
000 IS IN-CONTEXT LEARNING LEARNING?

001

002

003 **Anonymous authors**

004 Paper under double-blind review

005 006 007 ABSTRACT

008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 In-context learning (ICL) allows some autoregressive models to solve tasks via next-token prediction and without needing further training. This has led to claims about these model’s ability to solve (learn) unseen tasks with only a few shots (exemplars) in the prompt. However, deduction does not always imply learning, as ICL does not explicitly encode a given observation. Instead, the models rely on their prior knowledge and the exemplars given, if any. We argue that, mathematically, ICL fits the definition of learning; however, its full characterisation requires empirical work. We then carry out a large-scale analysis of ICL ablating out or accounting for memorisation, pretraining, distributional shifts, and prompting style and phrasing. We find that, empirically, ICL is limited in its ability to learn and generalise to unseen tasks. Namely, in the limit where exemplars become more numerous, accuracy is insensitive to exemplar distribution, model, prompt style, and the input’s linguistic features. Instead, it deduces patterns from regularities in the prompt, which leads to distributional sensitivity, especially in prompting styles such as chain-of-thought. Given the varied accuracies and on formally similar tasks, we conclude that autoregression’s *ad-hoc* encoding is not a robust mechanism for learning, and suggests limited all-purpose generalisability.

1 INTRODUCTION

In learning theory, learning is tantamount to generalisation. Learning how to solve a task means that, after seeing examples of a task drawn with a distribution \mathcal{P} , a learner will have a bounded probability of error on classifying new inputs from some $\mathcal{Q} \neq \mathcal{P}$ (Valiant, 1984). In most traditional learning paradigms, a learner observes inputs from \mathcal{P} , and then encodes them within its own knowledge (e.g., updating weights). Then it uses this knowledge to generalise to new examples. Autoregressive large language models (LLMs)¹ do not *explicitly* do that. Instead, they perform *in-context learning* (ICL), where they ‘solve’ (produce relevant outputs for) a task specified in natural language via next-token prediction (Brown et al., 2020). An LLM observes, but does not encode, the full training set through the prompt. Instead, it updates its beliefs *ad hoc*, where the beliefs are a combination of the input (drawn from \mathcal{P}) plus its own intrinsic knowledge (frozen weights). That is, it modifies its states at run-time to—ideally—generalise to new observations for *any* \mathcal{Q} . Reliance on intrinsic knowledge implies that the LLM is also expected to generalise to *any task* (unseen \mathcal{P}).

We argue, however, that **knowing is not always the same as learning**. Claims on an LLM’s *in-task* generalisation (consistent performance w.r.t. any \mathcal{P} within the task) and *cross-task* generalisation (consistent performance w.r.t any task) have divided the field. Theoretical characterisations on their learning power are usually limited, and hence Borenstein et al. (2024) argued that empirical explorations could help understand what *can* transformer-based models learn versus what they *actually* learn—a central motivation of our work. However, criticisms to empirical research on LLMs note that prompt-and-model dependence makes it hard to reproduce (Li et al., 2025; De Wynter, 2025; Sclar et al., 2024), and that the terminology, methods, and results themselves are unreliable and could lead to misinterpretation (Huang & Chang 2023; De Wynter 2025; also Section 2).

In this paper we examine to what extent ICL is an effective learning paradigm. We begin by noting that, mathematically, ICL constitutes learning—as opposed to solely repeating internal knowledge—but remark that further work is required to fully characterise it. We then perform empirical studies

¹We use ‘autoregressive model’ and ‘LLM’ interchangeably, with the assumption that the LLMs discussed are autoregressive.

054 accounting for some of the criticisms and shortcomings mentioned; namely, sensitivity to pretraining,
055 memorisation, and dependence on natural language; prompting style and phrasing; and robustness
056 to distributional shifts in the observed training and test sets. Thus we focus on evaluating
057 generalisation from data *in context* (unseen \mathcal{P} until runtime, and fully-unseen \mathcal{Q}); as opposed to
058 generalisation from a model’s pretraining strategy.

059 Our experiments are on four LLMs, nine tasks, and ablations on prompting strategies, training distri-
060 butions, and exemplar setups. The main results—that is, test set results—comprise 1.89M predictions
061 per LLM. To our knowledge, our study is one of the largest of its kind.²
062

063 1.1 FINDINGS 064

065 We ablate dependence on natural language and prompt phrasing, and use artificial alphabets to force
066 the LLM to learn the task solely from the observations. Hence, our findings seek to characterise ICL
067 as a learning paradigm, and not as an evaluation of prompt-based problem-solving capabilities.

068 These are:

- 070 1. In the limit (as the number of exemplars grows), the average accuracy gap narrows be-
071 tween the LLMs tested, and all prompting strategies steadily improve accuracy. Likewise,
072 semantically nonsensical prompts near or match their non-randomised counterparts.
- 073 2. ICL under altered training (exemplar) distributions is robust to positionality and proportion
074 of labels in the limit. However, ICL is brittle to altered test distributions (i.e., out-of-
075 distribution; OOD) as the distance between train and test distributions grows, especially in
076 chain-of-thought (CoT; Wei et al. 2022b) and automated prompt optimisation (APO).
- 077 3. Closely-related tasks do not necessarily have closely-related performances, with average
078 accuracy differences as large as 31%. Moreover, traditional baselines (e.g., decision trees
079 and kNNs) outperform ICL average performance in half of the tasks evaluated.

080 Our findings contradict the notion that a few exemplars are required to solve a task: peak average
081 accuracy was at 50-100 exemplars—much higher than in reported negative (Lu et al., 2024; Sclar
082 et al., 2024; Dziri et al., 2023; Delétang et al., 2023) or positive (Brown et al., 2020) results from
083 LLM studies in natural-language and automata-based tasks, and independently confirms similar
084 results for natural-language tasks (Anil et al., 2022; Agarwal et al., 2024). They, however, counter
085 the view that LLMs are brittle to exemplar ordering or characterisation (Sclar et al., 2024; Errica
086 et al., 2025; Zhao et al., 2025; Agarwal et al., 2024), and align with the view that CoT and APO are
087 good at solving some tasks (Merrill & Sabharwal, 2024; De Wynter et al., 2023a; Li et al., 2024),
088 although we show that these are not robust to OOD. Finding 3 expands on the works that found
089 that LLM accuracy decays with task complexity (Dziri et al., 2023; Gupta et al., 2025; Merrill &
090 Sabharwal, 2024), but notes that analogous tasks have marked performance differences.

091 1.2 INTERPRETATION 092

093 Our findings are constrained to easily-verifiable tasks (e.g., parity checking or Hamiltonian-cycle
094 verification) in a single call. From within our theoretical framework, we find evidence that ICL
095 presents signs of learning capabilities; but that it is tied to the autoregressive paradigm, and not
096 to any particular LLM, training strategy, or prompting style. We argue that this is because **ICL**
097 **leverages statistical features from the prompt, as opposed to feature relations within the data.**
098 This *ad hoc* encoding mechanism implies that ICL’s **cross-task generalisability is limited** to the
099 representativeness of the data. Thus, we conclude that, from the perspective of our framework, ICL
100 is mathematically a form of learning, albeit not a robust one.

101 Remark that our work is constrained to **non-natural language tasks**, with our ablation on natural
102 language limited to the instructions, not the datapoints. This setup forces LLMs to not rely on
103 their intrinsic knowledge, and instead infer the full characterisation of the data from the prompt
104 itself. This suggests differences with some claims on their emergent capabilities, but also raises the
105 question to which semantic extent priors from the data impact (realistic) natural language tasks and
106 its relationship to learning. This opens avenues for further systematic evaluation of their capabilities.

107 ²Code and data is in <https://anonymous.4open.science/r/is-icl-learning-8661/>

108 2 RELATED WORK 109

110 Evaluation of LLMs is an active area of research, and our coverage of its works is non-exhaustive.
111 For broader surveys of this area we point the reader to Huang & Chang (2023), Li et al. (2025), and
112 Qiao et al. (2023). For ICL in particular, see Zhou et al. (2024). Early research focused on eval-
113 uating whether RNNs, transformers, and other non-generative models actually performed learning
114 (Borenstein et al., 2024; Zhang et al., 2023; Butoi et al., 2025). These works, like ours, investigated
115 the models’ ability to learn formal languages, or subsets of first-order logic, and also found brittleness
116 in OOD scenarios. A solution proposed by Dan et al. (2022) involved passing in the encoding
117 of the automaton generating the language—we explore its viability for ICL in our work.
118

119 2.1 THEORETICAL EVALUATIONS 120

121 Theoretical research on what transformer-based models can possibly learn often find negative re-
122 sults (Hahn & Rofin, 2024; Strobl et al., 2024a; Kleinberg & Mullainathan, 2024). Even when it
123 has been known for some time that the transformer (under certain assumptions) is Turing-complete
124 Pérez et al. (2021); Bhattacharya et al. (2020); Li & Wang (2025), Turing completeness by defini-
125 tion requires an unbounded resource or finding an appropriate machine; which is itself undecidable,
126 although approximable (Wei et al., 2022a). More constrained works with specific attention types
127 could *recognise* languages in the class of constant-depth, polynomial-size alternating circuits. Con-
128 cretely, those in AC^0 (Hao et al., 2022); and partly TC^0 (Strobl, 2023); (Li et al., 2024) for CoT),
129 although as of yet it is unknown why (Strobl et al., 2024b). Nonetheless, Kleinberg & Mullainathan
130 (2024) showed that next-token prediction is a different problem than judging membership (labelling
131 data). Even their ability to model formal languages tends to find disparate results, depending on the
132 assumption made (Strobl et al., 2024b). It is perhaps because of these findings that Borenstein et al.
133 (2024) call for an empirical evaluation of effective capabilities of LLMs.
134

