
GarmentLab: A Unified Simulation and Benchmark
for Garment Manipulation

Haoran Lu1,2∗ Ruihai Wu1∗ Yitong Li1,3∗
Sijie Li1,2 Ziyu Zhu1,2 Chuanruo Ning1 Yan Shen1

Longzan Luo1,2 Yuanpei Chen1 Hao Dong 1

1CFCS, School of CS, PKU 2School of EECS, PKU 3Weiyang College, THU

Abstract

Manipulating garments and fabrics has long been a critical endeavor in the develop-
ment of home-assistant robots. However, due to complex dynamics and topological
structures, garment manipulations pose significant challenges. Recent successes in
reinforcement learning and vision-based methods offer promising avenues for learn-
ing garment manipulation. Nevertheless, these approaches are severely constrained
by current benchmarks, which offer limited diversity of tasks and unrealistic simu-
lation behavior. Therefore, we present GarmentLab, a content-rich benchmark
and realistic simulation designed for deformable object and garment manipulation.
Our benchmark encompasses a diverse range of garment types, robotic systems
and manipulators. The abundant tasks in the benchmark further explores of the
interactions between garments, deformable objects, rigid bodies, fluids, and human
body. Moreover, by incorporating multiple simulation methods such as FEM and
PBD, along with our proposed sim-to-real algorithms and real-world benchmark,
we aim to significantly narrow the sim-to-real gap. We evaluate state-of-the-art
vision methods, reinforcement learning, and imitation learning approaches on
these tasks, highlighting the challenges faced by current algorithms, notably their
limited generalization capabilities. Our proposed open-source environments and
comprehensive analysis show promising boost to future research in garment ma-
nipulation by unlocking the full potential of these methods. We guarantee that
we will open-source our code as soon as possible. You can watch the videos in
supplementary files to learn more about the details of our work. Our project page
is available at: https://garmentlab.github.io/

1 Introduction

The next-generation assistant robots should possess not only the abilities to separately manipulate
a wide variety of objects, including rigid, articulated[59], and deformable objects[58], but also the
capability to leverage interactions between those physical media, including flow and fluids, in order
to assist humans[39]. Among various daily tasks [69, 59, 56], garment manipulation stands out as one
of the most challenging, crucial, and extensively discussed tasks in the robotics and computer vision,
due to its demanding requirements for understanding dynamic properties of physical instances and
interactions between them. For instance, washing clothes entails the interaction between garments
and fluids, while dressing up requires collaboration between robots and humans.

Garment manipulation tasks mainly presents three challenges. Firstly, each individual garment
possesses nearly infinite states and exhibits complex kinematic and dynamic properties. Therefore, it
is crucial for models to comprehend the various self-deform states of garments, which usually requires

∗Equal contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://garmentlab.github.io/

TeleoperationMultiPhysics

Real-World Benchmark

Figure 1: GarmentLab provides realistic simulation for diverse garments with different physical propoerties,
benchmarking various novel garment manipulation tasks in both simulation and the real world.

large amount of training data [17, 6] (C1). Secondly, garment manipulation involves interactions
with various types of objects, including rigid (e.g., clothes hanger) and articulated (e.g., wardrobe)
objects, as well as fluids and human body. Consequently, enabling models to understand these
interactions across diverse physical media presents great significance (C2). Finally, considering that
strategies for manipulating garments are often highly complex, and visual perception of garments
is more challenging due to their diverse states and patterns, manipulating garments faces a greater
sim2real gap [63, 29] (C3).

Training a powerful agent capable of overcoming these challenges necessitates a vast amount of data
encompassing robot-object interactions. However, directly collecting data from the real world is
impractical. Thus, researchers have long pursued benchmarks for garment manipulation [30, 4, 6, 64].
Current deformable simulations suffer from drawbacks such as missing garment meshes [30].
Additionally, they offer a limited range of tasks, hindering further research endeavors.

Therefore, we present GarmentLab (Figure 1), a unified environment and benchmark for garment
manipulation. GarmentLab has three novel components to satisfy the demands for diversity and
realism: The powerful GarmentLab Engine, which is built upon Omniverse Isaac Sim [71] and
supports a variety of physical simulation methods. The simulator not only supports Position-Based-
Dynamic (PBD) [3], Finite-Element-Method (FEM) [11], to simulate garments, fluid and deformable
objects but also makes integration with ROS [42] to provide an efficient teleoperation pipeline for
data collection. GarmentLab Assets is a large-scale indoor dataset comprising 1) garments models
covering 11 categories of daily garments from ClothesNet [70] 2) various kinds of robot end-effector
including gripper, suction and dexterous hands. 3) high-quality 3D assets including 20 scenes and
9000+ object models from ShapeNet [7]. Based on realistic simulation and rich assets, we propose
GarmentLab Benchmark containing 20 tasks divided into 5 groups to evaluate state-of-the-art
vision-based and reinforcement learning based algorithm.

To tackle above challenges, our environment has three characteristics:1) Efficient. Garment manipu-
lation involves nearly infinite object state and action spaces, requiring substantial data for models
to understand garment structure and deformation. To meet this demand, our highly parallelized
GPU-based simulator provides a significant training advantage. Larger batch sizes enhance RL-based
algorithms [33], while faster data collection speeds reduce training time for perception-based algo-
rithms (tackling C1). 2) Rich. The richness of our simulator can be categorized into two aspects:
the diversity of simulation content offered by GarmentLab Assets and the depth of physical inter-
action facilitated by GarmentLab Engine. We emphasize multi-physics simulation, encompassing
rigid-articulated, deformable-garment, fluid dynamics, and flow, along with their interactions. This
focus is vital for training agents capable of comprehending real-world physical properties [48] (tack-
ling C2). You can refer to videos in supplementary material for our simulation effects. 3) Real.

2

Table 1: Comparisons with Other Deformable Object Environments.

Multi-C
amera

Scenes
Robot

Sim2real

Garment

Fluid
Rigid Body

Articulated

Human
FEM Objects

Flow
RealBenchmark

Physics
Thermal(st

ream/fire)

Mobile Task

Dexterous Task

Rendering

Pipeline
Area

Softgym[30] é é é é Ë Ë Ë é é é é é é é é é R GPU Manipulation
Orbit[34] Ë Ë Ë Ë é é Ë é é é é é é é é é RT GPU Industrial

Sapien[62] Ë é Ë é é é Ë Ë é é é é é é é é R CPU Manipulation
Habitat 3.0[39] é Ë Ë é é é Ë é Ë é é é é é é é R CPU Navigation
Behavior[28] é Ë Ë é Ë é Ë é é Ë é é é Ë é é RT GPU Manipulation
Mujoco[53] Ë é Ë é é é Ë Ë é é é é é é é é R CPU Manipulation
Pybullet[12] Ë é Ë é Ë é Ë Ë é é é é é é é é R CPU Manipulation

RLBench[23] Ë é Ë é é é Ë Ë é é é é é é é é R CPU Manipulation
Gibson [60] Ë Ë Ë é é é Ë Ë é é é é é é Ë é R CPU Navigation

DeformableRavens[47] Ë é Ë é é é Ë é é Ë é é Ë é é é R CPU Manipulation
GarmentLab Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë Ë RT GPU Manipulation

As the sim-to-real gap emerges as the main obstacle in developing embodied agents, GarmentLab
Engine surpasses Omniverse capabilities by providing mature sim-to-real algorithms, such as Tele-
operation [41] utilized in the RL field, and the Visual Sim-Real Alignment Algorithm employed in
perception algorithms. We also make integration with ROS [42] and MoveIt [10], which is beneficial
for narrowing sim2real gap by introducing real-world robot motions into simulation (tackling C3).

Our benchmark experiments highlight the significant challenges current algorithms face, even with
seemingly simple tasks like unfolding. These difficulties arise from a lack of understanding of physical
interactions and the complexities of high-dimensional states. Vision-based algorithms demonstrate
limited generalization, with performance strongly affected by the initial state of objects. RL-based
algorithms also encounter difficulties with tasks requiring long-horizon planning. These insights offer
valuable guidance for improving methods for garment and deformable object manipulation.

In summary, we have made the following contributions in GarmentLab:

• We propose GarmentLab Environment, a realistic and rich environment for garment manipula-
tion, featuring diverse simulation methods, assets, object physics and multi-material interactions.

• Based on GarmentLab Environment, we propose GarmentLab Benchmark, benchmarking a large
variety of garment manipulation tasks, and providing the first real-world garment manipulation
benchmark that can be reproduced internationally.

• We integrate different sim2real methods into GarmentLab, providing solutions to narrowing the
sim2real and further facilitating the real-world applications.

• Extensive experiments and detailed analyses of different types of garment manipulation algo-
rithms facilitate and enlight future research on garment manipulation.

2 Related Work

Garment and Deformable Object Benchmarks. Current deformable object environments [30, 61,
63] usually support only one simulation method (e.g., PBD or FEM), limiting the types of simulated
objects and interactions. Besides, most environments are CPU-based [62, 63, 12], severely limiting
parallel capabilities and often exhibiting a huge sim-to-real gap due to the absence of comprehensive
sim-to-real algorithm designs. In contrast, as a GPU-based simulator, GarmentLab provides diverse
3D meshes and supports various simulation techniques. We further integrate ROS and combine it with
our carefully designed sim-to-real pipeline, offering a more comprehensive solution for researchers.
Detailed comparisons between our environment and others can be found in Table 1 and Appendix C

Garment and Deformable Object Manipulation. Although current efforts excel at specific tasks
such as folding[63, 1, 57] and unfolding[17, 6], many real-world tasks are long-horizon and involve
interactions between various physical media. While many studies have potential to tackle these
problems[48, 29], they are hindered by the lack of a mature simulation platform capable of support-
ing such diverse and complicated extensions. Furthermore, while current research predominantly
emphasizes gripper manipulation tasks[2, 65], we introduce tasks involving suction, dexterous hands,
and mobile robots. We believe GarmentLab will make a unique and valuable contribution to the
robotics community by providing a new platform for developing garment manipulation algorithms
and significantly expanding the scope of existing methods.

3

GarmentLab Benchmark

Garment-Garment

GarmentLab Engine

Position Base Dynamics

GarmentLab Assets

Render

Alignment ADR

RealWorld

Real Object

Finite Element Method

Articulation and Rigid

Robot Controller

Ph
ys

x S
im

ul
at

or

Franka

Mobile Franka Dexterous hands

Dress

Hat

Mask

Fluid

Articulated

Flow

Rigid

Garment-Fluid

Garment-Deform

Garment-Rigid

Garment-Avatar

Fold

ClothesPiles

Wash

Clean

Fling

Dress Up

Hang

Place

Glove

Trousers One-piece

Socks

Tie

Avatar

Suction

Skirts
UnderPants

Scarf

Robot
UR

Tops
Garment

Interactor

Real Scene

 Sim2RealSimReal

MaterialSensorMotion PlanningTeleoperation

ROS Interface

Figure 2: The Architecture of GarmentLab. (Left) Built on PhysX5, our environment supports various
simulation methods. (Middle) Our environment can deliver realistic simulations of diverse robots, garments,
and interactions between multiple physics media. (Right) Subsequently, we can utilize these assets to construct
tasks across various categories. (Bottom) The framework supports real-world deployment.

3 GarmentLab Environment

GarmentLab aims to integrate state-of-the-art physical simulation methods, modern graphics ren-
dering engines, and user-friendly robotic interfaces into a unified framework (Figure 2). Below we
will first introduce GarmentLab Engine (Section 3.1) and GarmentLab Asset (Section 3.2) to show
our diversity in function and objects. As we especially focus on the exploration of multiple physical
simulation methods and interaction between them, we will introduce GarmentLab Physics in Section
3.3. In section 4 We will talk about our novel-proposed tasks.

