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Abstract: Imitation learning enables intelligent systems to acquire complex be-
haviors with minimal supervision. However, existing methods often focus on
short-horizon skills, require large datasets, and struggle to solve long-horizon
tasks or generalize across task variations and distribution shifts. We propose a
novel neuro-symbolic framework that jointly learns continuous control policies
and symbolic domain abstractions from a few skill demonstrations. Our method
abstracts high-level task structures into a graph, discovers symbolic rules via an
Answer Set Programming solver, and trains low-level controllers using diffusion
policy imitation learning. A high-level oracle filters task-relevant information to
focus each controller on a minimal observation and action space. Our graph-based
neuro-symbolic framework enables capturing complex state transitions, including
non-spatial and temporal relations, that data-driven learning or clustering tech-
niques often fail to discover in limited demonstration datasets. We validate our
approach in six domains that involve four robotic arms, Stacking, Kitchen, As-
sembly, and Towers of Hanoi environments, and a distinct Automated Forklift
domain with two environments. The results demonstrate high data efficiency with
as few as five skill demonstrations, strong zero- and few-shot generalizations, and
interpretable decision making. A video of our results is available at this link.
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1 Introduction

Teaching robots complex tasks remains a central challenge in robotics and artificial intelligence.
Imitation learning has emerged as a prominent solution that enables robots to acquire behaviors
from demonstrations [1-5]. However, it typically focuses on short-horizon skills, struggles with
distribution shifts over time [6, 7], and generalizes poorly to novel situations.

These limitations are magnified in long-horizon tasks, where successful behavior demands not just
precise low-level control but strategic high-level planning. Humans excel by abstracting problems
into symbolic representations, facilitating reasoning and generalization. Hierarchical approaches
such as Task and Motion Planning (TAMP) [8-10] leverage a similar divide, but traditionally rely
on manually crafted symbolic models, making them brittle and laborious to adapt. Previous work
has sought to learn either symbolic models [11-24] or low-level controllers [25-30, 30-35] indepen-
dently. Some more recent work proposes learning both layers from demonstrations [31]. However,
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Figure 1: Our neuro-symbolic framework integrates graph construction, symbolic abstraction, plan-
ning, action decomposition, imitation learning and space filtering. Starting with just a few skill
demonstrations (left), we construct a transition graph capturing transitions (edges), which are skill
transitions between two high-level states (black-box nodes). This graph enables automatic PDDL
model extraction via an ASP solver, which powers high-level planning. The oracle decomposes
complex tasks into primitive action step policies executed by learned diffusion-based controllers,
allowing generalization to novel long-horizon tasks while requiring minimal training data.

these methods typically assume access to symbolic abstractions a priori: either through manually
designed symbolic state representations, known predicates and object types, or predefined mapping
functions from continuous states to symbolic facts.

To our knowledge, no prior work jointly learns low-level control policies and high-level planning
models from a few demonstrations without relying on predefined symbolic states, predicates, or lexi-
con. In our approach, each demonstration is modeled as a transition between two high-level environ-
ment states, represented as black-box nodes with visual snapshots. Identical states can be matched
by a human based solely on visual comparison, requiring no expertise in symbolic structures or
planning. The resulting skills and nodes form a domain structure graph, which is automatically
constructed and passed to an ASP solver to yield a PDDL-form symbolic domain. This symbolic
representation supports learning data-efficient controls, as well as planning during execution.

Our approach can model object relationships beyond static (position based) spatial predicates, as
typically done by clustering approaches [23], and allows for instance time-dependent transitions
abstraction—such as waiting for food to cook—by representing them as temporal edges in the graph.
A symbolic abstraction is then automatically extracted by using an Answer Set Programming (ASP)
solver [13, 14] to discover a Planning Domain Definition Language (PDDL) [36] model consistent
with the observed transitions.

Contributions. We present the first neuro-symbolic imitation learning framework that jointly learns
low-level control policies and high-level symbolic abstractions from few raw demonstrations, with-
out predefined states, predicates, lexicons, or domain knowledge. From these abstractions, an or-
acle automatically segments demonstrations, filters irrelevant information, and trains neural con-
trollers for each operator. Our method provides: (1) data-efficient learning from few demonstra-
tions, (2) robust generalization to out-of-distribution tasks, and (3) scalable continual learning. We
validate it across six domains—Stacking, Kitchen, Assembly, Towers of Hanoi, and two forklift
tasks—demonstrating strong data efficiency, broad applicability, robust generalization, and inter-
pretable symbolic plans.

