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HetRCNA: A Novel Method to Identify Recurrent
Copy Number Alternations from Heterogeneous
Tumor Samples Based on Matrix
Decomposition Framework

Jianing Xi*, Ao Li

, and Minghui Wang

Abstract—A common strategy to discovering cancer associated copy number aberrations (CNAs) from a cohort of cancer samples is
to detect recurrent CNAs (RCNAs). Although the previous methods can successfully identify communal RCNAs shared by nearly all
tumor samples, detecting subgroup-specific RCNAs and their related subgroup samples from cancer samples with heterogeneity is still
invalid for these existing approaches. In this paper, we introduce a novel integrated method called HetRCNA, which can identify
statistically significant subgroup-specific RCNAs and their related subgroup samples. Based on matrix decomposition framework with
weight constraint, HetRCNA can successfully measure the subgroup samples by coefficients of left vectors with weight constraint and
subgroup-specific RCNAs by coefficients of the right vectors and significance test. When we evaluate HetRCNA on simulated dataset,
the results show that HetRCNA gives the best performances among the competing methods and is robust to the noise factors of the
simulated data. When HetRCNA is applied on a real breast cancer dataset, our approach successfully identifies a bunch of RCNA
regions and the result is highly correlated with the results of the other two investigated approaches. Notably, the genomic regions
identified by HetRCNA harbor many breast cancer related genes reported by previous researches.

Index Terms—Cancer genome, copy number aberrations, matrix decomposition, recurrent, bioinformatics

1 INTRODUCTION

COPY number aberrations (CNAs) are large segments of
genome regions, of which the region size ranges from 1
kb to 3 Mb, with copy number amplifications and deletions
[1]. In recent years, many researches have reported that
there may be a strong association between CNAs and
human diseases especially cancers [2], [3], [4], [5], [6]. Dis-
tinguishing functional CNAs in cancer genomes which are
genetically contributing to the cancer phenotype (driver
aberrations) from pathological irrelevant CNAs (passenger
aberrations) is a crucial task for both the basis of oncogene-
sis and the diagnosis and treatment of cancers [5], [7], [8].
Recurrent CNAs (RCNAs) is then defined as CNAs that are
altered in at least a set of samples [9]. The common strategy
of finding driver aberrations is to find RCNAs, which is
based on a wildly-accepted assumption that driver altera-
tions are more likely to be shared by multiple samples while
passenger alterations are subject-specific, present randomly
among samples [9].
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To efficiently detect RCNAs, several strategies have been
proposed [8], [9], [10]. Primitively, some approaches are
introduced through straightforward way of observing the
minimum common regions in all tumor samples [11], [12].
Afterwards, a bunch of approaches have been proposed with
more delicate strategies [8], [10], [13], including approaches
based on permutation test [14], [15], peeling-off after scoring
[16], [17], [18], [19], [20], [21], correlation based analysis [22],
matrix factorization [23], [24], and kernel smoothing frame-
works [25], [26]. The application of the RCNA approaches
above have successfully discovered many RCNAs, and many
oncogenes and tumor suppressors are found to be harbored
in these RCNA segments [27], [28], [29].

However, all the approaches above are designed with-
out the consideration of CNA heterogeneity of cancer
tumor samples. For many types of cancers, the CNA
amplifications and deletions among genome display
extensive heterogeneity with distinct CNA profiles in dif-
ferent groups of samples [30], [31], [32], [33], [34], [35].
Among the CNA profiles of different groups of samples,
there are both CNAs shared publicly by nearly all sam-
ples (communal RCNAs) and CNAs which are signifi-
cantly recurrent in their related subgroup samples
(subgroup-specific RCNAs). Nevertheless, most existing
methods are only capable for communal RCNAs. When
the approached aforementioned are directly applied on
heterogeneous tumor samples, some subgroup-specific
RCNAs would be regarded as insignificant if only a small
proportion of the tested samples belong to the related
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subgroup. Consequently, there is an urgent need of meth-
ods capable of subgroup-specific RCNA calling.

To illustrate CNA profile with heterogeneity, three scenar-
ios have been proposed to describe different pattern of RCNA
regions in tumor samples [18]. Scenario I demonstrates the
case of only communal RCNAs. Scenario II displays that the
regions of subgroup-specific RCNAs in samples of one sub-
group may not be altered in the samples of another subgroup,
while Scenario III shows that a region with amplifications in
samples of one subgroup may altered with deletions in
another subgroup samples. The RCNA regions in Scenario II
can also be regarded as the combination of two or more
groups of samples with RCNA regions in Scenario I, where
the regions are different for these groups (details in Section 4
below and Supplementary Fig. S1, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TCBB.2018.2846599).  To
detect RCNAs under the three scenarios, Morganella et al.
considers within-sample homogeneity into RCNA detection
procedure [18]. Zhou et al. approximates the scenarios of
RCNAs as low-rank matrices, and decompose a piecewise-
constant and low-rank approximation component as RCNAs
from the data matrix [24]. Despite the attempt made on find-
ing RCNAs more than communal, calling subgroup-specific
RCNAs and their related subgroups is still incapable for the
approaches above.

In this article, we introduce HetRCNA, an integrated
method for capturing statistically significant RCNAs and
their related subgroups. By incorporating biclustering
framework [9], [36], HetRCNA identifies subgroups and
their related RCNAs simultaneously, and infers significant
subgroup-specific RCNAs from each subgroup of the het-
erogeneous samples through statistical evaluations. We
evaluate the performance of HetRCNA by simulated data
with a variety of configurations [13], and comparing
HetRCNA with two existing methods. A real dataset of
breast cancer is then analyzed by HetRCNA, with distinct
subgroup-specific RCNAs and their related subgroups
found. The following sections of the paper are organized as
below: Section 2 introduces three previous RCNA detection
approaches with different techniques and their relations
with HetRCNA. Section 3 describes our method HetRCNA
with detailed techniques. In Section 4, HetRCNA is evalu-
ated by simulated dataset and applied on a real cancer data-
set. Finally, we discuss our article with conclusion and
some prospects in Section 5. The main contributions of this
paper are summarized as below:

e We take into account subgroup-specific RCNAs in
RCNA discovery problem. The consideration of sub-
group-specific RCNAs can help detect some CNAs
recurrent in only a group of samples that might be
missed by the methods for only communal RCNAs.

e Weintroduce an integrated method HetRCNA based
on biclustering framework to detect subgroups of
samples and their corresponding subgroup-specific
RCNAs. HetRCNA is established by incorporating
both three weight constraints (details in Section 3.1)
on Sparse Singular Value Decomposition (SSVD)
[36] and statistical significance test via weighted
convolutions.

e We conduct experiments based on both simulated
data and real data to evaluate HetRCNA over several
existing methods. The validation results show that
HetRCNA achieves an improvement over other
existing methods averagely.

