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Abstract

Continual learning (CL) in large language mod-
els (LLMs) is an evolving domain that fo-
cuses on developing strategies for efficient
and sustainable training. Our primary em-
phasis is on continual domain-adaptive pre-
training, a process designed to equip LLMs
with the ability to integrate new information
from various domains while retaining previ-
ously learned knowledge and enhancing cross-
domain knowledge transfer without relying on
domain-specific identification. Unlike previous
studies, which mostly concentrate on a lim-
ited selection of tasks or domains and primar-
ily aim to address the issue of forgetting, our
research evaluates the adaptability and capa-
bilities of LLMs to changing data landscapes
in practical scenarios. To this end, we intro-
duce a new benchmark designed to measure
the adaptability of LLMs to these evolving data
environments, offering a comprehensive frame-
work for evaluation. We examine the impact
of model size on learning efficacy and forget-
ting, as well as how the progression and sim-
ilarity of emerging domains affect the knowl-
edge transfer within these models. Our findings
uncover several key insights: (i) performance
improves only if the adaptation corpora match
the original pretraining scale, (ii) smaller mod-
els are particularly sensitive to continual pre-
training, showing the most significant rates of
both forgetting and learning, (iii) when the se-
quence of domains shows semantic similarity,
continual pretraining enables LLMs to special-
ize better compared to stand-alone pretraining,
and (iv) fine-tuning performance on standard
benchmarks is indeed influenced by continual
pretraining domains. We posit that our research
marks a shift towards establishing a more real-
istic benchmark for investigating CL in LLMs.

1 Introduction

Recent advancements in the field of Natural Lan-
guage Processing (NLP) have been significantly
shaped by the development of large language

models (LLMs) (Devlin et al., 2018; Radford
et al., 2019; Brown et al., 2020). These mod-
els, trained on vast corpora from diverse domains,
have emerged as versatile tools for numerous NLP
tasks. However, the increasing scale and complex-
ity of LLMs have raised concerns about the finan-
cial and ecological costs associated with training
them from scratch (Luccioni et al., 2022). This
has necessitated more efficient approaches than re-
training these models entirely with each new data
stream. Continual Learning (CL) emerges as a
crucial strategy in this context (Sun et al., 2019;
Biesialska et al., 2020) to reduce both financial and
environmental costs while maintaining the mod-
els’ relevance. CL, particularly through strategies
like continual fine-tuning, which involves incre-
mentally fine-tuning an LLM on a series of down-
stream tasks (Wu et al., 2021; Ramasesh et al.,
2021; Scialom et al., 2022; Mehta et al., 2023) and
continual domain-adaptive pretraining, focusing
on incremental updates to adapt the LLM to new
domains (Xu et al., 2019; Gururangan et al., 2020;
Ke et al., 2023b) avoids the need for exhaustive
retraining upon the arrival of new data.

In this paper, we delve into the challenges of con-
tinual domain-adaptive pretraining of LLLMs. This
process involves continuous training with large, un-
labeled domain-specific corpora (Xu et al., 2019;
Gururangan et al., 2020; Ke et al., 2023b). Given
the dynamic nature of data and the emergence of
new domains, LLMs must adapt to new informa-
tion while retaining previously acquired knowl-
edge and skills. A critical aspect of this adaptation
is ensuring that knowledge transfer occurs seam-
lessly across domains without catastrophic forget-
ting (CF) (French, 1999) and operate effectively
without explicit domain identification for each task.

Recent approaches in CL for LLMs have ex-
plored diverse methodologies, including parameter-
efficient adaptation (Gururangan et al., 2021; Khan
et al., 2022; Zhang et al., 2022), instruction fine-



L1 DOMAIN (ABBRYV) SI1ZE #L2 #TOKENS EXAMPLES OF L2 DOMAINS
Culture and The Arts (Culture) 1.8 GB 7 265M Arts and entertainment, Sports and Recreation
History and Events (History) 12GB 3 208M Region, Period
Technology and Applied Sciences (Tech) 1.7 GB 4 268M Agriculture, Computing
Health and Fitness (Health) 739 MB 6 99M Exercise, Nutrition
Religion and belief systems (Religion) 341 MB 3 48 M Belief Systems, Major beliefs of the world
General reference (GeneralRef) 196 MB 2 39M Reference works
Philosophy and thinking (PhilThink) 721MB 2 124M Philosophy, Thinking
Art 578 MB 1 98 M -
Philosophy 919 MB 1 156M -
Quantitative Biology (Bio) 1.9GB 11 336M Biomolecules, Cell Behavior
Physics 41GB 22 737TM General Physics, Biological Physics
Condensed Matter (CondMat) 3.5GB 9 570M Materials Science, Quantum Gases
Nonlinear Sciences (Nlin) 730MB 5 134M Self-Organizing Systems, Chaotic Dynamics
Mathematics (Math) 45GB 30 1.4B Topology, Number Theory
Statistics (Stat) 24 GB 6 450M Applications, Methodology
Economics (Econ) 67 MB 3 11M Econometrics, Theory
Computer Science (CS) 45GB 39 1.1B Machine Learning, Graphics
Astrophysics (Astro) 3.1GB 5 562M Earth/Planetary, Cosmology
\ Total 324GB 159  6.6B -

Table 1: The details of the L1 domains used in our experiments. Note that Art and Philosophy did not have any

subdomains in M2D?2 dataset.

tuning (Scialom et al., 2022; Razdaibiedina et al.,
2023; Luo et al., 2023b), and continual pretrain-
ing (Qin et al., 2022; Ke et al., 2023a) to mitigate
forgetting. A recent survey by Wu et al. (2024)
provides a comprehensive overview of these ef-
forts. Specifically, within continual pretraining,
Cossu et al. (2022) explored the characteristics of
forgetting across ten domains, Gupta et al. (2023)
examined warm-up strategies, Wang et al. (2023)
proposed orthogonal adapters to reduce domain in-
terference, Qin et al. (2022) designed an expanding
architecture, and Luo et al. (2023a) investigated
forgetting in continual classification.