2 Related Work

Prior work on bi-level architectures often assumes access to symbolic representations. Some ap-
proaches learn action models from symbolic traces [12, 17, 21, 24, 37], relying on predefined gram-



mars and predicates. Others guide low-level RL with symbolic domains [30, 33, 38—43], but still
require manually crafted symbolic states.

Learning skill sequences from demonstrations [44—49] enables long-horizon imitation but lacks
modularity, explainability, and data efficiency compared to symbolic planning. Recent approaches
extract symbolic abstractions from raw data by clustering to induce predicates [23, 50]; however,
such approach still require fifty or more demonstrations. Segmentation [51] helps but cannot fully
remove this reliance. SAT- or ASP-based model learning [13, 14] reduces data requirements for sym-
bolic domain acquisition. Prior work typically uses these solvers to learn continuous features that
improve TAMP efficiency from a few example plans with embedded continuous data [52]. However,
these approaches assume a predefined symbolic domain and solved plans, whereas we jointly learn
both the symbolic domain and continuous controllers directly from a handful of raw demonstrations.

In this work, we combine the abstraction of the planning domain based on ASP together with contin-
uous controllers learning from few skill demonstrations, enabling scalable long-horizon task solving
with minimal supervision.

3 Preliminaries

Symbolic Planning. Symbolic planning builds upon a formal domain description o = (£, F, S, O),
where £ is a set of entities, F a set of boolean or numerical predicates over entities, S a set of
symbolic states formed by grounded predicates, and O a set of operators. Each operator o € O is
defined by preconditions v and effects w over predicates. A grounded operator 0 binds objects to
parameters and can be applied if its preconditions hold, updating the state according to its effects.
A planning task T' = (£, F, O, so, 54) seeks a plan P = [oq, ..., 0|7>|} that transitions from initial
state sg to goal state s, [36].

Imitation Learning (IL). IL aims to learn a policy 7(5) from expert demonstrations
{(8¢,a4,8¢41)}1 o, where 3, is a continuous state, a; the expert action, and 3;, the resulting
state. The policy minimizes the mean squared error between predicted and expert actions, defined as
L(m) = 7 Z;‘F:O |7 (5¢) — a¢||*. Unlike reinforcement learning, IL avoids exploration and reward
engineering, enabling more data-efficient learning of complex behaviors from demonstrations.

Neuro-Symbolic Architecture. Neuro-symbolic architectures combine symbolic reasoning with
neural control. A planner solves a STRIPS task T = (£, F, O, sg, s4) to produce a plan P =
[o1,... ,O‘p‘], where each operator o; is refined into a neural skill ; € II. Each skill 7; interacts
with the environment to realize the operator’s effects w;, transitioning the system from a state s
to a new state s’. This layered approach enables flexible execution in continuous spaces while
maintaining high-level task abstraction.

Problem Formulation. We consider a dataset of object-space skill demonstrations D =
- - . ~ ~ ~ |7:]—1 . o
{70, ..., 7|}, where each trajectory 7; = {(5¢,as,5¢41)};y ~captures state-action transitions
over objects € € £. Each demonstration also provides two images: one of the initial state v and one
of the final state v". Human input is limited to two forms: (1) demonstrate individual lifted skills,
with skill labels shared across objects (2) match high-level states through image comparison. No

symbolic annotations, object types, or semantics are assumed.

4 Neuro-Symbolic Imitation Learning

After receiving the set of raw demonstration trajectories D, our neuro-symbolic agent aims to learn
robust, generalizable solutions for long-horizon Task and Motion Planning (TAMP) problems. Each
trajectory is mapped to a node transition ’TinOde = (i) = (Nstart, L, Nena) Where ngeary and nepg de-
note abstract high-level states at the beginning and end of the skill demonstration, and [ is a human-
assigned label describing the transition between them. This process structures the skill demon-
strations into a task-space abstraction (Fig. 1). The nodes correspond to abstract high-level states
(whose symbolic representation remains undiscovered), and the edges represent transitions induced



by action operators. A skill typically transitions the environment between two high level states, i.e.,
performs a node transition, providing a task-space abstraction for the agent. Such skill abstraction
can be represented as an edge (n,l,n’) in a graph GG, while n and n’ can be paired to their respective
visual snapshots v and v’, capturing the beginning and the end of the skill.