2 RELATED WORKS

In previous studies, the frequency of CNAs of a genomic
region in all investigated samples is a crucial measurement
for detecting communal RCNAs. One of the most widely
used RCNA detection approaches is Genomic Identification
of Significant Targets in Cancer (GISTIC), which considers
both the average CNA amplitudes and the aberration fre-
quencies in samples for the investigated regions of aberra-
tions [16]. In GISTIC, the multiplications of average
amplitudes and frequencies are utilized as the scores for the
investigated RCNAs, which are called G-scores. Statistical
test is then applied to obtain p-values of the investigated
regions through permutation test, of which the null hypothe-
sis is that all aberrations are sporadic passenger CNAs [16].
False-discovery rate (FDR) control is then used to correct the
p-values and yields the corrected p-values, which are also
called FDR g-values. Finally, the significant regions identi-
fied by FDR g-values are separated through a greedy peel-
ing-off procedure [16]. GISTIC 2.0 is then proposed in [17] as
a revised version of GISTIC. In GISTIC 2.0, the G-scores are
redefined as the negative logarithm of the likelihood of each
region, of which the value is larger when the related region is
expected to be recurrent [17]. Copy number amplifications
and deletions are measured separately in GISTIC 2.0. The
statistical significance evaluation in GISTIC 2.0 is also based
on permutation test and FDR control as in GISTIC. In con-
trast to GISTIC, The significant RCNAs in GISTIC 2.0 are sep-
arated through a revised arbitrated peeling-off strategy [17].

To detect RCNAs from tumor samples with heterogene-
ity, Genomic Analysis of Important Alterations (GAIA)
extends the statistical hypothesis framework by taking
within-sample homogeneity into account [18]. While the sta-
tistical significance procedure applied by the traditional
studies [16], [18], [19] is used in GAIA, h-value is also intro-
duced as another important score for measuring the within-
sample homogeneity [18]. Since the h-values are based on
the Hamming distance between the copy number altera-
tions of each pairs of samples, the within-sample homoge-
neity considered by GAIA is an attempts to measure
samples that are likely to belong to the same subgroups dur-
ing the RCNA detection procedure. Combining the statisti-
cal FDR g-values from significance test and the h-values
from within-sample homogeneity into an iterative proce-
dure, GAIA can extract the RCNA regions shared by a set of
samples with homogeneity. When compared with the
approaches designed for common aberration regions, the
detection result of GAIA shows better performance than
those of the traditional approaches [18].

From a distinct perspective that the RCNA scenarios may
form low-rank matrices, Piecewise-constant and Low-rank
Approximation (PLA) utilizes a low-rank approximation
strategy to detect RCNAs from a cohort of tumor samples
[24]. To decompose the RCNA component, PLA approxi-
mates the matrix rank of the RCNA component through the
nuclear norm, and formulate a convex optimization problem
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that minimize the nuclear norm [24]. Smoothness penalty on
each CNA regions is also used to ensure the piecewise-con-
stant of the recovered profiles [24]. An L1-norm penalty is
introduced to decompose a sparse component related to pas-
senger CNAs that sparsely appear at different locations for
different samples [24]. The RCNAs are then identified by
thresholding on the recovered low-rank component. The
idea of regarding RCNA regions as low-rank matrix is inspir-
ing in RCNA modeling and detecting problem, and PLA has
been proven to outperform the traditional methods that are
designed for only common RCNAs [24].

In the RCNA detection task, GISTIC 2.0 and GAIA calcu-
late the scores that represent both abberation amplitudes of
the investigated CNA regions and frequencies in all sam-
ples. PLA obtatins the abberation amplitudes from a low-
rank component which is decomposed from the data matrix
of CNA amplitudes of samples. In comparison, HetRCNA
computes the abberation amplitudes of CNA regions and
frequencies in a group of samples. The abberation scores of
GISTIC 2.0 are yielded by the summations of the negative
logarithm of the likelihood of the abberation amplitudes of
all samples; the abberation scores of CNA regions for GAIA
are based on both abberation amplitude summations and
homogeneity values; the abberation scores of regions for
PLA are the frequencies of abberations contained in the
low-rank component; the abberation scores of CNA regions
for HetRCNA are obtained from the coefficients of the
RCNA profile vectors decomposed from the data matrix.
After calculating abberation scores, HetRCNA, GISTIC and
GAIA use permutation test to yield the p-values of the
investigated CNA regions, and utilize FDR procedure to
compute FDR g-values of CNA regions. The significant
RCNAs are then obtained by thresholding the g-values for
HetRCNA, GISTIC 2.0 and GAIA, while PLA ranks the abb-
eration scores of the regions and selects the top ranked
regions as RCNAs. Despite the success achieved by the
existing RCNA detection approaches discussed above, all
the aforementioned previous approaches [16], [17], [18], [24]
cannot find subgroup-specific RCNAs as well as their
related subgroup samples when they are applied on hetero-
geneous tumor samples.

3 PROPOSED APPROACH

3.1 Sample Weights and RCNA Regions

The CNA data represent the amplitudes of CNA regions in
the tumor samples, which are obtained from the CNA call-
ing procedures on CNA raw data [37], [38], [39], [40], [41],
[42], [43], i.e., the logarithm intensity ratio data collected
from aCGH or SNP array platform, or the read depth data
from the next generation sequencing technique. Each sam-
ple represents a patient of the investigated disease. After
preprocessing, we align the amplitudes of CNA regions as
the sample-CNA matrix X = (z;;),,,,, of which the rows
denote tumor samples and columns denote the amplitudes
of aligned CNA regions.

For finding both RCNA regions and corresponding sub-
group samples from the matrix, we considers biclustering
framework to align rows to subgroups and columns to
CNA regions simultaneously [44], [45]. Motivated by previ-
ous research [9], we use biclustering in this study because

there is a strong connection between biclustering and find-
ing common regions for different subgroups. The objective
of locating sets of alterations which are common only to
subsets of samples is similar to identifying sets of columns
that show similar patterns across subsets of rows [9]. The
property of biclustering framework can also help preserving
the within-sample patterns of the samples [9]. The problem
then is equivalent to finding a biclustering block from the
sample-CNA matrix X, which represents a subset of rows
(samples) and a subset of columns (CNA regions) with a
high similarity abberation scores [44], [45].