Most related to our work, Gururangan et al.
(2020) evaluated the transfer capabilities of a
RoBERTa model continually pretrained across four
domains. However, given their diverse training
data and foundational capabilities, one would ex-
pect LLMs to be adaptable across multiple domains
rather than limited to just one. Perfect adaptation
to a series of domains would also prevent the practi-
tioners from re-training upon new data as promised
by CL. Unfortunately, the field still lacks a compre-
hensive assessment of LLMs of various sizes and
architectures in such a more realistic, large-scale
setting.

Our work bridges this gap by pretraining LLMs
across diverse domains and evaluating their perfor-
mance throughout the pretraining process, setting

our research apart from previous studies limited to
a narrow domain focus (Cossu et al., 2022; Wang
et al., 2023; Ke et al., 2023b). We leverage the
Massively Multi-Domain Dataset (M2D2) (Reid
et al., 2022), featuring 236 hierarchically organized
domains from Wikipedia and Semantic Scholar.
This dataset offers an ideal setting for examining
CL across various LLMs, facilitating an in-depth
analysis of forgetting and knowledge transfer over
extensive training sequences.

Our key contribution is to evaluate pretrained
LLMs within an extensive continual learning set-
ting, focusing on the impact of model scale and
architecture on their ability to learn new tasks and
retain previously learned information. We also
investigate the role of domain similarity and the
order of appearing domains on knowledge transfer
and the overall CL performance. Our findings un-
cover several key insights: (i) the amount of data
for effective continual domain-adaptive pretrain-
ing depends on the size of the adapted model, (ii)
continual pretraining influences the smaller mod-
els the most, (iii) before pretraining a model on a
particular domain, training it on related domains
leads to improved forward and backward transfer
to that domain, and (iv) fine-tuning performance
on standard benchmarks is indeed influenced by
continual pretraining domains.




Figure 1: Cosine similarity between our L1 training
domains. We also include OpenWebText (Gokaslan and
Cohen, 2019), an open-source replication of the GPT2
pretraining data set. The two big square blocks along
the diagonal correspond to Wiki and S20RC portions.

2 Methodology

In this section, we describe our training process,
provide an overview of the tasks (domains) used
for the the continual pretraining and assessment of
models, and explain the evaluation pipeline.

Training. = We initiate our process with a pre-
trained LLM M that has been already trained
on a comprehensive corpus Dy. It is important
to note that Dy generally represents a broad or
general domain, such as a book corpus or web
content. We then consider a series of domain cor-
pora, Sy = {D1,--- ,Dn}, from N domains. In
our setting, each task D; is an unlabeled domain-
specific corpus. Our goal is to continuously pre-
train an LLM on these sequential domain corpora
by using the original training objectives, e.g., the
next token prediction likelihood for autoregressive
LLMs. At each stage i, the LLM M;_1 is trained
on a new corpus D;, resulting in an updated model
M,;. Unlike conventional continual learning ap-
proaches where each task is an end-task, in our
method, once a domain corpus is used for train-
ing, it is no longer available. In a typical continual
learning scenario, each task involves end-task fine-
tuning to evaluate the performance of the continu-
ally trained LLM.

Tasks.  Our experiments are conducted on the
M2D2 dataset (Reid et al., 2022), which is an ex-
tensive and finely categorized corpus specifically
designed for exploring domain adaptation in lan-

guage models. It comprises 8.5 billion tokens and
covers 236 domains, sourced from Wikipedia and
the Semantic Scholar (S20RC) database (Lo et al.,
2019). This dataset is unique in its combination of
fine domain granularity and a human-curated do-
main hierarchy, set within a multi-domain context.

The corpus is divided into two levels: L1-
domains and L2-domains. In the context of the
S20RC corpus, L1-domains refer to broad fields of
academic research, such as Computer Science and
Physics, while L.2-domains correspond to specific
arXiv categories within these fields, like “Computa-
tion and Language” under Computer Science. For
Wikipedia, L.1-domains represent major categories,
and L2-domains encompass category pages within
each L1 domain. To maintain balance and compu-
tational efficiency in our experiments, we excluded
domains exceeding SGB of data, such as Medicine.
Ultimately, we utilized 159 domains in our study
(see Table 1 for details).

To show the cross-domain similarity, we first
computed the task embedding by using Sentence-
BERT (Reimers and Gurevych, 2019) with 10K
samples from each domain and 50K samples from
OpenWebText (Gokaslan and Cohen, 2019), an
open-source reproduction of GPT2 training dataset
(Radford et al., 2019). Then we computed cosine
similarities between each task pair (Figure 1). For
the similar-order experiments detailed in the next
section, we order the training domains based on
their similarity, starting with the Culture domain,
which is the most similar to OpenWebText, and
then proceeding to the next most similar domains.
Also see Figure 8 for the average L1 embeddings
visualized using t-SNE.

Evaluation. Each domain in the M2D?2 dataset
is split into train, validation, and test sets with no
data leakage, as outlined in Reid et al. (2022). Each
validation and test set includes over 1 million to-
kens, allowing accurate evaluations within specific
domains. We measure the effectiveness of all meth-
ods by testing perplexity on L2 domain test sets.
For continual domain-adaptive pretraining experi-
ments, after completing training on a domain for
one epoch, we checkpoint the model, and com-
pute the test perplexity for current and previous
domains.

3 Experimental Setup

Models and training. We benchmark continual
learning of existing pretrained LLMs with dif-



M2D2-SIMILAR H M2D2-RANDOM

Last
checkpoint

Last
checkpoint

Continual
pretraining

Continual
pretraining

Num. | Zero Pre-
shot training

pars.