To leverage this structure, we adopt a bi-level neuro-symbolic learning approach combining imi-
tation learning and symbolic planning. At the symbolic level, the agent constructs a graph from
node transitions to infer operators O and predicates F that abstract the task-space transitions. At the
skill level, the agent learns neural policies 7; € II that realize each operator o; € O by imitating
corresponding segments of the demonstration trajectories.

Inspired by the options framework in Hierarchical Reinforcement Learning [53], we further de-
compose each skill into sequential action steps. Action steps are automatically identified through
consistent sequential action space patterns. For instance, a MOVE operator in a Pick & Place task
decomposes into reach pick, pick, reach drop, and drop stages, each constrained to simpler action
spaces (e.g., end-effector position or gripper aperture). This decomposition reduces the complexity
of individual policies and restricts their action spaces, simplifying learning (see Fig. 2, and [53]).

After acquiring the symbolic operators and their associated neural skills, planning proceeds by spec-
ifying an initial and a goal node translated within a PDDL planning problem. A classical planner,
MetricFF [54], computes an abstract plan P = [0y, . . ., 0}p|] mapping operators to their correspond-
ing neural skills (Alg. 1.line 10). Execution unfolds by sequentially invoking the associated policies
m;, each internally organized into action-step sub-policies 7; ; executed until a learned termination
condition, modeled by a learned function approximation mse;,, is met (Alg. 1.lines 11-17).

This hierarchical and modular framework enables the agent to generalize beyond the demonstrations
to unseen tasks, adapt to different object configurations, and robustly solve complex, long-horizon
problems with limited training data.

4.1 Learning Symbolic Structures from Sparse Demonstrations

Our method constructs a symbolic graph from unordered demonstrations with minimal human in-
put (Alg. l.line 1). When the agent reaches a new high-level state—known at that moment as a
black-box node n’ distinct from the current state n—the human (1) assigns a transition label /, and
(2) links n’ to existing nodes by matching visual snapshots v and v’ paired with each node. This
process adds an edge (n, 1, n’) to the evolving graph G = (V, E, L).

After collecting demonstrations, we compute a minimal bisimulation G of G (Alg. 1, line 2) to
eliminate redundant structure (Figs. 8a—8c). This keeps the graph compact, reducing both the search
space for domain learning and the effort required for annotation. Formally, for two labeled graphs
Gy = (Vi,Eq,Lq) and Gy = (Vh, Ea, Lo), a bisimulation relation R C V; x V; satisfies: If
(s1,81) € E1 labeled by [, then there exists (sz2, s5) € Eo with the same label and (s}, s5) € R, and
vice versa. If such an R exists, G; and GG, are bisimilar.

To extract first-order symbolic representations from the graph, we adopt the ASP-based framework
of [13, 14] (Alg. 1.line 3). The goal is to find the simplest planning instance P = (o, I), where o
is the domain theory and I = (&, Init, Goal) defines instance-specific objects and grounded states.
Although Init and Goal need not be logically specified during demonstrations, they serve to maintain
consistency within the symbolic notation.

Each P defines a labeled graph G(P) where nodes correspond to symbolic states and labeled edges
represent action transitions. We solve for o such that G(P) is isomorphic to the input graph G,
extending naturally to multiple demonstrations G4, . . ., G, by learning a shared domain ¢ and sep-
arate instances P; = (o, I;). We assume graphs are complete and noise-free, and that action labels
provide no structural or predicate-level information. Finally, the learned domain o is expressed in
PDDL, enabling classical planners to operate over the abstracted symbolic space.