3.1 GarmentLab Engine

Built on NVIDIA’s IsaacSim[71], GarmentLab offers a highly-paralleled data collection pipeline, real-
istic rendering, support for various sensors, and integration with Robot Operating System (ROS) [42].

Data Pipeline. Data pipeline mainly consists of two components: Visual Data System and RL-
Training System. Visual System provides both RGB-D observations and ground-truth semantic label
including 2D and 3D bounding box, normals and instance segmentation. Based on IsaacGym, RL
System can establish multiple agents on GPU at the same time for efficient training.

Rendering. GarmentLab supports multiple camera angles, such as eye-on-hand and eye-on-base
perspectives, unlike the single-camera setups of past works [30, 61],which employing naive OpenGL
framework[49]. Additionally, it utilizes GPU-enabled ray tracing for rendering, which enhances
realism and challenge by creating more realistic shadows and lighting [51], thus reducing the sim2real
gap and improving the performance of visual algorithms and mobile navigation tasks.

ROS. ROS[42] is a generic and widely-used framework for building robot applications. We use ROS
to align robot in realworld and the simulation, please refer to Section 6.2 for detailed. Also, although
IsaacSim provides traditional Inverse-Kinematic[36] and RMPFlow control[27], we also provide
MoveIt framework[10] for motion planning, which is more widely used in the real world.

Sensor. In addition to RGB-D observations, auxiliary observations can be accessed, such as robot
joints, cloth particles and object poses. They are required in common RL framework and teacher-
student network[15]. Other Omniverse sensors (e.g., tactile, contact-report) could also be available.

4

3.2 GarmentLab Assets

GarmentLab Asset compiles simulation content from a variety of state-of-the-art datasets, integrating
individual meshes or URDF files into complete, simulation-ready scenes with robots and sensors.
We employ Universal Scene Description files to store all assets with attributes, including physics,
semantics, and rendering properties. Key components along with their sources and categories are
shown in Table 2. More details about each asset type are provided in Appendix A.

Table 2: Key Components of GarmentLab Assets.
Asset Type Sources Categories

Garment and Cloth ClothesNet Hats, Ties, Masks, Gloves, Socks, Dishcloths, ...

Rigid and Articulated ShapeNet, PartNet, YCB, PartNet-Mobility Chairs, Boxes, Washing Machines, Storage Furniture, ...

Robot - Franka, UR5, RidgebackFranka, ShadowHands

Human Model Omniverse HumanModel -

Materials Omniverse Base Material Fabric, Carpet, Leather, Silk, Cotton, ...

Fluid-Garment

Tops Hat

Fluid Pillow

Garment-Rigid

Figure 3: GarmentLab Physics. GarmentLab explores the potential of different simulation methods, and
provides different physical parameters, modeling the distinct properties of different materials in the real world.

3.3 GarmentLab Physics

Simulation Method. To ensure physically realistic simulation, we use tailored methods for different
objects based on their physical characteristics. For large garments and fluid, we use Postion-Based
Dynamics (PBD)[3]. For small elastic garments like gloves and socks, and everyday objects like toys
and sponges, we apply Finite Element Method (FEM)[11]. Human simulation involves articulated
skeletons with rotational joints and a surface skin mesh for high-fidelity rendering. Robot simulation
utilizes PhysX articulation system for precise force control, P-D control, and inverse dynamics.
Unlike previous works that rely on a single simulation method, GarmentLab provides platforms for
exploring dynamics and kinematics of various objects and the coupling and interactions among them.
Diverse Physics Parameters. To fully exploit the potential of various simulation methods and make
garment simulation more diverse and realistic, GarmentLab provides various physics parameter
configurations. For example, as cloth is modeled as a grid of particles, altering parameters such as
particle size and stiffness will change garment physical behaviors. Likewise, as depicted in Figure 3,
diverse physical material parameters are assigned to diverse objects. These parameters encompass,
but are not limited to, surface tension and cohesion for fluids, friction for rigid objects, and modulus.
It is worth noting that parameters influencing the interaction between different objects, including
contact offset and reset offset, are also adjusted. For further details, please consult Appendix D.

5

4 GarmentLab Benchmark

GarmentLab Benchmark is motivated by the abilities that an intelligent manipulator agent should
possess, including (1) understanding the physics of object interactions, (2) generating accurate action
sequences for long-horizon, complex tasks, and (3) transferring this knowledge to the real world. To
test these abilities, we classified tasks into five categories based on physical interactions. We also
proposed several complex, long-horizon tasks to advance future research. The demos of tasks and
real-world experiment are shown in figure 4.

Task Categories. To fully exploit the model’s capability in understanding physical interactions and
conduct comprehensive evaluations of current algorithms, we categorize 20 tasks into 5 groups. The
example tasks and corresponding categories are shown in Table 3. Examples of task sequences are
provided in Figure 4. You can refer to Appendix G to get more details.

Long-Horizon Tasks. With the advancement of robotics, there is a growing focus on completing
long-horizon tasks, which integrate skills tasks such as 3D perception, manipulation and navigation.
Thus we propose several long-horizon garment manipulation tasks, including organizing clothes,
wash clothes, make up tables and dress up. These tasks go beyond simply executing subtasks in
sequence, as they require holistically planning how to accomplish the task based on the environment.
During the execution, the algorithm needs to consider the positioning of the operation, the placement
location, and carefully plan the path to avoid collisions. More analysis are shown in Section 7.

Table 3: Task Categories of GarmentLab Benchmark.
Task Type Focus Example

Garment-Garment fundamental garment manipulation fold, unfold, clothes piles retrieval...

Garment-Fluid interaction between garments and fluids as well as flow, Washing clothes, Drying clothes with a hairdryer...

Garment-FEMObjects manipulating FEM Objects Packing clothes, Dexterous grasp plush toy

Garment-Rigid common interactions between clothing and rigid bodies Hanging, Putting clothes into washing machine

Garment-Avatar collaboration with human Putting a scarf, Dress a person in T-shirt

5 Real-World Benchmark

Real-world benchmark is crucial for not only evaluating the real-world performance of different
methods, but also providing a standardized platform for researchers to reproduce and exchange
methods. With the existence of real-world dataset or benchmarks for rigid [5], articulated [31] objects
and furnitures [18], we introduce the first real-world benchmark for deformable objects and garments.

Unlike rigid or articulated objects that can be 3D-printed from CAD files, deformable objects are
usually purchased without CAD files. Easily influenced by external forces, it is difficult to accurately
model garments directly using traditional multi-camera calibration and surface reconstruction methods.
Therefore, we use commercial scanning devices with lasers and light for mesh scanning.

Selected objects cover diverse garments (tops, trousers, socks, hats), plush toys, household items (bags,
clutches), and cleaning supplies. They are primarily selected from well-known international brands
for durability and accessibility. To ensure variety, objects have different shapes, sizes, transparencies,
deformabilities, and textures. For instance, our dataset features various tops made from materials like
assault jackets, down jackets, shirts, and vests, with a wide range of physical attributes.

Additionally, we provide semantic human annotations for object part masks and key points, supporting
dexterous manipulation such as grasping specific parts and object tracking using key points. Following
YCB[5], we present a systematic approach for defining manipulation protocols and benchmarks.
These protocols specify the experimental setup for each task and provide procedural guidelines. A
comprehensive description of the real-world benchmark is provided in Appendix F.

6 Sim2Real Framework

Transferring models from simulation to reality is crucial yet challenging. GarmentLab paves way to
realistic application by integrating methods for mitigating vision (Sec. 6.1) and action (Sec. 6.2) gap.

6

Real-World Experiment

Simulation Task

SetTable

WashHat

Fold Hang Fling ClothesPile

DressUp Grasp StoreCloth TidyUp CleanTable

Blow

Long-Horizon Task

Figure 4: Diverse Tasks of GarmentLab Benchmark. We introduced 20 garment and deformable manipulation
tasks including complicated long-horizon tasks. The last row shows the execution of these tasks in the real world.

A. Model
wearing
a T-shirt B. Scan from all angles with a scanner C. Scan results

a.
 S

ca
n

Pi
p

el
in

e
b

. R
ea

l-
W

or
ld

 B
en

ch
m

ar
k

Figure 5: Real-World Benchmark. Part a demonstrates the whole pipeline of converting real-world objects into
simulation assets. Part b demonstrates the performance of different categories of objects in both simulation and
the real world (the first row), and the results of these objects being manipulated by the robot (the second row).

7

Figure 6: Sim2Real Framework. On the left, we highlight our MoveIt and teleoperation pipeline, a lightweight
and easy-to-deploy system built using ROS. On the right, we present our three proposed visual sim-to-real
algorithms, demonstrating a significant improvement in model performance after deploying these algorithms.

6.1 Sim-Real Vision Alignment

GarmentLab intergrates several automated and self-supervised sim2real methods, and have verified
their effectiveness by predicting dense visual correspondence for manipulation [57] (Figure 6, Right),
with quantitative manipulation success rate in Table 6.

Keypoint Embedding Alignment. Aligning corresponding skeleton point representations can
mitigate representation gap between point cloud in simulation and the real world [57]. By attaching
markers to skeleton points and enabling robot to perform self-play, we obtain ground-truth keypoint
pairs and employ InfoNCE [25]to align corresponding point representations. Shown in Figure 6, the
alignment adapts representations to the real-world distribution. Appendix E shows more details.
Noisy Observation. Adding noise to point cloud for training can be very effective for sim2real
transfer [16]. As shown in Figure 6, initial query results had many errors. By adding noise during
training, our model became more robust, leading to smoother and more accurate representations.
Point Cloud Alignment. We propose aligning point clouds by optimizing an affine matrix, using
chamfer distance as the loss function. As shown in Figure 6, the model initially predicts incorrect
results, even for flat surfaces. However, after alignment, it successfully predicts accurate results.

6.2 Real-World Motion Generation

For many algorithms, action trajectories generated in simulation is not align with those in the real
world. We introduce two methods for generating trajectories in simulation that closely mimic
real-world scenarios by leveraging prior knowledge of real-world manipulation trajectories.

Teleoperation. We’ve developed a lightweight, cost-effective teleoperation system requiring just
one-click deployment. It facilitates simultaneous control of dexterous hands and grippers in both
real-world and simulated settings (Figure 6). This system supports data collection for offline training,
like diffusion policy.[67, 9]. Implementation details are in Appendix I

MoveIt. Incorporating MoveIt into our framework elevates motion planning and obstacle avoidance
beyond heuristic trajectory methods, as noted in previous studies [57, 63]. Employing MoveIt for real-
world robot execution also aids visual algorithms. Adapting models to MoveIt-generated trajectories
during training reduces the sim-to-real gap. Detailed implementations are provided in Appendix H.

8

7 Experiments

7.1 Simulation Experiment Setup

Methods. We selected three vision-based and two reinforcement learning (RL) algorithms for
experiment, with details listed in Table 4. For vision-based algorithms, we prioritized those utilizing
dense representations for garments, as they have demonstrated generalization ability and are suitable
for various downstream tasks.

Table 4: Benchmark Methods of GarmentLab.
Method UniGarmentManip (UGM)[57] DIFT[52] Affordance[58] RL-State[46] RL-Vision[46]

Type 3D-Visual-Correspondence 2D-Visual-Correspondence 3D-Representation RL RL

BackBone PointNet++[40] Stable-Diffusion PointNet++[40] PPO PPO

Input Point Cloud RGB Image Point Cloud State-Base GT Partial Point Cloud

Tasks. Although we proposed many novel tasks, current algorithms cannot fully solve them. Thus,
for large garments like tops, dresses, and trousers, we chose folding, hanging, and unfolding tasks.
For small items like hats and gloves, we selected hanging and placing tasks to evaluate visual and RL
algorithms. For dexterous and mobile tasks, existing work mostly employs RL algorithms. Hence,
we evaluated the performance of both RL-state-based and RL-vision-based algorithms separately.