According to previous studies [24], [46], the RCNA com-
ponents can be regarded as sparse components in the sam-
ple-CNA matrix. Consequently, we involve the biclustering
framework of Sparse Singular Value Decomposition, pri-
marily for analyzing high-dimensional gene expression
data [36]. For the sample-CNA matrix X, the kth subgroup-
CNA block X are obtained from kth layer of HetRCNA,
and the related rank-one layer can be obtained as the outer
product of the left vector and the right vector. Here we
define the left vector as sample weights vector 4(*) and the
right vector as the weighted average RCNA vector #*) of
the kth subgroup. The non-zero coefficients of ") represent
the selected samples of the kth subgroup, while the non-
zero coefficients of %) are either amplifications or deletions
in the CNA regions of the subgroup. Particularly, three con-
straints are applied on the coefficient of & = (a{*), ... a(®)

n

to make them as a group of weights (weight constraints):

e  Non-negativity: each coefficient of vector are non-
negative, i.e., ﬁgk) >0, wherei =1,...,n denotes the
sample indices and k=1,..., K denotes the sub-
group indices.

e Normality: due to the nonnegativity of the coeffi-
cients, the summation of every coefficients in k)
equals one, formulating as 3" 'a\" = 1.

e  Mutual-exclusivity: one sample mustn’t belong to two
or more different subgroups. If the ith coefficient aﬁ“
in the kth subgroup block is larger than zero, then
the ith coefficient 125” in the other subgroup blocks

t # k must equals zero strictly.

We introduce the three constraints aforementioned into
the procedure of simultaneously detecting subgroups and
subgroup-specific RCNAs. We incorporate the layer-by-
layer procedure proposed by SSVD [36] for decomposing
each biclustering block of subgroup and the related sub-
group-specific RCNAs. As reported in previous studies
[30], [34], if a tumor sample is assigned to a subgroup of the
cancer, this sample cannot be assigned to the other sub-
groups. Consequently, any two subgroups cannot have
overlapping samples, and the samples of subgroups are
assumed to be mutual-exclusivity. To detect subgroups
from the data matrix, we modify the biclustering framework
of SSVD by the assumption of exclusive-rows biclusters into
HetRCNA, which is used by Sheng et al. [47] and Tang et al.
[48] but not by SSVD [36]. While the coefficients in the left
vector of SSVD can be positive, negative or zero [36], the left
vector for each block of HetRCNA is restricted to non-nega-
tive. When a layer is decomposed, the samples included in
the subgroup of the current biclustering block are indicated
by the positive coefficients of the vector, while the samples
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Fig. 1. An illustration of CNA matrix decomposition via HetRCNA, where red represents amplification, blue denotes deletion and white refers to copy
number neutral. Left: Data matrix of aligned CNAs; middle: Approximation matrix of aligned CNAs yield from HetRCNA, with spontaneously random
mutations removed; right: Subgroup sample matrix (consisting of sample weights vectors) and subgroup-specific RCNA matrix (consisting of RCNA
regions vectors), of which the matrix multiplication equals to the approximation matrix (also the summation of the outer products of each pairs of col-
umn vectors and row vectors). The biclustering procedure of HetRCNA is based on matrix decomposition framework, and HetRCNA decomposes
the data matrix through a layer-by-layer decomposing strategy [36]. There are usually several layers decomposed from the data matrix, and the
approximation matrix is then obtained by the summation of these rank-one layers. Consequently, the rank of the approximation matrix is also usually

larger than one, and equals to 3 in the case of the illustration.

not included in the subgroup are denoted by the zero coeffi-
cients of the vector. For the kth subgroup, the ith sample in
set {z|u7(k) = 0} is not included in the current subgroup. Oth-

erwise, the ith sample in set {z\ﬂfk) > 0} belongs to the sub-
()

group and the absolute value 4, refers the contribution
weight to the weighted average CNA profile. The normality
of the left vector is also required to ensure that the vector is
a sample weights vector. The weights are determined on
factors as amplitude resolution or purity of samples. The
assignment of all samples and all detected subgroups are
indicated by the sample weights vectors of every layers
obtained by HetRCNA.

The coefficient values have no constraint on the weighted
average CNA profile vector 9% = (6", ... o). Coeffi-
cients equaling to zero in #*) denote that the indicating
CNA regions are copy-neutral, and positive and negative
coefficients denote amplification and deletion in these CNA

regions respectively at weighted average level.

3.2 Sample-RCNA Biclustering

The HetRCNA framework consists of two parts: 1) biclus-
tering of sample weights and CNA profiles and 2) signifi-
cance evaluation of RCNAs. Under the constraint that
coefficients of @ satisfy the requirements of the weights vec-
tors of sample-CNA matrix X, we propose a biclustering
method as the first part of HetRCNA, which efficiently
measures subgroup samples in @ as series of weights and
corresponding CNA profiles in v as the weighted averages
amplitudes. Inspired by SSVD [36], the biclustering frame-
work can be regard the summation of different rank-one
layers, and the kth layer is the block of its related samples
(indicated by vector @) and related RCNAs (indicated by
vector 9*)). The summation of the different layers can be
equivalent to matrix decomposition procedure, i.e.,

K
X~ a0t = gvT, 6
k=1

where the matrix U = [aM,...,a® ... 4] is a nx K
matrix comprised of sample weights vectors and the matrix
V=[3WpM . 5Wp®  5H00] s a p x K matrix com-

prised of average CNA profile vectors, and the number K is

the rank of the two matrices. The positive scalars s for

k=1,..., K are the scales of the normalized vector v(® to fit
the approximation in (1), and these scalars are ordered from
greatest to least. The rational of matrix decomposition based
biclustering procedure of HetRCNA is demonstrated in
Fig. 1. In HetRCNA, we decompose the matrix through a
layer-by-layer decomposing strategy as proposed in [36].
Therefore, our method does not decompose only one rank-
one layer to approximate the data matrix. Instead, our
method decomposes several rank-one layers from the data,
and use the summation of the layers to approximate the
data matrix, and the layer number K is obtained when no
new layer can be decomposed from the data matrix. Note
that the first rank-one layer of HetRCNA is the best rank-
one matrix approximation of the samples-CNA matrix [36]
under the weight constraints, i.e.,

(3, a0, o) = argmin] | X — 0"

5,u,v
n

Sto@ >0, i =1,
i=1

where || - ||i~ indicates the squared Frobenius norm. Factor §
is a positive scalar, ensuring that each element of rank-one
layer 349" is the approximate estimation of the CNA ampli-
tudes at the corresponding regions and samples. In each
estimated rank-one layer, the corresponding samples share
the same positive elements and negative elements, reflect-
ing the same amplifications and deletions of subgroup-spe-
cific RCNAs respectively. If we used a layer of which the
rank is larger than one, we cannot guarantee that the corre-
sponding samples share same RCNA profiles. Also, the
mutual-exclusivity of samples in the optimization ensures
that the CNA amplitudes are approximated by the elements
of each estimated layer, rather than by the weight summa-
tions of the elements of these layers. Consequently, the ele-
ment of estimated rank one layer can well approximate the
CNA amplitudes at the corresponding regions and samples.