135 2.2 EMPIRICAL EVALUATIONS 136

137 Empirical LLM evaluation is complex and also marred with disparate accounts on their capabili-
138 ties. This is often due to the influence of various factors, ranging from choice of model, statistical
139 significance, or ablations with respect to natural language and memorisation (De Wynter, 2025).
140 For example, it is known that several LLMs suffer from data contamination (Carlini et al., 2023;
141 Lee et al., 2023; De Wynter et al., 2023b) which could render benchmark-based evaluation unreli-
142 able; and that different measurements show less impressive results (Schaeffer et al., 2023; Altmeyer
143 et al., 2024). Likewise, Gupta et al. (2025); Dziri et al. (2023); Merrill & Sabharwal (2024); Liu
144 et al. (2023) and Lu et al. (2024) evaluated (and found weaknesses) in LLMs when generalising
145 to unseen tasks, especially when using CoT and as the task complexity grew. On the other hand,
146 positive results such as that of Ontanon et al. (2022) and Borenstein et al. (2024) indicate that, for
147 certain tasks, these weaknesses may not necessarily hold. Indeed, some positive results, such as
148 that of Agarwal et al. (2024), showed that expanding shots improved performance in natural and
149 non-natural language problems, albeit the main results were constrained to a single model.
150

151 Research has also attempted to determine whether the models *understand* the task as described by
152 the prompt, usually with negative results (Webson & Pavlick, 2022; Jang et al., 2023; De Wynter &
153 Yuan, 2025; Mancoridis et al., 2025; Dziri et al., 2023; Strobl et al., 2024a) Proposed explanations
154 to this related model size to sensitivity to semantics (Shivagunde et al., 2024; Long et al., 2024)
155 and inductive/selection biases Zhao et al. (2025); Chang & Bisk (2025) although this sensitivity
156 disappeared when the exemplars included instructions.
157

158 However, there were some—reasonable, due to scope—gaps in the works above due to the limiting
159 factors mentioned. Thus, we attempt to account for these in our work. Other attempts to explain ICL
160 have been through benchmarks (Yauney & Mimno, 2024; Mirzadeh et al., 2025; Zhuo et al., 2024;
161 Sclar et al., 2024), mechanistic interpretations (e.g., subnetwork generalisation (Bhaskar et al., 2024;
162 Kumon & Yanaka, 2025; Hu et al., 2025); probing (Yin & Steinhardt, 2025; Azaria & Mitchell, 2023;
163 Todd et al., 2024; Ju et al., 2024)), Bayesian approaches (Xie et al., 2022; Edelman et al., 2024), or
164 more targeted evaluations, such as that of Chan et al. (2022). This latter work argues that ICL arises
165 from the distribution of the elements within the training data, along with the use of the transformer,
166 and it is a driving argument for our work.
167

162 3 BACKGROUND: THE NEED FOR EMPIRICAL EVALUATION OF ICL
163

164 We discuss formalisms for learning and task similarity in Sections 3.1 and 3.2, and tie ICL to these in
165 Section 3.3, noting that they partly overlook the mechanism behind ICL. Details are in Appendix B.
166

167 3.1 A FORMAL DEFINITION OF LEARNING
168

169 We capture robustness in learning with a variation of the probably approximately correct (PAC)
170 framework from Valiant (1984). We use PAC learning as it is the predominant model in computa-
171 tional learning theory—concretely, statistical learning theory—as well as in language acquisition
172 (Mitkov, 2022; Niyogi, 2006). It also allows for some leeway to a learner through error tolerance.
173 For a comparison with other frameworks, see Appendix C.

174 We reframe PAC learning to focus on the learner. This is a syntactical re-definition and does not alter
175 the original framework. Suppose we wish to model a binary classification task with features assumed
176 to be drawn from some nonempty set $X \subset \mathbb{R}^m$. These examples are labelled with an unknown
177 function $c: X \rightarrow \{0, 1\}$. In machine learning, a (data)set D is sampled with some distribution \mathcal{P}
178 supported on X , $D = \{\langle x_i, c(x_i) \rangle | x_i \sim \mathcal{P}\}$. A learner (algorithm) $f: X \rightarrow \{0, 1\}$ observes D
179 until its empirical error $error(\cdot)$ is bounded by some $\epsilon \in (0, 1/2)$, where

180
181
$$error(f, D) = \frac{1}{|D|} \sum_{\langle x, c(x) \rangle; x \in D} \mathbb{1}[f(x) \neq c(x)] \leq \epsilon. \quad (1)$$

182

183
184 Equation 1 must holds for any other dataset E and distribution \mathcal{Q} such that $E = \{\langle x_i, c(x_i) \rangle | x_i \sim \mathcal{Q}\}$, where \mathcal{Q} is likewise supported on X ; that is, if
185

186
187
$$\Pr[error(f, E)] \geq 1 - \delta, \quad (2)$$

188

189 for $\delta \in (0, 1/2)$. Intuitively, a learner has learnt the task if it has a (lower) bound on its error for any
190 datapoint. Since \mathcal{P} and \mathcal{Q} are unspecified, f **has learnt** c if it is *robust* to changes in \mathcal{P} .³ Standard
191 PAC learning has some limitations, especially around regular languages. Hence, our reframing is
192 only to ground our discussion on a strict definition of learning, as done by, e.g., Livni et al. (2014).

193 3.2 TASK SIMILARITY
194

195 In formal language theory, a collection of transition rules \mathcal{G} (a grammar) generates instances (strings)
196 using symbols from an alphabet Σ to form a language L . We assume all instances of a task are gen-
197 erated by its own \mathcal{G} and Σ , with transition probabilities given by a (chosen) \mathcal{P} . This \mathcal{P} is the same
198 from Section 3.1, and, to the learner L may be known (or deduced), but \mathcal{G} is not. Formal languages
199 may be classified according to the (expressive) power of the automaton able to accept/reject (recog-
200 nise) an x based on the query $x \in L$? Relevant to us are these recognisable by finite state automata
201 (FSA), and pushdown automata (PDA). FSA read the input unidirectionally, changing their inter-
202 nal state between accept and reject, and return either when finished. Tasks such as PARITY and
203 Hamiltonian-cycle verification, are recognisable with an FSA. Other tasks, like stack manipulation,
204 require the automaton to track a set of states. PDA are FSA equipped with memory, and can solve
205 these, more complex, tasks. They are considered more powerful than FSA. The autoregressive na-
206 ture of LLMs allows for some memory, and hence they could be considered a type of PDA. However,
207 in this work we treat LLMs as recognisers of unknown expressive power.

208 3.3 DEFINING ICL IN CONTEXT
209

210 In ICL, an LLM takes in a natural-language string as a task specification (system prompt), and
211 uses the input tokens (in natural language) to ‘solve’ (learn) it by predicting the following tokens
212 recursively. Formally, Wang et al. (2023) formulate ICL classification as

213
214
$$\operatorname{argmax}_{f(x_k) \in \{0, 1\}} \Pr[f(x_k) = c(x_k) | x_1, c(x_1), \dots, x_k], \quad (3)$$

215

³In the words of Niyogi (2006), any classifier ‘worth their salt’ should fulfil this condition.

216 where x_k is the datapoint to be labelled, and we have used the notation from Section 3.1. How-
 217 ever, ICL is sensitive to the system prompt. Thus, practitioners have resorted to various prompting
 218 techniques, which are not accounted for in Equation 3. Factoring in both we get
 219

$$220 \quad \underset{f(x_k) \in \{0,1\}}{\operatorname{argmax}} \Pr[f(x_k) = c(x_k) | p, \pi(x_1), \pi(x_2), \dots, \pi(x_{k-1}), \tilde{\pi}(x_k)], \quad (4)$$

221 where p is a system prompt, x_i are example datapoints ($i < k$), and x_k is the instance to be classified.
 222 We let $\pi, \tilde{\pi}$ be functions that take in inputs x_i and return natural-language representations $\pi(x_i) =$
 223 $\langle x_i, c(x_i) \rangle$ for $i < k$ (r. $\tilde{\pi}(x_k) = x_k$). These could be, e.g., a concatenation of the datapoint and
 224 the label (e.g., $\pi(x_i) = 'x_i : c(x_i)'$); and a datapoint conditioning for next-token (label) prediction,
 225 $\tilde{\pi}(x_k) = 'x_k :'$. It could also be more complex (e.g., ‘Let’s think and solve step-by-step...’). Both p
 226 and $\pi(x_i)$ may be empty, but not at the same time. At inference time, when computing $c(x_k)$, the
 227 LLM conditions recursively on its observations from $p, \dots, \tilde{\pi}(x_k)$, and its previous knowledge.
 228

229 PAC learning does not limit *how* the learner learns. From Equation 4, it follows that ICL can be
 230 viewed as a (formal) learning process. Namely, a learner $f: \{p\} \times_k X \rightarrow \{0, 1\}$ is an LLM with
 231 $k - 1$ exemplars $x_1, \dots, x_{k-1} \sim \mathcal{P}$, an input instance to classify $x_k \sim \mathcal{Q}$, representations $\pi, \tilde{\pi}$
 232 and an optional system prompt p . We say that ICL learns c and X if Equation 2 holds for any
 233 $x_k, x_1, \dots, x_{k-1} \in X, \pi, \tilde{\pi}, \mathcal{P}$, and \mathcal{Q} . This thus makes ICL strongly dependent on $\pi, \tilde{\pi}$ and p (the
 234 prompt), but *does not specify* to what extent, since it depends on the autoregressive nature of the
 235 LLM (namely, the ‘scratchpad’) and its own weights. Indeed, one consequence of Equation 4 is that
 236 as k grows, since p is constant, its contribution vanishes when equiprobable to the exemplars:
 237

$$238 \quad \Pr[Y | p, \pi_1, \dots, \pi_{k-2}, \tilde{\pi}_k] \propto \Pr[p | Y] \left(\prod_i^{k-1} \Pr[\pi_i | Y] \right) \Pr[Y] \Pr[\tilde{\pi}_k], \quad (5)$$

239 where we let $Y := f(x_k) = c(x_k)$; $\pi(x_i) := \pi_i$; and $\tilde{\pi}(x_i) := \tilde{\pi}_i$, for readability. Conversely, the
 240 encoded exemplars have a major contribution in the limit. Nonetheless, our reframings do not char-
 241 acterise π (e.g., which natural-language strings, if any, work better?). This thus calls for empirical
 242 evaluations as to *how* effective ICL is at learning, accounting for $\mathcal{P}, p, \pi, \tilde{\pi}$, and c .
 243