Algorithm 1 Neuro-Symbolic Imitation Learning (D, (,E)

Require: A set of raw demonstration trajectories D = {70, ..., 7|p|}
Require: An automatic function ¢ that extracts 77°% = ((7)
Require: A set of entitiese € £

Learning Phase

1: G < Build_Graph(D, () > Querying Human input, sec.4.1
2: G < Get_Minimal_Graph(G) > Verify if a Bisimulation exists
3: {F, O} < Abstract(G) > ASP solver, sec.4.1
4: 1I « {m;, m; is mapped to o; Yo; € O}
5: Vm; € I, {m; j, Do, ;} < Cluster_Action_Steps(;, D,,) > Fig. 2, Split Skills into Steps
6: Vm;; € I, Obs(m; ;) <Oracle(m; ;) > Enforces ¢(5), sec.4.2
7: Vs ; € 11, Train(m; 5, Do, ;) > Diffusion policies, sec.4.3
Execution Phase
8: {no,ng} < QueryTask() > Query to select start and goal nodes (via paired state picture)
9: T=(E,F,0O,s0,sq)
10: P <+ Plan(T) >P = <01,02,.,.,O|fp‘>
11: for o; € P do
12: m; <— mapped(0;) > Sequential execution of Skills, sec.4.2.Intro
13: for 7; ; € m; do
14: Texecy Tterm < Ti,5
15: Execute(megec, Trerm) > Sequential execution of Skill Steps
16: end for
17: end for

4.2 The Oracle - Filtering Skill-Relevant Data

For each skill, symbolic abstractions identify the critical objects and relations needed for state tran-
sitions, ensuring that skills receive only the observations relevant to their symbolic operator mod-
els (Alg. 1.line 6). Formally, let o; € O be an operator associated with the skill 7;. The operator
o; defines a symbolic transition between states s and s’ such that: s’ = 0;(s), where the transition
is characterized by changes in a subset of object states £ C &, where £ is the full set of objects in
the environment. Let us call : &,, = {e; € £ | symbolic state of ), changes under o; }, the subset
of objects relevant to the grounded operator o; € O. Consequently, for each skill 7;, we define the
filtered observation function « that maps the full state S to a reduced observation space containing
only relevant objects:

v(8,0) = 5(&,). ey
This filtering mechanism ensures that only the relevant objects are considered during skill execution.

To further enhance efficiency and scalability, we define a transformation function « that maps abso-
lute object coordinates to coordinates relative to the agent’s end effector. Then the function o can
be expressed as: «(5,&,;) = {5(ex) — S(EE) | ex € &,,}, where $(gi) represents the absolute
coordinates of object i, and 5;(EE) represents the position of the agent’s end effector, i.e., the part
that interacts with the objects. This transformation ensures that policies remain invariant to global
positioning, improving generalization across different spatial configurations.

We call the function ¢, which applies the object filtering ~ and transformation «, the Oracle:

#(51) = a0 y(5¢,0:). (2)

For task execution, a planner generates a symbolic plan P = [01, 02, . . ., 0], Where each operator
o, is grounded to a specific subset of objects &,, in the environment. Each operator is then executed
using a policy 7., Whose observation space is determined by the Oracle ¢:

ay = We:zec(gb(gt))'

For example, if the planner grounds a unary operator pick(.) to the entity cubel, resulting in the
grounded operator o = pick(cubel), the filtering mechanism ensures that the execution policy
observes only cubel’s relevant properties (e.g., position, orientation, grasp affordances) relative to
the agent’s proprioception.
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Figure 2: Shown here is an example demonstration of the MOVE operator in the Towers of Hanoi
domain, where block 1 is moved off block 2 and placed onto a platform. The agent partitions skill
demonstrations into action steps, with an oracle ¢ filtering observations to simplify learning. The
demonstration is first collected, then filtered using ~ to retain operator-relevant objects (block 1
and platform 3) and « to express coordinates relative to the end-effector. The trajectory is then
decomposed into a sequence of simpler action steps. This enables efficient training of low-level
controllers, which are sequenced to execute each symbolic operator (Alg. 1.line 5).

The oracle function ¢ is automatically derived from abstractions and requires no human input. It
generates a structured perception which reduces observation dimensionality while preserving task-
relevant information, improving learning efficiency and scalability. Observation filtering thus serves
as a symbolic attention mechanism, dynamically focusing observations on essential information at
each execution step.

4.3 Learning Continuous Control Policies

We learn continuous-space control policies from demonstration data D, where each trajectory 7;
consists of state-action pairs (8¢, a;) (Alg. 1.line 7). The objective is to find a policy 7 minimizing
the action prediction loss over demonstrations:

T;
T = arglgleiﬁl Z Zﬁ(ﬂ'(gt)aat)»

7 €D t=0
where £ measures action prediction error.