GPT2-small || 117M | 27.90 | 20.36 (759 || 19.46 8.49) | 27.52 cos) || 21.04 636 | 22.47 (53

GPT2-medium || 345M | 21.54 | 18.58 296 || 16.58 (496 | 20.11 (143 || 16.84 (an) | 19.01 (253

H 774M ‘ 18.89 ‘ 14.43 (-a.46) H 14.33 (-a.56) ‘ 18.68 (-0.21) H 15.13 (-3.76) ‘ 17.19 @

GPT2-xlarge H 1.5B ‘ 17.36 ‘ 12.43 (-4.93) H 12.28 (-5.08) ‘ 15.29 (207 H 13.89 (:347) ‘ 15.24 (212

Llama2-7B || 7B | 6.87 | 235 || 854 | 1486 | 1009 | 12.02

Table 2: This table shows test perplexities (]) with different model sizes and training orders. For reference, we
include the zero-shot and fine-tuning perplexities. Please see Table 4 for results obtained on Wiki and S20RC

domains. Inside the parentheses are the perplexity improvements over zero-shot (the smaller the better).

ferent architectures and sizes. In particular, we
consider (/) decoder-only models (GPT2-small,
GPT2-medium, GPT2-large and GPT2-xlarge,
Llama2-7B) as well as (2) encoder-decoder mod-
els (RoBERTa-base and RoBERTa-large (Liu et al.,
2020)). Due to space considerations, we present
RoBERTa findings in the Appendix. We trained
the models with Adam optimizer (Kingma and
Ba, 2015) with a batch size of 16 sequences on
NVIDIA A100 GPUs. We used DeepSpeed (Rasley
et al., 2020) with auto configuration, which assigns
a dropout rate of 0.2 and a learning rate of Se-5.

Task ordering. In order to investigate how the
order of training domains impacts our domain-
incremental continual learning setup, we ordered
the tasks in our experiments in two different ways:
(i) similar-order where semantically related do-
mains follow one another, and (ii) random-order,
where the domains are shuffled.

Metrics for assessing continual learning efficacy.
To evaluate the effectiveness of continual learning,
we begin by setting two baselines for comparison,
zero-shot perplexity (ZS) which measures the innate
ability of the original, unmodified models to pre-
dict outcomes without any domain-specific tuning
and pretraining perplexity (PT) which evaluates the
models after they have been specifically pretrained
for each domain. ZS acts as a fundamental base-
line, ensuring that our models have a basic level
of competence and PT sets a targeted performance
standard for our continual learning approach to sur-
pass. Achieving a better perplexity than the PT
baseline is the primary objective for continual pre-
training, signifying that longer training horizons is

more favorable than domain adaptive pretraining.

To assess continual learning performance, we
compute continual pretraining perplexity (CPT)
where we evaluate a model’s performance on the
most recent training domain. This measure helps
us understand how well the model adapts to new
information over time. Moreover, we compute the
last checkpoint (LC) against all the training do-
mains to examine the final model’s ability to re-
tain and transfer knowledge across a broad range
of subjects. Finally, we evaluate checkpoints on
previously seen/unseen domains to measure back-
ward/forward transfer.

Through these metrics, we aim to thoroughly
understand continual learning dynamics, focus-
ing on model adaptability, knowledge retention,
and ability to generalize across various domains.
To express the metrics more explicitly, let z,
and f, denote the zero-shot and pretraining per-
plexities on n’th domain. Further, let p¢ de-
note the perplexity of c’th checkpoint on n’th
domain (notice that ¢ > n and ¢ < n corre-
spond to backward and forward transfer). Then
the main metrics of our interest are computed
as follows: ZS = & 21]1\,[:1 2, PT = & Zﬁ;l frs

CPT = & Y0, i LC = % 0L, p.
4 Results and Findings

In this section, we discuss our main findings. We
first discuss how the model and data scale impact
continual learning. Next, we examine the impli-
cations of the order of training domains. Our
only positive forward transfer finding follows this
and then we analyze fine-tuning performances on
benchmark tasks. Finally, we list our remaining



observations. Please see Section A.1 for additional
findings that do not fit into the main manuscript
and Section A.2 for ablation studies.

4.1 Model scale

Is continual learning even necessary? Compar-
ing the zero-shot performance against all other
metrics in Table 2, we most strikingly observe
that Llama2 does not benefit from CL or domain-
adaptive pretraining. In contrast, test perplexities
of all GPT2 models improve thanks to CL. These
findings imply that models trained on enormous
data corpora may already perform better than their
domain-adapted versions. Please note that we did
not observe any training issues during learning, i.e.,
training perplexity always improved.

Final performance correlates with model size
In agreement with the recent research on scaling
laws (Kaplan et al., 2020; Bahri et al., 2021), CL
of bigger models results in better CPT and LC per-
formance regardless of the training order. However,
this consistent pattern cannot solely be attributed to
CL since model size heavily influences zero-shot
performance. Taking the zero-shot performance as
a baseline (see the values inside the parentheses in
Table 2), we observe that GPT2-small benefits the
most from continual pretraining by a large margin
in three out of four evaluated scenarios.

4.2 Recency effect in continual learning

CPT is more favorable to standard PT when do-
mains are semantically ordered Comparing the
PT column against CPT columns reveals that con-
tinual pretraining outperforms stand-alone pretrain-
ing only if subsequent training domains have high
similarity. This observation aligns with the premise
that a model’s performance on a current task is in-
trinsically linked to its starting checkpoint. Mean-
ing, when training domains are ordered based on
similarity, the last checkpoint M; naturally trans-
fers better to the next domain D;;; compared to
the original model Mj. On the other hand, when
training domain order is randomized, starting from
the original model M is found to be more benefi-
cial. This observation aligns with recent studies on
continual test-time adaptation (Press et al., 2023)
and checkpoint selection strategies (Fisch et al.,
2023), highlighting the strategic value of starting
points in training sequences.

Similar training order facilitates backward
transfer to recent past Figure 3 demonstrates

the interplay between backward transfer and train-
ing horizon. In particular, z-axis shows how
many tasks have passed between a checkpoint
and a domain it is tested onx, i.e., we plot
o Zivzm(pg_r — Zc—y) against x. The panel
on the left reveals that a high conceptual overlap
between subsequent domains leads to positive back-
ward transfer up to 30 domains back. Naturally,
the improvement worsens over time as the recent
training domains become significantly dissimilar to
tested domains. Notably, the smallest GPT model
shows the most significant fluctuations in perfor-
mance, experiencing both the highest gains and the
most pronounced declines.