Considering the sparsity of the RCNA component, we
add L1-norm sparsity-inducing penalties [36] on % and © in
the loss function of optimization problem of (2)

(2)

min| [ X — 50" | [} +Xl[al], |01,
5,u,v

n (3)
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where ), and )\, are penalty parameters. To solve % and ¥ by
lasso regression [36], [49], we replace triplet (8,4, ) with
(s,u,v) for calculating facility, restrained by wuwu® =1,
vo' =1, and scaling equation 349" = suv™. The (u,v) in
triplet (s, u, v) is the L2- normahzed vectors of (w,9), ie.,
u=1a/||al)* and v = ¥/||9|*, and s = (||@|]*||9||*)3 for balanc-
ing the scaling of two triplets. The inverse transformation of
the triplets will be described at the end of this section.

For fixed 4, the minimization of (3) in regard to (s,v) is
equivalent to minimization with respect to v = (sv) of the
formulation below:

. 2
1= [ty ol ondilh, 0

where X € 7! is the vectorization of matrix X which
results in a column vector (z{,..., a:[T)T (here z; is the ith
column vector in matrix X). The symbol ® is the Kronecker
product. On the other hand, for fixed v in (3), the optimiza-
tion in regard to @ = (su) is tantamount to the following
equation:

||1X — a0 || A, = H)ET ~@L® 'u)'&’ ]2+Au1Ta

(%)
s.t.u > 0.

where ||@]|, in (3) is simplified as sum of coefficients in @ as
aresultof 4 > 0.

According to previous work [36], the right part of (4) is
the lasso regression problem. The loss function is

HX ~ (1, ® w)) ‘2+/\v Zp:yﬁjy
) (©6)

p

RN

J=1

—20;(X "), + Ao|95]),

where (X'u). ; is the jth coefficient of vector X"u, namely
the ordinary least square (OLS) estlmatlon of v with no con-
straint in [36], which is {(I, @ u)" (I, @ u)} ([, @ u)' X =
X"u (given that fact that fixed u is L2-normalized as
uTu = 1). The coefficients in sparse vector  of lasso regres-
sion in (6) are estimated by soft threshold estimator [36],

[49]. The component-wise thresholding of (6) is

Ay
2)+, M

where sign(-) represents the sign function that extracts the
sign of the input number, and the operator (-), denotes
max(-,0). The singular value is updated as s(l) =
and th)e L2-normalized vector v is calculated as

/ 51;1 N

For fixed v, the solution of the optimization of (5) is
solved through a similar strategy [36]. The minimization of
(5) is expanded to the formation above

£y > i
i=1
=[]+ ot ooy~ x)

! = sign((X"w),) (‘(XTu)j

H)ET — (I, ®v)i

®)

where (Xw), is the ith coeff1c1ent of OLS estimation for vec-
tor u, which is {(I, ® v) I, ®v)}" 1(1” v) TXT = Xv. The
non-negative lasso is rather closely related to the non-nega-
tive least square (NNLS) problem [50]. To solve the NNLS
and estimate the non-negative vector %, we utilize the com-
ponent-wise thresholding rule proposed by [36] and NNLS
by [50]. The solution is estimated by reshaped component-
wise thresholding rule by adding the non-negative con-
straints of sparse vector % [36], [50]

ﬂgl) = <(X'U)7' _ﬁ> ; 9)
L 2 +

which is the closed form expression of NNLS estimator for
orthonormal design [50]. Similar with vector v, s(!) =
|[a] ‘2 is updated, with (") = 4(!) /s(1). Note that the calcu-
lation of u(! is depended on matrix decomposition frame-
work and there is no constraint on the order of the samples.
Therefore, the results of HetRCNA are not influenced by
the order of the samples.

For objective function of (6) and (8), the optimal penalty
parameters A, and A\, are chosen by calculating the entire
penalization path which can minimize the Bayesian infor-
mation criterion [36]. Then the optimization procedures in
(3) of two variables u and v are alternated iteratively until
convergence. The convergence condition of the alternative
procedure is that the euclidean distance between the latest
estimated vector and the previous estimated vector is less
than 107, for both left vector and right vector. Since the iter-
atively alternative procedure is deterministic, the outputs of
the results only depend on the input matrix and the initial
values of w and v. In this study, we propose a procedure to
make the initial values of the two vectors u and v are deter-
mined by only the input matrix. We first decompose the
input matrix by SVD and obtain the first left vector and the
first right vector of SVD, of which the outer product is the
first SVD layer of the data matrix. For the first left vector, if
the number of negative coefficients of the vector is larger
than the number of the positive coefficients of the vector,
we then multiple both the first left vector and the first right
vector by —1. This ensures that the two vectors are deter-
ministic and their outer product is constant, and most coeffi-
cients of the left vector are positive. To satisfy the non-
negativity of the sample weights vector, we replace the neg-
ative coefficient of the left vector with zeros. The two vec-
tors obtained from the procedure above are then used as the
initial values of u and wv. Since the initial values of the two
vector u and v are deterministic when an input data matrix
is given, the solution of HetRCNA is also unique.

