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ABSTRACT

Sparse Mixture-of-Experts (SMoE) is a promising paradigm that can be easily tai-
lored for multi-task learning. Its conditional computing nature allows us to organ-
ically allocate relevant parts of a model for performant and efficient predictions.
However, several under-explored pain points persist, especially when considering
scenarios with both multiple modalities and tasks: ① Modality Forgetting Issue.
Diverse modalities may prefer conflicting optimization directions, resulting in
ineffective learning or knowledge forgetting; ② Modality Fitting Issue. Current
SMoE pipelines select a fixed number of experts for all modalities, which can
end up over-fitting to simpler modalities or under-fitting complex modalities; ③
Heterogeneous Learning Pace. The varied modality attributes, task resources (i.e.,
the number of input samples), and task objectives usually lead to distinct optimiza-
tion difficulties and convergence. Given these issues, there is a clear need for a
systematic approach to harmonizing multi-model and multi-task objectives when
using SMoE. We aim to address these pain points, and propose a new Sparse MoE
framework for Multi-Modal Multi-task learning, a.k.a., SM4, which (1) disentan-
gles model spaces for different modalities to mitigate their optimization conflicts;
(2) automatically determines the modality-specific model size (i.e., the number of
experts) to improve fitting; and (3) synchronizes the learning paces of disparate
modalities and tasks based on training dynamics in SMoE like the entropy of
routing decisions. Comprehensive experiments validate the effectiveness of SM4,
which outperforms previous state-of-the-art across 3 task groups and 11 differ-
ent modalities with a clear performance margin (e.g., ≥ 1.37%) and a substantial
computation reduction (46.49% ∼ 98.62%). Code is included in the supplement.

1 INTRODUCTION

Multi-modal multi-task learning (a.k.a., M3TL) aims to resolve different objectives simultaneously.
Each objective takes various modalities as input, which is a common scenario required in real-
world applications like robotics (Sun et al., 2022) and auto-driving systems (Lee, 2021). Many prior
works have extended unimodal transformers (Vaswani et al., 2017) to work on multiple multi-modal
tasks (Su et al., 2020; Cho et al., 2021; Hu & Singh, 2021; Lu et al., 2019; Akbari et al., 2021). In
their ideal setup, the information from different modalities and tasks prompts each other for better
performance. However, the optimization complexity of this sophisticated system limits the develop-
ment of effective solutions (Sener & Koltun, 2018; Peng et al., 2022). Recently, the sparsely-gated
Mixture-of-Experts (SMoE) method was identified as a powerful tool for these complex training
dynamics of multi-task (Fan et al., 2022; Zhou et al., 2022a; Gupta et al., 2022; Hazimeh et al.,
2021a; Ma et al., 2018a; Chen et al., 2023b) or multi-modal (Shen et al., 2023b;a; Sun et al., 2023)
learning. SMoE selects a subset of experts for a task or modality per input sample, and has led to
state-of-the-art performance (Mustafa et al., 2022; Chen et al., 2023a).

Despite preliminary success in M3TL, when we try to model multiple modalities and multiple tasks
through a single network (e.g., SMoE), several under-explored pain points persist: ① Modality For-
getting Issue. Considering a model trained on multiple modalities, diverse modalities can prefer
conflicting optimization directions within shared parameters. For instance, recent works have shown
that there are negative cosine similarities between gradients from different modalities (Alamri et al.,
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2019; Javaloy et al., 2022; Chen et al., 2020; Wang et al., 2020a). Such gradient disagreement within
a network can lead to inferior learning, or, in the worst case, the multi-modal model can degener-
ate into a “single-modal” model that only learns the modality with dominant gradients (Peng et al.,
2022). ② Modality Fitting Issue. The vanilla SMoE architecture activates a fixed number of experts
to deal with each input. However, some modalities are easier to learn than others. Using too many
experts for a simple modality may cause overfitting, while too few experts for complex modalities
may cause underfitting (Wang et al., 2020a). As more modalities are introduced, this weakness
likely grows. ③ Heterogeneous Learning Pace. Current SMoE solutions also have yet to adapt to
different objectives between tasks. In reality, the objectives can vary substantially. Consider writing
robots, for example. A writing robot must handle two tasks: object pose prediction and digit num-
ber classification. Pose prediction uses images, force sensors, proprioception sensors, and robotic
control signals as observations to predict the object’s position after the robot executes the control
signal. Digit classification uses images and audio to output the corresponding number. Each objec-
tive differs significantly in terms of modality attributes, task resources, and task objectives, which
leads to great heterogeneity in their optimization pace or convergence (Zhang & Yeung, 2011; Sun
et al., 2020; Kollias et al., 2021).

In this paper, we incorporate innovative designs to upgrade the original SMoE algorithm for Multi-
Modal Multi-task learning, herein termed SM4, tackling the aforementioned barriers. Specifically,
SM4 facilitates learning from three perspectives: ① (Model) SM4 customizes the SMoE layer into
both the feed-forward networks (FFN) and multi-head self-attention modules (MSA) in transform-
ers, which sufficiently disentangles network parameter space for different modalities and tasks. As
shown in Figure 2, the gradient conflict is then greatly reduced. ② (Routing) An adaptive expert allo-
cation mechanism is proposed to automatically determine the number of selected experts (or model
capacity) for different modalities. SM4 monitors the modality-specific training dynamics (e.g., vali-
dation loss), which serve as a reliable indicator to activate more or less experts to mitigate possible
under-fitting or over-fitting, respectively. Figure 2 shows an example of how SM4 mitigates over-
fitting in a simple modality. ③ (Optimization) For each modality in one task, SM4 adopts adaptive
learning paces based on the convergence status of modality-specific routing policies to synchronize
the optimization of multiple objectives. Our contributions can be summarized as follows:

⋆ We propose SM4, a framework for multi-modal multi-task learning, which contains tailored
SMoE layers for replacing FFN and sparse mixture-of-attention layers as the alternative for
vanilla MSA modules in transformers. This disentangles network parameters and alleviates
gradient conflicts between different modalities and tasks.

⋆ We identify two essential factors in M3TL, i.e., modality fitting issue and heterogeneous
learning pace, which are unstudied by existing SMoE approaches. We then propose corre-
sponding adaptive expert allocation and adaptive learning paces.

⋆ Extensive empirical investigations over 3 representative task groups and 11 diverse modal-
ities consistently validate the effectiveness of SM4. Our method surpasses dense models
with similar computational costs, and shows substantial performance improvements; SM4

outperforms existing M3TL SOTA using only 1.38% to 53.51% of their computational cost.

2 RELATED WORK

Multi-modal and Multi-task Learning. There has been a long history of work on multi-modal
learning (Makadia et al., 2008; Weston et al., 2011; Frome et al., 2013; Socher et al., 2013; Antol
et al., 2015; Goyal et al., 2017; Ramesh et al., 2022; Saharia et al., 2022; Agrawal et al., 2017;
Yang et al., 2016; Dai et al., 2022; Jaegle et al., 2021; 2022) and multi-task learning (Xue et al.,
2007; Strezoski et al., 2019; Zamir et al., 2018; Søgaard & Goldberg, 2016; Hashimoto et al., 2017;
Fan et al., 2022; Ye & Xu, 2023; Chen et al., 2023a). Recently, more deep learning models expect
integrating different modal and different tasks into one unimodal network (Su et al., 2020; Cho et al.,
2021; Hu & Singh, 2021; Lu et al., 2019; Akbari et al., 2021). Their basic motivation is to borrow
knowledge or information from the diverse modalities or tasks to help each other. For instance,
VATT (Akbari et al., 2021) uses a shared model on video, audio, and text data to perform audio-only,
video-only, and image-text retrieval tasks, and HighMMT (Liang et al., 2022) explores modalities
beyond the old-school studies of language, vision, and audio to other common modalities such as
tabular, time-series, sensors, graphs, and set data, in a multi-task environment. However, there is
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Figure 1: The overall procedure of the proposed framework SM4: (a) Unimodal Encoder. SM4 first stan-
dardizes each modality into a sequence, and the unimodal encoder converts each sequence to sequences of the
same length. We concatenate these modality tokens on the sequence dimension within each task. Then, the
transformer layers of SM4 are performed for multi-task learning. (b) SMoE & SMoA Layer. Our SM4 involves
replacing FFN and MSA modules in transformers with SMoE layers and sparse mixture-of-attention (SMoA)
layers to split network parameters that mitigate gradient conflict among different modalities and tasks.

no free lunch; unimodal networks introduce more conflicts and complexity during model training.
Alamri et al. (2019); Goyal et al. (2017); Poliak et al. (2018); Thomason et al. (2018) show that
increasing modalities is not always beneficial. Specifically, the input from different modalities at one
optimization object may result in opposite gradient updates (Javaloy et al., 2022; Akbari et al., 2023),
which is also observed when inputting the same modality but different learning tasks (Chen et al.,
2020). Furthermore, multi-modal networks are often prone to overfitting the easy modalities and
impeding performance (Wang et al., 2020a). The various modalities, task resources, and objectives
result in unique optimization challenges.