Hang Fold

Affordance

Target ImageSource Image

2D Correspondence

Wrong
Query

Correspondence

Trousers Pants

DressT-shirt

One-piece Jumpsuit

T-shirt

Tops

Gloves

Socks

One-pieceOne-piece

Trousers Skirt

Tops

Figure 7: Qualitative Results. We visualize the qualitative results of the three vision-based algorithms: the left,
middle, and right sections of this image correspond to the Affordance, Correspondence, and DIFT algorithms,
respectively. Note that the DIFT exhibits query errors. For detailed analysis, please refer to Experiment Section.

7.2 Simulation Result and Analysis

Table 5 present quantitative comparisons between vision-based algorithms and RL-based algorithms.
Figure 7 intuitively demonstrates the visual results of three different vision algorithms.

Table 5: Simulation Results on Traditional Tasks. Numbers in the Large-piece column represent scores for
Tops, Trousers and Skirts. Numbers in the Small-piece column represent scores for Hats and Gloves.

Large-piece Small-piece
Method Fold Unfold Hang Place Hang

UGM 61.5 / 62.1 / 59.8 58.3 / 60.5 / 57.2 61.8 / 57.5 / 59.7 33.2 / 35.4 31.8 / 29.2
DIFT 32.7 / 36.7 / 31.2 18.7 / 23.3 / 17.6 31.2 / 27.6 / 29.7 66.4 / 63.2 64.7 / 61.2
Affordance 53.2 / 51.8 / 56.9 32.4 / 36.7 / 31.8 64.1 / 60.2 / 61.3 63.2 / 61.5 62.6 / 60.4
RL-State 14.8 / 12.5 / 9.8 6.5 / 8.8 / 12.7 13.1 / 19.7 / 14.7 14.2 / 12.1 12.8 / 13.2
RL-Vision 6.7 / 8.2 / 3.2 5.2/ 6.2/ 8.8 7.6 / 5.3 / 4.1 13.1 / 14.8 11.3 / 15.2

9

Vision-Based Algorithm. Among the three vision-based algorithms, UGM performed best on large-
piece clothing, emphasizing cross-deform and cross-object consistency in learning representations,
DIFT excels with small-piece clothing due to its robustness to object rotation but lacks proficiency in
understanding clothing folding. Affordance works well for tasks that do not require precise point
selection, such as hanging, but struggles with folded garments.

RL Algorithm. Compared to vision-based algorithms, RL performs poorly on garment manipulation
due to the complex dynamics of garments. Our analysis of training videos showed that RL often
generates abnormal trajectories, causing clothes to get tangled with the robotic arm or be pushed
away. This issue is more pronounced with RL-vision-based methods, as the higher-dimensional
and partial visual observations hinder the model’s ability to converge on an effective strategy. For
dexterous and mobile tasks, the larger action and search spaces result in suboptimal performance.
Further discussion and analysis can be found in Appendix B.

7.3 Real-World Experiments

In our real-world experiments, we focused on testing vision-based algorithms due to the risk associated
with RL actions. T-shirts for folding and hats for hanging, were selected for experimentation.
Additionally, we conducted ablation study on proposed sim2real methods using UGM (Table 6).
Our real-world results align with our simulation findings, indicating GarmentLab environment can
enhance real-world applications. For sim2 real algorithm, without point cloud alignment and noise
augmentation along with keypoint embedding alignment can improve representation smoothness and
accuracy. Qualitative sim2real results are shown in Figure 6 (Right).

Table 6: Real-World Experiment and Ablation Results, w/o PA, w/o Noise, and w/o EA respectively represent
UniGarmentManip without Pointcloud Alignment, Noise Augmentation, and KeyPoint Embedding Alignment.

Method UGM DIFT Affordance w/o PA w/o Noise w/o EA

Tshirt-Folding 10/15 8/15 6/15 2/15 8/15 7/15
Hat-Hanging 10/15 14/15 9/15 5/15 8/15 9/15

8 Conclusion

We introduce GarmentLab, a comprehensive environment and benchmark for manipulating garments
and deformable objects. GarmentLab includes the GarmentLab Engine, supporting various simulation
methods and ROS integration; GarmentLab Assets, a diverse dataset of robots, materials, and
garments; and GarmentLab Benchmark, proposing several novel tasks. It also provides the first
real-world deformable benchmark along with several sim2real methods.

9 Acknowledgment

This project is supported by The National Natural Science Foundation of China (No. 62376006), the
National Youth Talent Support Program (8200800081) and the National Natural Science Foundation
of China (No. 62136001).

10

References
[1] Yahav Avigal, Lars Berscheid, Tamim Asfour, Torsten Kröger, and Ken Goldberg. Speedfolding:

Learning efficient bimanual folding of garments. In 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1–8. IEEE, 2022.

[2] Arpit Bahety, Shreeya Jain, Huy Ha, Nathalie Hager, Benjamin Burchfiel, Eric Cousineau,
Siyuan Feng, and Shuran Song. Bag all you need: Learning a generalizable bagging strategy
for heterogeneous objects. IROS, 2023.

[3] Jan Bender, Matthias Müller, and Miles Macklin. Position-based simulation methods in
computer graphics. In Eurographics, 2015.

[4] Hugo Bertiche, Meysam Madadi, and Sergio Escalera. Cloth3d: clothed 3d humans. In
European Conference on Computer Vision, pages 344–359. Springer, 2020.

[5] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel, and Aaron M.
Dollar. The ycb object and model set: Towards common benchmarks for manipulation research.
In 2015 International Conference on Advanced Robotics (ICAR), pages 510–517, 2015.

[6] Alper Canberk, Cheng Chi, Huy Ha, Benjamin Burchfiel, Eric Cousineau, Siyuan Feng, and
Shuran Song. Cloth funnels: Canonicalized-alignment for multi-purpose garment manipulation.
In International Conference of Robotics and Automation (ICRA), 2022.

[7] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, L. Yi, and
Fisher Yu. Shapenet: An information-rich 3d model repository. ArXiv, abs/1512.03012, 2015.

[8] Wei Chen, Dongmyoung Lee, Digby Chappell, and Nicolas Rojas. Learning to grasp clothing
structural regions for garment manipulation tasks. arXiv preprint arXiv:2306.14553, 2023.

[9] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric A. Cousineau, Benjamin Burchfiel,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. ArXiv,
abs/2303.04137, 2023.

[10] Sachin Chitta, Ioan Alexandru Sucan, and Steve B. Cousins. Moveit! [ros topics]. IEEE
Robotics Autom. Mag., 19:18–19, 2012.

[11] Philippe G. Ciarlet. The finite element method for elliptic problems. In Classics in applied
mathematics, 2002.

[12] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. arXiv, 2016.

[13] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J.
Guibas. Vector neurons: A general framework for so(3)-equivariant networks. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pages 12180–12189, 2021.

[14] Peter Florence, Lucas Manuelli, and Russ Tedrake. Dense object nets: Learning dense visual
object descriptors by and for robotic manipulation. Conference on Robot Learning, 2018.

[15] Haoran Geng, Ziming Li, Yiran Geng, Jiayi Chen, Hao Dong, and He Wang. Partmanip:
Learning cross-category generalizable part manipulation policy from point cloud observations.
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
2978–2988, 2023.

[16] Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang,
Stone Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable
manipulation skills. arXiv preprint arXiv:2302.04659, 2023.

[17] Huy Ha and Shuran Song. Flingbot: The unreasonable effectiveness of dynamic manipulation
for cloth unfolding. In Conference on Robot Learning, pages 24–33. PMLR, 2022.

11

[18] Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J. Lim. Furniturebench: Reproducible
real-world benchmark for long-horizon complex manipulation. In Robotics: Science and
Systems, 2023.

[19] Sebastian Hofer, Kostas E. Bekris, Ankur Handa, Juan Camilo Gamboa, Florian Golemo,
Melissa Mozifian, Christopher G. Atkeson, Dieter Fox, Ken Goldberg, John Leonard, C. Karen
Liu, Jan Peters, Shuran Song, Peter Welinder, and Martha White. Perspectives on sim2real
transfer for robotics: A summary of the r: Ss 2020 workshop. ArXiv, abs/2012.03806, 2020.

[20] Sebastian Höfer, Kostas E. Bekris, Ankur Handa, Juan Camilo Gamboa, Melissa Mozifian,
Florian Golemo, Christopher G. Atkeson, Dieter Fox, Ken Goldberg, John Leonard, C. Karen
Liu, Jan Peters, Shuran Song, Peter Welinder, and Martha White. Sim2real in robotics and
automation: Applications and challenges. IEEE Trans Autom. Sci. Eng., 18:398–400, 2021.

[21] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan A. Carr, Jonathan Ragan-Kelley,
and Frédo Durand. Difftaichi: Differentiable programming for physical simulation. ArXiv,
abs/1910.00935, 2019.

[22] Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou, Hao Su, Joshua B. Tenenbaum, and Chuang
Gan. Plasticinelab: A soft-body manipulation benchmark with differentiable physics. In ICLR,
2021.

[23] Stephen James, Z. Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 5:3019–
3026, 2019.

[24] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B.
Girshick. Segment anything. 2023 IEEE/CVF International Conference on Computer Vision
(ICCV), pages 3992–4003, 2023.

[25] Cheng-I Lai. Contrastive predictive coding based feature for automatic speaker verification.
arXiv preprint arXiv:1904.01575, 2019.

[26] Michael J. Landau, Benjamin Y. Choo, and Peter A. Beling. Simulating kinect infrared and
depth images. IEEE Transactions on Cybernetics, 46(12):3018–3031, 2016.

[27] Anqi Li, Ching-An Cheng, Muhammad Asif Rana, Mandy Xie, Karl Van Wyk, Nathan D.
Ratliff, and Byron Boots. Rmp2: A structured composable policy class for robot learning.
ArXiv, abs/2103.05922, 2021.

[28] Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
Martín, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k:
A benchmark for embodied ai with 1,000 everyday activities and realistic simulation. In
Conference on Robot Learning, pages 80–93. PMLR, 2023.

[29] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. In International
Conference on Learning Representations, 2019.

[30] Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. Softgym: Benchmarking deep reinforce-
ment learning for deformable object manipulation. In Conference on Robot Learning, pages
432–448. PMLR, 2021.

[31] Liu Liu, Wenqiang Xu, Haoyuan Fu, Sucheng Qian, Qiaojun Yu, Yang Han, and Cewu Lu.
Akb-48: A real-world articulated object knowledge base. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 14809–14818, 2022.

[32] Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. Unified particle
physics for real-time applications. ACM Transactions on Graphics (TOG), 33:1 – 12, 2014.

[33] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High
performance gpu based physics simulation for robot learning. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

12

[34] Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Mandlekar, Buck Babich, Gavriel State,
Marco Hutter, and Animesh Garg. Orbit: A unified simulation framework for interactive robot
learning environments. IEEE Robotics and Automation Letters, 8(6):3740–3747, 2023.

[35] Kaichun Mo, Shilin Zhu, Angel X. Chang, L. Yi, Subarna Tripathi, Leonidas J. Guibas, and
Hao Su. Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object
understanding. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 909–918, 2018.

[36] Yoshihiko Nakamura and Hideo Hanafusa. Inverse kinematic solutions with singularity robust-
ness for robot manipulator control. Journal of Dynamic Systems Measurement and Control-
transactions of The Asme, 108:163–171, 1986.