After convergence, the estimation of the singular value of
the current layer is s = uT Xv. In this layer, we use the coef-
ficients of u that are larger than half of the maximum value
to obtain weight vector u", and the samples of the remain-
ing coefficients with insufficient contributions are reserved
for the estimation of the next rank-one layer [46]. The
inverse transformation of triplet (s, u,v) to (5,4,?) is then
described: we first normalize the weight coefficients to sat-
isfy the normality of weight constraints, i.e., the summation
a=u"/> " u¥; as a result of s =u’ Xv and v"v =1, the
weighted average vector is ¥ = X u = s0/ >, u?; finally,
the positive scalar to balance the scaling of two triplets is
calculated as 3 = (30, u?)”.
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For each layer, we use a two-step method to satisfy the
two constraints, i.e., nonnegative constraint and normality
constraint. The first step in Formula (5) is used to obtain the
relative values of vector & through the alternative procedure,
which ensure that the coefficients satisfy the nonnegative
constraint when convergence. After removing coefficients
with insufficient contributions and obtaining vector u", we
apply the second step to satisfy summation constraint via
dividing the coefficients of the vector by their summation
@ =u"/> ", u’, which make the summation of the coeffi-
cients of the vector a constant in this step. To assure the
mutual-exclusivity of weight constraints on weights vector u
for each layer, the next sparse rank-one layer are obtained
from the remaining rows (samples) of data matrix. We then
applying the HetRCNA method to the matrix of remain sam-
ples iteratively until the number of rest samples is less than
10 percent of the total sample amount.

3.3 RCNA Significance Assessing

For the CNA region vectors decomposed by HetRCNA of
the heterogeneous tumor samples, coefficient 0; in ¥ of each
layer is the weighted estimation of the pinpointed CNA
amplitudes across the subgroup samples. Since the scores of
the coefficients in v are contributed by either subgroup spe-
cific RCNAs shared by samples of the subgroup or ran-
domly passenger CNAs, we need a strategy to draw a fine
line between the two counter-acting signals after the decom-
position procedure. Here we use significance test to test
whether a CNA region indicated by a coefficient of the vec-
tor is significantly recurrent among the samples of the
related subgroup or not. The CNA regions that significantly
recurrent in the subgroup samples are then regarded as sub-
group specific RCNAs, while the insignificant ones are
treated as regions containing only passenger CNAs.

To identify the RCNA in CNA regions of each subgroup,
we then assess the significance of each CNA region indi-
cated by 0; under the null hypothesis that all aberrations in
the subgroup sample are spontaneous passenger mutations.
Note that the empirical distribution of CNAs under the null
hypothesis can be estimated by using the convolution of the
amplitude distributions of every subgroup samples [16]. In
this study, we use the procedure of weighted convolution
[46] of the amplitude distributions h;(x) for the ith sample
to estimate the hull distribution ©; for every CNA region
j=1,...,p1ie,

Hx) = by (2 ) omho () h (2, 10y
Uy Uy %) U2 un Upr

where the weight 4; is the ith coefficient of w, and M is the
number of non-zero coefficients of the related weight vector,
indicating the amount number of samples in the current
subgroup. Subsequently, the p-values for statistical signifi-
cance of the CNA regions can be yielded by the empirical
distribution H(z).

The statistical significance of coefficients ¥; denoting for
amplifications or deletions are tested separately. By measur-
ing FDR procedure on p-values and obtaining FDR g-values
of each result, we assess the significant RCNAs by threshold-
ing their related FDR g-values at an empirical value 0.25 pro-
posed by previous study [16]. We then select all significant

coefficients from CNA region vector ¥ to generate the RCNA
vector 9*%. Finally, the columns of subgroup-specific signifi-
cant RCNAs of the heterogeneous tumor samples and the
rows of corresponding subgroups are indicated by non-zero
coefficients of vector 9" and @ respectively. The flowchart as
an overview of HetRCNA is illustrated in Supplementary
Fig. S2, available online. The pseudocode of HetRCNA is
also demonstrated in Algorithm 1.

Algorithm 1. HetRCNA
Input: X, (n = #(samples); p = #(regions)): CNA data.

Output: K: estimated layer number; Si1: scaling scalars;
V xk: subgroup-specific CNA profile matrix;
U, r: sample weights matrix; @, : q-value matrix;
V9, significant subgroup-specific RCNA matrix.

pxK*

% initialize S, U, V, V*¥ and Q with empty matrices
1S —[LU—[LV—[LVY—[;Q[]
2 ind_assign < 0,,1; % initialize assigned sample index
3 k < 0; % initialize the number of layers k

repeat % start: decompose new layer

4w« first_left_vector_SVD(X); % initialize left vector
5 v« first_right_vector_.SVD(X); % initialize right vector
6 if {sum(I[u < 0]) > sum(Z[u > 0])}
7 u— (—u);v— (—v);
end_if % ensure most elements of left vector
nonnegative
8 u(I[u < 0]) < 0; % remove negative values in left
vector
repeat
9 Uprey = U; Uprey “— U
10 Ay — argmin{BIC(A,, uprev) };
% Symbol o is the element-wise product of two
vectors
11 v — sgn(XTupm,) o (|XTuprCV{ - %h;
12 v —v/[vl3;
13 Ay — argmin{BIC(\,,v)};
14 u— (| Xv| —22),;
15w u/full}

16 until {||u — uper|[, < 107 && || — vprev|[, < 1071}
% convergence condition of the alternation procedure

17 s «— uT Xv; % scaling scalar % end of new layer
18 u — nH{u,%maX(u)};
19 e w/|utll; o e so/llutll; 8~ (vl

20 ind_assign(Ifa > 0]) < 1;
21 #(assign) <« sum(ind_assign); % #(assigned sample)
22 q < SignifTestByWeightedConv(X, §, @, v);
23 99 — p(I[g < 0.25]);
24 S —[5,8; U «— [U,u]; V — [V, 9]; %update new layer
25 VU [V, ) Q — [Quqli k — k+ 1;
26 X(Ia = 0],:) < 0; % mutual-exclusivity for next layer
27  until {|n — #(assign)|/n < 0.1}
% stop condition: #(rest samples) /#(total samples) < 10%
28 K « k; % obtain the number of layers K
29  return K,S,V,U, Q and V*¥

Note: #(-) is the number of the input set; I[-] is the indicator
function.
ng{w,\} == wo I[|lw| > )] is the hard-thresholding.
The pseudocode of SignifTestByWeightedConv(X, §, @, v)
is provided in Supplementary Algorithm S1, available
online.
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Fig. 2. F-measures of HetRCNA detection of three main scenarios under different subgroup numbers, with various background mutation rates and
RCNA impurity rates. F-measures under (A) two subgroups, (B) three subgroups and (C) four subgroups are demonstrated to reflect the detection
power, showing that the average level of detection powers decreases with the subgroup number increasing. In each diagram, the F-measures of
Scenario Il and Il are more sensitive to noise than Scenario | due to complexity. The detection powers reduce by the noise increasing from either

background mutation rate or impurity of RCNA region.