244 4 METHODS

245 Sample prompts are in Appendix H and full task definition and characterisations with respect to
 246 ID/OOD are in Appendix E. Specifics on LLM calls are in Appendix F.
 247

248 4.1 FRAMING

249 We seek to find out if a learner (LLM) f can correctly and robustly decide if a given $x \in \Sigma$, sampled
 250 with some \mathcal{D} for some Σ and \mathcal{G} , belongs to a language L . We let \mathcal{G} , Σ , and L be fixed for a task,
 251 but not always known to f . We measure correctness with accuracy, $1 - \text{error}(f, \cdot)$; and robustness
 252 with accuracy under the **distributional shift**. That is, we consider both in-distribution (ID) entries
 253 $x \sim \mathcal{P}$ and OOD entries $x \sim \mathcal{Q}$, for select values of $\delta = \|\mathcal{P} - \mathcal{Q}\|_\infty$.
 254

255 4.2 PROMPTING STRATEGIES AND SCOPE

256 We test prompts that perform a single call to the LLM. More complex strategies, such as Tree-of-
 257 Thoughts (Yao et al., 2023) have good performance, but rely on multiple model calls per instance,
 258 and hence are not in the scope of our work. We also consider only *single* next-token prediction, as
 259 well as robustness to system prompts (i.e., CoT and APO). Reasoning models like o3-mini (OpenAI,
 260 2025), which have a baked-in non-controllable CoT, are thus not in scope. The prompts tested are:
 261

262 **n-Shot Learning:** Provide n exemplars of an input x and desired, formatted output $\tilde{\pi}(x)$. When we
 263 do not provide a system prompt, we refer to it as **Modus Ponens**.
 264

265 **Description:** Add in the system prompt p . This is the usual way to prompt LLMs.
 266

267 **APO:** A meta-prompting (‘prompting to prompt’) approach where the LLM adapts its own system
 268 prompt p with a development set. It has been shown that this strategy yields better perceived results
 269

270 than description (De Wynter et al., 2023a). We used the algorithm from Pryzant et al. (2023) to
271 generate p .

272 **Direct Encoding (DE):** Pass in the system prompt plus \mathcal{G} and L . This is common in theoretical
273 computer science; in addition, LLMs have been claimed to be capable of understanding code. Note
274 that DE is known to increase robustness to OOD in LSTMs and RNNs (Dan et al., 2022).

275 **Chain-of-Thought (CoT):** Generate a series of steps leading to the desired output with a predefined
276 scheme in the system prompt.

277 **Word Salad:** Replace the natural strings from the description with random words. When we apply
278 word salad to the CoT prompt, we call it **Salad-of-Thought** (SoT).

279 These strategies may be mixed. For example, CoT with word salad and 5 exemplars is 5-shot SoT.
280 Word salad and SoT are considered only in Section 6.1. All prompts were ran with 0, 2, 5, 10, 20,
281 50, and 100 exemplars; except modus ponens (no zero-shot), and CoT/SoT (no 2-shot due to cost).
282 All prompts had output format specifications (implicit in modus ponens) to facilitate parsing.
283

284 4.3 TASKS OVERVIEW

285 All tasks have their own Σ , and were selected for being closely-related tasks often seen in LLM
286 evaluations, or well-known problems in computer science. All (except one) are decision problems
287 to fit the model from Section 3. We discuss this further in Appendix E.

288 **PARITY:** (FSA) decide if a given binary string has even zeros. Also known as the XOR function.

289 **Pattern Matching** (FSA): decide if $abcabb$ is a substring of a given string $x \subset \{a, b, c\}^*$.

290 **Reversal** (PDA): given a string $l \# r \subset \Sigma$, decide if l equals the reversed r , $l = r^{-1}$.

291 **Stack** (PDA): given final and initial strings $s_f, s_0 \subset \Sigma$ and a series of operations Op , decide if
292 $s_f = Op(s_0)$. The operations simulate a stack (push/stop/pop) and may or may not be grammatical
293 (e.g., stack overflows).

294 **Hamiltonian** (FSA): given a graph in adjacency matrix form and a path, decide if it is Hamiltonian.

295 **Maze (Complete)** (FSA): given a maze, two segments of a path, and a sequence of moves, decide
296 if the moves connect both segments. Segment separation is never more than three moves.

297 **Maze (Solve)** (FSA): given a maze and a sequence of moves, decide if the moves form a valid path
298 from start to exit.

299 **Vending Machine (Verification)** (FSA): given a list of items and costs C , a sequence of operations
300 Op (add balance, purchase item), and initial and final balances b_0, b_f , verify if $b_f = Op(C) + b_0$.

301 **Vending Machine (Sum):** Same as the verification version, but the learner must compute $b_f =$
302 $Op(C) + b_0$ for an unknown b_f . It has a constrained set of moves, but unbounded states (\mathbb{N}). This
303 is the only task in our work that is not a decision problem.

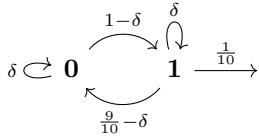
310 4.4 MODELS AND MEASUREMENT

311 We tested four LLMs: GPT-4 Turbo (Open AI, 2023), GPT-4o (OpenAI, 2024), Mixtral 8x7B in-
312 struct v01 (Jiang et al., 2024), and Phi-3.5 MoE Instruct (Bilenko, 2024). We measure performance
313 with accuracy, and report standard deviation (σ) to indicate variation over an average. We use ordi-
314 nary least squares (OLS) to measure changes. We set all outputs non-compliant with the requested
315 format as zero, but revisit this in Section 6.4. When reporting aggregate numbers, however, we do
316 not factor in out-of-token errors. For baselines, we tested decision trees (DT), k-nearest neighbours
317 (kNN), and a multilayer perceptron (MLP) in succession, and reported the best. We did not baseline
318 path-based problems or arithmetic, since they are often solved with heuristics (e.g., A*).

319 4.5 DATA GENERATION

320 We created datasets per-task with automata with state transition probabilities drawn from a chosen
321 \mathcal{D} . They are synthetic to account for (a) the task’s \mathcal{G} and Σ ; and (b) ID and OOD. Every task has

324 different manifestations of OOD (e.g. the size of a maze). See Figure 1 for a sample automaton and
 325 Appendix E for full description of the characterisation of OOD per task.
 326



327
 328
 329
 330
 331
 332
 333
 334 Figure 1: Data generator for
 335 PARITY. Each state has
 336 transition probabilities δ , and an
 337 emission probability. There is
 338 a symmetric automaton with
 339 emissions at 0.
 340
 341
 342
 343
 344

All entries relied on natural language as little as possible (e.g. binary strings or arbitrary symbols in Σ , such as $\neg \backslash _ (\backslash \backslash) \backslash \neg$). The training dataset was 2000 entries drawn from a \mathcal{P} , and we also generated five balanced, deduplicated test sets, each from a \mathcal{Q} such that $\|\mathcal{P} - \mathcal{Q}\|_\infty = \delta$, for $\delta \in \{0, 0.2, 0.45, 0.65, 0.85\}$, where $\delta = 0$ is ID, and the rest OOD. This allowed to measure the separation between distributions and the gradual change in performance.

Every test set is 2000 entries, but due to cost we only evaluated 1000. We also mislabelled entries w.p. $\eta = 0.05$ to account for any potential memorisation. Hence, the maximum accuracy for any f that actually learns the task is 95%. We only use the training set for APO and the selected baselines. The full suite is 1.89M datapoints.

5 RESULTS

We provide results on our analysis: general accuracy (Section 5.1); distributional shifts (Section 5.2); and fine-grained analysis (Section 5.3). For detailed results, see Appendix G.

5.1 OVERALL PERFORMANCE

The best average accuracies, per LLM, were in Pattern Matching ($94 \pm 1\%$; solved the task), Hamiltonian ($85 \pm 4\%$), and Vending Machine (Verification; $83 \pm 9\%$). Best accuracies in the worst-performing tasks were Vending Machine (Sum; $16 \pm 1\%$), Reversal ($61 \pm 11\%$), and Maze Solve ($63 \pm 13\%$). See Table 1 for best-of and averaged results per-model over tasks; and Table 2 for averaged result data per-task over prompts. **LLMs outperformed traditional baselines** (e.g., kNN) in **best-of, but not average best**, scenarios in all tasks except PARITY.

The best prompt per problem was CoT, in four tasks. The worst prompt was 2-shot modus ponens, in five tasks. The tasks where CoT underperformed (Pattern Matching and Hamiltonian) were not the same where it was the best-performer. In Maze Complete, however, modus ponens was the worst (2-shot; 9 ± 16) and the best (100-shot; 77 ± 5). Without Vending Machine (Sum), the only non-classification task in our work, the accuracies numbers increased by 5 ± 1 on average.

Better performances were given by more shots, on average, when looking at the slope from OLS fits between per-model averages over shots (Table 2). Larger slopes (trends in accuracy improvements) were in modus ponens (8.3) and lowest in CoT (3.3). Mixtral improved the most with more shots, with an average slope of 7.3 (versus 5.8, 3.5, and 4.0 for Turbo, GPT-4o and Phi-3.5).

Task	Turbo	GPT-4o	Phi-3.5	Mixtral	Average (Best)	Average (Worst)	ML			
PARITY	76	90	83	83	80±3	100-APO	16±20	2-m.p.	95	MLP
P. Match.	96	95	95	95	94±1	50-DE	24±20	5-CoT	87	kNN
Reversal	71	77	54	55	61±11*	100-CoT	20±21	2-m.p.	72	kNN
Stack	86	92	66	76	73±14*	50-CoT	20±21	2-m.p.	72	kNN
V.M. (Ver.)	94	90	84	78	81±12	10-CoT	22±22	2-m.p.	84	DT
Maze (Comp.)	83	72	79	81	77±5	100-m.p.	9±16	2-m.p.	–	–
Maze (Solve)	70	61	66	60	63±5	50-desc.	17±20	0-APO	–	–
Hamiltonian	93	92	86	85	89±2*	100-desc.	29±8	0-CoT	–	–
V.M. (Sum)	18	20	15	20	16±1	5-CoT	0 [†]	0-DE	–	–

373 Table 1: Maximum accuracies per-model per-problem and peak averages (per shots, over models).
 374 An * is an average over fewer models due to out-of-token failures; a [†] means a tie. The best prompts
 375 often included natural-language descriptions (CoT, APO, Description). The worst prompt was often
 376 2-shot modus ponens: it lacks a description and led to parsing errors in few-shot. Closely-related
 377 tasks had differences of up to 31% accuracy. All baselines degraded in OOD except in PARITY.