Sparse Mixture-of-Experts (SMoE). SMoE as a special instance of conditional computing net-
works (Jacobs et al., 1991; Jordan & Jacobs, 1994; Chen et al., 1999; Yuksel et al., 2012), has gained
increasing popularity in both vision (Riquelme et al., 2021; Lou et al., 2021; Eigen et al., 2013;
Ahmed et al., 2016; Gross et al., 2017; Wang et al., 2020b; Yang et al., 2019; Abbas & Andreopou-
los, 2020; Pavlitskaya et al., 2020) and language (Lepikhin et al., 2021; Kim et al., 2021b; Shazeer
et al., 2017a; Zhou et al., 2022b; Zhang et al., 2021; Zuo et al., 2022; Jiang et al., 2021) domains.
It contains a group of sub-models (i.e., experts) and activates them in an input-dependent fashion.
Pioneering investigations leverage its conditional computing nature to assign different model pieces
to their most relevant task (Ma et al., 2018b; Aoki et al., 2021; Hazimeh et al., 2021b; Kim et al.,
2021a; Fan et al., 2022; Ye & Xu, 2023; Chen et al., 2023a) or modality (Kudugunta et al., 2021;
Mustafa et al., 2022) in multi-task or multi-modal learning. To be specific, Ma et al. (2018b); Aoki
et al. (2021); Hazimeh et al. (2021b) introduce task-dependent routing policies to select important
sub-models given a task and its input sample. Positive results are presented on small-scale uni-
modal applications such as classification for medical signal process (Aoki et al., 2021), digital num-
ber recognition (MNIST) (Hazimeh et al., 2021b), and recommendation system (Ma et al., 2018b).
Mustafa et al. (2022) explores the opportunity of vanilla SMoE in multi-modal contrastive learning.
Fan et al. (2022) and Kim et al. (2021a); Rajbhandari et al. (2022); He et al. (2021; 2022) contribute
to efficient SMoE frameworks from software-hardware co-design and system angles, respectively.

3 METHODOLODY

3.1 OVERALL PROCEDURE OF THE SM4 FRAMEWORK

The overall procedures of SM4 are described in Figure 1. Our proposal processes the multi-task
multi-modal learning in a two-step framework. (1) Unimodal Encoder. We first process all modali-
ties from multi-tasks into sequences; the Unimodal Encoder converts each modality into sequences
with the same length and concatenates modalities along the sequence dimension for each task. We
refer the details of Unimodal Encoder to Appendix A.1. (2) SMoE & SMoA layer. Then, these se-
quential tokens are fed into the transformer layers with SMoE and SMoA, followed by task-specific
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Figure 2: Encompassing comparison between SM4 with baseline which the dense network with the same Flops.
a. The distribution of cosine distance between training gradients computed from “control” and “propriocep-
tion” modalities in PUSH dataset. The gradient is collected from the last transformer layer. More positive
cosine distances denote less gradient conflict. b. The training loss curves, each method collects the loss curve
of the “image” and “set” modalities in dataset ENRICO. c. The generalization gap of modalities “image” and
“set” in dataset ENRICO. A lower generalization gap (the difference between Losstraining, and Lossvalid)
indicates better generalization performance (i.e., better modality fitting). d. The SMoE routing distribution in
dataset ENRICO. Here, we visualize the routing distribution of modality “image” in early and later iterations.

heads. In SMoE and SMoA, routers choose the most relevant experts and aggregate their features
for different modalities. The number of selected experts is dynamically decided according to the
in-time training dynamics via AEA, as detailed below. Each modality’s learning pace in one task is
adapted via the convergence status of the routing policy from the corresponding modality by ALP.

3.2 SPARSE MIXTURE OF EXPERTS/ATTENTION IN SM4

Sparse Mixture of Experts (SMoE) SMoE (Shazeer et al., 2017b) has been proposed to enhance
model capacity while maintaining low-cost per-inference. In this paper, we use SMoE to disentangle
network parameter space for different modalities and tasks. The SMoE layer includes a router
network R and several experts f1, f2, . . . , fE, where E denotes the number of experts. For each
input embedding x, R activates the top-k expert networks with the largest scores R(x)i, where i is
the expert index. The SMoE can be formally denoted as follows:

y =

k∑
i=1

R(x)i · fi(x),R(x) = TopK(softmax(g(x)), k), (1)

TopK(v, k) =

{
v if v is in the top k
0 otherwise

(2)

where fi(x) represents the feature produced by expert fi, which is weighted by R(x)i to form the
final output y. g is the learnable network within a router R, and is commonly is a small FNN with
one to few (Shazeer et al., 2017b; Riquelme et al., 2021). TopK sets all vector elements to zero
except the elements with the largest k values. In SM4, we duplicate the feedforward network as
SMoE expert networks shown in Figure 1 (b).

Sparse Mixture of Attention (SMoA) We denote the Mixture-of-Experts in the multi-head self-
attention (MSA) module as Sparse Mixture-of-Attention (SMoA). As depicted in Figure 1 (b), we
replicate layers to establish expert networks that generate query, key, and value features. Each group
of experts in SM4 is equipped with its own routing policy for outputting queries, keys, or values.

The SMoE and SMoA modules separate network parameter space sufficiently for different modal-
ities and tasks. As supported by our experiments in Section 4, this model architecture mitigates
gradient conflicts and enhances performance, which is more suitable for M3TL. More details about
SMoE and SMoA, please refer to Appendix A.6

3.3 ROUTING POLICY DESIGN IN SM4

Routing Policy Handling multiple modalities without conflicting gradients by disentangling pa-
rameters intrinsically relies on a successful routing policy. In SM4, the routing policy used within
expert groups is shared between tasks and modalities. Specifically, for all modalities and tasks, there
are four routing policies among SMoE and SMoA. One uses SMoE, and three use SMoA (query,
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key, and value routing policies, respectively). Formally, the routing policy for the modality j is:
Rj(x) = TopK(softmax(g(x)), kj), (3)

where kj is the modality-specific number of activated experts, and the network g of the router is
shared across all modalities and tasks. The routing policy frequently assigns large weights to the
same few experts. To combat this imbalance loading phenomenon (Chi et al., 2022), we implement
the load and importance balancing loss following Shazeer et al. (2017b). This effective routing
policy sends modality embeddings to compatibility experts, which generate high-quality modality
features. This helps to solve tasks and separate the network parameter space of different modalities
and tasks. As supported by Figure 2 a, the disentangled model parameter space results in effective
minimized gradient conflict between modalities, enjoying an improved performance (Section 4).

While SMoE and SMoA offer some benefits alone, they are not the silver bullet for multi-modal
multi-task learning. Two issues still persist: ❶ Modality Fitting Issue. The fixed model capacity in
classical SMoE design possibly leads to uneven fitting speeds across modalities. ❷ Heterogeneous
Learning Pace. The gigantic discrepancy between tasks and modalities can lead to challenges in
convergence and optimization pace. Targeting these two obstacles, we propose two solutions that
concentrate on SMoE routing and training optimization.

Adaptive Expert Allocation (AEA) The optimal fitting pace for each modality may alter sig-
nificantly due to the difference in modality complexities (Wang et al., 2020a). In SM4, we use
modality-specific kj to determine the network size of each modality. However, as the number of
tasks and modalities increases, computing kj manually induces high training costs and potential
errors (inappropriate kj can exacerbate overfitting or underfitting for each modality).

Therefore, we adopt an automatic algorithm AEA to determine an appropriate k for specific modal-
ities in a data-driven manner. As shown in Figure 2 c, we can tune kj according to the modality-
specific validation loss. When the validation loss stops decreasing, we increase the activated model
size by increasing k. After several training iterations, if the validation loss is still larger than the pre-
vious best validation loss, we reduce the selected expert number k for the modality. Ultimately, the
modality-specific k is adopted until the end of training. We show the details of AEA in Algorithm 2.
Figure 2 c shows the AEA effectively addressing the Modality Fitting Issue.