[37] Open Robotics. Franka emika panda robot. https://robodk.com/robot/Franka/
Emika-Panda, June 2024.

[38] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and P. Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 1–8, 2017.

[39] Xavi Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan
Partsey, Ruta Desai, Alexander William Clegg, Michal Hlavac, So Yeon Min, Vladimr Vondru,
Thophile Gervet, Vincent-Pierre Berges, John Turner, Oleksandr Maksymets, Zsolt Kira, Mrinal
Kalakrishnan, Devendra Jitendra Malik, Singh Chaplot, Unnat Jain, Dhruv Batra, † AksharaRai,
and † RoozbehMottaghi. Habitat 3.0: A co-habitat for humans, avatars and robots. ArXiv,
abs/2310.13724, 2023.

[40] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. Advances in neural information processing
systems, 30, 2017.

[41] Yuzhe Qin, Wei Yang, Binghao Huang, Karl Van Wyk, Hao Su, Xiaolong Wang, Yu-Wei Chao,
and Dietor Fox. Anyteleop: A general vision-based dexterous robot arm-hand teleoperation
system. RSS, 2023.

[42] Morgan Quigley. Ros: an open-source robot operating system. In IEEE International Conference
on Robotics and Automation, 2009.

[43] Reallusion. Actorcore. https://actorcore.reallusion.com/3d-motion, 2024.

[44] Shadow Robot. Shadow dexterous hand series. https://www.shadowrobot.com/
dexterous-hand-series/, 2024.

[45] Rockwell. Ridgeback. https://clearpathrobotics.com/
ridgeback-indoor-robot-platform/, 2024.

[46] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. ArXiv, abs/1707.06347, 2017.

[47] Daniel Seita, Pete Florence, Jonathan Tompson, Erwin Coumans, Vikas Sindhwani, Ken
Goldberg, and Andy Zeng. Learning to Rearrange Deformable Cables, Fabrics, and Bags with
Goal-Conditioned Transporter Networks. In IEEE International Conference on Robotics and
Automation (ICRA), 2021.

[48] Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, and Jiajun Wu. Robocook: Long-horizon
elasto-plastic object manipulation with diverse tools. arXiv preprint arXiv:2306.14447, 2023.

[49] Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis. Opengl programming guide: the
official guide to learning opengl. In Shreiner, 1993.

[50] Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B. Tenenbaum, Alberto Rodriguez,
Pulkit Agrawal, and Vincent Sitzmann. Neural descriptor fields: Se(3)-equivariant object
representations for manipulation. 2022 International Conference on Robotics and Automation
(ICRA), pages 6394–6400, 2021.

13

https://robodk.com/robot/Franka/Emika-Panda
https://robodk.com/robot/Franka/Emika-Panda
https://actorcore.reallusion.com/3d-motion
https://www.shadowrobot.com/dexterous-hand-series/
https://www.shadowrobot.com/dexterous-hand-series/
https://clearpathrobotics.com/ridgeback-indoor-robot-platform/
https://clearpathrobotics.com/ridgeback-indoor-robot-platform/

[51] P. Slusallek, Peter Shirley, William R. Mark, Gordon Stoll, and Ingo Wald. Introduction to
real-time ray tracing. ACM SIGGRAPH 2005 Courses, 2005.

[52] Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng Phoo, and Bharath Hariharan. Emer-
gent correspondence from image diffusion. ArXiv, abs/2306.03881, 2023.

[53] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[54] Qianxu Wang, Haotong Zhang, Congyue Deng, Yang You, Hao Dong, Yixin Zhu, and Leonidas J.
Guibas. Sparsedff: Sparse-view feature distillation for one-shot dexterous manipulation. ArXiv,
abs/2310.16838, 2023.

[55] Yufei Wang, Zhanyi Sun, Zackory Erickson, and David Held. One policy to dress them all:
Learning to dress people with diverse poses and garments. In Robotics: Science and Systems
(RSS), 2023.

[56] Ruihai Wu, Kai Cheng, Yan Zhao, Chuanruo Ning, Guanqi Zhan, and Hao Dong. Learning
environment-aware affordance for 3d articulated object manipulation under occlusions. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[57] Ruihai Wu, Haoran Lu, Yiyan Wang, Yubo Wang, and Dong Hao. Unigarmentmanip: A unified
framework for category-level garment manipulation via dense visual correspondence. 2024
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

[58] Ruihai Wu, Chuanruo Ning, and Hao Dong. Learning foresightful dense visual affordance for
deformable object manipulation. In IEEE International Conference on Computer Vision (ICCV),
2023.

[59] Ruihai Wu, Yan Zhao, Kaichun Mo, Zizheng Guo, Yian Wang, Tianhao Wu, Qingnan Fan,
Xuelin Chen, Leonidas Guibas, and Hao Dong. VAT-mart: Learning visual action trajectory
proposals for manipulating 3d ARTiculated objects. In International Conference on Learning
Representations, 2022.

[60] F. Xia, Amir Zamir, Zhi-Yang He, Alexander Sax, Jitendra Malik, and Silvio Savarese. Gibson
env: Real-world perception for embodied agents. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9068–9079, 2018.

[61] Zhou Xian, Bo Zhu, Zhenjia Xu, Hsiao-Yu Tung, Antonio Torralba, Katerina Fragkiadaki,
and Chuang Gan. Fluidlab: A differentiable environment for benchmarking complex fluid
manipulation. In The Eleventh International Conference on Learning Representations, 2023.

[62] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu,
Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao
Su. Sapien: A simulated part-based interactive environment. 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 11094–11104, 2020.

[63] Han Xue, Yutong Li, Wenqiang Xu, Huanyu Li, Dongzhe Zheng, and Cewu Lu. Unifold-
ing: Towards sample-efficient, scalable, and generalizable robotic garment folding. ArXiv,
abs/2311.01267, 2023.

[64] Han Xue, Wenqiang Xu, Jieyi Zhang, Tutian Tang, Yutong Li, Wenxin Du, Ruolin Ye, and Cewu
Lu. Garmenttracking: Category-level garment pose tracking. 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 21233–21242, 2023.

[65] Han Xue, Wenqiang Xu, Jieyi Zhang, Tutian Tang, Yutong Li, Wenxin Du, Ruolin Ye, and Cewu
Lu. Garmenttracking: Category-level garment pose tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 21233–21242, 2023.

[66] Kevin Zakka, Laura M. Smith, Nimrod Gileadi, Taylor A. Howell, Xue Bin Peng, Sumeet Singh,
Yuval Tassa, Peter R. Florence, Andy Zeng, and P. Abbeel. Robopianist: A benchmark for
high-dimensional robot control. ArXiv, abs/2304.04150, 2023.

14

[67] Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d
diffusion policy. ArXiv, abs/2403.03954, 2024.

[68] Fan Zhang and Yiannis Demiris. Learning grasping points for garment manipulation in robot-
assisted dressing. In 2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 9114–9120. IEEE, 2020.

[69] Yan Zhao, Ruihai Wu, Zhehuan Chen, Yourong Zhang, Qingnan Fan, Kaichun Mo, and Hao
Dong. Dualafford: Learning collaborative visual affordance for dual-gripper object manipulation.
International Conference on Learning Representations (ICLR), 2023.

[70] Bingyang Zhou, Haoyu Zhou, Tianhai Liang, Qiaojun Yu, Siheng Zhao, Yuwei Zeng, Jun Lv,
Siyuan Luo, Qiancai Wang, Xinyuan Yu, Haonan Chen, Cewu Lu, and Lin Shao. Clothesnet:
An information-rich 3d garment model repository with simulated clothes environment. ICCV,
2023.

[71] Zhehua Zhou, Jiayang Song, Xuan Xie, Zhan Shu, Lei Ma, Dikai Liu, Jianxiong Yin, and Simon
See. Towards building ai-cps with nvidia isaac sim: An industrial benchmark and case study for
robotics manipulation. arXiv preprint arXiv:2308.00055, 2023.

[72] Berk Çalli, Aaron Walsman, Arjun Singh, Siddhartha S. Srinivasa, P. Abbeel, and Aaron M. Dol-
lar. Benchmarking in manipulation research: The ycb object and model set and benchmarking
protocols. ArXiv, abs/1502.03143, 2015.

15

Appendix Overview

A GarmentLab Asset
GarmentLab asset contains a vast range of objects which are commonly seen in our daily life, from
rigid object, articulated object, garment with various materials to all kinds of robots and human
models.

B Experiment
Details about how the experiments described in the main paper is conducted, such as partition of
training and testing sets and evaluation metrics definition.

C Related Work
The main reference work under the topic of traditional embodied and robotic simulator, deformable
objects and cloth Benchmark, downstream tasks and algorithms of garment manipulation.

D Physics Simulation
Details about the simulation methodology of different types of physics simulation, from garment,
deformable body, rigid body to wind and fluid. Discussion of how the changing of physics parameters
leads to different simulation performance.

E Sim2Real
More detailed description of sim-to-real visual alignment and motion generation methods with
specific algorithm process and quantitative mathematical formulas.

F Real-World Benchmark
Discussion about the principle and consideration of object selection. Detailed process of scanning real-
world objects into simulation models and protocol benchmark guidelines of garment manipulation.

G Task
The task categories and detailed settings with multi-physics interactions, including but not limited to
garment-garment task, garment-avatar task. Long-horizon tasks are also discussed here.

H MoveIt
How trajectories generated by MoveIt are recorded and how to adapt visual models in the simulator
to the trajectories, aiming to narrow sim-to-real gap.

I Teleoperation
Detailed process of how the motion of human demonstration is captured and then adapted to embodi-
ment, bringing robots with action in human-level intelligence.

J Limitation
Limitation of our work.

K Broader Impact
The potential societal impacts of our work.

16

A GarmentLab Assets

• Rigid Object We mainly import objects from ShapeNet[7],PartNet[35]and YCB dataset[72].
Note that we have filtered out objects that are not suitable for physical simulation and have
issues interacting with garments or fluid, and then reorganized and reclassified the dataset.

• Articulated Object Having much higher degree-of-freedom(DoF) state spaces, articulated
objects are, however, generally more difficult to understand and interact with compared to
3d rigid objects. We mainly import articulated objects from PartNet-Mobility dataset [62]
including Chair, Box, Bucket, Washing machine and Storage Furniture etc, to establish the
comprehensive tasks for indoor robots such as folding clothes and putting them into the
wardrobe.

• Garment and Cloth We select garments from ClothesNet [70], a large-scale dataset of 3D
clothes objects with information-rich annotations. We select garments from 11 categories
including Hat, Tie, Mask, Gloves and Socks and use two physical simulation method to
simulate them. We also include standard square cloths, like dishcloths and tablecloths, to
cover indoor task needs. Note that there are still gaps between meshes and ready-to-simulate
object, we do post-processing of garments including giving correct physical parameters to
simulate them.

• Robot. We deploy a variety of specialized robots for diverse tasks, including a 7-DoF
Franka manipulator[37] with a parallel gripper, a UR5 with suction for manipulation tasks,
and a RidgebackFranka[45] with wheels for mobility and navigation. For dexterous tasks,
we use ShadowHands[44] mounted on a UR10e.

• Human Model. We incorporate human model to construct long-horizon tasks, such as
dressing up. Utilizing avatars selected from actorcore[43], we assign specific motions to
each avatar to facilitate collaboration with robots. Each avatar comprises articulated joints,
surface skin mesh, and clothing, enabling realistic simulation of human structure and motion.