	Prompt	Turbo	GPT-4o	Phi-3.5	Mixtral	Avg. slope for acc.				
		Slope	Acc.							
Shots	Modus Ponens	12.8	28±23	11.4	43±20	5.2	50 ± 9	3.9	50±9	8.3±3.9
	Description	3.4	57±6	1.4	56±3	4.4	50±9	8.2	48±19	4.4 ± 2.2
	DE	3.0	54±5	1.4	58±3	5.5	50±10	8.1	48±20	4.5±2.4
	Word Salad	9.8	32±18	12.1	43±22	11.5	39±21	9.8	44±20	11±4.6
	APO	6.1	51±11	2.0	57±4	4.6	51±9	8.4	48±1	5.4± 2.6
	CoT	3.4	47±6	1.3	55±4	0.5	45±1	8.0	38±15	3.3±2.4
	SoT	1.8	20±4	3.5	25±7	0.3	26±4	1.8	22±5	1.6±2.2
OOD	Modus Ponens	-0.3	28±1	-0.6	43±1	-0.6	50±1	-0.2	50±1	-0.4 ± 0.4
	Description	-0.5	57±1	-0.8	56±1	-0.5	50±1	-0.5	48	-0.5 ± 0.4
	DE	-0.4	54±1	-0.9	58±1	-0.4	50±1	-0.1	48±3	-0.5±0.6
	Word Salad	-0.5	31±1	-0.1	43	-0.3	40	-0.2	44±1	-0.2±0.3
	APO	-0.4	51±1	-1.0	57±1	-0.6	51±1	-0.1	48	-0.5±0.7
	CoT	-0.6	47±1	-2.7	55±4	-1.3	45±2	-1.0	38±1	-1.4±1.9
	SoT	0.1	20±1	-0.6	25±1	-0.1	26	0.5	22 ±1	0.0±0.6

Table 2: Slopes and accuracies averaged over tasks. The rightmost column has the average slope for all LLMs. Word salad and SoT are not factored into our main results, but are discussed in Section 6.1. The effectiveness of the prompts depended on the slope and σ : large σ and a positive slope means an increasing trend in accuracy, with larger slopes implying a larger change. Shot slopes are positive, and the δ slopes are slightly negative. This suggests that more shots improve accuracy in all prompts; but in OOD this is ineffective, defaulting to the average and decreasing overall.

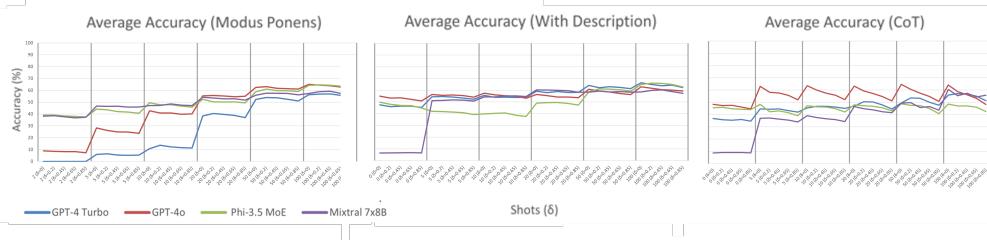


Figure 2: Per-model average accuracy results for (*left to right*) modus ponens, description, and CoT; plotted over shots (thick vertical lines) and per-shot δ between them. On average, most prompts showed analogous behaviour in the limit, and robustness to OOD. CoT also showed converging behaviour, although it was more brittle to OOD. Every datapoint is an average over 1,000 predictions.

5.2 DISTRIBUTIONAL SHIFTS

Distributional shift decreased accuracy as $\delta \rightarrow 0.85$. We evaluated the slope on the per-LLM accuracy averages between $\delta = 0.85$ and $\delta = 0$, per shot. All were negative. The largest (most sensitive to OOD) was CoT at -1.4, followed by APO (-0.5). The smallest was modus ponens, at -0.4 (Table 2). See Figure 2 for examples and Appendix G for a full breakdown. GPT-4o was most sensitive to OOD inputs, with an average slope of -1.2 (versus -0.7, -0.4, and -0.3 for Phi-3.5, Turbo, and Mixtral). The largest impacts of δ per task were in Reversal (-1.7±1.5), versus Vending Machine (Sum) (lowest; 0.1 ± 0.2). The average slope was -0.6 ± 0.3 .

5.3 FINE-GRAINED BEHAVIOUR

In the breakdown per-prompt and per-task, LLMs had (1) similar behaviours over the tasks, but (2) inconsistency over the task type. The first was given by the LLMs having low σ but similar accuracy in a task-by-task and prompt-by-prompt basis: **all prompts had a positive slope and low relative difference among them** (Figure 4, in the Appendix). The per-prompt shot slopes, averaged per LLM, were 8.3 ± 3.9 (modus ponens), 4.4 ± 2.2 (description), 4.5 ± 2.4 (DE), 5.3 ± 2.6 (APO), and 3.3 ± 2.4 (CoT) (Table 2). As per the averaged slope's σ , there was low variation between the type of LLM and the prompt over all tasks: 5.2 ± 1.6 over shots. OLS fits over the per-shot σ indicated that **the model gap, as the shots increased, narrowed**: -2.6 ± 0.5 ; a similar pattern in the OLS fit

432 was noticeable in δ slopes. Inconsistency was when **related tasks had gaps in peak performances**:
433 31% (Maze (Solve) versus Pattern Matching), and 12% (Reversal and Stack; Table 1).
434

435 6 ABLATION STUDIES

437 We present summaries of our ablation studies. Refer to Appendix G for details and figures.
438

439 6.1 IMPACT OF LEXICAL FEATURES

441 We sought to understand to which extent lexicality (words) impacted ICL with respect to the *data*
442 *features*. We assumed that LLMs were pretrained mostly on natural and programming languages.
443 We compared word salad with modus ponens and DE; and CoT with SoT. While **word salad**
444 versions of prompts started low—at some points with zero accuracy—they **quickly reached relatively**
445 **high maximum accuracies**. Averaged per-LLM, the **word salad versions matched the baselines**
446 to within σ or $\sigma/2$ of their average and had the largest slopes. Word salad only randomised the
447 system prompt, but SoT fully randomised the exemplars. It **had a major impact on accuracy**, with
448 the lowest average performance over shots ($23 \pm 4\%$) in any prompt due to its high error rate. **Some**
449 **LLMs in SoT obtained above-average accuracies in certain tasks**, such as GPT-4o in PARITY
450 (63% at 100 shots), and Turbo in Stack (76% at 50 shots).
451

452 6.2 POSITIONALITY OF EXEMPLARS

453 On every call, all exemplars so far were equiprobable and fixed throughout ('unshuffled'). Here,
454 we randomised the position of the same exemplars within the prompt ('shuffled'), and also fully
455 randomised the exemplars (drawn i.i.d. from the training set). There was a **small variation in ac-**
456 **curacy when the same exemplars were shuffled versus unshuffled**, with the latter having slightly
457 lower average accuracies and per-prompt slopes, albeit higher slopes per-LLM. The best-performing
458 prompts for average accuracies when shuffled versus unshuffled were always the same. When fully
459 randomising the exemplars, we only measured and compared GPT-4o. On average, **fully randomis-**
460 **ing the exemplars yielded lower accuracies**, and had lower shot and higher δ slopes.
461

462 6.3 IMPACT OF ALTERNATE DISTRIBUTIONS

463 We altered \mathcal{P} in four setups: the fully randomised and shuffled exemplars from Section 6.2; an
464 imbalanced distribution with *only* negative labels; and a corpus with uniformly at random labels
465 (both test and train) as baseline. We only analysed and compared GPT-4o without Vending Machine
466 (Sum). The **imbalanced scenario achieved higher average accuracies** than all setups, matching
467 or outperforming the unshuffled baseline. However, in this case, the average σ increased on every
468 prompt and every setup. The random label baseline had better δ slopes than the unshuffled baseline.
469 Of note is also CoT, which had negative shot slopes in all setups.
470

471 6.4 COMPLIANCE VERSUS LEARNING

472 We separated parsing errors ('compliance') from mislabelled instances ('learning') and re-calculated
473 averages and slopes. Factoring out compliance increased perceived performance by understating or
474 overstating magnitudes. For example, average shot and δ slopes were smoothed out, thus making—
475 for example—CoT's sensitivity to OOD hard to spot.
476

477 7 DISCUSSION

478 As the 'training set' (i.e., the number of exemplars) grew, (1) LLM accuracy increased, and (2) the
479 gap between LLMs and prompts narrowed. Both suggest that ICL as a learning paradigm **depends**
480 **less on the LLM and prompt and more on** the ability to perform **autoregression**. However, ac-
481 curacies were not consistent across similarly-related tasks: Pattern Matching (FSA) was effectively
482 solved, while Reversal (PDA) and Maze (Solve; FSA) had low accuracies. This suggests that **au-**
483 **turegression is limited in its ability to solve tasks**. This could be related to the choice of prompt.
484 However, we observed that while all prompts were sensitive to OOD, the best prompts (CoT and
485

486 APO) were both adaptive and more brittle. This suggests then that, although they are effective on
487 leveraging the power of a PDA, they bias the learner towards the *observed* distribution. This, in turn,
488 from the perspective of our framework, means that learning in ICL is not completely fulfilling the
489 requirements from Equation 2. Thus, **autoregression’s *ad hoc* encoding via the prompt is not a**
490 **robust learning mechanism.** As an extreme example, recall that Vending Machine (Sum) had non-
491 zero accuracy but near-zero slope regardless of number of shots, thus indicating complete inability
492 to learn the task.