Average backward transfer performance de-
pends heavily on domain order We present the
average backward perplexities in Figure 2. We
normalize the perplexities by subtracting zero-shot
perplexities obtained on the same domains, i.e., we
plot —+ ﬁ;%(pﬁ — z,) against checkpoint id z.
On the one hand, we never observe positive back-
ward transfer with similar-order training, and test
perplexity notably degrades when we switch the
training portion. On the other hand, training in
random order generally enhances test perplexity
compared to the zero-shot baseline. The most sig-
nificant improvement over the initial model My is
observed early in training and saturates after about
25 tasks.

4.3 Random-order training enables positive
transfer to S20RC

The previous finding demonstrates that training
in random order significantly enhances transfer
to past tasks. Figure 4 visually shows a similar
effect for future transfer: the perplexity tends to
improve, compared to zero-shot baseline, as a func-
tion of the number of continual pretraining do-
mains before forward transfer. Specifically, we
plot |—é| > nes Py — zn against x, where S is the set
of future Wikipedia and S20RC domains for the
green and pink curves.

Noticeably, positive forward transfer is possible
only to the S20ORC portion since all values corre-
sponding to the Wikipedia test portion are positive,
implying no perplexity improvement when tested
on the Wikipedia portion. This discrepancy is
rather expected as the S20RC portion is about five
times larger than the Wikipedia portion. Further,
test perplexity on the S20ORC portion consistently
improves with the number of pretraining tasks, i.e.,
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Figure 2: Backward transfer perplexity (averaged over all past domains, y axes) during the course of learning (x
axes). The grey background highlights Wiki domains. Similar-order always leads to negative backward transfer
while randomizing the domains significantly improves transfer.

50

Average backward transfer improvement wrt zero-shot () [similar order]

Average backward transfer improvement wrt zero-shot (4) [random order]

40

30

20

10

20 40 60 80
How many tasks into the past the transfer is done

—e— GPT2-SMALL  —s— GPT2-MEDIUM

GPT2-LARGE

[ 20 40 60 80 100
How many tasks into the past the transfer is done

—e— GPT2-XLARGE —== Zero-shot

Figure 3: Average backward transfer performance (normalized by zero-shot, y axes) as a function of the number of
tasks between the checkpoint and the tested domain (x axes). The first points in each curve correspond to continual
pretraining (no backward transfer, upper bound). The benefits of continual learning when trained in similar-order
steadily degrade with the transfer distance while it tends to improve with random-order training.

longer training improves forward transfer. We con-
clude that the model accumulates knowledge that
is on average beneficial to predict next tokens on
unseen finer-grained domains.

4.4 Preservation of general knowledge
through benchmark tasks

We utilized a selection of tasks from BIG-
bench (bench authors, 2023) aimed at assessing
whether the general knowledge embedded in the
original language model remains intact, experi-
ences significant loss, or achieves effective knowl-
edge integration post-training. Specifically, we
chose five tasks aligned with our benchmark do-
mains: Arithmetic, General Knowledge, Physics,
CS Algorithms, and Few-shot Natural Language
Generation (NLG). Given space limitations, we de-
tail the results for Arithmetic and General Knowl-
edge in Figure 5, while comprehensive task de-
scriptions, metrics, and additional outcomes are
provided in the Appendix A.3.

Until now, our evaluation has centered on as-
sessing the language modeling capabilities of our
models, specifically using perplexity as our perfor-
mance metric. Moving forward, we assess their

performance on different tasks, revealing that con-
tinuing pretraining on domains relevant to these
tasks generally enhances model performance, while
pretraining on unrelated domains often leads to for-
getting, thereby negatively affecting the model’s
initial task proficiency. As depicted in Figure 5, a
consistent decrease in Arithmetic task performance
was noted when models were continually trained
on Wiki domains which then improves upon switch-
ing to S20RC domains, with the exception of the
Nonlinear Sciences and Astrophysics domains. In
contrast, performance on General Knowledge tasks
improved with Wiki domain training but declined
with S20RC training, except for slight increases in
the CS and Statistics domains.

4.5 Additional observations

Within GPT family, the final checkpoint
achieves better perplexity than zero-shot Our
study demonstrates that the final model consis-
tently outperforms or matches the zero-shot base-
line in terms of perplexity across different domain
sequences and model sizes. We report the aver-
age perplexity over all domains, suggesting that
the knowledge accumulated throughout CL never
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Figure 4: Forward transfer results with random training
order. The x axis shows the number of domains the
model is trained on before forward transfer. Curves
show the perplexity (normalized by zero-shot). Clear
positive/negative forward transfer to S20RC/Wiki por-
tions is observed.

hurts the predictions on the learned domains on av-
erage. Notably, randomizing the training sequence
results in a more favorable average perplexity than
a similar-order domain sequence. We present a
detailed comparison of perplexity values for Wiki
and S20RC portions in Table 4, highlighting the
GPT family’s tendency to forget the Wiki portion
while improving perplexity on S20RC.

Longer CL improves backward transfer if do-
main order is randomized The right panel in
Figure 3 reflects a rather surprising finding that
when the training domains are presented in a ran-
domized order, we observe positive backward trans-
fer (w.r.t. zero-shot performance). This is consis-
tent across different model sizes and the number
of tasks between the checkpoint and test domain.
Remarkably, the perplexity improvement increases
when a checkpoint is tested further back in time
(evidenced by the downward trend in the curves).
We interpret this finding as an indicator for knowl-
edge accumulation, i.e., performance on previously
learned domains increases on average when the
model is trained longer on a randomized set of
domains, even if only a handful of which are con-
ceptually similar.

5 Related work

We discuss two related but separate lines of re-
search in the context of CL for LLMs: (i) contin-
ual fine-tuning, which aims at fine-tuning LLMs
on a series of downstream tasks, and (ii) contin-
ual domain-adaptive pretraining, focusing on incre-
mental updates to adapt an LLM to new domains
without exhaustive retraining from scratch upon
new data.

Arithmetic

| A

General Knowledge

&

-
1)

w

-
&

-
S

w

Normalized Aggregate Score

Figure 5: GPT2-medium performance on Arithmetic
and General Knowledge tasks from BIG-Bench, cap-
tured at L1 domain transitions. The initial data point
represents the baseline performance of GPT2-medium.