• Materials. Materials are crucial components of virtual relightable assets, defining the
interaction of light at the surface of geometries. We carefully choose materials from the
Omniverse Base Material library to attain optimal rendering outcomes, a critical aspect for
visual-based algorithms. Moreover, diverse textures can aid algorithms in understanding the
relationship between an object’s appearance and its physical behavior.

B Experiment

B.1 Overview

Generalization ability. As a novel environment, GarmentLab especially focus on evaluating and
improving the generalization abilities of algorithm. We evaluate the generalization ability from the
following aspects. Novel Object Thanks to rich GarmentLab Asset, we split garment and other object
dataset into Train/Var/Test at proportion 70%/15%/15% to test algorithms generalization ability on
object level. Moreover, as garment and deformable object have nearly infinite self-deform state, we
introduce Novel State. For example, we disturb garment initial state and test model’s ability on
handling wrinkled and folded clothes. Moreover, in order to improve algorithm ability of planning
and collision avoidance, we also involve Novel Scene, as for task like make up table, the shadow of
irrelevant object can also influence navigation.

Metrics. We primarily use the success rate as the evaluation metric. It is important to note that
because garments and fluids can easily change state due to gravity or friction, we consider a task
successful if it meets the success criteria and maintains this state for at least five seconds. For
tasks that appeared in previous work, we adopted the widely accepted success criteria and tolerance
thresholds from the goal state. For example, we use Intersection-over-Union (IOU) between the target
and the folded garments to evaluate folding task[57, 6] and use coverage area to evaluate unfolding
task[17]. For novel tasks such as washing or blowing, the goal states and tolerances are derived
according to human behaviors.

17

B.2 Experiment Task Setting

For large garments like tops, dresses, and trousers, we chose folding, hanging, and unfolding tasks.
And for small items like hats and gloves, we selected hanging and placing tasks to evaluate visual
and RL algorithms. The detailed experiment settings for the tasks listed above are shown below:

Garment-hanging task requires robots to hang garments to a fixed couple. The first criterion of
success is that the garment can be hanged steadily (five seconds in real experiment) on the couple.
Then to ensure that the garment is hanged in the right pose (not hanged at sleeve or other strange
cases), we compare the manipulation result with a standard human demonstration by computing the
sum particle-to-particle distance between two states. The total distance within a predefined value will
be regarded as success. The initial states of garment to hang is obtained by dropping from random
initial poses over the ground.

Unfolding task requires robots to unfold garments at random deformations to be flat. Follow
ClothFunnel[6] unfolding task success when the garment ground-truth vertices are within a reasonable
range of the initial state, i.e., the flat state before the vertices were disrupted. This is because we
found that using coverage area as defined by FlingBot[17] may not reasonably reflect success as
the garment structure becomes more complex. The initial states of garment to unfold is obtained by
dropping from random initial poses over the ground.

Folding task requires robots to fold garments from a flat states. After manipulation, we calculate the
particle-to-particle distance between a.the final state of garment after manipulation trial and b.the
garment state obtained by human demonstration. The manipulation whose total distance is lower than
a predefined value can be regarded as success. The initial states of garments to fold are obtained by
placing flatly on random position with small disturbance.

Hat-Hanging task requires robots to hang hats to a fixed couple. The criterion of success is that the
hat can be hanged steadily on the couple and would not fall on the ground. The initial states of hat to
hang is obtained by dropping from random initial poses over the ground.

Placing task requires robots to get the hats/gloves which are previous hanged at the couple. The
placing task succeeds when the hats/gloves are fetched and placed on the right position without
falling on the ground. The initial states of hats/gloves to fetch and place are obtained by random
dropping from a random poses over the couple, where only the successfully hanged cases will be
used for training and testing.

B.3 Detailed Analysis

Vision-Based Algorithm. Comparing the three vision models, we found that UniGarmentManip
(UGM) have the best performance on Large-piece of garments. We conjecture that this stems
from (1) The consistence of representation on self-deformations. As model have the understanding
of deformation on garments, it is easier to detect keypoints required in Folding tasks and Fling
tasks in diverse garment states. (2) The explicit design of cross-object representation consistency.
UniGarmentManip use skeleton(a graph of keypoints) as the shared bridge for different garments
with similar structures, which makes model have the ability to understand the topology of the 3D
object in the same category. However, we found that this result is not as good as the original paper
using PyFlex. This could be because we introduced the robot and the scene here, so some invalid
selection points, such as those beyond the robot’s reach or causing collisions, were considered
unsuccessful. Additionally, while the original paper used only T-shirts, our study included jackets
and other garments with front openings, this wider variety of clothes also increased the complexity of
our task. For Affordance, we found that it performs well in Hanging tasks possibly because of its
task-specific designed which makes it chooses the grasp points more accurately. In contrast, DIFT
has poor performance on these three tasks especially on unfolding tasks due to the unawareness of
garment deformations on 2D pretrained correspondence. This is reasonable because most objects
in world for training do not have garment-level deformations. However, DIFT perfors better with
small-piece garments like hats and gloves due to their minimal deformation, Besides, the pretrain
model based on large diffusion model are more robust to rotation, which is crucial for handling small
clothes. For UniGarmentManip and Affordance, they are not 3D-equivariant models, so they are
more sensitive to rotations, resulting in poorer performance with small clothes compared to DIFT.

18

RL-Based Algorithm. We modified the traditional PPO by directly replacing the value net of
PPO with the success information from the simulation ground-truth information. This is because in
robotics tasks, the value of the policy can be easily obtained from the ground-truth information.At the
same time, following ClothFunnel[6] and FlingBot[17], we primarily used RL for selecting points
and adopted a scripted policy for the trajectory, with simple adaptations based on the selected points.
This is because directly using RL to train the trajectory is particularly unstable. We will elaborate on
this point in more detail below.

We found that PPO’s performance on state-based tasks was significantly worse than visual algorithms.
After analyzing the training videos, we identified several reasons for this: (1) Abnormal trajectories
of the robotic arm caused collisions and pushed the clothes far away. (2) Large reward fluctuations
in long-horizon tasks led to training instability, as the robotic arm’s random folding actions in the
early stages caused significant reward variations. (3) Completing long-horizon tasks was difficult
due to the robotic arm’s abnormal trajectories disrupting previous steps, such as interfering with the
sleeves during the folding task. (4) Wide-ranging movements of the robotic arm caused clothes to
wrap around it, particularly in the hanging task, leading to failure. The visual algorithm avoided
these issues because its execution trajectories were mostly predefined, such as pick-and-place or fling
trajectories.

We also found that the performance of visual-based PPO is significantly inferior to state-based PPO,
due to the following reasons: (1) The higher dimensionality of visual input makes training more
difficult. (2) The visual input consists of partial point clouds, which can confuse the model, especially
for thin objects like clothing. (3) Detecting the object position is more challenging for visual input,
resulting in algorithmic failures during the grasping stage. These findings are consistent with those of
SoftGym [30].

B.4 Training Details of Main Algorithms

B.4.1 UniGarmentManipulation (UGM)

For Hyper-parameters selection, we set batch size to be 32. In each batch, we sample 32 garment
pairs. For each garment pair, we sample 20 positive and 150 negative point pairs for each positive
point pair. Therefore, in each batch, 32 × 32 × 20 data will be used to update the model. During
the Correspondence training stage, we train the model for 40,000 batches. During Coarse-to-fine
Refinement, we train the model for 100 batches. During Few-shot Adaptation, we slightly refine the
model using 5 demonstration data. Besides, we set the number of skeleton pairs to be 50.

For computational resource, we use PyTorch as our Deep Learning framework. Each experiment is
conducted on an RTX 3090 GPU, and consumes about 22 GB GPU Memory for training. It takes
about 12 hours to train the Coarse Stage, with 1-2 hours of Coarseto-fine Refinement and 0.5 hour’s
Few-shot Adaptation.

B.4.2 Affordance

For Hyper-parameters selection, we set batch size to be 128, where each pair contains one positive
manipulation point and one negative manipulation point on the same garment, automatically balancing
the training data. “Positive” means manipulating on that point can lead to the success of the whole task
while “negative” means failure. In each batch, 128 × 2 data will be used to update the model. During
the Affordance training stage, we train the model for 36,000 batches. The model is designed to make
binary classification with cross-entropy as loss function. The output of affordance model reflects the
success rate when manipulating on that point, which ranges from 0 to 1. During manipulation, we
just select the point with the highest score to manipulate.

For computational resource, we use PyTorch as our Deep Learning framework. Each experiment is
conducted on an RTX 3090 GPU, and consumes about 16 GB GPU Memory for training. It takes
about 18 hours to train the model for a task with a specific category of garment.

B.4.3 DIFT

As pretrained model, DIFT use stable-diffusion as backbone. For Hyper-parameters selection and
prompt enginering We use the default parameters of DIFT. We crop the image size to 762× 762 and
set timestep for diffusion to 261. The ensemble size was set to 8. We use official network architecture

19

pipeline followed by our own designed robot excution pipeline. The robot execution pipeline is
similar to UniGarmentManip. We only substitute the query model to DIFT. For computational
resource, we use PyTorch as our Deep Learning framework. Each experiment is conducted on an
RTX 3090 GPU, and consumes about 20 GB GPU Memory for inferencing.

C Related Work

Traditional Embodied and Robotic Simulator The simulator plays an indispensable role in robotics
development as it allows for the rapid and safe acquisition of vast amounts of interaction data,
facilitating the implementation of various algorithms. However, the majority of mainstream robot
simulators[53, 12, 33, 62] primarily support rigid object simulation including the collision and friction
between them. Besides, most of robot simulators are CPU-based[39, 66, 64], severely limiting their
parallel capabilities and resulting in slow training speeds. Additionally, these simulations exhibit
a significant sim2real gap due to the absence of comprehensive sim2real algorithm designs[20, 38,
19].Nevertheless, based on Isaac Sim[71], our benchmark not only supports parallel data collection but
also incorporates comprehensive sim2real designs, including RL-based and vision-based algorithms.
Deformable and Cloth Benchmark In recent years, there has been a surge in deformable and garment
simulation environments[30, 22, 61]. However, the most server problem of these kinds of simulation
or benchmarks is that they can only simulate certain kinds of objects as they only support one
simulation method, which makes it impossible to explore the physical interaction between multiple
kinds of objects. Moreover, these benchmarks are lack of diversity as they are built directly on the
underlying simulation architecture and have not integrated with mature platforms, thereby limiting
the range of simulated objects and scenes. For instance, softgym[30], built on NVIDIA Flex[32], is
confined to simulating tops and trousers while fluidlab[61], built on Taichi[21], can only simulate
fluid and performs poorly on rigid objects simulation. Additionally, many benchmarks[61, 30] lack
the ability to import robots and establish real grasps, posing significant challenges for joint control and
vision-based algorithms. By contrast, GarmentLab provides sophisticated 3D meshes and facilitates
various simulation techniques, enabling the modeling of garments, fluids, flow dynamics, avatars,
rigid and articulated objects, and their interactions. This inclusive and adaptable platform offers a
more comprehensive solution for research and development. The full detailed comparison of out
benchmark between others can be found in Appendix A.
Garment and cloth manipulation Manipulating a single garment or cloth is a well-studied area, with
previous works focusing on learning policies for specific tasks such as folding [1, 63], unfolding [17],
grasping [8, 68], and dressing-up [55]. However, as many daily tasks involve interactions between
various physical media, current algorithms often fall short in solving real-life tasks. Although many
proposed algorithms have full potential to solve these problems[59, 29], they are hindered by the
lack of a mature simulation platform capable of supporting such simulations. Furthermore, while
current research predominantly emphasizes gripper manipulation tasks, we introduce tasks utilizing
suction, dexterous hands, and mobile robots. We believe that GarmentLab will make a unique and
valuable contribution to the robotics community by providing a new platform for developing garment
manipulation algorithms and significantly expanding the scope of existing methods.