To improve generalization, we preprocess states by filtering observations &,, and applying a trans-
formation ¢ to express object positions relative to relevant frames: 7*(5;) = 7*(p(8¢)).

For robustness and sample efficiency, we adopt diffusion policies [55]. A diffusion model
po(at|d(8:)) learns to generate actions by denoising perturbed expert actions, where ey predicts
the added noise: Lair = E(3,,0,)~p,c~n(0,1)[ll€ — €6(as + o€, (51))||?]. Diffusion policies cap-
ture multi-modal action distributions, avoiding the mode collapse common in direct regression. Our
framework remains compatible with any imitation learning algorithm for control. Actions are hierar-
chically structured into control spaces (e.g., end-effector motion, gripper control), enabling flexible
and modular execution across tasks.

5 Evaluation

We evaluate our approach across six environments: four in Robosuite including Stacking (involving
3 cubes and randomly generated stacking tasks), Kitchen, Nut Assembly and our own implementa-
tion of the Towers of Hanoi problem using numerated cubes, as well as completely different envi-
ronments in ROS 2 & Gazebo, to perform Forklift Loading/Unloading tasks) and Multiple Pallets
Storage tasks where the agent needs to store multiple pallets at different locations (see Fig. 3). The
forklift’s articulated kinematics in the latter environments introduce significant control challenges,
particularly in fork insertion, as the forward displacement is controlled by the rear of the crawler.
Robosuite environments use Cartesian control of the gripper; The ROS 2 & Gazebo Forklift domain
uses motion and forks control. The observations consists of the 6D pose of the objects in the scene
and the end-effector (i.e., the part that interacts with the objects). The tasks are randomized during
evaluation. The demonstrations provided to our framework are short-horizon skills, for instance
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(a) Robosuite: Stacking & Hanoi. (b) Robosuite: Kitchen. (c) ROS2/Gazebo: Pallets Storage.

Figure 3: Illustrations of some of the simulation domains used for evaluation.

stacking, fork insertion, pallet loading, unloading. Each demonstration has a maximal length of 300
steps, and is blurred with noise in the observation dimensions.

Each agent is evaluated over 30 episodes, and the results are averaged across 5 seeds. Each policy is
trained for 8,000 epochs. Metrics: we use long-horizon tasks success rate for the main experiments.
We also display advancement towards completion as evaluation metrics for the generalization ex-
periments. Baselines: we compare our approach (N-S) against three end-to-end neural baselines:
(1) (L) Imitation Learning over entire trajectories, (2) (H-IL) Hierarchical Imitation Learning with
a high-level policy grounding low-level policies, similar to our oracle reasoning system (3) (H-IL
Dense) A similar Hierarchical Imitation Learning baseline, but with the high-level policy receiving
the full trajectory instead of a single point at the beginning of each stacking operation. To ensure fair
access to information and adherence to the Markov property, the IL baseline policies and the high-
level policies of the H-IL baselines receive absolute rather than relative observations. The low-level
policies of the H-IL baselines receive relative observations, as transformed by « in our approach.

Generalization and Fine Tuning

Zero-shot generalization: We evaluate how well our framework scales to harder Hanoi configu-
rations (4cubesx3pegs to 7cubesx5pegs) and spatial shifts (peg displacements up to 10cm) using
only the demonstrations on the most basic configuration (3x3) In the Forklift domain, we extend
the evaluation to Multiple Pallets Storage tasks with multiple pallets and zones, also by perform-
ing zero-shot transfer. Few-shot fine-tuning: We start from 5 full MOVE skill demos, which we
incrementally extend over harder Hanoi configurations with 5 additional expert reach-place action
step demonstrations. We demonstrate that our agent benefits from continually training on new, more
complex, demonstration in a curriculum manner (see Fig. 5).