493 Indeed, in the limit, accuracies were similar regardless of language and exemplar distributions, pro-
494 vided that they remained fixed. Hence **ICL learns the *observed* \mathcal{P} , rather than fully generalising**
495 **to the *unseen* \mathcal{Q} .** since the fully randomised exemplars had lower accuracy than both the shuf-
496 fled and unshuffled settings. Remark that the observed \mathcal{P} did not change, and this phenomenon
497 also could be explained as a manifestation of the bias-variance tradeoff. Given that the randomised
498 labels baseline had lower δ slopes, **OOD brittleness is very dependent on ICL overfocusing on**
499 **spurious features.** This is especially visible in CoT, which had consistently negative δ slopes across
500 all variations of \mathcal{P} . While description-based prompts had the best *peak* accuracy, in the limit word
501 salad reached equivalence with them. In SoT, some LLMs were still able to reach above-random
502 scores in spite of the constant randomisation. This means that **autoregression can distinguish data**
503 **features from lexical relations, but cannot fully identify *feature* relations within the data.** It
504 also empirically confirms the remarks from Equation 4 that p ’s contribution vanishes in the limit.
505

506 **Alternate explanations** could be (1) contamination, and (2) tokenisation. Contamination could
507 explain the accuracy in Pattern Matching, perhaps due to the (easy) $\Sigma, \{a, b, c\}$. Other tasks, like
508 Reversal, used more complex Σ and had lower scores, so it could be argued that the LLMs had
509 been pretrained in these tasks. However, good performances were also observable in Hamiltonian
510 and PARITY; thus suggesting the ability to (almost) fully simulate an FSA, and not contamination.
511 For (2), it could be said that an LLM trained on a task A will not necessarily solve a similar B if
512 $\Sigma_A \neq \Sigma_B$ (cf., graph and maze traversals). It could also explain the results from Vending Machine
513 (Sum): arithmetic skills are impacted by BPE (Singh & Strouse, 2024), the tokeniser which all LLMs
514 studied implement. The implementation is not always the same. In the limit, LLM performance gap
515 narrowed and thus tokenisation is not as relevant to ICL as the data features, although this only
516 applied to decision problems, not arithmetic. Finally, our theoretical framework could impact our
517 analysis of the conclusions. We argue that mathematically it is sufficient to define learning due to
518 its ablation on the *nature* of the data and its focus on *learning as a process*. However, we refine and
519 discuss this in Appendices C and D, including further explanations on the accuracy gap observed.
520

521 8 CONCLUSION

522 In this work we began by noting that, *mathematically*, ICL did constitute learning. However, we
523 also noted that further work was required to characterise it beyond the standard assumptions and
524 limitations of the literature. Our experiments thus accounted for prompting style and phrasing,
525 natural language, number of shots, input and output distributions, contamination, and pretraining
526 strategies. We found that, although **formally ICL is a form of learning, empirically it is relatively**
527 **weak.** This is due our findings on its limitations and nuanced behaviours, different than originally
528 reported. Concretely, in the limit, best-of average accuracies were given by 50-100 shots, and the
529 differences amongst both LLMs and prompts decreased. Exemplar positionality, characterisation,
530 labels, and wording were less relevant than the data features themselves—even in SoT, LLMs learned
531 the task in spite of its constant randomisation. Nonetheless, ICL also overfocused on spurious
532 features from the observed distribution. It also showed marked differences in supposedly-related
533 tasks, and brittleness to OOD, especially in APO and CoT.

534 Our findings indicate that, for example, brittleness to OOD means that LLM performance will not
535 be well-characterised by testing only a few prompts, as the performance observed may be spurious.
536 Hence, research on LLM capabilities must be done with caution and transparency, testing multiple
537 prompts, shots, and distributions. Future work should characterise reasoning models: we conjecture
538 that they will do better in our setup; but will also have difficulties in complex tasks (e.g., context-
539 sensitive languages), brittleness to OOD, and inconsistency over tasks. The latter also suggests that
an open question remains on how to empirically measure what ICL does over what it can do; and
then map it back to the theory while accounting for natural language factors not studied in this work.

540 9 ETHICS
541

542 Our work is a large-scale exploration of ICL over synthetic data. We are unaware of any potential
543 misuse of this research, albeit we could have overlooked something. The volume of data in our work
544 likely had a very high carbon footprint. While we argue that releasing the code publicly will have
545 more benefits to the community than potential harms, we have included disclaimers discouraging
546 running the full suite. We expect this work to be a *one-off* experimental work to determine ICL’s
547 feasibility as a learning paradigm, and thus our work focused on various open and closed models.
548 This should make the work comprehensive enough to also discourage re-running the full suite. We
549 discuss limitations of our work in Appendix A.

550
551 10 REPRODUCIBILITY STATEMENT
552

553 All code is included in the repository. It will be open-sourced under the MIT licence. Detailed
554 methodology, included model versioning, is in Appendix F. Prompts are in Appendix H, and also
555 in the repository. Work has been done in both closed-source and open-source models. We set the
556 temperature to zero throughout to ensure further reproducibility.

557
558 REFERENCES
559

560 Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Luis Rosias, Stephanie C.Y. Chan,
561 Biao Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, John D Co-Reyes, Eric Chu, Fer-
562 yal Behbahani, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning. In
563 *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL
564 `https://openreview.net/forum?id=AB6XpMzvqH`.

565 Patrick Altmeier, Andrew M. Demetriou, Antony Bartlett, and Cynthia C. S. Liem. Position: Stop
566 making unscientific AGI performance claims. In Ruslan Salakhutdinov, Zico Kolter, Katherine
567 Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Pro-
568 ceedings of the 41st International Conference on Machine Learning*, volume 235 of *Pro-
569 ceedings of Machine Learning Research*, pp. 1222–1242. PMLR, 21–27 Jul 2024. URL `https://proceedings.mlr.press/v235/altmeyer24a.html`.

571 Dana Angluin. Queries and concept learning. *Mach. Learn.*, 2(4):319–342, April 1988. ISSN
572 0885-6125. doi: 10.1023/A:1022821128753. URL `https://doi.org/10.1023/A:1022821128753`.

575 Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant Misra,
576 Vinay Venkatesh Ramasesh, Ambrose Sloane, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur.
577 Exploring length generalization in large language models. In Alice H. Oh, Alekh Agarwal,
578 Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Sys-
579 tems*, 2022. URL `https://openreview.net/forum?id=zSkYVeX7bC4`.

580 Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it’s lying. In Houda
581 Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Lin-
582 guistics: EMNLP 2023*, pp. 967–976, Singapore, December 2023. Association for Computational
583 Linguistics. doi: 10.18653/v1/2023.findings-emnlp.68. URL `https://aclanthology.org/2023.findings-emnlp.68/`.

585 Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-constrained path problems. *SIAM*
586 *Journal on Computing*, 30(3):809–837, 2000. doi: 10.1137/S0097539798337716. URL `https://doi.org/10.1137/S0097539798337716`.

588 Adithya Bhaskar, Dan Friedman, and Danqi Chen. The heuristic core: Understanding subnet-
589 work generalization in pretrained language models. In Lun-Wei Ku, Andre Martins, and Vivek
590 Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Compu-
591 tational Linguistics (Volume 1: Long Papers)*, pp. 14351–14368, Bangkok, Thailand, August
592 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.774. URL
593 `https://aclanthology.org/2024.acl-long.774/`.

594 Satwik Bhattacharya, Arkil Patel, and Navin Goyal. On the computational power of transformers
595 and its implications in sequence modeling. In Raquel Fernández and Tal Linzen (eds.), *Proceed-
596 ings of the 24th Conference on Computational Natural Language Learning*, pp. 455–475, Online,
597 November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.conll-1.37.
598 URL <https://aclanthology.org/2020.conll-1.37/>.

599 Misha Bilenko. New models added to the Phi-3 family, available on Microsoft
600 Azure, 2024. URL [https://azure.microsoft.com/en-us/blog/
601 new-models-added-to-the-phi-3-family-available-on-microsoft-azure/](https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/).

602 Nadav Borenstein, Anej Sveti, Robin Chan, Josef Valvoda, Franz Nowak, Isabelle Augenstein,
603 Eleanor Chodroff, and Ryan Cotterell. What languages are easy to language-model? a per-
604 spective from learning probabilistic regular languages. In Lun-Wei Ku, Andre Martins, and
605 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
606 putational Linguistics (Volume 1: Long Papers)*, pp. 15115–15134, Bangkok, Thailand, August
607 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.807. URL
608 <https://aclanthology.org/2024.acl-long.807/>.

609 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
610 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
611 Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
612 Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
613 Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
614 Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In *Proceedings of
615 the 34th International Conference on Neural Information Processing Systems*, NeurIPS’20, Red
616 Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

617 Alexandra Butoi, Ghazal Khalighinejad, Anej Sveti, Josef Valvoda, Ryan Cotterell, and Brian
618 DuSell. Training neural networks as recognizers of formal languages. In *The Thirteenth In-
619 ternational Conference on Learning Representations*, 2025. URL [https://openreview.
620 net/forum?id=aWLQTbfFgV](https://openreview.net/forum?id=aWLQTbfFgV).

621 Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
622 Zhang. Quantifying memorization across neural language models. In *International Confer-
623 ence on Learning Representations*, 2023. URL [https://openreview.net/forum?id=
624 TatRHT_1cK](https://openreview.net/forum?id=TatRHT_1cK).

625 Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre
626 Richemond, James McClelland, and Felix Hill. Data distributional properties drive
627 emergent in-context learning in transformers. In S. Koyejo, S. Mohamed, A. Agar-
628 wal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Pro-
629 cessing Systems*, volume 35, pp. 18878–18891. Curran Associates, Inc., 2022. URL
630 [https://proceedings.neurips.cc/paper_files/paper/2022/file/
631 77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf).

632 Yingshan Chang and Yonatan Bisk. Language models need inductive biases to count inductively.
633 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=s3IBHTTDYl>.