D Physics Simulation

D.1 Modeling methodology

D.1.1 Position-Based Dynamics (PBD) for Garment

Position-Based Dynamics (PBD) is an efficient and stable method for simulating cloth, particularly
suitable for complex garments like dresses. PBD models deformable objects as systems of inter-
connected particles governed by constraints that dictate their physical interactions and behaviors.
In PBD, a dress is represented as a triangular mesh where particles serve as discrete points on the
cloth surface with attributes such as position xi, velocity vi, and inverse mass wi. The method
operates by directly manipulating particle positions to satisfy a series of constraints, achieving stable
simulations of deformable materials. These constraints include stretching constraints, which enforce
distance maintenance between neighboring particles to prevent excessive elongation, mathematically
defined as C(xi, xj) = ∥xi − xj∥ − d, where d is the rest distance between particles xi and xj .
Bending constraints maintain angles between adjacent triangles in the mesh to simulate resistance to

20

bending, formulated as C(xi, xj , xk), where the constraint function depends on the angle between
particle triplets. Collision constraints detect and resolve collisions between particles and other objects,
ensuring realistic interactions within the environment. The PBD algorithm involves initializing
particles and constraints based on the dress’s geometry and material properties, applying external
forces such as gravity, predicting new particle positions as p̂i = pi +∆t · vi where ∆t is the time
step, iteratively adjusting particle positions to satisfy constraints, updating particle velocities, and
determining final positions for each time step.

D.1.2 Position-Based Dynamics (PBD) for Fluid Simulation

Position-Based Dynamics (PBD) is a powerful method for simulating fluids due to its computational
efficiency and stability. PBD treats fluids as collections of particles, where each particle represents a
small volume of the fluid. Constraints are applied to ensure physical properties such as incompress-
ibility and realistic fluid behavior. In fluid simulation, particles are characterized by attributes such as
position xi, velocity vi, and inverse mass wi.

A key constraint type in fluid simulation is the density constraint, which ensures that the fluid
maintains a constant density. The density constraint for a particle i can be defined as:

Ci(x) =

∑
j

mjW (∥xi − xj∥, h)

− ρ0

where W is the smoothing kernel function, h is the smoothing length, mj is the mass of particle j,
and ρ0 is the rest density of the fluid. Collision constraints handle interactions between fluid particles
and solid boundaries, ensuring particles do not penetrate solid objects.

The PBD algorithm steps for fluid simulation include initializing fluid particles with positions,
velocities, and masses, applying external forces such as gravity, computing predicted positions
p̂i = pi +∆t · vi, adjusting particle positions to satisfy density and collision constraints, updating
particle velocities based on the corrected positions, and integrating the updated positions and velocities
for the current time step.

D.1.3 Finite Element Method (FEM) for Simulating Deformable Objects

The Finite Element Method (FEM) is a robust numerical technique for simulating the mechanical
behavior of deformable objects, ideal for intricate geometries and diverse material properties, such
as a toy bear. FEM discretizes the object into a mesh of finite elements and solves the equations of
motion to accurately capture realistic deformations under various forces.

In FEM, the deformable object is represented by a mesh consisting of nodes and elements. Nodes
are points where the equations of motion are solved, and elements are polyhedral shapes, such
as tetrahedrons, that connect these nodes. Material properties, including elasticity, density, and
damping, determine the response of the object to applied forces.Modeling a deformable body
involves several key steps. First, a deformable body component is added to the mesh, which
generates collision and simulation tetrahedral (tet) meshes from the source mesh. The mesh is then
separated into visualization, collision, and simulation tetmeshes, each serving distinct purposes in
rendering, collision resolution, and simulation. Configuring the material properties involves defining
characteristics such as stiffness and dynamic friction by creating and binding a new deformable body
material.

D.1.4 Flow Models for Simulating Wind Effects

Flow models are essential for simulating wind effects, capturing the interactions between fluid (air)
and objects. These models represent phenomena such as airflow, turbulence, and aerodynamic forces.
The typotypoequations form the core of flow models and include the continuity equation for mass
conservation ∂ρ

∂t + ∇ · (ρu) = 0, where ρ is the fluid density and u is the velocity vector; the
momentum equation for force balance ∂(ρu)

∂t + ∇ · (ρuu) = −∇p + ∇ · τ + ρg, where p is the
pressure, τ is the stress tensor, and g is the gravitational acceleration; and the energy equation for
thermal effects ∂(ρE)

∂t +∇ · (ρEu) = −∇ · q+ τ : ∇u+ ρ(g · u), where E is the total energy per
unit mass and q is the heat flux vector.

21

Wind effects are modeled by defining wind sources, preparing high-resolution meshes, setting
boundary conditions, configuring the appropriate flow model (e.g., LES or RANS), and running the
simulation to compute wind interactions iteratively. This approach ensures accurate and dynamic
representations of wind effects in various environments.

D.1.5 Rigid Body Simulation

Rigid body models are essential for simulating solid objects that move and interact based on physical
laws without deforming. These simulations accurately represent the dynamics of solid objects under
various forces. Key components include a rigid body component, which provides properties like
linear and angular velocity, and a collision component, which defines how the body collides with
other objects.The dynamics of rigid bodies are governed by solvers such as Temporal Gauss-Seidel
(TGS) and Projected Gauss-Seidel (PGS), which ensure stability and efficiency. TGS improves
convergence by considering temporal aspects of the simulation, while PGS iteratively projects
velocities to satisfy constraints.Rigid bodies interact through collisions defined by collision shapes,
which can be approximated using convex hulls, bounding shapes, or signed distance fields (SDFs).
These approximations balance accuracy and computational performance.Mass properties of rigid
bodies are derived from the volume and density of their collision geometries. For more precise
control, explicit mass or density values can be set using a Mass component. This allows for accurate
simulation of complex interactions and dynamic behaviors.

D.2 Multi-Physics Simulation Parameters Table

To maximize the value of different simulation methods, we assigned different parameters to various
objects. In Table 7, we list all the adjustable parameters.

D.3 Parameter Effects on Physical Properties

In most cases, changes in parameters do not significantly alter the physical properties. For PBD
simulations involving garment, the Particle Contact Offset parameter affects the thickness of the
fabric; as its value increases, the fabric becomes progressively thicker. The Rest Offset parameter
influences the distance between the dress and the ground upon landing, with an increase in this value
resulting in a greater distance between the dress and the ground after it lands.

For PBD simulations involving fluid, the Velocity parameter affects the flow rate of the liquid; as its
value increases, the liquid flows faster. The Cohesion parameter affects both the shape and flow rate
of the liquid; at lower values, the liquid falls quickly and splashes out. As the value increases, the
liquid flow slows down and splashing decreases, eventually leading to a smooth flow. The Particle
Contact Offset parameter affects the form of the liquid as it falls; as its value increases, the liquid
transitions from a continuous stream to a segmented, chunk-like flow.

In simulations involving deformable bodies, the Vertex Velocity Damping parameter affects the fall
speed of objects such as hats; as the value increases, the fall speed decreases gradually. The Settling
Threshold parameter also influences the fall speed of hats; increasing its value results in a slower
fall speed, but once the value exceeds 1, the fall speed stabilizes. The Elasticity Damping parameter
impacts the shape of the hat; as the value increases, the hat gradually collapses from a firm structure
to a flat plane. The Young’s Modulus parameter also affects the shape of the hat; at lower values
(around 1e3), the hat collapses into a smaller height. As the value increases, the hat becomes firmer,
and when the value reaches around 1e4, the hat initially stays firm and then gradually collapses. At a
value of 15000, the hat remains completely firm.

For rigid body simulations, the Max Linear Velocity parameter affects the fall speed of rigid bodies
such as hats; as the value increases, the fall speed decreases. When the value exceeds 50, the object
practically stops falling.

In the context of flow simulations, the X-Component, Y-Component, and Z-Component parameters
together determine the direction of the wind vector, while the Magnitude parameter determines the
strength of the wind.

22

Table 7: Multi-physics parameters
Type Parameters Function Range

Garment

Particle Contact Offset Distance at which particles start interacting 0.03 - 0.12
Contact Offset Distance at which collisions are detected 0 - 16384

Rest Offset Distance at which particles are in resting contact 0 - 0.05
Solid Rest Offset Distance for particle-solid interactions Default
Fluid Rest Offset Distance for particle-fluid interactions Default

Solver Position Iteration Count Number of iterations for solver to satisfy constraints 6 - 255
Max Depenetration Velocity Maximum speed at which particles are separated when overlapping inf

Max Neighborhood Maximum number of neighboring particles for interactions 36 - 512
Density Mass per unit volume of the material default
Friction Resistance to sliding motion default

Damping Reduction of motion or oscillations default
Viscosity Internal friction within the fluid material default
Cohesion Attractive force between particles default

Surface Tension Elastic tendency of the material’s surface default
Drag Resistance experienced when moving through fluid or air default
Lift Force acting perpendicular to fluid flow around the material default

Fluid

Particle Contact Offset Distance at which particles start interacting 0.17 - 0.3
Contact Offset Distance at which collisions are detected default

Rest Offset Distance at which particles are in resting contact 0.03 - 0.2
Solid Rest Offset Distance for particle-solid interactions 0.1-0.2
Fluid Rest Offset Distance for particle-fluid interactions 0.1-0.15

Solver Position Iteration Count Number of iterations for solver to satisfy constraints 6 - 255
Max Depenetration Velocity Maximum speed at which particles are separated when overlapping inf

Max Neighborhood Maximum number of neighboring particles for interactions 36 - 512
Density Mass per unit volume of the material 0 - 1e10
Friction Resistance to sliding motion 0 - 0.2

Damping Reduction of motion or oscillations 0 - 10
Viscosity Internal friction within the fluid material 1e3 - 1e6
Cohesion Attractive force between particles 0 - 100

Surface Tension Elastic tendency of the material’s surface 0 - 100
Drag Resistance experienced when moving through fluid or air 0 - 78
Lift Force acting perpendicular to fluid flow around the material 0 - 1e10

Deformable Body

Vertex Velocity Damping Rate of reduction of vertex velocities 0 - 10
Simulation Mesh Resolution Granularity of the simulation mesh 10

Solver Position Iterations Number of iterations for solver to satisfy positional constraints 8 - 255
Sleep Threshold Velocity below which the body is considered to be at rest 0 - 1e7

Settling Threshold Velocity below which the body is considered to have settled 0 - 1e7
Sleep Damping Additional damping as the body approaches the sleep threshold 0 - 1e7
Contact Offset Distance at which collisions are detected -inf

Rest Offset Distance at which particles are in resting contact -inf
Self Collision Filter Distance Minimum distance to avoid self-collision -inf

Remeshing Resolution Resolution for remeshing the input mesh Default
Target Triangle Count Target resolution for quadric simplification Default

Max Depenetration Velocity Maximum speed at which vertices can be separated when overlapping inf
Density Mass per unit volume Default

Dynamic Friction Resistance to sliding motion 0 - 2048
Young’s Modulus Stiffness of the material 1e3 - 1e10
Poisson’s Ratio Ratio of transverse to axial strain 0 - 0.499

Elasticity Damping Reduction of oscillations and vibrations 0 - 0.05
Damping Scale Adjusts the overall damping effect 0 - 1.0

Rigid Body

Max Linear Velocity The rate of change of position of the rigid body. 0-50
Max Angular Velocity The rate of change of rotation of the rigid body. 0-1e10

Collision Shape Defines the shape used for collision detection. default
Contact Offset Distance from the surface where collisions are detected. -inf-inf

Rest Offset Effective contact distance from the surface. -inf-inf
Convex Hull Approximation method for collision shape. 0-64

SDF (Signed Distance Field) Approximation method using signed distance field. default
Mass Defines the mass of the rigid body. 0 to Inf

Density Defines the density of the rigid body material. 0 to 1000
Friction Resistance to sliding motion. 0 to 1

Restitution (Bounciness) Degree of elasticity of collisions. 0 to 1
Material Density Density of the material applied to the rigid body. 0 to 1000

Flow

X-Component Flow rate in the x-direction -inf-inf
Y-Component Flow rate in the y-direction -inf-inf
Z-Component Flow rate in the z-direction -inf-inf

Magnitude Overall magnitude of the flow 0-inf

E Sim2Real

Transferring models trained in simulator to reality is challenging and become a critical issue for
robotic research.However, most Sim2Real techniques are not yet fully automated and require careful
human oversight. In this work, we present three visual sim2real methods which are fully
automated and self-supervised. We mainly conduct experiment follow [57], learning dense visual
representation for garment before and after our alignment method. The results are shown in Figure 6

23

Figure 8: Different Types of Particle-Particle Interaction

E.1 Sim-Real Vision Alignment

Noisy Observation. Although previous do dedicated exploration on how to add noise to point
cloud[26, 62], they need capture IR picture and do many calculation which is time-consuming.
However, we have found that simply adding salt-and-pepper noise and Gaussian noise can already
yield very good results. We directly add noise to depth picture and generate noised point cloud in the
training data.