4 EXPERIMENTAL RESULT

4.1 Simulated Dataset Evaluation

To assess RCNA-finding algorithms quantitatively, Morganella
et al. utilizes the three scenarios (Supplementary Fig. S1,
available online) as synthetic data [18]. These three scenar-
ios are considered as main fundamental scenarios because
they are observed in real datasets and many other scenarios
can be regarded as their combinations [18]. Scenario I
consists of only communal RCNAs, sharing the same posi-
tion among all samples. For Scenario II and III, the RCNA
patterns show heterogeneity, which consist of subgroup-
specific RCNAs from two subgroups (Supplementary
Fig. S1, available online). In Scenario II, subgroup-specific
RCNAs are non-overlapping at genome loci among diff-
erent subgroup samples. Scenario III consists of different
types of subgroup-specific RCNAs overlapping at genome
loci, where amplifications and deletions from different sub-
groups occur in same regions. Since the subgroup numbers
is usually more than two in real heterogeneous cancers [30],
[31], [32], we configure the subgroup number as two, three
and four when generating synthetic heterogeneous tumor
data. For each case, we generated 100 samples with different
subgroup numbers as heterogeneous tumor data. The
RCNA patterns of each case are comprised by not only com-
munal RCNAs of Scenario I but also subgroup-specific
RCNAs of Scenario II and III, which are more similar to the
real data of heterogeneous tumor samples.

Furthermore, we introduced two noise factors 8, and f;
in each dataset by following previous work [13]. In non-
RCNA regions, spontaneous passenger CNAs are added at
a background mutation rate of g, a parameter to quantify
the level of spontaneous CNAs [10], [17]. In RCNA region,
parameter B; measures the copy number neutral rate at
RCNA regions. By varying the two parameters of the simu-
lated data, we can use the detection results of HetRCNA to
measure their influences on the detection performance. The
amplitudes of every CNA regions are then calculated by
adding the expectation amplitudes of the CNA regions and
an a white Gaussian distribution [18].

To measure the statistical performance of HetRCNA, we
involve two evaluation strategies: F-measure and Receiver
Operation Characteristics (ROC) curve. F-measure is the
harmonic mean of precision (the fraction of predictions that
are underlying correct) and recall (the fraction of underly-
ing true RCNAs that are predicted). Through F-measure,
the detection performance can be measured by one numeric
value, which help us comparing the detection performances
under various configurations. ROC curve is a wildly-used
comparison measurement for different computational meth-
ods, plotted by true-positive rate (TPR, also known as sensi-
tivity) versus false-positive rate (FPR, also known as 1-
specificity) with thresholding varying. In ROC curve, a bet-
ter performance is indicated by the curve closer to the top
and left borders. Since the power at small type I error levels
is of interest, we investigate FPRs of the competing methods
from 0 to 0.05, which is in consistent with previous studies
[13], [14], [22].

4.1.1  Simulated Data Analysis with Various

Configurations

For synthetic heterogeneous tumor datasets with different
subgroup numbers, the two noise factors g, and B, are con-
figured at various levels, increasing the difficulty of RCNA
calling. Figs. 2A, 2B, and 2C shows the F-measures of
HetRCNA of subgroup number 2 to 4 under different levels.
Either B, or B; levels increasing leads to F-measures
decreasing, since more noise are contained in the datasets
(Fig. 2 and Supplementary Table S1, available online). Sce-
nario II and III are more sensitive to the two factors than
Scenario I (the case of only communal RCNAs), which may
be due to the heterogeneity of subgroup-specific RCNAs.
For different subgroup numbers in heterogeneity datasets,
the more subgroup number in the heterogeneous tumor
data, the more sensitivity the detection results of HetRCNA
to the two factors are observed. To observe the changes
in F-measure more clearly, we also demonstrate the line
and circle plots of the F-measures in Supplementary
Fig. S3, available online. Generally, the performance of
HetRCNA is influenced by factors of background mutation
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Fig. 3. ROC curves based on 100 replications of simulation. Since the power at small type | error levels is of interest [13], [14], [22], FPR is presented
from 0 to 0.05. Configuration parameters are described as follows: background mutation rates vary at 0.2, 0.3 and 0.4 of two left panels, two middle
panels and two right panels, respectively; Scenario Il and Ill are showed at three top panels and three bottom panels; for all cases the copy number
neutral rate at RCNA regions are 0.2. Red, green, blue and orange lines represent HetRCNA, GAIA, GISTIC 2.0 and SSVD, respectively.

rate, RCNA region neutral rate and heterogeneity of
samples (subgroup number).

4.1.2 Performance Comparison

Under a configuration of three subgroups with g5 = 0.2
and B, € {0.2,0.3,0.4}, we compared the performance of
HetRCNA against origin SSVD and two previous approa-
ches, GAIA [18] and GISTIC 2.0 [17], through 100 replications
of synthetic data. Since negative coefficients in left vector of
SSVD can confound amplifications and deletions, we only
consider the absolute amplitudes of alterations for ROC
curves of SSVD. The ROC curves of the four methods under
different configurations are illustrated in Fig. 3. For commu-
nal RCNAs in heterogeneous tumor data, all methods except
SSVD achieve nearly perfect performances in the case of
Scenario I. As for the cases of Scenario II that containing sub-
group-specific RCNAs, HetRCNA and GAIA achieve the top
two TPRs among the four methods, since HetRCNA consid-
ers tumor sample heterogeneity and GAIA takes into account
within-sample homogeneity. The detection results of GISTIC
2.0 show low FPRs, which may be due to its powerful peel-
off procedure. For Scenario III, HetRCNA maintains its per-
formance best among the four methods. The results of all
method show robustness when background mutation level
B, increases. For the data with larger noise factors, we can
find that HetRCNA also achieves comparable or better per-
formance (Supplementary Fig. 54, available online). Overall,
the ROC curve evaluation indicates that HetRCNA has a
clear advantage among the four competing methods.