Adaptive Learning Pace (ALP) The remaining convergence and optimization pace asynchroniza-
tion is addressed by our proposed ALP. As observed in Figure 2 d, the modality-specific routing
policy status is unstable in early training iterations and stabilizes in later iterations. Therefore, we
monitor the routing distribution entropy as an indicator of routing policy status and, accordingly,
decay the learning rate where the modality-specific routing policy entropy is high. As shown in
Figure 2 b, ALP lets us align different learning paces between modalities, which synchronizes the
optimization of multiple objectives. Please refer to the details of ALP in Algorithm 3.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets and Tasks. To evaluate the proposed method, we conduct experiments on MultiBench, a
large-scale multi-modal multi-task benchmark containing more than 10 modalities and 20 prediction
tasks across 6 research areas. As shown in Table 1, we follow the HighMMT choose 7 tasks in
MultiBench and train 3 multi-modal multi-task models from the combinations of these tasks for the
small, medium, and large settings, respectively. For more details, see Appendix C.

Baselines and Configuration Details. We consider two state-of-the-art (SOTA) baselines in multi-
modal multi-task learning: MultiBench (Liang et al., 2021) and HighMMT (Liang et al., 2022).
Particularly, the released code of HighMMT is implemented to achieve the desired performance
with provided hyperparameters. MultiBench contains 20 different models for every task; we report
the performance range of these models for each adopted task. We display our model architecture
overview in Figure 1. We conduct all of our experiments on the NVIDIA A30 Tensor Core GPU.
Please refer to Appendix A.5 for more details on network configuration and training setup.

Evaluation Metrics. We use the standard evaluation metrics provided by MultiBench Liang
et al. (2021). Specifically, following Vandenhende et al. (2022), we use metric ∆ to evaluate

5



Under review as a conference paper at ICLR 2024

Table 1: We follow the setting of HighMMT Liang et al. (2022), which uses 3 multi-model multi-
task training to evaluate the performance of the SM4. These setups include tasks with different
modality inputs, predicting objectives, research areas, and dataset size.

Setting Dataset Modalities Prediction Task Research Area Size

Small PUSH image,force,proprioception,control object pose Robotics 37, 990
V&T image,force,proprioception,depth contact Robotics 147, 000

Medium
ENRICO image,set design interface HCI 1, 460

PUSH image,force,proprioception,control object pose Robotics 37, 990
AV-MNIST image,audio digit Multimedia 70, 000

Large

UR-FUNNY text,video,audio humor Affective Computing 16, 514
MOSEI text,video,audio sentiment Affective Computing 22, 777
MIMIC time-series,table ICD-9 codes Healthcare 36, 212

AV-MNIST image,audio digit Multimedia 70, 000

Table 2: Performance comparison, parameter usage, and FLOPS of our model, HighMMT (SOTA
multi-modal multi-task learning method on MultiBench benchmark), and all the 20 models imple-
mented in MultiBench (their performance ranges are reported for each dataset) in three settings.

Setting Method Dataset Performance ∆(%) # Parameters (M) FLOPS (G)

Small

MultiBench Models PUSH ↓ 0.574 ∼ 0.290 - 1.09 ∼ 135 5.20 ∼ 25.11V&T 93.30 ∼ 93.60

HighMMT PUSH ↓ 0.445
0.00

0.89 5.14
V&T 96.10 0.85 32.48

SM4 PUSH ↓ 0.331
12.93

0.27 2.59
V&T 96.33 0.25 17.38

Medium

MultiBench Models
ENRICO 44.40 ∼ 51.00

- 0.14 ∼ 525.70 0.25 ∼ 314.13PUSH ↓ 0.574 ∼ 0.290
AV-MNIST 68.50 ∼ 72.80

HighMMT
ENRICO 53.10

0.00
0.58 79.48

PUSH ↓ 0.600 0.63 21.60
AV-MNIST 68.48 0.52 0.95

SM4
ENRICO 71.58

20.19
1.23 1.10

PUSH ↓ 0.475 1.25 2.33
AV-MNIST 71.86 1.23 0.41

Large

MultiBench Models

UR-FUNNY 60.20 ∼ 66.70

- 0.19 ∼ 31.50 0.15 ∼ 21.60
MOSEI 76.40 ∼ 82.10
MIMIC 67.60 ∼ 68.90

AV-MNIST 65.10 ∼ 72.80

HighMMT

UR-FUNNY 62.00

0.00

0.52 1.51
MOSEI 78.40 0.52 1.65
MIMIC 65.60 0.52 0.67

AV-MNIST 70.60 0.52 0.95

SM4

UR-FUNNY 64.24

2.28

0.76 0.38
MOSEI 79.47 0.76 0.53
MIMIC 67.91 0.76 0.15

AV-MNIST 71.05 0.76 0.43

the performance gap between our model and baseline averaged over all the tasks in each set:
∆ = 1

T

∑T
i (−1)li(Mm,i − Mb,i)/Mb,i, where Mm,i and Mb,i denote the performances of our

SM4 and baseline model, respectively; T is the number of considered tasks; and li = 1 if a higher
metric value means better performance otherwise li = −1. The results of HighMMT and SM4 are
reported by the mean of three independent runs. For the min and max performances of MultiBench,
we reuse the numbers directly from its publication to have a comprehensive comparison.

4.2 PERFORMANCE COMPARISON OF SM4 WITH EXISTING MULTIMODEL MODELS

We compare our model’s performance with SOTA HighMMT Liang et al. (2022) as well as 20 multi-
modal models implemented in benchmark MultiBench Liang et al. (2021). The comparison results
are collected in Table 2, from which we make the following observations. ① Our SM4 demonstrates
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Table 3: Comparison of routing design. SM4 makes use of the single router; Multi-router, R-Multi-
router, P-Modality-router, and P-Task-router mean the adoptions of task-specific and/or modality-
specific routing networks in SMoE and SMoA, respectively. Further investigations of the combina-
tions between the multi-routing networks and the single-routing networks are in Appendix B.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 (ours) 71.58 0.475 71.86 20.19

Multi-router SM4 71.00 0.684 71.03 7.81
R-Multi-router SM4 64.38 0.995 71.33 -13.48
P-Modality-router SM4 68.72 0.786 70.70 0.54
P-Task-router SM4 68.38 0.833 70.69 -2.25

great advantages with a clear performance margin compared to all baselines. Specifically, compared
to the multi-modal multi-task model HighMMT, SM4 achieves improvements up to 12.93%, 20.19%,
and 2.28% for small, medium, and large settings, respectively. These empirical results validate
the effectiveness of our model to address the cross-task conflict and assign expert sub-networks to
conduct each prediction task. ② SM4 adaptively allocates adequate amounts of model parameters
and fewer FLOPS to resolve the different tasks. For example, our method uses fewer parameters
compared to HighMMT in the easy, small setting, e.g., 1.38% ∼ 53.51% parameter saving, while
we use larger parameter budgets in the challenging medium and large settings. The required FLOPS
of SM4 is always smaller than that of HighMMT. In other words, we have more efficient inference
per task. ③ SM4 delivers significant improvements and creates SOTA performances for some tasks.
Notably, at the prediction task on ENRICO, SM4 obtains 20.58% improvement compared with the
best-performing model on MultiBench.

4.3 DETAILED INVESTIGATIONS OF SM4

Ablation Study: Single-router v.s. Multi-router. Unlike the routing policy design in SM4, we
notice that earlier works have investigated task-specific or modality-specific routing networks in
learning the routing policy individually for different modalities or tasks in MTL Ma et al. (2018b);
Aoki et al. (2021); Hazimeh et al. (2021b); Kim et al. (2021a). Therefore, we ask What kind of
routing policy is suitable for M3TL? Under the medium setting with framework SM4, we experiment
with 4 multi-router designs to identify the optimal routing policy. We use modality-specific routers
in SMoA and task-specific routers in SMoE, which are named as Multi-router SM4. Alternatively,
in R-Multi-router SM4, we utilize modality-specific routers in SMoE and task-specific routers in
SMoA. In SMoA and SMoE, we employed task-specific routers as P-Task-router SM4, and modality-
specific routers as P-Modality-router SM4, respectively. From our results in Table 3, ① we observe
that the adopted single router consistently outperforms the other routing policies. ② Specifically,
all the task-specific routers perform unpromisingly in PUSH, which contains four different data
modalities. We extend this and draw similar conclusions in Appendix B.