6 Results

Neural Skills — We isolate neural skill learning in the Forklift Loading/Unloading and Stacking
tasks (Fig. 4 Above Left & Middle), which emphasize short-horizon control rather than planning.
All agents perform similarly in the forklift task due to the absence of planning, a single object with a
fixed relative pose, and no skill decomposition. In contrast, our agent begins to outperform baselines
in Stacking by leveraging the Oracle for policy refinement, combining relative observations (o) with
symbolic abstractions (y)—a capability baselines lack. Action space clustering further optimizes
skill execution, achieving near 100% success with as few as 5 demonstrations. The lower success
rate in the Forklift Loading/Unloading domain stems from the vehicle’s articulated kinematics: rear-
wheel steering complicates precise fork insertion, and learning these dynamics is challenging in the
fork’s reference frame. Nonetheless, 30 demonstrations are sufficient to overcome these difficulties.

Reasoning Abilities — Reasoning abilities are evaluated in the long-horizon environments
(Figs. 4, 5). Baselines completely fail to solve the long-horizon Towers of Hanoi task even with
500 full demonstrations, unable to ground sub-goals and diverging into random outputs. In contrast,
our method consistently abstracts problem constraints from partial demonstrations, building correct
symbolic domains and solving the task reliably. Successes in Nut Assembly, Kitchen and Multiple
Fallets Storage further confirms our approach’s domain-independent reasoning. Failures occur only
when low-level skills fail to achieve expected effects, not due to reasoning errors.
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Figure 5: Zero- and few-shot generalization results on Different Hanoi Towers configurations.

Generalization & Fine-Tuning — Zero- and few-shot evaluations (Fig. 5) indicate encouraging
generalization to new symbolic domains and spatial shifts. With only 5 demonstrations, performance
in the 3x3 setting was limited, but adding a few expert corrections (5+Experts) yielded significant
gains—outperforming agents trained from scratch with 30 demonstrations while using less data
overall. In the more complex 7x5 setting, our agent occasionally demonstrated robust behavior, such
as recovering from disturbances without replanning, despite occasional control inaccuracies. These
results suggest our neuro-symbolic imitation learning framework generalizes well from limited data
and benefits from curriculum learning. Importantly, our approach also addresses the two desiderata
identified by Silver et al. [31], in known and unknown settings: (1) our subgoal-conditioned policies
and samplers enable reaching diverse low-level states that fulfill the same abstract goal, supporting
flexible execution (KD1), and (2) our bilevel symbolic planner can fall back to alternative skill
sequences when a plan fails, supporting replanning under abstraction-induced constraints (KD2).

7 Conclusion

Our framework advances explainable, generalizable, and data-efficient long-horizon task execution,
addressing key challenges in modern Al. By allowing agents to generalize across diverse tasks and
environments, including novel configurations and previously unseen problems, it demonstrates high
performance in solving complex reasoning tasks with only a few demonstrations. Furthermore,
our approach scales efficiently to more complex tasks with minimal additional supervision, making
it a powerful paradigm for human-taught robotics. Importantly, it eliminates the need for direct
environment interaction during learning, enabling agents to plan and act effectively without risky
exploration or reliance on simulated models or digital twins. Thus, we have demonstrated the utility
of our approach in robotics and industrial settings, paving the way for more efficient, scalable, and
human-friendly solutions in real-world applications.



7.1 Limitations and Future Work

Our approach has some limitations. Like any neural learning method, imitation learning depends
heavily on data quality. Initially, we observed degraded performance due to overly fast demonstra-
tions, which compromised precision; slowing the execution significantly improved success rates for
tasks such as pallet insertion and stacking. Effective datasets must strike a balance between diversity
for generalization and consistency to support efficient learning. Furthermore, computing the rela-
tive pose between objects and the end-effector requires consistently accurate estimation of a valid
grasping point. Failing to do so limits the agent’s ability to generalize to novel objects, especially
after observation filtering by the oracle. Our method relies on an oracle to simplify skill learning, as-
suming the symbolic solver abstracts information at a sufficiently low level to maintain the Markov
property. If not, the learning might not be informed enough, thus leading to the inability to exploit
the data for optimal action decision-making.

Second, our framework supports efficient fine-tuning, enabling fast human-taught robotics. When
scaling to more objects of known types, the symbolic domain remains valid; failures arise mainly
from neural policies encountering out-of-distribution states, which can be corrected with targeted
demonstrations for fine-tuning. If the observation or action space changes due to environmental
novelties, the agent must either adapt its planning or learn new controllers. In cases where new
actions (e.g., screwing), object types (e.g., screwdriver), or predicates (e.g., screwed) are required
beyond the original abstraction, performance can usually be restored by extending the graph with a
few additional nodes and image pairings. In particular, prior work by Rodriguez et al. [14] (Sec. 7.1-
7.2) demonstrates strong robustness of the ASP solver to noisy or missing nodes and edges.