When the scenario is complex, we introduce simula-
ted data of Scenario IV in [24] (Supplementary Fig. S5A,
available online). In Scenraio IV, there are three groups of

samples with different patterns of RCNAs. The first group
of samples contains recurrent amplification regions, where
some of the regions are group-specific RCNAs of the the
first group and the other regions are shared with the second
group. The second group of samples contains regions of
both recurrent amplifications and deletions, and the dele-
tion regions are shared with the third group. The third
group of samples includes only recurrent deletion regions,
which are the same deletion regions of the second group.
When HetRCNA is implemented on the data of Scenario IV,
HetRCNA yields three subgroups as expected (Supplemen-
tary Fig. S5B, available online). When we compare the
performances of HetRCNA with those of other existing
methods through ROC curves, HetRCNA outperforms the
other existing methods (Supplementary Fig. S5D, available
online). Notably, the recurrent amplification regions in
the first group of samples are highly scored by HetRCNA
as subgroup-specific RCNAs, while these regions are not
assigned with high scores by the other competing methods
(Supplementary Fig. S5C, available online), indicating the
group-specific advantage of HetRCNA.

4.2 Application on Breast Cancer

Breast cancer is one of the most common cancers threaten-
ing women'’s health worldwide [3]. Here we applied GISTIC
2.0, GAIA, and HetRCNA on 112 breast cancer samples
using Illumina 109K SNP arrays from a previous study [51].
GPHMM [39] is used as CNA calling preprocessing, with
CG coefficients (bias noise on SNP array platform) and
impurity rectified. Comparison analysis and RCNA calling
in heterogeneous tumor samples of HetRCNA are mea-
sured in details as below.
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Fig. 4. Venn diagrams of intersections between (A) amplification and (B)
deletion RCNA regions predicted by HetRCNA, GAIA and GISTIC 2.0 in
breast cancer dataset. Percentages are according to the union of geno-
mic regions predicted by the three methods.

4.2.1 Comparison Analysis

The breast cancer data are implemented by HetRCNA,
GISTIC 2.0 and GAIA with their default settings. Among
the whole genome-wide regions, HetRCNA discovers 71
RCNA amplification regions and 70 RCNA deletion regions
across all subgroups. Meanwhile, 68 amplification and 68
deletions are detected by GISTIC 2.0, while 137 amplifica-
tion and 274 deletions, which are more fractional in size, are
found by GAIA finds. Through comparison analysis, a fair
amount of predicted regions are overlapping among the
three approaches, while many other regions are unique to a
single method, or pairs of methods. The proportions of pre-
diction regions of the three methods across genome are
showed as Venn diagrams (Fig. 4).

In our study, the proportions of common regions is 20.95
and 12.61 percent for amplifications and deletions respec-
tively, showing the consistency among these RCNA finding
approaches (Fig. 4). The values of the proportions are much
larger than the proportions of common regions (less than 1
percent) in previous study [21], which are also based on
three methods and also include GISTIC 2.0 and GAIA.
Among the Venn diagrams, the detected RCNAs shared by
HetRCNA and GISTIC 2.0 but not GAIA show the largest
proportions for both amplifications (42.40 percent) and dele-
tions (44.31 percent). GAIA shares more RCNA regions with
HetRCNA with proportions of 4.19 and 10.26 percent com-
paring to GISTIC 2.0 of 2.76 and 1.85 percent, for amplifica-
tions and deletions respectively. The proportions of regions
unique to GAIA are relative smaller than HetRCNA and
GISTIC (5.01 percent in amplifications and 7.82 percent in
deletions), which could be explained by the relatively con-
servative feature of GAIA [14].

Since the driver aberrations in these samples are
unknown, we then align the detected RCNA regions of the
three approaches with overlapping genes listed in [52]. For
amplifications, the RCNA regions identified by at least two
methods harbor a bunch of genes that are highly consistent
with previous studies [3], [27], [28], [29], [53], [54], [55], [56],
including ERBB2, CCND1, GRB7, PIK3CA, ARNT, C170rf37,
FADD, FGF3, PPFIA1, RAD51C, PPMID, TBX, NUPRI,
AKTS3, BIRC5, CRABP2, CSNK1D, GATA3 and JARID2 [3],
[27], [29], [53], [55]. Further, some reported oncogenes are
unique to HetRCNA: BIRC7, CCNE1, EEF1A2, FLRTS3, JUN,
LYN, and PRDM14 [3], [27], [29], [53], [55]. For example,
CCNET1 gene is only detected by HetRCNA, which is capable
of inducing chromosome instability by centrosome duplica-
tion and inappropriate initiation of DNA replication [57],

[58]. Previous studies have demonstrated that CCNET is clini-
cally associated with poor prognosis in patients with breast
cancer [59] and the treatment of breast cancers [60], [61].
For another gene that unique to the detection results of
HetRCNA, JUN (also known as AP-1) has been reported to
play an important role in regulating breast cancer cell prolif-
eration [62], [63], [64], which have also been reported as an
oncogene for other types of cancers [65], [66].

For deletion, some genes highly associated to breast
cancer [53], [54] are detected by at least two methods, e.g.,
NCOA7, ATM, CBFB, CDH1, CDH13, CDKN2A, CDKN2B,
CTCF, DLC1, GATA4, HDAC2, MAP2K4, MYB, TP53
and TUSC3 [3], [27], [28], [29], [53]. Tumor suppressor
genes unique to HetRCNA as AKT1, APOBEC3B, BRCALI,
BRCA2, CHEK2, MAPT, NF1, NF2, PTEN, RB1, SMARCB1
and TIMP3 are detected in deletion RCNAs [3], [27], [29],
[53], [55]. Taking PTEN as an example, it has been identi-
fied as a tumor suppressor gene in breast cancers [67]. To
trastuzumab-based therapy, patients with PTEN-deficient
breast cancers have been reported to show significantly
poorer responses than those with normal PTEN [68], [69],
indicating that PTEN activation in breast cancer contrib-
utes to trastuzumab’s antitumor activity [70]. Genes APO-
BEC3B, BRCA1, BRCA2 and RB1 have been found in
chromosome deletions in tumor samples of breast cancer
and have been curated by Cancer Gene Census [71] as
known cancer driver genes. For gene SMARCBI, it has
been previously curated as a driver gene of malignant
rhabdoid tumors [71]. In a recently study, aberrations on
SMARCBI1 have been found in Her2-positive breast cancers
although it has not been previously observed in the results
of TCGA on Her2-positive breast cancers [72]. Finally, a
full list of reported genes identified by HetRCNA with
more detailed information is provided in Supplementary
Table S2, available online.