Table 4: Ablation of SMoE and SMoA. Notably, the “Dense Model” has the same computation cost with SM4.
The results of the dense model with the same network capacity are in Appendix B.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 (ours) 71.58 0.475 71.86 20.19
- w/o SMoA 69.06 1.227 70.26 −23.92
- w/o SMoE 68.84 0.818 70.94 −1.02
Dense Model 65.98 1.342 70.49 −32.14

Ablation Study: MoE. To investigate the contribution of MoE, the ablation studies are conducted
with SM4 on the medium setting. In particular, we consider three ablated models: SM4 w/o SMoA:
removing SMoA from the MSA module. SM4 w/o SMoE: removing SMoE from FFN layer. Dense
model: using the same computation cost with SM4 but without any MoE components. From Table 3,
we make the following observations: ① Compared with SM4, the ablation of any MoE component
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Table 5: Ablation studies. Hyperparameter effects of the total number of experts (i.e., N ) on SM4.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
N = 32 (SM4) 71.58 0.475 71.86 20.19

N = 4 67.92 1.250 71.33 −25.41
N = 8 67.69 0.975 70.93 −10.51
N = 16 69.75 0.771 70.45 1.89
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Figure 3: The distribution of Gradient Positive Sign Purity (left), and the inter-task affinity of the
‘ENRICO’ to the ‘PUSH’ task (right).

significantly discounts model performance. Specifically, discarding SMoA has a more acute drop
compared to discarding SMoE. This verifies our motivation for applying SMoA, which improves
the model’s routing capability. ② Compared with the dense model, SM4 achieves a noticeable per-
formance gain (e.g., ≥ 1.37%), suggesting the benefit from the distanglement of parameter spaces.

Ablation Study: Expert counts. For the SMoE and SMoA layers, the total number of experts N
is one of the most significant hyper-parameters. We show the detailed performance in Table 5 and
observe that increasing N improves model performance but costs more required memory. Choosing
N appropriately is crucial for SM4.

In-Depth Discussion: Do our proposals address the gradient conflict between modalities and
tasks? Yes, SM4 is specialized to disentangle the task conflict by harmonizing the updating gradient
of different tasks. We examine the following two metrics.

▷ Gradient positive sign purity (GPSP). This metric quantifies the direction consistency of backward
gradients of different tasks Chen et al. (2020). Mathematically, we denote GPSP as P and record
the gradient of task i as ∇Wi. Metric GPSP is defined as P =

∑
i ∇Wi/

∑
i |∇Wi|, which is further

bounded into range [0, 1]. Specifically, P with a value closing to 0 or 1 indicates that the gradients
from different tasks are not acutely contradictory to each other. We compare GPSP distributions
of SM4, SM4 without MoE on self-attention, SM4 without MoE on FFN, and the dense model. In
Figure 3, we discretize the values of P into 5 intervals and then count the number of parameters that
fall within each interval. Compared with other models, the GPSP values of SM4 are accumulated
more at the intervals of [0.6, 0.8] and [0.8, 1.0]. This validates the effectiveness of splitting the
parameter space, where only a small fraction of conflicting parameters are running for specific tasks.

▷ Inter-task affinity. We denote inter-task affinity with Zi→j , which is the influence of parameter
update from task i to task j Fifty et al. (2021). The higher value of Zi→j means the parameter
update is positive for task j; otherwise, task j suffers from an antagonistic updating. On the medium
setting, we compare the inter-task affinity of task ENRICO to task PUSH for three backbones: SM4,
multi-router SM4, and dense model. As shown in the right part of Figure 3, we observe the inter-
task affinities of SM4 and multi-router SM4 tend to be higher than that of the dense model. This
finding shows that MoE can restrain the gradient conflict of MTL. For more discussions on GPSP
and inter-task affinity, please refer to Appendix C.4 and Appendix C.5.

In-depth Discussion: Whether our proposals address the fitting issue between modalities? Yes,
we examine this question by visualizing the training loss dynamic (second subfigure) and general-
ization gap dynamic (third subfigure) in Figure 2. Note that the generalization gap is defined by the
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Figure 4: Analysis on the expert selection visualization produced by the SM4 in the large setting. The first row
shows the expert selection in the “AV-MNIST” dataset, and the second row shows the expert selection in the
“MOSEI” dataset. For more results about expert selection, please refer to Appendix C.7.

difference between training loss and validation loss, where a higher value means a good general-
ization performance on the validation set. ① It is observed baseline HighMMT underfits in specific
modality, which has the highest training loss accompanied with a lower generalization gap. In
contrast, another modality is gradually overfitted along with the training process in HighMMT. ②
SM4 delivers comparably superior results in all the modalities, which addresses the key challenge
of under/over-fitting in multi-modal learning. SM4 consistently outperforms highMMT by obtaining
superior generalization gaps in all modalities.

In-depth Discussion: Is the expert selection specialized to the different modalities and tasks?
We show the routing distributions for different modalities and tasks of the medium setting in Fig-
ure 4, from which we make the following observations. ① There is an overall balanced loading
across the different modalities in SMoA, but it shows an imbalance in some of the experts in SMoE.
For example, expert 5 prefers modality audio in the AV-MNIST task and prefers modalities of au-
dio as well as text in the MOSEI task. ② The expert selection is specialized to the different tasks.
Considering the SMoA (Query) layer, we observe the AV-MNIST task leverages the unique experts
4 and 13 while the MOSEI task activates expert 6. These empirical studies show SM4 can optimize
how many (i.e., adaptive network capacity) and which (i.e., dynamic routing) experts to activate for
each task and modality.

5 CONCLUSION AND LIMITATION

This paper introduces SM4, using Sparse Mixture-of-Experts to address the forgetting, fitting, and
learning issues in multi-modal multi-task learning. By tailoring the Mixture-of-Experts into both
the self-attention and the feed-forward networks of a transformer backbone, we achieve the fol-
lowing. First, the Sparse Mixture-of-Attention (SMoA) and the Sparse Mixture-of-Experts (SMoE)
sufficiently disentangle the network parameter space to mitigate the gradient conflict between dif-
ferent modalities and tasks. Second, we design an adaptive expert allocation mechanism to de-
termine the number of selected experts in use for different modalities, resulting in unified fitting
speeds between modalities. Third, we adapt the learning pace by considering the convergence status
of modality-specific routing policies to synchronize the learning paces of different modalities and
tasks. Comprehensive experiments show that the proposed SM4 surpasses the SOTA with a fraction
of the computation cost (+12.93%/+20.19%/+2.28% M3TL performance); our computation cost is
only 1.38% ∼ 53.51% of the SOTA model. Our experiments on MoE also provide rational perspec-
tives for designing multi-modal multi-task learning neural network architectures. The limitation of
our work is that the proposed SM4 is only evaluated on academic datasets. Moving forward, we will
evaluate SM4 on more practical tasks like in-door robots and autonomous vehicles. Also, we expect
to expand our model size for larger-scale tasks and more kinds of modalities in future work.
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REPRODUCIBILITY STATEMENT

The authors have taken great care to ensure the reproducibility of algorithms and results presented
in the paper. Section 4 and Appendix C provide detailed information about the experimental set-
tings. This paper analyzes 7 datasets within one benchmark, with comprehensive information about
each dataset available in Table 1 and Appendix C.1. Additionally, the evaluation metrics have been
explained in Section 4, offering a clear framework for assessing the results of the proposed method.
We highlight that our performance of HighMMT is produced with the official implementation from
HighMMT’s repository (HightMMT). We strictly follow the default configurations reported in their
paper, as shown in Tables 8, 9, and 10. For example, we use learning rates of 0.0005, 0.001, and
0.0008 for the small, medium, and large settings, respectively. Additionally, supplementary material
includes codes and reproduction scripts of SM4 and HighMMT.
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A MODEL DETAILS

A.1 PROCESS DATA INTO SEQUENCE

Following the process of Jaegle et al. (2022), we first standardize each input into a sequence.
For each modality Jaegle et al. (2022), we define some hyperparameters (such as max freq,
num freq bands, and freq base) for the Fourier positional encoding. Fourier transformations get
this positional information. For modalities such as text and time-series, they are already sequential
data. We apply 1D positional encoding for these modalities x ∈ Rbm×tm×dm , where bm, tm, dm
are the batch size, sequence length, and input dimension of current modality, respectively. For im-
age and similar modalities, we follow the processing procedure of Dosovitskiy et al. (2021), which
breaks each input into hm × wm patches and flattens it as a sequence of p2 regions. We use 2D
positional encoding for image and similar modalities input x ∈ Rbm×hm×wm×dm , where hm ×wm

is the number of patches. For image modality, the dm is the number of pixels within a patch. For
video and similar modalities, we treat each frame data as the image modality, therefore we apply 3D
positional encoding for input x ∈ Rbm×lm×hm×wm×dm , where lm is the number of the frame. In
the other modalities, such as table and graph, we treat each element in the table/graph as an element
in the sequence and use a 1D positional encoding.