Future work includes integrating real human demonstrations into our neuro-symbolic framework
and validating it on real systems. While we currently use simulated data, we notably plan to capture
expert demonstrations of pallet manipulation and multiple pallets management with a real forklift.
Despite the ROS 2 & Gazebo simulation providing a 1:1 mapping, we want our agent to learn
without using the simulation. The main challenge is learning from noisy demonstrations to control
the forklift directly. We also aim to demonstrate all the Robosuite scenarios on a real Kinova arm.
Additionally, our framework supports future integration of Foundation Models (e.g., CLIP, GPT) to
further automate state matching and skill labeling from visual inputs.
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A Appendix

Figure 6: Illustration of the Nut Assembly envi-  Figure 7: Example of “MOVE” skill decompo-

ronment in Robosuite. sition into action steps using the Stacking and
Towers of Hanoi demonstrations. From left to
right: reach-pick, pick, reach-drop, and drop.

A.1 Symbols Abstraction

We use a script that automatically transcribes the formatted ASP solver output into PDDL. Note
that we have access to both the symbolic operators—i.e., the models of edge transitions in the
graph—and the full symbolic description of each node using the entities £ and their relations F.
Here are the resulting domains from the graph depicted in Figs 8a, 8b, 8d and 8c:

Forklift Multiple Pallets Storage Domain

MOVE: a1 (1, z2)

Static: —(z1 = x2)

Pre: pa(z1), ps(x2)

Eff: —p2(21), —ps(w2), ps(21), p2(22)
UNLOAD az (:1,‘1, :132)

Pre: ps(z2), pa(z1)

Eff: —pa(z1),p1(), ps (21, 22)

LOAD: as (:L'l, mg)

Pre: p1(), ps(w2), ps (w1, 72)

Eff: —p1(), —ps (1, 2), pa(@1)
Objects: 01,02, 03,04 (2 pallets x 2 locations)

Towers of Hanoi Domain

MOVE: a; (21, 2, x3)

Static: —\(331 = xg), —|(x1 = (E3), —|(£L'2 = x3)

Pre: p1 (21, 21), p1(x2, 22), p1 (%2, 23), p2 (21, T2)
Eff: —p1 (1, 21), —p1(22, x3), p1 (@2, 1), p1 (w3, x3)
Objects: 01,02, 03,04, 05, 06 (3 disks x 3 pegs)
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Nut Assembly Domain

MOVE: a; (21, %2, 23)
Pre: p1(z1,x2)

Eff: —p1 (21, 22), p1 (23, 22)
Objects: 01,02, 03,04 (2 nuts x 2 pegs)

Kitchen Domain

MOVE: al (LIZ’1, T2, 333)
Static: ps(x2,x1)

Pre: P1 (1‘2, $1)

Eff: —P1 (a:z,xl), P1 (a)z,.%‘g)

TURNON: az()
Pre: —p2
Eff: D2

TURNOFF: as()
Pre: ps
Eff: —po

WAIT: a4(x1) (or COOK)

Pre: p2, p1(02,03), p1(x1,02)
Eff: pa(z1)

Objects: 01, 02,03, 04,05 (e.g., bread, pot, stove, serving-area, table)

A.2 Post-Hoc Interpretation

The output of the ASP Solver does not come with semantics attached, but a human with domain
knowledge can interpret such symbols as follows:

Forklift Multiple Pallets Storage Domain

MOVE: a1 (21, x2)

Pre: (free_location z1), (forklift_at zs)

Eff:(not (free_location x1)), (not (forklift_at x3)), (forklift_at x1), (free_location
x2)

UNLOAD: a2(331, IQ)

Pre: (forklift_at x2), (loaded pallet zi)

Eff:(not (loaded_pallet z:1)), (free_forklift), (at x1 x2)
LOAD: a3 (1, x2)

Pre: (free_forklift), (forklift_at z2), (at z1 x2))