634 Soham Dan, Osbert Bastani, and Dan Roth. Understanding robust generalization in learning regular
635 languages. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
636 and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*,
637 volume 162 of *Proceedings of Machine Learning Research*, pp. 4630–4643. PMLR, 17–23 Jul
2022.

638 Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
639 Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural networks and
640 the Chomsky Hierarchy. In *11th International Conference on Learning Representations*, 2023.

641 Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
642 Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal,

648 Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of trans-
649 formers on compositionality. In *Thirty-seventh Conference on Neural Information Processing*
650 *Systems*, 2023. URL <https://openreview.net/forum?id=Fkckkr3ya8>.

651

652 Ezra Edelman, Nikolaos Tsilivis, Benjamin L. Edelman, Eran Malach, and Surbhi Goel. The evolution
653 of statistical induction heads: in-context learning markov chains. In *Proceedings of the 38th*
654 *International Conference on Neural Information Processing Systems*, NIPS '24, Red Hook, NY,
655 USA, 2024. Curran Associates Inc. ISBN 9798331314385.

656 Federico Errica, Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. What did I do wrong?
657 quantifying LLMs' sensitivity and consistency to prompt engineering. In Luis Chiruzzo, Alan
658 Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 1543–1558, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.nacl-long.73.
659 URL <https://aclanthology.org/2025.nacl-long.73/>.

660

661 Edward Gibson and Kenneth Wexler. *Linguistic Inquiry*, 25(3), 1994.

662

663 E Mark Gold. Language identification in the limit. *Information and Control*, 10(5):447–474, 1967.
664 ISSN 0019-9958. doi: [https://doi.org/10.1016/S0019-9958\(67\)91165-5](https://doi.org/10.1016/S0019-9958(67)91165-5). URL <https://www.sciencedirect.com/science/article/pii/S0019995867911655>.

665

666 Kavi Gupta, Kate Sanders, and Armando Solar-Lezama. Randomly sampled language reasoning
667 problems reveal limits of LLMs, 2025. URL <https://arxiv.org/abs/2501.02825>.

668

669 Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Lun-Wei Ku,
670 Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 14973–15008, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.800.
671 URL <https://aclanthology.org/2024.acl-long.800/>.

672

673 Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
674 formers: Perspectives from circuit complexity. *Transactions of the Association for Computational
675 Linguistics*, 10:800–810, 2022. doi: 10.1162/tacl_a_00490. URL <https://aclanthology.org/2022.tacl-1.46/>.

676

677 Michael Y. Hu, Jackson Petty, Chuan Shi, William Merrill, and Tal Linzen. Between circuits and
678 Chomsky: Pre-pretraining on formal languages imparts linguistic biases. In Wanxiang Che, Joyce
679 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
680 9691–9709, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-
681 89176-251-0. doi: 10.18653/v1/2025.acl-long.478. URL <https://aclanthology.org/2025.acl-long.478/>.

682

683 Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A sur-
684 vey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the As-
685 sociation for Computational Linguistics: ACL 2023*, pp. 1049–1065, Toronto, Canada, July
686 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL
687 <https://aclanthology.org/2023.findings-acl.67/>.

688

689 Joel Jang, Seonghyeon Ye, and Minjoon Seo. Can large language models truly understand prompts?
690 a case study with negated prompts. In Alon Albalak, Chunting Zhou, Colin Raffel, Deepak Ra-
691 machandran, Sebastian Ruder, and Xuezhe Ma (eds.), *Proceedings of The 1st Transfer Learning
692 for Natural Language Processing Workshop*, volume 203 of *Proceedings of Machine Learning
693 Research*, pp. 52–62. PMLR, 03 Dec 2023. URL <https://proceedings.mlr.press/v203/jang23a.html>.

694

695 Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
696 Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
697 anna Lengyel, Guillaume Bour, Guillaume Lamplé, Lélio Renard Lavaud, Lucile Saulnier, Marie-
698 Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le

699

702 Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
703 Mixtral of experts, 2024. URL <https://arxiv.org/abs/2401.04088>.

704

705 Kent Johnson. Gold’s theorem and cognitive science. *Philosophy of Science*, 71(4):571–592, 2004.
706 doi: 10.1086/423752.

707

708 Tianjie Ju, Weiwei Sun, Wei Du, Xinwei Yuan, Zhaochun Ren, and Gongshen Liu. How large lan-
709 guage models encode context knowledge? a layer-wise probing study. In Nicoletta Calzolari,
710 Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), *Pro-
711 ceedings of the 2024 Joint International Conference on Computational Linguistics, Language Re-
712 sources and Evaluation (LREC-COLING 2024)*, pp. 8235–8246, Torino, Italia, May 2024. ELRA
713 and ICCL. URL <https://aclanthology.org/2024.lrec-main.722/>.

714

715 Gerhard Jäger and James Rogers. Formal language theory: refining the Chomsky hierarchy. *Philo-
716 sophical Transactions of the Royal Society B*, 2012. doi: <https://doi.org/10.1098/rstb.2012.0077>.

717

718 Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
In *Mathematical Aspects of Deep Learning*. Cambridge University Press, 2022. doi: 10.1017/
9781009025096.003.

719

720 Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae and
721 finite automata. *J. ACM*, 41(1):67–95, January 1994. ISSN 0004-5411. doi: 10.1145/174644.
722 174647. URL <https://doi.org/10.1145/174644.174647>.

723

724 Michael J. Kearns and Umesh V. Vazirani. *An Introduction to Computational Learning Theory*. The
MIT Press, 1994.

725

726 Jon Kleinberg and Sendhil Mullainathan. Language generation in the limit. In *The Thirty-
727 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=FGTDe6EA0B>.

728

729 Ryoma Kumon and Hitomi Yanaka. Analyzing the inner workings of transformers in compositional
730 generalization. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Con-
731 ference of the Nations of the Americas Chapter of the Association for Computational Linguis-
732 tics: Human Language Technologies (Volume 1: Long Papers)*, pp. 8529–8540, Albuquerque,
733 New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-
734 6. doi: 10.18653/v1/2025.nacl-long.432. URL [https://aclanthology.org/2025.nacl-long.432/](https://aclanthology.org/2025.nacl-long.432).

735

736 Steffen Lange and Sandra Zilles. Relations between Gold-style learning and query learning. *Infor-
737 mation and Computation*, 203(2):211–237, 2005. ISSN 0890-5401. doi: [https://doi.org/10.1016/j.ic.2005.08.003](https://doi.org/10.1016/j.
738 ic.2005.08.003). URL <https://www.sciencedirect.com/science/article/pii/S0890540105001379>.

739

740 Jooyoung Lee, Thai Le, Jinghui Chen, and Dongwon Lee. Do language models plagiarize? In
741 *Proceedings of the ACM Web Conference 2023*, WWW ’23, pp. 3637–3647, New York, NY, USA,
742 2023. Association for Computing Machinery. ISBN 9781450394161. doi: 10.1145/3543507.
743 3583199. URL <https://doi.org/10.1145/3543507.3583199>.

744

745 Qian Li and Yuyi Wang. Constant bit-size transformers are Turing complete. In *Advances in Neural
746 Information Processing Systems*. Curran Associates, Inc., 2025. URL <https://arxiv.org/pdf/2506.12027.pdf>.

747

748 Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
749 solve inherently serial problems. In *The Twelfth International Conference on Learning Represen-
750 tations*, 2024. URL <https://openreview.net/forum?id=3EWTEy9MTM>.

751

752 Zongqian Li, Yixuan Su, and Nigel Collier. A survey on prompt tuning. In *ES-FoMo III: 3rd
753 Workshop on Efficient Systems for Foundation Models*, 2025. URL <https://openreview.net/forum?id=JEMGDajQ1G>.

754

755 Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In *The Eleventh International Conference on Learning Representa-
756 tions*, 2023. URL <https://openreview.net/forum?id=De4FYqjFueZ>.

756 Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
757 neural networks. In *Proceedings of the 28th International Conference on Neural Information
758 Processing Systems - Volume 1*, NIPS'14, pp. 855–863, Cambridge, MA, USA, 2014. MIT Press.
759

760 Quanyu Long, Yin Wu, Wenyu Wang, and Sinno Jialin Pan. Does in-context learning really learn?
761 rethinking how large language models respond and solve tasks via in-context learning. In *First
762 Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=i2oJjC0ESQ>.
763

764 Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
765 Are emergent abilities in large language models just in-context learning? In Lun-Wei Ku, Andre
766 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association
767 for Computational Linguistics (Volume 1: Long Papers)*, pp. 5098–5139, Bangkok, Thailand,
768 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.279.
769 URL [https://aclanthology.org/2024.acl-long.279/](https://aclanthology.org/2024.acl-long.279).

770 Marina Mancoridis, Bec Weeks, Keyon Vafa, and Sendhil Mullainathan. Potemkin understanding
771 in large language models, 2025. URL <https://arxiv.org/abs/2506.21521>.
772

773 William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
774 In *The Twelfth International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=NjNG1Ph8Wh>.
775

776 Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
777 Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
778 large language models. In *The Thirteenth International Conference on Learning Representations*,
779 2025. URL <https://openreview.net/forum?id=AjXkRZIvjb>.

780 Ruslan Mitkov. *The Oxford Handbook of Computational Linguistics*. Oxford University Press, 06
781 2022. ISBN 9780199573691. doi: 10.1093/oxfordhb/9780199573691.001.0001. URL <https://doi.org/10.1093/oxfordhb/9780199573691.001.0001>.
782

783 Partha Niyogi. *The Computational Nature of Language Learning and Evolution*. The MIT Press,
784 2006.

785 Santiago Ontanon, Joshua Ainslie, Zachary Fisher, and Vaclav Cvcek. Making transformers solve
786 compositional tasks. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Pro-
787 ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
788 Long Papers)*, pp. 3591–3607, Dublin, Ireland, May 2022. Association for Computational Lin-
789 guistics. doi: 10.18653/v1/2022.acl-long.251. URL [https://aclanthology.org/2022.acl-long.251/](https://aclanthology.org/2022.acl-long.251).
790

791 Open AI. GPT-4 technical report. Technical report, Open AI, 2023. URL <https://arxiv.org/abs/2303.08774v2>.
792

793 OpenAI. GPT-4o, 2024. URL <https://platform.openai.com/docs/models/gpt-4o>.
794

795 OpenAI. OpenAI o3-mini, 2025. URL <https://openai.com/index/openai-o3-mini/>.
796

797 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
798 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
799 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
800 12:2825–2830, 2011.