After transposing inputs into sequence data, we show the subsequent processing procedure in Al-
gorithm 1. The ‘max modality dim’ equals to maxm∈M (dm + dpm), where dpm is the dimension
of Fourier positional encoding for the corresponding modality. The one-hot encoding is defined as
em ∈ R|M |, where |M | is the number of all modalities involved.

Algorithm 1 Data Preprocess in Python style
# x: the input tokens of specific modality
def data_preprocess(x,modality, max_modality_dim):

# get positional encoding information
# pos_dim: indicates 1D/2D/3D positional encoding
enc_pos = fourier_encode(modality.pos_dim,

modality.max_freq,
modality.num_freq_bands,
modality.freq_base)

# add padding for modalities with smaller input dimension
# max_modality_dim: the maximum input dimension overall modalities
# input_dim: the input dimension of the current modality
padding=zeros(max_modality_dim-modality.input_dim)
# modality one-hot encoding
# modality_index: the index of current modality
modality_encodings = one_hot(modality.modality_index)
# construct final input
modality_input = concatenate(x, padding, enc_pos, modality_encodings)
return modality_input

A.2 THE UNIMODAL ENCODER

The result of Algorithm 1 is then fed into the unimodal encoder layer. We display the details of the
unimodal encoder layer in Figure 5. The sequence length T of different modalities are different, as
T can be tm, hm×wm, or lm×hm×wm. However, the cross-attention between the input sequence
and latent input will convert the sequence length from different modalities into the same value. For
example, the input modality sequence is x ∈ RTm×D and the latent input is z ∈ RN×C . After
these three linear layer, we got K,V ∈ RTm×X and Q ∈ RN×X . Following the scaled-dot product
attention:

Attention(Q,K,V) = softmax(
QKT

√
C

)V, (4)

from which we can know the dimension after the attention is Attention(Q,K,V) ∈ RN×X . There-
fore, the sequence length of the output depends on the sequence length of the latent input, and the
feature dimension depends on the unimodal encoder’s hidden size, which is independent of the shape

17



Under review as a conference paper at ICLR 2024

Modality
Specific

Input
Sequence

T

D

Latent
Input

C

N

K

V

Q

L
in

ea
r

L
in

ea
r

L
in

ea
r

Sc
al

ed
-d

ot
Pr

od
uc

t
A

tte
nt

io
n

L
in

ea
r

Se
lf

-A
tte

nt
io

n
E

nc
od

er
L

ay
er

Output

X

N

Cross Attention Layer

Figure 5: The details of the unimodal encoder layer. The D and T are the sequence length and
feature dimension of the modality-specific input sequence. The N and C are the sequence length
and the number of dimensions of latent input. The latent input is the learnable parameters shared
across different modalities and tasks.

of the input modality sequence. The hidden dimension of the self-attention encoder layer equals the
previous layer’s cross-attention layer.

A.3 DETIALS OF ADAPTIVE EXPERT ALLOCATION

The python style pseudo code for the Adaptive Expert Allocation (AEA) algorithm 2. The AEA is
executed during the multi-modal multi-task learning.

Algorithm 2 Adaptive Expert Allocation (AEA) in Python style
def adaptive_expert_allocation(modality_set, model, modality_topk):

for modality in modality_set:
improved = True
loss_val = inf
while True:

# if the valid loss does not decrease iterations
if loss_decrease(loss_val):

if not improved:
break

else:
n_experts = n_experts + 1
improved = False

# training model 1 epoch
loss_val_i = train(model)
if loss_val_i < loss_val:

loss_val = loss_val_i
improved = True

n_experts = n_experts - 1
# get the top-k expert number
modality_topk[modality]=n_experts
continue_train(model) # continue training the target number of

epochs
return modality_topk

A.4 DETAILS OF ADAPTIVE LEARNING PACE

The python style pseudo code for the Adaptive Learning Pace (ALP) algorithm 3. The ALP adjusts
the learning pace of each modality by out modality-specific learning rate weights.
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Algorithm 3 Adaptive Expert Allocation (AEA) in Python style
def adaptive_learning_pace(modality_set, model):

entropys = []
for modality in modality_set:

entropys.append(routing_entropy(model, modality))
return 1 - entropys.softmax()

A.5 THE MODEL AND TRAINING SETUPS

We list hyperparameters for the training and the model in Table 14, Table 15, and Table 16 for small,
medium and large settings, respectively.

A.6 EXPERT GROUP

Our framework comprises four distinct expert groups: one group, situated within SMoE, consists
of experts duplicating feedforward networks. Meanwhile, SMoA includes three expert groups, each
dedicated to duplicating the query, key, and value networks, respectively. Experts are grouped by
the nature of where they are duplicated from.

B SINGLE-ROUTER V.S. MULTI-ROUTER IN SM4

SM4 use SMoE and SMoA to disentangle the network parameter space. Moreover, several works Ma
et al. (2018b); Aoki et al. (2021); Hazimeh et al. (2021b); Kim et al. (2021a); Kudugunta et al.
(2021); Mustafa et al. (2022); Kim et al. (2021a) investigate single-router or multi-router for multi-
task learning or multi-modal learning. Therefore, we also investigate the multi-router SM4 for M3TL.
With those in mind, we ask a much more significant question:

What kind of router design is appropriate for SM4 to M3TL?

For our proposed SM4, we can use Single-router and Multi-router in both the self-attention and FFN
layers, respectively. Meanwhile, the Multi-router can also be divided into the modality-specific
Multi-router and the task-specific Multi-router. Therefore, we explore all possible combinations of
the above settings SMoE and SMoA. Note that, without specifics, the router in SMoE and SMoA is a
single router by default. Herein, the “single router” denotes one router in SMoE and three routers in
SMoA (“single” refers to not using task/modality-specific in SMoE or SMoA). We list all explored
network architectures in Table 6.

Table 6: All possible router design combinations for SM4.

SMoE
Modality-Specific Router Task-Specific Single-Router w/o SMoE

SMoA

Modality-Specific Router P-Modality-router SM4 Multi-router SM4 Modality-SMoA-Single-SMoE SM4 Multi-router SM4 w/o SMoE

Task-Specific Router R-Multi-router SM4 P-Task-router SM4 Task-SMoA-Single-SMoE SM4 R-Multi-router SM4 w/o SMoE

Single-Router Single-SMoA-Modality-SMoE SM4 Single-SMoA-Task-SMoE SM4 SM4 SM4 w/o SMoE

w/o MoA R-Multi-Router SM4 w/o SMoA Multi-Router SM4 w/o SMoA SM4 w/o SMoA Dense Model

We run the above network architectures in the medium setting and report the results in Table 7. All
results reported in Table 7 use the same hyperparameters in Table 15, except for the routing network
setting. In particular, the ‘Dense Model’ is an equal computation dense model where we propose
two kinds of equal computation dense model: ‘Dense Model 1’ uses the transformer encoder layer
with double depth, and ‘Dense Model 2’ is 4x wider than the hidden dimension of the transformer
encoder layer. To further illustrate our performance gains mainly come from our SM4 design, we
construct the same capacity model where we ×4 the number of attention heads, ×8 the dimension
of each attention head, and ×32 the hidden dimension of the FFN layer. .