Eff: (not (free forklift)), (not (at =1 z2)), (loaded pallet z7)
Objects: 01,02, 03,04 (2 pallets x 2 locations)

Towers of Hanoi Domain

MOVE: a1 (z1, z2, ©3)
Pre: (clear z1), (clear z2), (on z2 z3), (greater zi x2)
Eff: (not (clear z1)), (not (on x2 xz3)), (on xs x1), (clear x3)

Objects: 01,02, 03,04, 05, 06 (3 disks x 3 pegs)
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Nut Assembly Domain

MOVE: a1 (21, 22, x3)

Pre: (on 22 1)

Eff: (not (on x2 z1)), (on z3 x3)
Objects: 01,02, 03,04 (2 nuts x 2 pegs)

Kitchen Domain

MOVE: CL1($17 T2, 333)
Pre: (on x> 1), (greater x> x1)
Eff: (not (on z2 x1)), (on z2 x3)

TURNON: a5 ()
Pre: (not (stove-on))
Eff: (stove-on)

TURNOFF: as()
Pre: (stove-on)
Eff: (not (stove-on))

WAIT: a4(x1) (or COOK)
Pre: (stove-on), (on 02 03), (on z; 02)
Eff: (cooked x1)

Objects: 01, 02,03, 04,05 (e.g., bread, pot, stove, serving-area, table)

A.3 SKills decomposition

For Stacking, Nut Assembly and the 3-disk Towers of Hanoi domains, the only action label was
MOVE. Following Section.4.2.Intro, the agent split the policy learning, and broke the MOVE oper-
ator down into four action steps: reach-pick, pick, reach-drop, and drop all shown in 7.

For the forklift Loading/Unloading Pallet and Multiple Pallets Storage, the agent did not split the
given skills into smaller steps.

A.4 Hardware

All experiments were conducted on a workstation equipped with an NVIDIA RTX 4090 GPU and 64
GB of RAM. Training and evaluation were performed using PyTorch and MuJoCo/ROS2+Gazebo-
based environments. On average, training a single policy from 5 to 30 demonstrations took between
20 minutes to 5 hours, depending on the task complexity, the number of demonstrations and the
trajectories average length. Learning the symbolic domain on a CPU only system takes from 0 sec-
ondes (Nut Assembly domain) to an order of magnitude of a day (Kitchen domain). Full evaluation
runs (including symbolic domain construction, planning, and policy execution) took approximately
1-3 hours per domain. All experiments were executed using a single GPU and did not require
large-scale distributed computing.

A.5 Experimental Parameters

All policies were trained using the Diffusion Policy framework in a low-dimensional setting for
all tasks. No keypoint features were used. The training horizon was set to 16, with 4 observation
steps and 8 action steps. Policies were trained using a Transformer-based diffusion model with the
following key parameters: 8 layers, 4 attention heads, 256-dimensional embeddings, and causal
attention enabled. Dropout was set to 0.0 for embeddings and 0.01 for attention.
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The DDPMScheduler was used with 100 training timesteps and a squared cosine beta schedule. The
model was trained for 8000 epochs with a batch size of 256, a learning rate of 1 x 10~%, and cosine
learning rate scheduling with warmup over 1000 steps. The optimizer used Adam with 5; = 0.9,
B2 = 0.95, and a weight decay of 0.1. Exponential Moving Average (EMA) was applied with an
inverse gamma of 1.0 and a cap at 0.9999.

Validation was performed every epoch with a validation split of 2% and up to 90 episodes used
during training. Rollouts and checkpoints were saved every 50 epochs, and model sampling occurred
every 5 epochs.

For dataset handling, we used a padded low-dimensional zarr-based dataset, with appropriate tem-
poral padding before and after each sequence to match training horizon and step requirements.

For demonstration generation, we used a hand-coded automated script and injected Gaussian noise
into all action dimensions—except when explicitly set to zero. The noise had a mean equal to half
the current target command and a standard deviation of 30%, promoting trajectory diversity while
maintaining task feasibility.

(d) Kitchen Graph (two clusters connected via a unidirectional
(c) Nut Assembly Graph WAIT (or COOK) edge).

Figure 8: Task graphs for different environments. Stacking and Forklift Load/Unload Pallets graphs
consist only of two nodes and a connecting edge, as they consider one-skill tasks and do not require
planning.
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