Dnoised(x, y) =


D(x, y) +N (0, σ2) with probability pgaussian

D(x, y) + salt with probability psalt

D(x, y)− pepper with probability ppepper

D(x, y) otherwise

where D(x, y) represents the depth value at pixel (x, y) in the original depth picture, N (0, σ2)
represents Gaussian noise with mean 0 and variance σ2, and salt and pepper noise is added with
probabilities pgaussian, psalt, and ppepper respectively.

For experiment, we add noise to the training data during the training process of dense visual
correspondence[57]. As shown in figure6, before we do data argumentation for training data, the
query results show many spots, indicating errors. This is due to discontinuities of dense representation
caused by differences between the real-world point cloud and the simulator. After we add noise, the
model become more robust to noise thus the representation become more smooth and accurate.

Point Cloud Alignment. Dense object descriptors [14] that learn point- or pixel-level object
representations are proposed by and for robotic manipulation. The key idea of these works[57,
54, 50]is to represent an object as a function f that maps a 3D coordinate x to a spatial descriptor
z = f(x) of that 3D coordinate:f(x) : R3 → Rn. f may further be conditioned on point cloud
P ∈ R3×N and usually parameterized by a neural network. However, f are not always SE(3)-
equivariant, which means to a rigid transform (R, t) ∈ SE(3), we can NOT guarantee that f(x|P) ≡
f(Rx+ t|RP+ t). However, in real world experiment, as the height and angle of the camera may
be different from that in the simulator, the distributions of point cloud collected in simulation and
real world are different. This will lead to wrong query result especially for garment as it highly rely
on thickness to detect folding relationships.

Although we can choose SO(3)-equivariant network[13], the training of it is hard and time-consuming.
Thus, we propose a direct way to align the point cloud in simulation and the realworld. As all rigid
transform (R, t) ∈ SE(3) can be represented by affine matrix, we directly use gradient descent to
optimize the affine matrix so that we can align the distribution between realworld point cloud and
simulation point cloud. We chose the chamfer distance as the loss function because it is both robust
to the various deform and shape of the garment and effectively aligns the positions. Equation 1 show
our optimization objective and 2 show our loss function.

Transforms(R, t) =

a b c x
d e f y
g h i z
0 0 0 1

 (1)

24

Chamfer_Loss(A,B) =
1

|A|
∑
a∈A

min
b∈B

∥a− b∥2 + 1

|B|
∑
b∈B

min
a∈A

∥a− b∥2 (2)

As shown in figure 6, before we align the point cloud, the model predict wrong result even in the flat
case. After alignment, the model successfully predict the correct result.

Keypoint Embedding alignment. As the model learn point level representation, a direct way is
to align the representation of corresponding point between realworld garment and simulation. In
this part, we first attach marker to garment on the skeleton points(shoulder, end of the sleeve and
bottom corner etc.) Then, we do self-play which enable franka to randomly choose the pick-and-place
point to create garment deformation status. Then we use SAM[24] to detect key point and align
correspondence key point with the simulation result. After we get ground-truth key point pair between
simulation and realworld,we employ InfoNCE[25] a widely-used loss function in one-positive-multi-
negative-pair contrastive representation learning, to pull close the representation of corresponding
points, while push away representation of them and other point representations. The loss function is
shown in Equation 3

LCD = −log(
exp(fp · fp′/τ)∑m
i=1 exp(fp · fp′

i
/τ)

) (3)

where fp is the skeleton point in realworld garment, fp′ is the corresponding point in simulation point
cloud and fp′

i
is other point in simulation point cloud.

As shown in figure 6, after model finetune, the performance of the model on realworld garment
improve significantly. This is mainly because model is more adapted to the distribution of real world
point cloud.

F Real-World Benchmark

Benchmarking and performance evaluation in robotic manipulation encounter challenges owing to
the diverse range of applications and tasks, prompting research groups to select representative tasks
and objects that are frequently inadequately specified and inaccessible to others, thereby impeding
the ability to compare experimental results and interpret performance quantitatively, particularly
in real-world scenarios. To address this issue, the implementation of a real-world benchmark is
crucial, as it can not only narrow sim2real Gap but also provide a platform for researchers to directly
compare algorithm performance. Although previous work has introduced real-world benchmarks,
such as YCB [5] and furniture benchmark [18], they primarily focus on rigid bodies, lacking
benchmarks specifically designed for deformable objects. In this study, we introduce the first
real-world benchmark for deformable objects and garments, facilitating the widespread usage
of a standardized set of objects and tasks to enable easy comparison of results among research
groups worldwide.

F.1 Object and Data Set: Object Selection

Principle
We aimed to select objects that are frequently used in daily life, and we also reviewed the literature to
consider objects that are frequently used in simulations and experiments. Several additional practical
factors must be considered when formulating the proposed set of goals and tasks.

• Variety
The objects included are small in number, but ensure a great richness. Judging from the category of
items, we roughly include tops, pants, skirts, socks, gloves, dolls, etc. Considering size, generally
speaking, clothes occupy a larger area, followed by dolls, and then small items such as socks
and gloves. Considering deformability, large items of clothing are the softest, can be stacked
into various shapes, and have the highest deformability, followed by small items, which can
only undergo simple changes because they are relatively small, while dolls are elastic but lack
deformability. Grasping and manipulation difficulty was also a criterion: for instance, toys are well
approximated by simple geometric shapes and relatively easy for grasp synthesis and execution,
while garments have higher shape complexity and are more challenging for grasp synthesis and

25

execution. In addition, since we are doing a benchmark about garments, we have to carefully
consider their characteristics: they are diverse and highly deformable, but the same type of garment
often only differs in texture or color, and is very similar in structure and key points. This allows
us to use a few objects to represent a category of garments, thereby ensuring the variety of our
benchmark.

• Use
We included objects that are not only interesting for grasping but that also have a wide range
of manipulation uses. Soft and highly deformable clothing is also suitable for many complex
operations: such as hanging, folding, etc. The introduction of fluid allows us to simulate the
interaction between some objects and fluids, such as washing and air-drying. In addition, we also
included people, which allowed us to simulate the interaction between some objects and people,
such as putting a scarf on someone. As mentioned above, these tasks are intended to span a wide
range of difficulty, from relatively easy to very difficult.

• Durability
We aimed for objects that can be useful in the long term, and, therefore, avoid objects that are
fragile or perishable. In addition, to increase the longevity of the object set, we chose objects that
are likely to remain in circulation and change relatively little in the near future.

• Cost
We aimed to keep the cost of the object set as low as possible to broaden accessibility. We, therefore,
selected standard consumer products, rather than, for instance, custom-fabricated objects, and tests.
We buy all our clothes from Uniqlo and all our dolls from Disney.

After these considerations, the final objects were selected. You can see our object set in Table 8 and
the corresponding suggested tasks in Table 9.

Table 9: Suggested Manipulation Tasks for Different Garments.
Object Category Suggested Tasks

Tops/Pants/Shorts/Vests/Skirts
a. Washing and Drying
b. Folding
c. Stacking and Grabbing of clothes

Dresses/Coats

a. Washing and Drying
b. Folding
c. Stacking and Grabbing of clothes
d. Hanging

Hats/Scarfs

a. Washing and Drying
b. Folding
c. Stacking and Grabbing of clothes
d. Hanging
e. Interacting with People: wearing
corresponding objects on people

Deformable Objects a. Grabbing and Placing

Small Items (Gloves/Stocks) a. Grabbing and Placing
b. Washing and Drying

F.2 Object Scans

Our scanning process is roughly divided into four stages: model wearing clothes, scanner scanning to
obtain raw data, post-processing, and manual annotation of key points. The whole process can be
referred to Figure 9.

26

Table 8: Real-World Objects and Properties. PBD stands for Position Base Dynamics, while FEM stands for
Finite Element Method.

Number Class Object
Name Picture Simulation

Method Branch Number Class Object
Name Picture Simulation

Method Branch

1 FEM
Objects

Straw
-berry
Bear

FEM Disney 11 Shorts
Blue
Denim
Shorts

PBD Uniqlo

2 FEM
Objects Stitch FEM Disney 12 Shorts White

Shorts PBD Uniqlo

3 FEM
Objects

Winnie
Bear FEM Disney 13 Skirts

Blue
Denim
Shorts

PBD Uniqlo

4 Coats White
Jacket PBD Uniqlo 14 Vests

White
Cotton
Vest

PBD Uniqlo

5 Coats Green
Jacket PBD Uniqlo 15 Shorts

White
Camisole
Vest

PBD Uniqlo

6 Coats
White
Plush
Jacket

PBD Uniqlo 16 Dresses Blue
Dress PBD Uniqlo

7 Tops

White-
long-
sleeved
T-shirt

PBD Uniqlo 17 Shorts
White
Blue
Dress

PBD Uniqlo

8 Tops

White-
short-
sleeved

T-shirt

PBD Uniqlo 18 FEM
Objects

Blue
Hat FEM Uniqlo

9 Pants White
Pants PBD Uniqlo 19 FEM

Objects
Blue
Socks FEM Uniqlo

10 Pants Black
Pants PBD Uniqlo 20 FEM

Objects
Yellow
Gloves FEM Uniqlo

27

Figure 9: Objects Scanning Process.

• Model wearing clothes
There are two main ways to scan clothes: scanning them flat and scanning them while the model is
wearing them. After careful consideration and constant experimentation, we chose the latter. This
is because we use a large number of points to simulate clothing, so the wrinkles formed when the
clothes are laid flat will cause the points to be unevenly distributed, thus forming many "holes".
While when worn on the model, the appearance of wrinkles will be reduced, thus try to avoid this
situation as much as possible.

• Scanning
We use a scanner to scan the object from multiple angles, and obtain a copy of the original point
cloud data and grid data through the combination of the depth camera and the RGB camera. The
general process can be referred to Figure 5.