We find out that the single-router is the best architecture for M3TL. The second-best architecture
uses the task-specific router in the SMoE and the dense layer in the FFN layer. Meanwhile, using
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Table 7: The results of different SMoE & SMoA router settings in the medium setting.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 71.58 0.475 71.86 20.19
Multi-router SM4 71.00 0.684 71.03 7.81
R-Multi-router SM4 64.38 0.995 71.33 −13.48

Dense Model 1 65.98 1.342 70.49 −32.14
Dense Model 2 62.56 1.400 71.40 −37.11
SM4 w/o SMoE 68.84 0.818 70.94 −1.02
SM4 w/o SMoA 69.06 1.227 70.26 −23.92
Multi-router SM4 w/o SMoE 67.58 1.166 71.11 −21.06
Multi-router SM4 w/o SMoA 65.41 1.402 70.08 −36.03
R-Multi-router SM4 w/o SMoE 67.35 0.633 71.37 8.54
R-Multi-router SM4 w/o SMoA 66.43 0.969 71.04 −10.89

Task-SMoA-Single-SMoE SM4 63.81 0.952 71.02 −11.62
Modality-SMoA-Single-SMoE SM4 69.52 0.777 71.47 1.94
Single-SMoA-Task-SMoE SM4 67.24 0.764 71.03 1.00
Single-SMoA-Modality-SMoE SM4 65.75 1.088 71.31 −17.77

P-Modality-router SM4 68.38 0.786 70.70 0.54
P-Task-router SM4 68.38 0.833 70.69 −2.25

Equal Capacity Model 64.61 0.878 69.80 −7.59

Table 8: Task performances of different models. SM4 2/3/4 layers: 2/3/4 transformer encoder layers
and replacing with SM4 layer every other layer. P-SM4 2/3/4 layers: 2/3/4 consecutive SM4 layers.
SM4 early/middle/late-2: 4 transformer encoder layers and replacing the early/middle/late-2 encoder
layers with two SM4 layers.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 71.58 0.475 71.86 20.19

SM4 2 layers 70.55 0.992 70.34 −9.92
SM4 3 layers 69.18 0.551 70.32 13.71
SM4 4 layers 71.46 1.223 70.18 −22.24

P-SM4 2 layers 69.63 0.766 71.57 2.64
P-SM4 3 layers 70.78 0.616 71.12 11.49
P-SM4 4 layers 67.47 0.976 71.68 −10.30

SM4 early two layer 68.15 0.793 71.19 −0.03
SM4 middle two layer 73.17 0.884 69.89 −2.49
SM4 late two layer 72.15 1.374 69.97 −30.33

the modality-specific router in the SMoA and the task-specific router in SMoE also seems like a
reasonable choice.

For better understanding, we display the architecture of the Multi-Router SM4 and the R-Multi-
Router SM4 in Figure 6 and Figure 7, respectively.

B.1 USING CONSECUTIVE SM4

This section is used to illustrate how to use the consecutive SM4 layer (i.e., transformer layer with
SMoE and SMoA design) as transformer backbone and provide more observation about how to use
SM4 while the network is getting deeper.

Our experimental results in Table 8 show:

• The performance may not be improved as the number of SM4 layers increases.
• The location of SM4 matters. Using SM4 in shallow layers helps the most.

C EXPERIMENTS DETAILS

We show the number of parameters and the computation cost of the current SOTA and SM4 in
Figure 9. The “small”, “medium”, and “large” setting denote the number of tasks.
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Figure 6: In the Multi-router SM4 encoder layer, We use the modality-specific router in the SMoA
and the task-specific router in the SMoE.
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Figure 7: In the Reverse Multi-router SM4 (R-Multi-router SM4) encoder layer, We use the task-
specific router in the SMoA and the modality-specific router in the SMoE.

Table 9: Detailed results of parameter and computation cost.

Small setting PUSH V&T
Params (M) Flops (G) Params (M) Flops (G)

HighMMT multitask 0.89 5.14 0.85 32.48
SM4 0.27 2.59 0.25 17.38

Medium setting ENRICO PUSH AV-MNIST
Params (M) Flops (G) Params (M) Flops (G) Params (M) Flops (G)

HighMMT multitask 0.58 79.48 0.63 21.60 0.52 0.95
SM4 1.23 1.10 1.25 2.33 1.23 0.41

Large setting UR-FUNNY MOSEI MIMIC AV-MNIST
Params (M) Flops (G) Params (M) Flops (G) Params (M) Flops (G) Params (M) Flops (G)

HighMMT multitask 0.52 1.51 0.52 1.65 0.52 0.67 0.52 0.95
SM4 0.76 0.38 0.76 0.53 0.76 0.15 0.76 0.43

In Table 10, we display more comprehensive performance about MultiBench to help readers locate
the position of SM4 in the MultiBench benchmark. For each dataset, we choose multi-modal mod-
els with the best/worst performance and multi-modal models with the largest/smallest parameter
numbers, respectively.
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Table 10: Detailed performance comparison, parameter usage, and FLOPS of our model, HighMMT,
SOTA multi-modal multi-task learning method on MultiBench benchmark in three settings. For the
“FLOPS(G)”, “-” indicates the MultiBench does not provide official implementation. Notably, the
empty FLOPS of the “MultiBench Model (MFAS)” is due to the FLOPS of “MFAS” being dynamic
during training.

Setting Method Dataset Performance ∆(%) # Parameters (M) FLOPS (G)

Single Task

MultiBench Models (TF-LSTM) PUSH ↓ 0.574 − 23.5 25.11
MultiBench Models (LF-LSTM) PUSH ↓ 0.290 − 1.90 14.07

MultiBench Models (MULT) PUSH ↓ 0.402 − 14.6 19.20

MultiBench Models (LRTF) V&T 93.3 − 1.09 5.20
MultiBench Models (LF) V&T 93.6 − 1.20 5.20

MultiBench Models (RefNet) V&T 93.5 − 135 −
MultiBench Models (TF) ENRICO 46.6 − 19.3 314.13

MultiBench Models (GradBlend) ENRICO 51.0 − 19.3 314.13
MultiBench Models (RefNet) ENRICO 44.4 − 25.7 2.67

MultiBench Models (GradBlend) AV-MNIST 68.5 − 0.29 0.50
MultiBench Models (MFAS) AV-MNIST 72.8 − 0.14 −
MultiBench Models (RefNet) AV-MNIST 70.9 − 14.1 0.25

MultiBench Models (EF-GRU) UR-FUNNY 60.2 − 3.58 3.13
MultiBench Models (MULT) UR-FUNNY 66.7 − 2.38 3.37
MultiBench Models (MCTN) UR-FUNNY 63.2 − 0.19 0.17

MultiBench Models (TF) UR-FUNNY 61.2 − 12.2 2.67

MultiBench Models (MCTN) MOSEI 76.4 − 0.19 0.15
MultiBench Models (MULT) MOSEI 82.1 − 4.75 3.35

MultiBench Models (LF-Transformer) MOSEI 80.6 − 31.5 21.60

MultiBench Models (MI-Matrix) MIMIC 67.9 − 0.801 0.005
MultiBench Models (LF) MIMIC 68.9 − 0.034 0.005

MultiBench Models (LRTF) MIMIC 68.5 − 0.008 0.005

Small
HighMMT PUSH ↓ 0.445

0.00
0.89 5.14

V&T 96.10 0.85 32.48

SM4 PUSH ↓ 0.331
12.93

0.27 2.59
V&T 96.33 0.25 17.38

Medium

HighMMT
ENRICO 53.10

0.00
0.58 79.48

PUSH ↓ 0.600 0.63 21.60
AV-MNIST 68.48 0.52 0.95

SM4
ENRICO 71.58

20.19
1.23 1.10

PUSH ↓ 0.475 1.25 2.33
AV-MNIST 71.86 1.23 0.41

Large

HighMMT

UR-FUNNY 62.00

0.00

0.52 1.51
MOSEI 78.40 0.52 1.65
MIMIC 65.60 0.52 0.67

AV-MNIST 70.60 0.52 0.95

SM4

UR-FUNNY 64.24

2.28

0.76 0.38
MOSEI 79.47 0.76 0.53
MIMIC 67.91 0.76 0.15

AV-MNIST 71.05 0.76 0.43

C.1 DATASET

PUSH Lee et al. (2020a), i.e., the MUJOCO PUSH task, is a planar pushing task, in which a 7-DoF
Panda Franka robot is pushing a circular puck with its end-effector in simulation. We estimate the
2D position of the unknown object on a table surface while the robot intermittently interacts with
the object. This dataset contains 1000 training data, 10 validation data, and 100 testing data, where
each data point is split into 29 sequences, and each sequence includes 16 consecutive steps.