801 Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. *Journal of
802 Machine Learning Research*, 22(75):1–35, 2021. URL <http://jmlr.org/papers/v22/20-302.html>.
803

804 Leonard Pitt and Manfred K. Warmuth. The minimum consistent DFA problem cannot be approx-
805 imated within any polynomial. *J. ACM*, 40(1):95–142, January 1993. ISSN 0004-5411. doi:
806 10.1145/138027.138042. URL <https://doi.org/10.1145/138027.138042>.
807

810 Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
811 alization beyond overfitting on small algorithmic datasets, 2022. URL <https://arxiv.org/abs/2201.02177>.
812

813 Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
814 optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Ka-
815 lika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language
816 Processing*, pp. 7957–7968, Singapore, December 2023. Association for Computational Linguis-
817 tics. doi: 10.18653/v1/2023.emnlp-main.494. URL <https://aclanthology.org/2023.emnlp-main.494>.
818

819 Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
820 Huang, and Huajun Chen. Reasoning with language model prompting: A survey. In Anna Rogers,
821 Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the
822 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5368–5393, Toronto,
823 Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
824 294. URL <https://aclanthology.org/2023.acl-long.294>.
825

826 Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
827 of chain-of-thought. In *International Conference on Learning Representations (ICLR)*, 2023.
828

829 Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
830 models a mirage? In *Thirty-seventh Conference on Neural Information Processing Systems*,
831 2023. URL <https://openreview.net/forum?id=ITw9edRD1D>.
832

833 Dale H. Schunk. *Learning theories: An educational perspective*. Macmillan Publishing Co, Inc.,
834 2012.

835 Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sen-
836 sitivity to spurious features in prompt design or: How i learned to start worrying about prompt
837 formatting. In *The Twelfth International Conference on Learning Representations*, 2024. URL
838 <https://openreview.net/forum?id=RIu51yNXjt>.
839

840 Namrata Shivagunde, Vladislav Lialin, Sherin Muckatira, and Anna Rumshisky. Deconstructing
841 in-context learning: Understanding prompts via corruption. In Nicoletta Calzolari, Min-Yen Kan,
842 Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), *Proceedings of
843 the 2024 Joint International Conference on Computational Linguistics, Language Resources and
844 Evaluation (LREC-COLING 2024)*, pp. 4509–4529, Torino, Italia, May 2024. ELRA and ICCL.
845 URL <https://aclanthology.org/2024.lrec-main.404>.
846

847 Thomas J. Shuell. Cognitive conceptions of learning. *Review of Educational Research*, 56, 1986.
848 doi: <https://doi.org/10.3102/00346543056004411>.
849

850 Aaditya K. Singh and DJ Strouse. Tokenization counts: the impact of tokenization on arithmetic in
851 frontier LLMs, 2024. URL <https://arxiv.org/abs/2402.14903>.
852

853 Burrhus Frederic Skinner. *The behavior of organisms: an experimental analysis*. Appleton-Century,
854 1938.

855 Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold circuits,
856 2023. URL <https://arxiv.org/abs/2308.03212>.
857

858 Lena Strobl, Dana Angluin, David Chiang, Jonathan Rawski, and Ashish Sabharwal. Transformers
859 as transducers. *Transactions of the Association for Computational Linguistics*, 13:200–219, 02
860 2024a. ISSN 2307-387X. doi: 10.1162/tacl_a_00736. URL https://doi.org/10.1162/tacl_a_00736.
861

862 Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal lan-
863 guages can transformers express? a survey. *Transactions of the Association for Compu-
864 tational Linguistics*, 12:543–561, 05 2024b. ISSN 2307-387X. doi: 10.1162/tacl_a_00663. URL
865 https://doi.org/10.1162/tacl_a_00663.
866

867 Edward Lee Thorndike. *Educational psychology, Vol. 1. The original nature of man*. Teachers
868 College, 1913. doi: <https://doi.org/10.1037/13763-000>.

864 Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
865 Function vectors in large language models. In *Proceedings of the 2024 International Conference
866 on Learning Representations*, 2024. URL <https://openreview.net/forum?id=AwyxtyMwaG>. arXiv:2310.15213.
867

868 Leslie G. Valiant. A theory of the learnable. *Commun. ACM*, 27(11):1134–1142, November 1984.
869 ISSN 0001-0782. doi: 10.1145/1968.1972. URL <https://doi.org/10.1145/1968.1972>.
870

871 Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large lan-
872 guage models are latent variable models: explaining and finding good demonstrations for in-
873 context learning. In *Proceedings of the 37th International Conference on Neural Information
874 Processing Systems*, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.
875

876 Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
877 prompts? In *Proceedings of the 2022 Conference of the North American Chapter of the Asso-
878 ciation for Computational Linguistics: Human Language Technologies*, pp. 2300–2344, Seattle,
879 United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
880 naacl-main.167. URL <https://aclanthology.org/2022.nacl-main.167>.
881

882 Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a
883 case study on approximating turing machines with transformers. In S. Koyejo, S. Mo-
884 hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural In-
885 formation Processing Systems*, volume 35, pp. 12071–12083. Curran Associates, Inc.,
886 2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/4ebf1d74f53ece08512a23309d58df89-Paper-Conference.pdf.
887

888 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
889 Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
890 In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in
891 Neural Information Processing Systems*, volume 35, pp. 24824–24837. Curran Associates, Inc.,
892 2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.
893

894 R.M. Wharton. Approximate language identification. *Information and Control*, 26(3):236–255,
895 1974. ISSN 0019-9958. doi: [https://doi.org/10.1016/S0019-9958\(74\)91369-2](https://doi.org/10.1016/S0019-9958(74)91369-2). URL <https://www.sciencedirect.com/science/article/pii/S0019995874913692>.
896

897 Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. In
898 *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=f3JNQd7CHM>.
899

900 Adrian de Wynter. Awes, laws, and flaws from today’s LLM research. In Wanxiang Che,
901 Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the As-
902 sociation for Computational Linguistics: ACL 2025*, pp. 12834–12854, Vienna, Austria, July
903 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. URL <https://aclanthology.org/2025.findings-acl.664/>.
904

905 Adrian de Wynter and Tangming Yuan. The thin line between comprehension and persuasion in
906 llms. 2025. URL <https://arxiv.org/abs/2507.01936>.
907

908 Adrian de Wynter, Xun Wang, Qilong Gu, and Si-Qing Chen. On meta-prompting. [abs/2312.06562](https://arxiv.org/abs/2312.06562),
909 2023a. doi: 10.48550/arXiv.2312.06562. URL <https://arxiv.org/abs/2312.06562>.
910

911 Adrian de Wynter, Xun Wang, Alex Sokolov, Qilong Gu, and Si-Qing Chen. An evaluation on large
912 language model outputs: Discourse and memorization. *Natural Language Processing Journal*, 4:
913 100024, 2023b. ISSN 2949-7191. doi: <https://doi.org/10.1016/j.nlp.2023.100024>. URL <https://www.sciencedirect.com/science/article/pii/S2949719123000213>.
914

915 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
916 learning as implicit bayesian inference. In *International Conference on Learning Representations
917 (ICLR)*, 2022.

918 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
919 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
920 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
921 gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
922 Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
923 Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
924 bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
925 Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
926 Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. 2024. URL
927 <https://arxiv.org/abs/2407.10671>.

928 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
929 Narasimhan. Tree of thoughts: deliberate problem solving with large language models. In *Pro-
930 ceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS
931 '23, Red Hook, NY, USA, 2023. Curran Associates Inc.

932 Gregory Yauney and David Mimno. Stronger random baselines for in-context learning. In *First
933 Conference on Language Modeling*, 2024. URL <https://openreview.net/forum?id=TRxQMpLUFd>.

934 Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning? In *Forty-
935 second International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=C7XmEByCFv>.

936 Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On
937 the paradox of learning to reason from data. In *Proceedings of the 32nd International Joint
938 Conference on Artificial Intelligence (IJCAI)*, aug 2023. URL <http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf>.

939 Hao Zhao, Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Is in-context
940 learning sufficient for instruction following in LLMs? In *The Thirteenth International Confer-
941 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=STEEDDv3zI>.

942 Yuxiang Zhou, Jiazheng Li, Yanzheng Xiang, Hanqi Yan, Lin Gui, and Yulan He. The mystery of in-
943 context learning: A comprehensive survey on interpretation and analysis. In Yaser Al-Onaizan,
944 Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical
945 Methods in Natural Language Processing*, pp. 14365–14378, Miami, Florida, USA, November
946 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.795. URL
947 <https://aclanthology.org/2024.emnlp-main.795/>.

948 Jingming Zhuo, Songyang Zhang, Xinyu Fang, Haodong Duan, Dahua Lin, and Kai Chen. ProSA:
949 Assessing and understanding the prompt sensitivity of LLMs. In Yaser Al-Onaizan, Mohit Bansal,
950 and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP
951 2024*, pp. 1950–1976, Miami, Florida, USA, November 2024. Association for Computational
952 Linguistics. doi: 10.18653/v1/2024.findings-emnlp.108. URL <https://aclanthology.org/2024.findings-emnlp.108/>.

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 **A LIMITATIONS**
973

974 One core limitation of our work is that LLMs are continuously updated, and this could make repro-
975 ducibility difficult. To mitigate it, we have worked with open and closed-source LLMs, and provided
976 detailed call parameters. Our evaluation is not cheap either: running synchronously a single task per
977 LLM could and has taken months, depending on hardware, and the aggregate cost for all calls could
978 render further exploration prohibitive. Lower-volume testing or fewer tasks could provide simi-
979 lar results, at the expense of statistical significance or ambiguity. Other testing, such as alternate
980 paradigms (e.g., reasoning models) and prompting (multi-step, multi-call) were not evaluated in our
981 work and could show more nuanced results.

