparison of GPT2-small training with our default similar training order (Wiki portion, followed by
S2ORC) as well as an alternative version (S2ORC portion, followed by Wiki). We plot the continual pretraining and
last checkpoint perplexities. Note that the x axis corresponds to the default training order.
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Figure 13: Forward transfer results with similar training order. The checkpoints are saved after having trained on
an L1 domain (hence 18 checkpoints per model). The i’th panel shows the forward performance on i’th domain,
obtained by evaluating all previous i− 1 checkpoints on that domain. The dashed lines show zero-shot performance.
x and y axes correspond to L1 domain names and perplexities, respectively.
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Figure 14: Backward transfer illustration with RoBERTa-large trained in similar and random order (left and right
columns). Each panel shows the backward transfer perplexity (pink) computed on a particular domain. For baseline
comparisons, we also plot zero-shot (yellow) and continual pretraining (black) perplexities.
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