Continual fine-tuning A large body of CL works
for LLMs tries to mitigate forgetting during con-
tinual fine-tuning. (Luo et al., 2023a) investigate
forgetting and distribution drift during continual
learning on a series of eight downstream classifi-
cation tasks. In a recent work, (Luo et al., 2023b)
examines evolution of forgetting during continual
fine-tuning. Scialom et al. (2022) instruct fine-tune
an LLM for eight tasks. Khan et al. (2022) intro-
duce an adapter-based fine-tuning strategy for three
downstream tasks. Zhang et al. (2022) propose to
add new modules to a sequence generator (such as
an LL.M) to continually adapt to five tasks. Razdai-
biedina et al. (2023) introduce progressive prompts,
where a growing number of prompts, are learned
during continual learning, fine-tunes on 15 classi-
fication datasets. Wang et al. (2023) propose to
learn orthogonal adapters to minimize interference
between 15 classification tasks. Qin et al. (2022)
propose efficient lifelong pretraining for emerging
data (ELLE), where they expand a network during
learning and include domain-identifying prompts
during pretraining to help the PLM identify the
type of knowledge it is learning.

Continual domain-adaptive pretraining An al-
ternative research direction, closer to our work,
aims to continually pretrain LLMs to adapt them
to new domains. In one of the earliest studies, Gu-
rurangan et al. (2020) introduce a growing mixture
of expert architecture for domain-adaptive contin-
ual pretraining. Chen et al. (2023) study lifelong
learning from a sequence of online pretraining cor-
pus distributions based on a progressively growing
mixture-of-experts (MoE) architecture. Likewise,
Gururangan et al. (2021) introduce a mixture archi-
tecture for continual adaptation. Ke et al. (2023a)
show how a soft-masking mechanism for gradients



of RoBERTa model could be useful for domain-
adaptive pretraining for eight tasks. Cossu et al.
(2022) investigate the characteristics of the con-
tinual pretraining across ten domains. Jin et al.
(2021) continually pretrain RoBERTa-base over
a domain-incremental research paper stream and
a chronologically-ordered tweet stream with dif-
ferent continual learning algorithms. Gupta et al.
(2023) examine different warm-up strategies for
continual pretraining. Finally, Fisch et al. (2023)
introduce a benchmark of task sequences that po-
tentially lead to positive and negative transfer and
further propose a simple strategy for robust forward
transfer, which aims to pick the checkpoint with
the biggest positive knowledge transfer among all
past task checkpoints. Our work diverges from the
others in that we continually pretrain the original
model without any expansion on a much longer
horizon of 159 domains, and further investigate the
impact of domain order.

6 Discussion

Prior studies in CL for LLMs have mainly focused
on parameter-efficient fine-tuning or adaptation
for a limited selection of target domains or tasks.
While beneficial, these methods often do not fully
address the broader challenge of lifelong learning
for LLMs. Our research diverges by exploring con-
tinual domain-adaptive pretaining of LLMs across
an extensive set of domains to better understand
the dynamics of knowledge preservation, new in-
formation retention and knowledge transfer. Below,
we highlight three key insights and discuss three
notable observations from our research, supported
by indicative evidence:

Semantic similarity enhances domain special-
ization in CL. We found that when consecutive
domains are semantically similar, CL allows LLMs
to specialize more effectively in the current domain
than stand-alone pretraining. This is supported by
two findings: (i) continual pretraining is more ad-
vantageous than pretraining alone, likely due to
the accumulated knowledge from slowly evolving
domains, and (ii) models exhibit positive transfer
to recent past domains but not to more distant do-
mains in the training chronology.

Randomizing training domain order signif-
icantly improves knowledge accumulation.
With the randomized training order, we notice (i)
the last checkpoint demonstrates superior perfor-

mance on average than similar-order training, (ii) a
majority of checkpoints exhibit positive backward
transfer on average to the past, effectively implying
that previous knowledge remains somewhat intact,
and (iii) continually pretraining for longer improves
forward transfer, signifying better generalization
ability of the model.

Continual pretraining enhances downstream
task performance. Our experiments on Big-
Bench indicate that the performance on down-
stream tasks such as question-answering is closely
related to the domains the model was trained on.
This evidences that further generative pretraining
prior to fine-tuning can enhance downstream per-
formance in comparison to fine-tuning alone.

Evidence for knowledge saturation. Categoriz-
ing checkpoints based on their timestamp reveals
that forgetting becomes more severe over time.
This pattern shows that the model’s capacity for
integrating new information gradually reaches a
plateau, which we refer to as knowledge saturation.

Rethinking scaling laws for CL. In almost
all experiments with GPT2 model family, CL
caused the biggest improvement or forgetting on
GPT2-small models compared to other model sizes.
However, the relationship between model size and
performance improvements is not always straight-
forward. For instance, GPT2-large demonstrated
poorer backward transfer perplexity compared to
both GPT2-medium and GPT2-xlarge, challenging
the conventional wisdom that larger models uni-
formly translate to better performance. Besides,
the performance of the Llama2-7B deteriorated as
a result of continual pretraining. It is important to
note that Llama2-7B models are initially trained on
a vast dataset comprising 2 trillion tokens from a
wide array of domains. In contrast, GPT-2 models
are trained using the OpenWebText dataset, which
contains 9 billion tokens. This observation sug-
gests that continual pretraining may not be benefi-
cial for models like Llama2-7B that have already
been trained on an extensive and diverse corpus.
Therefore, we infer that unless there is a substan-
tial amount of domain-specific data available, fur-
ther pretraining of Llama2-7B models is unlikely
to yield performance improvements. This finding
underscores the importance of having sufficient
and relevant data when considering additional pre-
training for models that are already well-trained on
diverse datasets.



7 Limitations

Our research highlights CL as a powerful paradigm
for learning in LLMs, providing valuable insights
into its mechanisms and benefits. However, we
acknowledge several limitations in our study: (i)
For our random-order training, domains were shuf-
fled only once. We perform an ablation study
with GPT2-medium by considering two more ran-
dom shuffles, whose conclusions may not imme-
diately transfer to other experiments. (ii) Explor-
ing how backward transfer performance to a do-
main is affected by its size or similarity to Webtext
could yield interesting insights. (iii) Since part of
RoBERTa training data contains Wikipedia entries,
which may overlap with our training set, this could
influence our ROBERTa results.