V&T Lee et al. (2020b), also called ‘VISION&TOUCH’, is a real-world robot manipulation dataset
that collects visual, force, and robot proprioception data for a peg insertion task. The robot is used
to insert the peg into the hole. In this paper, we use this dataset to predict the manipulator whether
contacts with the peg in the next step, which is a binary classification task. We follow the setting
of MultiBench and use 117, 600 data points for training and the remaining 29, 400 data points for
validation and testing.

ENRICO Leiva et al. (2020) includes 20 Android app design categories. Each data point consists
of the app screenshot and the view hierarchy. The view hierarchy describes the spatial and structural
layout of UI elements of the corresponding screenshot. During training, the view hierarchy is ren-
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Table 11: Concatenate tokens along the batch axis.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 71.58 0.475 71.86 20.19

Concate along batch 64.38 1.174 71.05 −23.57

dered as “wireframe”, which can be viewed as a form of set data. ENRICO contains 947 data points
for training, 219 data points for validation, and 292 data points for testing.

AV-MNIST Vielzeuf et al. (2018) is a multimedia dataset that uses audio and image information to
predict the digit into one of 10 classes (0-9). This dataset comprises 55, 000 training data points,
5, 000 validation data points, and 10, 000 testing data points.

UR-FUNNY is the multi-modal affective computing dataset of humor detection in human speech.
Each data point of UR-FUNNY is a video with text, visual, and acoustic modalities. We train this
dataset to predict whether the current data point makes people feel positive or negative. There are
1, 166, 300, and 400 videos in the train, valid, and test data, respectively.

MOSEI Zadeh et al. (2018) is the largest dataset of sentence-level sentiment analysis and emotion
recognition in real-world online videos. Each video is annotated for 9 discrete emotions (angry, ex-
cited, fearful, sad, surprised, frustrated, happy, disappointed, and neutral) and a continuous emotion
value (valence, arousal, and dominance). We follow the MultiBench, training this dataset as a binary
classification task. We use 16, 265, 1, 869, and 4, 643 train, valid, and test data points, respectively.

MIMIC Johnson et al. (2016), i.e., the Medical Information Mart for Intensive Care III, is a freely
accessible critical care database, which records ICU patient data, including time-series and other
demographic variables in the form of tabular numerical data. We use this dataset for binary classi-
fication on whether the patient fits any ICD-9 code in group 7 (460-519). The dataset is randomly
split into 28, 970, 3, 621, and 3, 621 data points for training, validation, and testing.

For more details of the above datasets, please refer to the Liang et al. (2021) and their released
website:

https://github.com/pliang279/MultiBench.

Results of HighMMT is running by Liang et al. (2022) released code:

https://github.com/pliang279/HighMMT.

C.2 FUSION BY CONCATENATE TOKENS ON THE SEQUENCE DIMENSION

Before we input tokens into our transformer backbone (several consecutive transformer encoder lay-
ers), we concatenate tokens on the sequence dimension. Therefore, we can fuse different modalities
by the attention layer within each transformer encoder layer. To further illustrate that such an op-
eration is necessary, we additionally train the same model but concatenate tokens along the batch
axis. Our following table shows fuse modalities by concatenating tokens along the sequence axis is
positive for our tasks.

Our results in Table 11 show fuse modalities by concatenating tokens along the sequence axis is
positive for our tasks.

C.3 INDEPENDENT ROUTING POLICY BETWEEN Q, K, AND V

Prior works Fedus et al. (2022); Zhu et al. (2022) also apply MoE in the attention layer. However,
they all use a single router to route tokens for q, k, and v simultaneously. We think such a design
lacks flexibility. Therefore, in our MoE attention layer, the router for q, k, and v is separate, which
could provide a more flexible attention mechanism. In order to support the above statement, we
conduct additional experiments in Table 12 to study the advantage of SM4 v.s. Prior MoE attention
design style (q, k, v using the same router in the MoE attention).
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Table 12: Using a single router to routing tokens for q, k, and v simultaneously.

Model ENRICO ↑ PUSH ↓ AV-MNIST ↑ ∆(%) ↑
HighMMT multitask 53.10 0.600 68.48 0.00
SM4 71.58 0.475 71.86 20.19

qkv share routers 73.51 0.936 69.28 −5.45
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Figure 8: The inter-task affinity of the ‘ENRICO’ to the ‘AV-MNIST’ task (left), and the inter-task
affinity of the ‘ENRICO’ to the ‘PUSH’ task (right). The results reported are the average of three
replicates.

C.4 THE GRADIENT POSITIVE SIGN PURITY OF SM4

The Gradient Positive Sign Purity Chen et al. (2020) P of a single parameter for T tasks is defined
as:

P =
1

2
(1 +

∑T
i ∆Li∑T
i |∆Li|

), (5)

where ∆Li is the gradient for the task i. The Gradient Positive Sign Purity is bounded by [0, 1],
which P close to 1 or 0 indicates such parameters suffer less gradient confliction from multi-task
training. We use the trained model to collect the Gradient Positive Sign Purity of such a model.
Then, we discrete the Gradient Positive Sign Purity value into five intervals of each parameter and
count the ratio of parameters in these five intervals.

C.5 THE TASK AFFINITY OF SM4

The task affinity Fifty et al. (2021) is defined as follows:

Zt
i→j = 1−

Lj(X t, θt+1
s|i , θtj)

Lj(X t, θts, θ
t
j)

, (6)

where X t is the training batch at time-step t, θt+1
s|i is the updated shared parameters after a gradient

step with respect to the task i. θtj represents the task j’s specific parameters. For the medium setting,
we collect the task affinity by solitary training the ‘PUSH’ task for a single epoch, and then we
calculate the loss of ‘ENRICO’ and ‘AV-MNIST’ on the corresponding training data. We count
the task affinity from ‘PUSH’ to ‘ENRICO’ and ‘AV-MNIST’ every 10 epoch during training. We
display the task affinity changes with training epochs in Figure 8. The task affinity of SM4 and
multi-router SM4 is usually higher than the one of the dense model, which indicates that the MoE
we proposed alleviates the training conflict of M3TL.

C.6 THE OPTIMAL GRADIENT BLEND OF SM4

The optimal gradient blend Wang et al. (2020a) is used to re-weight the feature of each modality
during multi-modal training. The optimal gradient blend will give this modality a small weight
for the modality that is easy to prone to overfitting. The weight of each modality is bounded by
[0, 1] within a task, and the sum of all modalities for this task is 1. Therefore, the gap between
different modalities within a task indicates that the modality with a smaller weight (optimal gradient
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Table 13: The optimal gradient blend for each task under different model architectures.

Model ENRICO PUSH AV-MNIST
image set image force proprioception control image audio

SM4 0.48 0.52 0.00 0.37 0.32 0.31 1.00 0.00
- Dense Model (w/o MoE) 0.61 0.39 0.00 0.36 0.32 0.31 1.00 0.00
- w/o Self-attention MoE 0.63 0.37 0.00 0.37 0.32 0.30 1.00 0.00
- w/o FFN MoE 0.75 0.25 0.00 0.37 0.32 0.32 1.00 0.00

multi-router SM4 0.71 0.29 0.00 0.35 0.32 0.32 1.00 0.00
P-Modality-router SM4 0.73 0.27 0.00 0.37 0.31 0.32 1.00 0.00
P-Task-router SM4 0.80 0.20 0.00 0.36 0.32 0.31 1.00 0.00

blend) tends to overfit. We collect the optimal gradient blend of the corresponding trained model
to determine whether our proposed model can restrain the easy model from overfitting. We use a
modified version of the optimal gradient blend where the unnormalized optimal gradient blend of
modality m is defined as:

wm,n
unnorm =

Lm
valid

Lm
valid − Lm

train

, (7)

where Lm
valid is the validation loss after training n epochs only using modality m, and Lm

train is the
training loss after training n epochs only using modality m. For task i, the final optimal gradient
blend we reported is:

wi,m =
wm,n

unnorm∑M
m wm,n

unnorm

, (8)

where M is the number of modalities of the task i.

For M3TL, the appropriate combination between modality-specific routers and task-specific routers
(multi-router SM4) helps each other better than purely using one of them (In Figure 8 and Table 13,
the Inter-Task Affinity and the optimal gradient blend of multi-router SM4 is better than models
which only use modality-specific routers (P-Modality-router SM4) or task-specific routers (P-Task-
router SM4)).