• Post-Processing
During the post-processing process, we mainly did three things: down-sampling, adding texture
files, and processing remaining holes. The point set obtained by the initial scan has too many
points and is difficult to support with ordinary computing power, so we performed down-sampling
to generate a file that can retain the main features and have a moderate number of points. We
use Meshlab for down-sampling. The original scale is about 100 million points and 300 million
faces. After down-sampling, it can reach about 10,000 points and 30,000 faces. We use MTL files
(Material Library File) to add material attribute information. MTL is a material library file used
to describe the material information of objects. It is usually used in conjunction with an OBJ file
to apply material properties such as texture and color to the OBJ model. In this step, we mainly
implemented some visual textures, such as patterns, colors, etc. The physical texture is achieved
through different simulation methods. In addition, there are still some “holes” in the processed
point set, which we repaired manually.

• Manual annotation of key points
Since we use a large number of points to simulate objects, it is necessary to mark some key points
and edges to indicate important features. For example, for tops, we will mark the sleeves, neckline,
hem, etc. These locations are often the key parts for clothing operations. For dolls, we will mark
arms, legs and other parts that are easy to grasp. Figure 10 gives some examples for reference.

Figure 10: Manual annotation of key points: examples

28

F.3 Protocol Benchmark Guidelines

We use the protocol and benchmark templates mentioned in [72]. To both provide more concrete
samples of the types of task definitions that can be put forward as well as specific and useful
benchmarks for actually quantifying performance, we have developed some example protocols:
clothes-hanging protocol, scarf-wearing protocol.

• Clothes-hanging protocol and benchmark
When dealing with flexible clothing, hanging clothing is always a popular task. The protocol uses
the hanger, clothes suitable for hanging of our model set. The clothes are initially laid flat on the
platform, and the robot is expected to grab the key points of the clothes, pick them up, and finally
hang them on the hangers. The benchmark scores the performance of the robot by evaluating
whether the hanging point is reasonable and the stability of the hanging clothes (whether they are
easy to fall off). We applied this benchmark to Franka.

• Scarf-wearing protocol
Dressing people with robots has always been a difficult subject. In this example, we chose the
easier and more manageable task: wearing a scarf. This protocol uses the scarf from the model
set, and a person from the Issac Simulator. The scarf is initially laid flat on the platform, and what
the robot has to do is to pick it up and wrap it around the person’s neck, and finally adjust it to a
suitable state. The benchmark scores the performance of the robot by evaluating whether the final
state of the scarf is stable (we can test it by adding wind to see if the scarf will blow off quickly),
whether the remaining length of the scarf on both sides is similar, and whether the scarf fits the
person’s neck (rather than loosely packed). We applied this benchmark to Franka.

G Task

G.1 Task category

Garment-Garment. This category focuses on fundamental garment manipulation, including tasks
like folding and unfolding single garments, as well as interactions between multiple garments such as
retrieving items from clothes piles. Tasks in this category include folding, unfolding (pick and place),
and unfolding (fling).

Garment-Fluid. Tasks in this group concentrate on the interaction between garments and fluids as
well as flow, where trajectory dynamics play a crucial role. This category of tasks includes washing
clothes in a basin, rinsing clothes under running water, and drying clothes with a hairdryer. In this
category, we specifically introduced the interaction between the robot manipulating objects and fluid
flow, including both water flow and air flow.

Garment-FEMObjects. We mainly focus on the exploration of tasks involving deformable interac-
tions, such as using a sponge to clean dirt off clothes or packing hats and tops together. Some simple
tasks involving the manipulation of deformable objects are also included, such as using a dexterous
hand or gripper to grab plush toys.

Garment-Rigid. Common interactions between clothing and rigid bodies, such as hanging clothes or
putting them into a washing machine, require precise grasp point selection and trajectory planning.We
also introduced articulated objects such as cabinet drawers and clips to perform garment-related tasks,
such as taking clothes out of a wardrobe.

Garment-Avatar. Dressing tasks pose the greatest challenge, as they require understanding of human
intention and safe collaboration with humans. Some representative tasks include putting a scarf on a
person and placing a hat on their head. More advanced tasks involve dressing a person in a jacket or
a T-shirt.

G.2 Long-horizon task

Organizing clothes. This task comprises several stages, including retrieving tops or trousers from a
clothes pile, unfolding them using fling, folding the clothes, and placing them in the wardrobe.

Wash clothes. This task involves several stages: retrieving a hat from the cabinet, washing the hat in
the basin, using a hairdryer to dry the hat, and placing the hat on a hanger.

29

Make up table. The task of setting the table involves several steps: firstly, retrieving the tablecloth
from the box, laying it flat, spreading it onto the table, smoothing it out, and finally adjusting its
position. Note here we need the use of mobile robot like mobile franka.

Dress up. This task involves putting a scarf on someone, placing a hat on someone’s head, and
dressing someone in a T-shirt.

H MoveIt

We adopt MoveIt, an open-source state-of-the-art robotic manipulation framework, to provide support
for real-world trajectories planning and obstacle avoidance. To record the trajectories generated by
MoveIt and adapt visual models in the simulator to the trajectories could bridge the sim2real gap
to some extent. In this section, we introduce a smooth, lightweight and responsive signal pipeline
implementation to transfer real-world joint parameters to the simulator.

As a robotic manipulation platform, MoveIt is built on top of ROS(Robot Operating System) and
integrates with various ROS components. MoveIt provides a series of comprehensive manipulation
interfaces, including collision-free motion planning, kinematics computation, collision detection, etc.
Moreover, real-world data collected from sensors like cameras and lidars can be fed into MoveIt,
allowing for dynamic obstacle avoidance. Once the trajectories are generated by MoveIt, we publish
the computed joint states through ROS, which transfers the trajectory to the Franka controller,
FrankaPy. FrankaPy is a modular control stack that provides a customizable and accessible interface
to the Franka robot. Utilizing MoveIt and FrankaPy, this pipeline enables Franka to devise a collision-
free path and guide the gripper to the target posisition using vision detectors, while publishing the
joint parameters to the ROS server. The simulator then subscribes the joint states and moves the
Franka model accordingly.

I Teleoperation

Teleoperation serves as a direct method to acquire human demonstrations for model training. To
accurately and smoothly track human hand motions has been proved advantageous in related works
recently. However, the proliferated fine-grained tracking requirements, along with sparse and diverse
dexterous hand models and environment settings, have posed a challenge towards teleoperation
systems. Compared to controller-based models, we utilize the vision-based motion detection module,
Leap Motion, to efficiently record human hand poses and then retarget hand poses to the dexterous
robot hand. More Formally, our teleopertaion systems can be described as below:

(i) Leap Motion hand pose detection module, which predicts the wrist position, the hand
spatial direction and finger poses from the infrared camera stream.

(ii) retargeting module, which converts the wrist position and finger poses recorded by Leap
Motion to the arm end effector position and dexterous hand parameters.

(iii) motion generating module, which produces accurate, responsive and high-frequency
signals for the robot model that in the simulator and in the real world simultaneously.

In our work, we implement teleoperation for Universal Robot mounted with Shadow Hand and
Franka. One can control the posture of the robot by adjusting attitude and position of the hand over
the detector. In particular, the open state of the gripper of Franka can be controlled by the opening
and closing of the thumb and index finger.

I.1 Leap Motion Detection Module

The Leap Motion Controller is a small USB device that can be placed on the desktop. Utilizing two
640x240-pixel near-infrared cameras, it captures a roughly hemishperical area in the distance of
approximately 60 cm, typically at 120Hz. The internal algorithms then translate the received raw
spatial data to 27 distinct hand elements, which includes the palm normal vector, the hand direction,
the wrist position and 24 finger joint positions. The detailed hand elements are shown in the figure
12:

30

Figure 11: Details of Our Teleoperation System.

Figure 12: The Hand Model Used in Leap Motion, each knuckle joints’ spatial position is computed by
retargeting algorithm and broadcasted though ROS Message.

I.2 Hand Pose Retargeting

The procedure of hand pose retargeting is two-fold: first, we map knuckle positions to hand joint
parameters; second, we compute a trajectory to smoothly move the robot arm to the recorded wrist
position and direction. The finger knuckle positions captured by Leap Motion cannot be directly fed
into robot models due to the discrepancy between the dexterous hand joint angular parameters and
the knuckle positions. The mapping algorithm that converts knuckle positions to joint parameters is
often formulated as an optimization problem, which can be described as

min
qt

N∑
i=0

∥∥αvit − fi(qt)
∥∥2 + β ∥qt − qt−1∥

where qt represents joint parameters of the dexterous robot hand at time step t. fi is the i-th forward
kinematic function which takes the joint angles as input and computes the knuckle positions. α is a
scaling factor to alleviate the size discrepancy between different human operators and the robot hand
model. Additionally, we observe adjacent N frames and add hyperparameter β to improve temporal
smoothness and consistency.

To compute the arm trajectory, we adopt a slightly tweaked inverse kinematics approach, which is
popular to determine the joint parameters in the trajectory, given the URDF file (Unified Robotics
Description Format) of the robot and the desired configuration. URDF is a file format that describes
the physical properties and 3D model of the robot, including joints, motors, articulation configurations,
etc. In empirical experiments, we find that even slight hand movement or vibration can trigger a
significant and prolonged changes in arm posture. To address this problem, we implement a rate limit
on target changing in neighboring frames.

31

It is notable that this workflow is applicable to a vast range of grasp-based robots. Particularly, to
control the open state of the gripper of Franka, we measure the distance of the thumb and index finger
and establish a distance threshold in implementation.

I.3 Motion Generation

We integrate ROS for communication. ROS is a open-source framework that provides a series of
library which are designed for multi-robots scenarios. In our implementation, after the generation of
hand pose and wrist position, the computed joint parameters are transferred through the ROS to the
simulator and the non-virtual robot simultaneously.

J Limitation

While this work adopts state-of-the-art simulation for different garments, there still exists the gap
between the dynamics and kinematics of garments in simulation and the real world.

K Broader Impact

This work paves solid way to future home-assistant robots in diverse garment tasks for industry. We
haven’t observed negative potential impacts.

32

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section J

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

33

Justification: no theoretical result
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section B
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

34

Answer: [Yes]

Justification: As we claimed in abstract, we will release our code as soon as possible

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4, 5 and 7

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Section 7. We calculate of the variance of scores of the policy in different
initial settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section B

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Section K

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Section K

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

36

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: no data or models that have a high risk for misuse

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: A

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

37

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Section 3.2
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: no crowdsourcing experiments and research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: no experiments with potential risks for study participants
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

38

	Introduction
	Related Work
	GarmentLab Environment
	GarmentLab Engine
	GarmentLab Assets
	GarmentLab Physics

	GarmentLab Benchmark
	Real-World Benchmark
	Sim2Real Framework
	Sim-Real Vision Alignment
	Real-World Motion Generation

	Experiments
	Simulation Experiment Setup
	Simulation Result and Analysis
	Real-World Experiments

	Conclusion
	Acknowledgment
	GarmentLab Assets
	Experiment
	Overview
	Experiment Task Setting
	Detailed Analysis
	Training Details of Main Algorithms
	UniGarmentManipulation (UGM)
	Affordance
	DIFT

	Related Work
	Physics Simulation
	Modeling methodology
	Position-Based Dynamics (PBD) for Garment
	Position-Based Dynamics (PBD) for Fluid Simulation
	Finite Element Method (FEM) for Simulating Deformable Objects
	Flow Models for Simulating Wind Effects
	Rigid Body Simulation

	Multi-Physics Simulation Parameters Table
	Parameter Effects on Physical Properties

	Sim2Real
	Sim-Real Vision Alignment

	Real-World Benchmark
	Object and Data Set: Object Selection
	Object Scans
	Protocol Benchmark Guidelines

	Task
	Task category
	Long-horizon task

	MoveIt
	Teleoperation
	Leap Motion Detection Module
	Hand Pose Retargeting
	Motion Generation

	Limitation
	Broader Impact