To report average backward transfer perplexity,
we exhaustively tested all checkpoints on all past
domains, resulting in 12561 evaluations per model
per setup. Consequently, we evaluated forward
transfer after completing all L2 domains in a certain
L1 domain, which still required 171 evaluations per
model per setup.

The computation time is an inevitable limitation
in our experimental setup. For instance, one pre-
training run and backward evaluation for GPT2-
Large takes approximately two months on two
A100 GPUs. Given that we run our experiments
on 159 tasks, the incremental nature of continual
pretraining prevents parallelization of the training
process.
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Section A.3 ‘ Details and discussion of the BIG-Bench experiment

Section A .4 ‘ RoBERTa results

Table 4 ‘ Perplexities computed on Wiki and S20RC portions separately
Table 5 ‘ RoBERTa results
Figure 6 ‘ Forgetting in two different stages of CL
Figure 7 ‘ Visualization of the BIG-Bench results
Figure 8 ‘ t-SNE embeddings of L1-domains
Figure 9 ‘ GPT2-large backward transfer performance for four example domains
Figure 10 ‘ CPT and LC perplexities obtained with batch size 16 vs 64
Figure 11 ‘ CPT and LC perplexities obtained when the dataset is balanced
Figure 12 ‘ CPT and LC perplexities obtained when portions are swapped
Figure 13 ‘ Forward transfer results for all L1 domains (GPT2 and RoBERTa)
Figure 14 ‘ RoBERTa-large backward transfer performance for four example domains
Table 3: A summary of our appendix
A Appendix Average forgetting for the last 50 tasks ({)

A.1 Additional findings

LLMs forget more in the later stages of
continual learning We divide the check-
points in random-order training into two groups
based on their recency (checkpoints[50-100]
and checkpoints[100-150]). We evaluate each
checkpoint on 50 domains back and compute the
perplexity change (caused by additional training
on 50 domains). Histograms in Figure 6 show that
earlier checkpoints transfer to the past slightly
better. We hypothesize that in the earlier stages of
training, the parameters that are not important to
the recently learned tasks are updated and the lack
of such parameters causes more forgetting in the
later stages.

Positive forward transfer is rarely possible in
similar training order Each plot in Figure 13
shows the forward transfer performance to the do-
main stated in the title. Most notably, the left-
most panel reflects that pretraining on a handful of
domains leads to significantly worse performance
compared to zero-shot (the dotted horizontal lines).
In contrast, extended pretraining across a variety
of domains occasionally leads to positive forward
transfer (panels 2 and 3). Further, we notice a re-
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Figure 6: We divide the checkpoints in random-order
training into two groups based on their recency, showing
that earlier checkpoints transfer better to the past.

cency effect where the forward transfer perplexity
improves if a checkpoint is transferred to a domain
that is conceptually similar to the most recent train-
ing domain: as anticipated, the most successful for-
ward transfer to Astrophysics domains is attained
after training on Physics. Please see Figure 13 for
complete results.

A.2 Ablation studies

Batch size impacts learning dynamics As an
ablation study, we increase the batch size from 16
to 64, thereby performing a quarter of gradient
updates. Figure 10 compares the results obtained



with different batch sizes. When trained in random-
order, continual pretraining and last checkpoint
performances virtually remain the same despite
varying the batch size. In similar-order, a smaller
batch size helps to improve continual pretraining
perplexity but worsens the performance of the last
checkpoint. We hypothesize that taking more gra-
dient steps aids the model to better fit the current
task while promoting forgetting the old tasks.

Balancing the data size across L2 domains
does not improve performance We investigate
whether the imbalance in training data sizes im-
pacts the overall performance (see Figure 1 for L1
domain lengths). To address this, we set the number
of maximum tokens to 100K for each L2 domains
(if they have less tokens, we used them all), and
train the original model. Figure 11 shows the re-
sulting continual pretraining and last checkpoint
perplexities. For both metrics, test performance on
almost all L2 domains deteriorates after balancing
the number of data points per domain. The results
suggest using all data at hand instead of leaving
some out for the sake of balanced training.

Swapping Wiki and S20RC portions verifies
previous findings We swap the portions for
similar-order training, i.e., training first on S20RC,
then on the Wiki portion. Arguably, this training
order still follows conceptual similarity; hence, it
allows us to see whether our previous findings still
hold. The left panel in Figure 12 shows that con-
tinual pretraining perplexity remains almost the
same. Yet, the last checkpoint perplexity signif-
icantly changes: while the performance on the
S20RC portion substantially degrades, we observe
the opposite effect for the Wiki portion. Agreeing
with our previous findings, we conclude that the
checkpoints perform worse when tested on older
domains/portion.

Alternative random orders yield similar findings
In our random-order experiments, we consider only
one randomized training sequence. To test whether
the findings do not generalize to alternative ran-
domized orders, we re-shuffle the dataset twice and
repeat the experiments with GPT2-large. These
experiments resulted in an average CPT of 16.4
and 16.78 while 16.84 in the main paper. Given
relatively much larger differences across different
experiment setups, we conjecture that the standard
deviation resulting from different random orders
can be safely ignored.
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A.3 BIG-Bench Experiments

Tasks. We selected five tasks that align with our
benchmark domains, as described below:

Arithmetic evaluates the model’s ability in basic
arithmetic operations — addition, subtraction, mul-
tiplication, and division — ranging from 1-digit to
5-digit numbers.

General Knowledge assesses the model’s ability
to answer questions across a broad spectrum of gen-
eral knowledge, for example, “How many legs does
a horse have?”. It draws parallels with benchmarks
focused on general-knowledge question-answering,
such as those found in (Rajpurkar et al., 2016).

Physics aims to test the model’s understanding
of physics by asking it to determine which formula
is needed to solve a given physics word problem,
and evaluating the accuracy of the multiple choice
responses. The decision to utilize a multiple-choice
format concentrates on the model’s comprehension
of the physical principles each formula represents,
addressing concerns that generating physics formu-
las through text might be overly challenging for
current models.