4.2.2 Subgroups of Heterogeneous Tumor Samples

By HetRCNA, five distinct subgroups with corresponding
RCNA regions are demarcated, with a remained sample
subset including no significant RCNA (Figs. 5A and 5B). We
denote the six subgroups as “Sub 17 to “Sub 57, and
“Remain” respectively. The sample numbers for the sub-
groups are 19, 24, 32, 15 and 6, and the “Remain” subset
contains 17 samples (Figs. 5A and 5B). According to the pre-
vious work of the investigated dataset [51], 17 samples
among all 112 tumor samples are reported to be normal-like
and have no acceptable solution (21 cases in primary ver-
sion). Notably, compared with the other subsets, the copy
numbers of tumor samples in “Remain” subset are closest
to diploid (copy number=2) (Supplementary Fig. S6A, avail-
able online), implying that the 17 samples are highly corre-
lated with normal-like state.

To show the difference between the subgroups, we
involve contrast ploidy boxplots, copy number distributions
and genome-wide frequencies of subgroup samples. The
sample ploidy of HetRCNA subgroups are demonstrated in
boxplots (Supplementary Fig. S6A, available online), illus-
trating the distinction of the subgroup ploidies. The plots of
copy number distributions in HetRCNA subgroups fitted
by Gaussian mixture model (Supplementary Fig. S6B, avail-
able online) indicate different copy number proportions
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Fig. 5. (A) Sample-CNA data matrix of breast cancer dataset, of which rows represent samples (realigned by HetRCNA subgroups for illustration)
and columns refer to CNA regions among genome. The red and blue colors indicate amplification and deletion regions. (B) Approximate sample-
CNA data matrix (main part) obtained by matrix multiplication of the matrix comprised of sample weights vectors (left) U and the transposed of matrix

comprised of average CNA profile vectors (top) V7.

among the subgroups. The distinction of genome-wide fre-
quencies of amplifications and deletions among subgroup
populations (similar to average CNA profile but only con-
sidering aberration frequency rather than weight and
amplitude) are plotted in Supplementary Fig. S7A-S7E,
available online.

As shown in Fig. 6 and Supplementary Fig. S8A-SSF,
available online, the FDR g-values of CNA regions calcu-
lated by significant evaluation of HetRCNA among each
subgroup demonstrate the significance of numerous
RCNA regions, which harbor many breast cancer associ-
ated oncogenes and tumor suppressor genes. ERBB2
gene amplified is labeled in both “Sub 2” and “Sub 37;
CCND1 amplified in “Sub 17, “Sub 4” and “Sub 5”;
BRCA2 deleted in “Sub 2” and “Sub 4”; TP53 deleted
in “Sub 2”, “Sub 3” and “Sub 4”; GATA4 deleted in
“Sub 2”, “Sub 3” and “Sub 4” (Figs. 6A and 6B; Supple-
mentary Fig. S8A-S8F, available online; Supplementary
Table S3, available online).

(A) Subgroup 1

5 DiscussION AND CONCLUSION

The detection of RCNAs strongly associated with cancer
tumors has thrown light on the research of oncology. When
no prior information of cancer subgroup is available, detect-
ing subgroup-specific RCNAs is still a challenging task for the
existing RCNA detecting approaches. In this article, we intro-
duce a method called HetRCNA to address subgroups and
subgroup-specific RCNA finding problem for heterogeneous
tumor samples, which is based on biclustering framework
with weight constraints and RCNA significance assessment.
In simulated dataset studies, HetRCNA shows high perfor-
mance in separating both communal and subgroup-specific
RCNAs from spontaneous passenger abberations. When com-
pared with two existing methods, HetRCNA show better
detection power when these methods are evaluated by ROC
curves. When we apply HetRCNA on a real breast cancer
data, a brunch of genes is unique to the results of HetRCNA
rather than the results of the other two methods, including
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Fig. 6. Genome-wide statistical significance of subgroup-specific RCNAs detected by HetRCNA for breast cancer dataset. The subgroups are dem-
onstrated: (A) “Sub 1”; (B) “Sub 2”. The “Sub 3", “Sub 4” and “Sub 5” are shown in Supplementary Fig. S8A-S8B, S8C-S8D, S8E-S8F respectively,
available online. In each plot, statistical significance for amplification (red) and deletion (blue) are evaluated via FDR corrected g-values. Dash lines

refer to the significant threshold of 0.25.
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some breast cancer associated genes. Finally, we assessed
the subgroups and their related RCNA regions and genes
harbored, demonstrating that subgroups and related RCNAs
detected by HetRCNA show high consistency with previous
studies.

There are mainly three differences between HetRCNA
and SSVD [36]. The first difference is that the non-negative
constraint is applied on the left vectors of HetRCNA to rep-
resent sample weights, while the constraint is not in SSVD.
The second difference is that the left vector are mutual-
exclusive to each other, while there can be overlaps among
the left vectors in SSVD. The third difference is that the right
vectors of HetRCNA of the subgroups are further processed
by statistical significance test based on weighed convolu-
tions to detect significantly subgroup-specific RCNAs,
while this procedure is not included in SSVD.

In HetRCNA, the two tuning parameters A\, and A, are
chosen by Bayesian information criterion (BIC) in each itera-
tion. To study the robustness of the two parameters, we dis-
turb the two chosen parameters for each iteration. When the
parameters are increased/decreased by 20 percent, the val-
ues of the output vectors only changes by 0.5 percent aver-
agely. Therefore, the results of HetRCNA is robust to the
two tuning parameters.

Despite the advantages above, a limitation of HetRCNA
is that it might detect some spurious peaks at RCNA closely
located regions, due to correlations between the recurrence
scores. This challenge that both identifying independent
peaks within a region and discarding spurious peaks,
has been argued by previous studies [16], [17], [18], [19],
[20], [21] with different peel-off algorithms. However, in
HetRCNA, the RCNA region vectors are sparsified that the
correlation of closely located RCNAs are broken by adding
zeros into continuous alternation regions. Future investiga-
tion on designing peel-off algorithm to sparsified subgroup-
specific RCNAs is warrant.

In conclusion, we present HetRCNA, a biclustering
based algorithm to simultaneously detect cancer subgroups
and their related RCNAs. Not only used for cancer sub-
group-RCNA finding, HetRCNA can be generalized for
many other group-feature labeling problems of any matrix-
type data. We expect it will be utile for heterogeneous can-
cer subgroup labeling and subgroup-specific genome inter-
pretation, and show its potential assistance on developing
individualized therapy of heterogeneous cancers in clinical
diagnosis and treatment.
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