C.7 EXPERT SELECTION VISUALIZATION

This section explores how tokens are distributed across different tasks and modalities by the routing
policy of the SM4. We show the expert selection of each routing policy under the testing distribution
in Figure 9, Figure 10, and Figure 11. In these three settings, our routers work well, and most experts
handle all modalities and tasks. Meanwhile, several experts focus on specific tasks.

For the large setting, we find out that the routing policy tends to route tokens to several specific ex-
perts, which also successfully proves MTL’s MoE separate gradient conflict parameters. Especially
for the ‘MIMIC’ dataset, only 2 to 4 experts are activated for this task.
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Figure 9: The expert selection of the small setting of the last SM4 layer. The first two rows show
the token distribution of different modalities for the ‘PUSH’ dataset and the ‘V&T’ dataset. The last
row shows the token distribution across different tasks within three types of SMoA and SMoE.
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Figure 10: The expert selection of the medium setting of the last SM4 layer. The first three rows show
the token distribution of different modalities for the ‘ENRICO’ dataset, the ‘AV-MNIST’ dataset,
and the ‘PUSH’ dataset. The last row shows the token distribution across different tasks within three
types of SMoA and SMoE.
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Figure 11: The expert selection of the large setting of the last SM4 layer. The first four rows show
the token distribution of different modalities for the ‘AV-MNIST’ dataset, the ‘MOSEI’ dataset, the
‘UR-FUNNY’ dataset, and the ‘MIMIC’ dataset. The last row shows the token distribution across
different tasks within three types of SMoA and SMoE.
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Table 14: Table of the modal and training setups on the small setting tasks: PUSH and V&T.

Model Setup

Name of Hyperparameter Value

PUSH V&T

Perceiver Unimodal
Encoder

Sequence Length of Latent 20

Latent Dimension 64

Cross Attention Head 1

Cross Head Dim 64

Self-Attention Head 8

Self Head Dim 64

MoE&MoA&Dense
Encoder Layer

Depth 1

Self-Attention Head 8

Self Head Dim 8

Experts Number 16

Classification Heads
BatchNorm follow a Linear layer Input/Output dimensions 256/32 320/1

Training

Optimizer Adam

Learning rate 0.0005

Learning Scheduler N/A

Weight Decay 0.0

Load&Importance
Balancing Loss Weight 0.1

Pretrain N/A

Max Epoch 100

Training loss weight 100.0 1.0

Evaluation weight 100.0 1.0

Batchsize 28 64

Loss Function MSE CrossEntropy

MultiBench
Input Dimension

Gripper Pos: 16×3
Gripper Sensors: 16× 7
Image: 16× 32× 32
Control: 16× 7

Image: 128× 128× 3
Force: 6× 32
Proprio: 8
Depth: 128× 128
Action: 4

Dataset

Perceiver Input
Channel Size

Gripper Pos: 3
Gripper Sensors: 7
Image: 1
Control: 7

Image: 3
Force: 32
Proprio: 8
Depth: 1
Action: 4

Perceiver Input
Extra Axis

Gripper Pos: 1
Gripper Sensors: 1
Image: 3
Control: 1

Image: 2
Force: 1
Proprio: 1
Depth: 2
Action: 1

Perceiver Input
num freq bands

Gripper Pos: 6
Gripper Sensors: 6
Image: 6
Control: 6

Image: 6
Force: 6
Proprio: 6
Depth: 6
Action: 6

Perceiver Input
max freq

Gripper Pos: 1
Gripper Sensors: 1
Image: 1
Control: 16×7

Image: 1
Force: 1
Proprio: 1
Depth: 1
Action: 1
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Table 15: Table of the modal and training setups on the medium setting tasks: ENRICO, PUSH and
AV-MNIST.

Model Setup

Name of Hyperparameter Value

ENRICO PUSH AV-MNIST

Perceiver Unimodal
Encoder

Sequence Length of Latent 12

Latent Dimension 64

Cross Attention Head 1

Cross Head Dim 64

Self-Attention Head 8

Self Head Dim 64

MoE&MoA&Dense
Encoder Layer

Depth 1

Self-Attention Head 8

Self Head Dim 8

Experts Number 32

Classification Heads
BatchNorm follow a Linear layer Input/Output dimensions 128/20 256/32 128/10

Training

Optimizer Adam

Learning rate 0.001

Learning Scheduler CosineAnnealingLR

Weight Decay 0.0

Load&Importance
Balancing Loss Weight 0.05

Pretrain Training PUSH for 100 epochs first

Max Epoch 100

Training loss weight 10.0 10.0 0.8

Evaluation weight 1.0 10.0 1.0

Batchsize 32 32 32

Loss Function CrossEntropy MSE CrossEntropy

MultiBench
Input Dimension

Image: 256× 128× 3
Set: 256× 128× 3

Gripper Pos: 16× 3
Gripper Sensors: 16× 7
Image: 16× 32× 32
Control: 16× 7

Colorless Image: 28× 28
Audio Spectogram:
112× 112

Dataset

Perceiver Input
Channel Size

Image: 384
(cut into 16× 8 rectangles)
Set: 384
(cut into 16× 8 rectangles)

Gripper Pos: 3
Gripper Sensors: 7
Image: 16
(cut into 4× 4 squares)
Control: 7

Colorless Image: 16
(cut into 4× 4 squares)
Audio Spectogram: 256
(cut into 16× 16 squares)

Perceiver Input
Extra Axis

Image: 2
Set: 2

Gripper Pos: 1
Gripper Sensors: 1
Image: 2
Control: 1

Colorless Image: 2
Audio Spectogram: 2

Perceiver Input
num freq bands

Image: 6
Set: 6

Gripper Pos 6:
Gripper Sensors: 6
Image: 6
Control: 6

Colorless Image: 6
Audio Spectogram: 6

Perceiver Input
max freq

Image: 1
Set: 1

Gripper Pos: 1
Gripper Sensors: 1
Image: 1
Control: 1

Colorless Image: 1
Audio Spectogram: 1
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Table 16: Table of the modal and training setups on the large setting include tasks: UR-FUNNY,
MOSEI, MIMIC, and AV-MNIST.

Model Setup

Name of Hyperparameter Value

UR-FUNNY MOSEI MIMIC AV-MNIST

Perceiver Unimodal
Encoder

Sequence Length of Latent 12

Latent Dimension 64

Cross Attention Head 1

Cross Head Dim 64

Self-Attention Head 8

Self Head Dim 64

MoE&MoA&Dense
Encoder Layer

Depth 1

Self-Attention Head 8

Self Head Dim 8

Experts Number 16

Classification Heads
BatchNorm follow a Linear layer Input/Output dimensions 192/2 192/2 128/2 128/10

Training

Optimizer Adam

Learning rate 0.0008

Learning Scheduler N/A

Weight Decay 0.001

Load&Importance
Balancing Loss Weight 0.1

Pretrain N/A

Max Epoch 100

Training loss weight 0.2 1.0 1.2 0.9

Evaluation weight 1.0 1.0 1.0 1.0

Batchsize 32 32 20 40

Loss Function CrossEntropy CrossEntropy CrossEntropy CrossEntropy

MultiBench
Input Dimension

Image: 20× 371
Audio: 20× 81
Text: 50× 300

Image: 50× 35
Audio: 50× 74
Text: 50× 300

Static: 5
Time-series: 24× 12

Colorless Image: 28× 28
Audio Spectogram:
112× 112

Dataset

Perceiver Input
Channel Size

Image: 371
Audio: 81
Text: 300

Image: 35
Audio: 74
Text: 300

Static: 1
Time-series: 12

Colorless Image: 16
(cut into 4× 4 squares)
Audio Spectogram: 256
(cut into 16× 16 squares)

Perceiver Input
Extra Axis

Image: 1
Audio: 1
Text: 1

Image: 1
Audio: 1
Text: 1

Static: 1
Time-series: 1

Colorless Image: 2
Audio Spectogram: 2

Perceiver Input
num freq bands

Image: 3
Audio: 3
Text: 3

Image: 3
Audio: 3
Text: 3

Static: 6
Time-series: 3

Colorless Image: 6
Audio Spectogram: 6

Perceiver Input
max freq

Image: 1
Audio: 1
Text: 1

Image: 1
Audio: 1
Text: 1

Static: 1
Time-series: 1

Colorless Image: 1
Audio Spectogram: 1
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