CS Algorithms measures the model’s perfor-
mance on two core algorithmic concepts: recur-
sion (or stack usage) and dynamic programming,
evaluating the model’s computational thinking and
problem-solving skills.

Language Generation from Structured Data and
Schema Descriptions (Few-shot NLG) aims to as-
sess the ability of a model to generate coherent
natural language from structured data, supported
by schema descriptions, within the framework of
a task-oriented dialogue system. The goal is to
determine whether a virtual assistant can learn to
generate responses based on the textual description
of structured data, enabling rapid adaptation to new
domains with minimal additional input.

Metric. In plots, we report Normalized Aggre-
gate Score, that is normalized preferred metric
averaged over all subtasks under that particular
task. For example Arithmetic task has 20 subtasks.
In (bench authors, 2023), they specify that the best
performing language models achieved a score be-
low 20 and model scores can be less than 0 on some
tasks.

Results. Beyond the findings highlighted in Fig-
ure 5, additional task outcomes are detailed in Fig-
ure 7. The performance trends for the CS Algo-
rithms and Physics tasks align with those observed



M2D2-SIMILAR H M2D2-RANDOM

H

Test Zero Pre- Continual | Final || Continual | Final
portion Model shot | training || pretraining | model || pretraining | model
| GPT2-small || 26.71 | 26.16 || 29.46 | 46.05 | 3370 | 37.50

Wiki | GPT2-medium | 2042 | 24.11 | 2381 | 2898 || 26.65 | 32.78
| GPT2-large || 17.77 | 17.77 || 2042 | 30.18 | 2323 | 28.96

| GPT2-xlarge || 1639 | 1570 || 1863 | 2628 | 21.86 | 25.64

| GPT2-small || 28.18 | 19.00 || 1698 | 23.18 | 18.07 | 18.95
S20RC | GPT2-medium || 21.81 | 17.29 | 1488 | 18.04 | 1455 | 1579
| GPT2-large || 19.16 | 13.65 | 1290 | 1599 | 1324 | 1444

| GPT2-xlarge || 17.59 | 11.65 || 1078 | 1272 || 12.08 | 12.80

Table 4: A more detailed analysis of our main results table. This time, we compute the test perplexities(].) on Wiki

and S20RC portions separately.

for the Arithmetic tasks, as anticipated. Specifi-
cally, we notice a decline in performance for both
the CS Algorithms and Physics tasks when mod-
els continue pretraining on Wiki domains. Perfor-
mance then improves with a shift to S20RC do-
mains and reaches its peak after specialized training
in the CS and Physics domains, respectively.

For the Few-shot NLG task, performance trends
across Wiki and S20RC domains do not follow a
consistent pattern. Analysis reveals that domains
such as Culture, Art, Philosophy, Math, Stat, and
Econ contribute positively to performance enhance-
ment in this task, while domains like History, Gen-
eral Reference, and Nonlinear Sciences are identi-
fied as the most detrimental to task performance.

A.4 Roberta Results

To broaden our analysis and gain deeper insights
into the behavior of different architectures, we have
repeated all the experiments with ROBERTa and ob-
tained somewhat counter-intuitive and surprising
results. First of all, we want to point out that per-
plexity is not well defined for masked language
models like RoOBERTa!. We used the same perplex-
ity computation for RoOBERTa with the one we used
for GPT as in the following:

t

1
PPL(X) = exp{— Y logp(zile<i)} (D

1https://huggingface.co/docs/transformers/
perplexity
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where X = (zg,...,x;) is the tokenized sequence
and log pg(z;|x<;) is the log-likelihood of the ith
token conditioned on the preceding tokens X,
according to the model.

Forgetting in RoBERTa family is not evident
In contrast to the GPT family, our analysis re-
veals that the RoBERTa family does not exhibit
forgetting of old tasks during continual training.
This indicates that gradient descent updates do
not interfere with old tasks. To illustrate this, we
present a visualization of backward transfer perfor-
mance across four randomly selected domains in
Figure 14. Similar findings with encoder-decoder
models were reported in (Cossu et al., 2022). We
conjecture that modifying the model architecture
by including a bottleneck layer plays a significant
role in this behavior.

RoBERTa-large always exhibits positive back-
ward transfer while GPT2-large transfer per-
formance depends heavily on the transferred
domain Looking into Figure 14, we notice that
backward transfer perplexity of RoBERTa-large re-
mains relatively close to fine-tuning performance.
Interestingly, we observe occasional jumps in per-
plexity when trained in random order, whose analy-
sis is an interesting future work. On the other hand,
Figure 9 demonstrates backward transfer to the
same four domains when GPT2-large is trained. In
agreement with our earlier findings, switching from
Wiki portion to S20RC causes a significant per-
plexity degradation on Wiki domains when trained
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Figure 7: GPT2-medium performance on CS Algorithms, Physics and Few-shot NLG tasks, captured at checkpoints
following training completion on an L1 domain. The initial data point represents the baseline performance of

GPT2-medium.

in similar order. Further, the characteristics of the
test domain seem to determine whether the trans-
fer is positive or negative. Finally, we observe a
less fluctuating backward perplexity with random
training order.

Encoder-decoder models require just a few L1
domains for good transfer (i) In stark contrast
with the decoder-only models, pretraining even on
the first L1 domain helps to exceed zero-shot per-
formance (comparing the dotted lines and the first
point of each sequence). Interestingly, this holds
when the pretraining and test domains belong to
different portions of the training set. (ii) We further
notice the forward transfer perplexity tends to im-
prove for the first ten L1 domains and later slightly
degrade. Since it is still considerably above zero-
shot performance, we chose not to investigate this
in detail. (iii) Lastly, the model size does not seem
to influence forward transfer performance, which
is again as opposed to decoder-only models.
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Figure 8: Average L1-domain embeddings visualized
using t-SNE. Wiki domains and natural sciences form
two clear clusters. Note that Art and Philosophy are
from S20RC portion, but they are closer to Wiki due to
they are social sciences and the rest of S20RC is natural
sciences.
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Each panel shows the backward transfer perplexity (pink) computed on a particular domain as optimization proceeds.
For baseline comparisons, we also plot zero-shot (yellow) and continual pretraining (green) perplexities.

Cont. pretraining perplexity (!) (similar order) Last checkpoint perplexity ({) (similar order)
60
*© { - GPT2-SMALL - GPT2-SMALL
50 , ~~ GPT2-SMALL64 50 GPT2-SMALL64
40 et 40
30 30
20 20
10 § 10 {
2 4 5 £ = 5 58 2 ¢ 255 8 8 £ 5 5 58 2
2 2 5 =2 a8 2 E L L s =z L 2
Continual pre-training domains Continual pre-training domains
5 Cont. pretraining perplexity (1) (random order) s0 Last checkpoint perplexity (1) (random order)
401 B 1 T : 1
Vot | ¢ty k1o GPT2-SMALL w0 ’ | —— GPT2-SMALL
30 T i i i -~ GPT2-SMALL64 ol GPT2-SMALL64
H Pl ' §
N LAV A L I JTE 30 | | i
20 TR TR PRINA DR Y NIV AR i 2 AL I { \
‘a“ .-.. \ \ .‘A Wt "A Wl A ¥ J 20 ] L/‘;\ «“ S
10] R s i i y : 0] Y 1 i
£ 85528085885 Y8 5880888858858 zy8g0g £ 85580005888 JEEEL028EESLEES S0 LY S
E2EEE 3 B “aﬂ%‘ﬁg - SEggEES T E2EEE 2 B “5‘32*; = fEygEES 3§03
Continual pre-training domains Continual pre-training domains

Figure 10: A comparison of GPT2-small training with batch sizes 16 (our default) and 64. For random and similar
training orders (rows), we plot the continual pretraining and last checkpoint perplexities (columns).
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M2D2-SIMILAR

H M2D2-RANDOM

|

Test Model Zero Pre- Continual | Final || Continual | Final
portion shot | training || pretraining | model || pretraining | model
A | RoBERTa-base || 197 [ 173 || 154 | 146 | 127 [ 1.26
| RoBERTa-large || 498 | 3.10 || 243 | 234 || 137 | 1.28

wiki | ROBERTa-base || 193 | 1.69 [ 149 | 143 || 145 | 148
| RoBERTa-large || 473 | 295 || 238 | 232 | 161 | 154
so0RC | ROBERTa-base || 156 | 137 || 126 | 126 || 125 | 1.26
| RoBERTa-large || 2.56 | 1.61 || 215 | 215 || 135 | 129

Table 5: Test perplexities obtained with RoOBERTa family.

Cont. pretraining perplexity (!) (similar order)

Last checkpoint perplexity ({) (similar order)
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Figure 11: A comparison of GPT2-small training with all available data (our default) as well as a subsample of data
with equally many data points per L2 domain. We only train in similar orders and plot the continual pretraining
(left) and last checkpoint perplexities (right).
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Figure 12: A comparison of GPT2-small training with our default similar training order (Wiki portion, followed by
S20RC) as well as an alternative version (S20RC portion, followed by Wiki). We plot the continual pretraining and
last checkpoint perplexities. Note that the = axis corresponds to the default training order.
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Figure 13: Forward transfer results with similar training order. The checkpoints are saved after having trained on
an L1 domain (hence 18 checkpoints per model). The ¢’th panel shows the forward performance on ¢’th domain,
obtained by evaluating all previous ¢ — 1 checkpoints on that domain. The dashed lines show zero-shot performance.
z and y axes correspond to L1 domain names and perplexities, respectively.

17



ickward transfer to domain #4 (Culture_and_the_arts_ Sports_and_Recreation) [similar o

Backward transfer to domain #4 (physics.class-ph) [random order]
~6 —
-y 525
25 2
X X 2.0
(0] )
B =
& &
3 ~ 15
0 20 40 60 8 101 120 140 160 60 8 101
Continual pre-training domains Continual pre-training domains
Zero-shot === Continual pretraining -—- Future checkpoints J Zero-shot === Continual pretraining -—=-- Future checkpoints ‘
Backward transfer to domain #34 (g-bio.NC) [similar order] ickward transfer to domain #34 (Technology_and_applied_sciences__Transport) [random
—~4-
5215 3
> >
£ £3
%210 3
= =
&aos &2 Nar
_________ e
0 20 40 60 10 120 140 160 0 20 40 60 0 100
Continual pre-training domains Continual pre-training domains
Zero-shot ===+ Continual pretraining --=-- Future checkpoints Zero-shot ===+ Continual pretraining -=-- Future checkpoints ‘
Backward transfer to domain #50 (physics.ed-ph) [similar order] Backward transfer to domain #50 (cs.AR) [random order]
220 2.0
S S
-‘?2 N gl.sr
3 316 A
o o *
5 G 1.4 X
Q210 e 2 ’ . .
S N R A -‘—.1“.,,..-..:. LN LENER PN LB AN, :"w-.-:.
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Continual pre-training domains Continual pre-training domains
Zero-shot —=- Continual pretraining —-=-- Future checkpoints Zero-shot —=- Continual pretraining —=-- Future checkpoints ‘

Backward transfer to domain #100 (math.QA) [similar order]

Backward transfer to domain #100 (Art) [random order]

w
o

g

°

Perplexity (1)
w ¢
o
I
)

~

w
g
IS

Perplexity (1)
I
)

i‘x

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Continual pre-training domains Continual pre-training domains
Zero-shot === Continual pretraining -—=-- Future checkpoints Zero-shot ===+ Continual pretraining —=-- Future checkpoints J

Figure 14: Backward transfer illustration with RoBERTa-large trained in similar and random order (left and right
columns). Each panel shows the backward transfer perplexity (pink) computed on a particular domain. For baseline
comparisons, we also plot zero-shot (yellow) and continual pretraining (black) perplexities.

18



	Introduction
	Methodology
	Experimental Setup
	Results and Findings
	Model scale
	Recency effect in continual learning
	Random-order training enables positive transfer to S2ORC
	Preservation of general knowledge through benchmark tasks
	Additional observations

	Related work
	Discussion
	Limitations
	Appendix
	Additional findings
	Ablation studies
	BIG-Bench Experiments
	Roberta Results