982 Finally, interpreting the results from the ML baselines is nuanced. These are fast to train and iterate
983 over, although they require larger amounts of data, and are also sensitive to OOD. We attribute this
984 brittleness to the input representation length, which is characteristic of all tasks except PARITY. No
985 neural networks beyond an MLP were tested. It is known that LSTMs and RNNs excel at these tasks
986 (Butoi et al., 2025), albeit also require significant data volumes.

987
988 **B DETAILED BACKGROUND**
989

990 **B.1 PAC LEARNING**
991

992 The original framework from Valiant (1984) centres itself on the learnability of the concept class,
993 rather than the learner. We reproduce it here and compare it to our rephrasing to describe generalisa-
994 tion. For more thorough discussions on this framework, see Kearns & Vazirani (1994). For a formal,
995 full description of in-context learning within the context of PAC learning, see Wies et al. (2023).

996 Suppose we wish to model a binary classification phenomenon with features assumed to be drawn
997 from some nonempty set $X \subset \{0, 1\}^m$ (the instance space). This phenomenon is labelled with a
998 function (the concept) $c: X \rightarrow \{0, 1\}$.⁴ A set of concepts $C = \{c_1, \dots, c_k\}$ is called a concept
999 class. A learning algorithm is then tasked with classifying samples $x \sim \mathcal{P}$, where \mathcal{P} is supported on
1000 X . It selects a hypothesis (another concept) h such that

1001
1002
$$\text{error}(h) = \Pr_{x \sim \mathcal{P}} [c(x) \neq h(x)]. \quad (6)$$

1003

1004 To learn, the algorithm is given access to a function $\mathcal{O}: C \times X \rightarrow \{0, 1\}$ that provides i.i.d. samples
1005 with some distribution \mathcal{D} . Then, a concept class C over X is PAC-learnable if an algorithm outputs
1006 an $h \in C$ such that

1007
$$\Pr [\text{error}(h) \leq \epsilon] \geq 1 - \delta \quad (7)$$

1008

1009 for all $c \in C$, any \mathcal{P} , and $\epsilon \in (0, 1/2)$ and $\delta \in (0, 1/2)$, with an observed subset D built with \mathcal{O} .
1010 The algorithm is required to run in $\text{poly}(m, |c|, 1/\epsilon, 1/\delta)$. Where the size $|c|$ is the smallest way to
1011 represent c under a chosen map $R: \Sigma^* \rightarrow C$. Stochasticity is accounted in both calls to \mathcal{O} and the
1012 learner's internal state.

1013 Our framework has five core differences:

1014
1015 1. The learning algorithm is a machine learning *model*.
1016 2. The selected hypothesis is the learner's weights as a function of the input, $f(x_k)$. Namely,
1017 accounting for autoregression, $f(z)$ for $z = f(x_{k-1})$.
1018 3. The 'access' to \mathcal{O} is replaced by a preconstructed dataset observed during the prompt call.
1019 4. We reframe Equation 6 to work on the average *empirical* error of a dataset, to align it with
1020 contemporary evaluation methods.
1021 5. We replace the concept class C and the selection of said concepts with a single function c .
1022 This can be shown to be equivalent by composition by noting that c can act as the selector
1023 for the concept class C .
1024

1025 ⁴ X can also be an Euclidean space, $X \subset \mathbb{R}^m$. Concepts may also be equivalently seen as subsets of X .

1026 The last difference renders our framework imprecise, but not weaker, when compared to standard
1027 PAC learning. PAC learning is known to have certain limitations. For example, deterministic finite
1028 automata and context-free grammars cannot be learnt in the standard PAC setting (Pitt & Warmuth,
1029 1993; Kearns & Valiant, 1994; Niyogi, 2006); and contemporary neural networks has been shown to
1030 be able to learn beyond seen concept classes (see, e.g., Kawaguchi et al. 2022). Our reframing avoids
1031 these limitations by removing the dependence on a specific task (concept class) and instead assumes
1032 that a subset of X is labelled with some c , in line with the expectations on current LLMs. More
1033 importantly, neither of the points above detract from the definition of learning as generalisation.

1034

1035 B.2 AUTOMATA THEORY AND FORMAL LANGUAGE THEORY

1036

1037 A formal grammar \mathcal{G} is a collection of strings from an alphabet $\Sigma = S \cup N \cup \{\epsilon\}$, and production
1038 rules (maps) between them. S and N are sets of non-terminal and terminal symbols, and ϵ the empty
1039 symbol, respectively. These rules form a set (language) L . Grammars may be categorised based on
1040 their complexity—namely, the production rules—using the Chomsky hierarchy. Each class is a proper
1041 subset of the other.

1042

1043 The classes of automata (functions) needed to answer whether $x \in L$ for a string x have an isomor-
1044 phism between them and the classes of formal grammars in the Chomsky hierarchy. More complex
1045 languages require more complex automata, whose classes are also supersets of the others. This is
1046 because every automaton, with the exception of the Turing machine, is limited in a certain way. For
1047 example, FSA read the input (tape) symbol-by-symbol in one direction and a single pass; change
1048 their internal state between accept and reject; and return either when the read is complete. They thus
1049 can recognise precisely the set of regular languages. Pushdown automata, or PDA, are equivalent to
1050 FSA but with a memory stack added, and can recognise context-free languages. See Appendix E for
1051 classifications of our tasks within the context of both automata and formal language theory. Remark
1052 that LLMs can perform recursion and feed their own ‘pseudo-state’ (namely, the token outputs) back
1053 into itself. This allows it to maintain a memory stack, albeit not fully controllable—hence why CoT
1054 is effective to a point: it templatises the memory stack.

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 C ALTERNATE MODELS OF LEARNING
1081

1082 In Section 3.1 we noted that PAC learning is the predominant model for learning in computational
1083 learning theory, and, specifically, learning theory. It is also frequently used when modelling language
1084 learning (see, e.g., Niyogi 2006). However, it is not the only model of learning, or the only accepted
1085 definition of learning. For example, Gold’s inductive inference framework (Gold, 1967) is also
1086 sometimes used to model other language acquisition and learning (Johnson, 2004), and forms the
1087 basis of algorithmic learning theory.

1088 Frameworks outside of computer science, such as those used in psychology and education, are also
1089 designed to formally define and measure learning. While the definition of learning has broad agree-
1090 ment (the ability to behave in a given way based on experience; Schunk 2012), measurement proto-
1091 cols differ amongst theories.

1092 In this section we discuss alternate models of learning, from inside and outside of computer science.
1093 Specific algorithms and approaches, such as the Triggering Learning Algorithm (Gibson & Wexler,
1094 1994) or back-propagation, are not covered here as they may be framed in a model of learning
1095 (e.g., in terms of PAC learning Niyogi 2006). For non-computer science models, we focus on the
1096 two major theories with well-defined measurement protocols: behavioural and cognitive. We do not
1097 cover other frameworks, such as information theories of learning (Shuell, 1986), since they explicitly
1098 require the learner to encode and retrieve knowledge for arbitrary periods of time, and this is not the
1099 case for ICL.

1100
1101 C.1 GOLD’S INDUCTIVE INFERENCE

1102
1103 In the inductive inference framework, the learner observes an infinite sequence of examples $x_1, \dots \in \Sigma$ from some language L generated by some grammar \mathcal{G} . The sequence may contain duplicate
1104 elements. Let $\mathcal{G}(x_k)$ be said sequence up to the k^{th} element. It is said that a learner $f: \Sigma \rightarrow \Sigma$
1105 learns L (and thus \mathcal{G}) *in the limit* if, based on a chosen metric $d: \Sigma \times \Sigma \rightarrow [0, 1]$,

1106
1107
1108
$$\lim_{k \rightarrow \infty} d(\langle f(x_1), \dots, f(x_k) \rangle, \mathcal{G}(x_k)) = 0. \quad (8)$$

1109
1110 Namely, it is said that f has learnt \mathcal{G} (in the limit; in the Gold sense), if after k instances, the learner
1111 will correctly identify all observations from L . Remark that the choice of distance directly affects
1112 the definition, and that this learner *only* observes positive examples. In this framework, it follows
1113 thus that learning a language (r. concept in PAC learning) is equivalent to—eventually—perfectly
1114 reproducing the grammar. In contrast, in PAC learning, learning is probabilistic and can only be
1115 done w.p.1 in the limit.

1116
1117 It follows then that the main criticism to this framework is that it is too rigid, as it does not allow the
1118 learner to make mistakes. Reframings to allow for a looser distance or a threshold number of errors
1119 are effective at allowing more pragmatic learnability (Wharton, 1974). Other variants, such as query
1120 learning (Angluin, 1988) have also been shown to be equivalent to this framework (Lange & Zilles,
1121 2005). Nonetheless, they are weaker than the original statement (Niyogi, 2006).

1122
1123 From a theoretical perspective, Gold (1967) showed that the languages represented by deterministic
1124 finite automata and context-free grammars are not learnable in the limit. As noted in Appendix B,
1125 PAC learning is also limited in its ability to learn certain formal problems. However, it is possible
1126 to create variants of one framework to learn languages that cannot be identified in the other (Niyogi,
1127 2006). Thus, Gold’s and Valiant’s frameworks are distinct and non-equivalent.

1128
1129 In the context of our work, we are more concerned about measuring learning. Since Equation 6 is a
1130 distance metric, we may use our reframing equivalently in the Gold sense, and setting a (probabilis-
1131 tic) threshold ϵ as before,

1132
1133
$$\lim_{k \rightarrow \infty} \Pr \left[d(\langle f(x_1) \dots f(x_k) \rangle, \mathcal{G}(x_k)) > \epsilon \right] = 0. \quad (9)$$

1134
1135 However, the statement around the probability of this threshold holding (Equation 7) would be
1136 missing, and hence the conclusions that we could draw are weaker.

1134
1135

1136 C.2 BEHAVIOURAL THEORIES 1137

1138 Behavioural models of learning focus on how much feedback (reinforcement of correct guesses) as
1139 well as the developmental status of the learner. While the autoregressive mechanism could account
1140 for feedback, the developmental status is more difficult to approximate. We argue that this could
1141 be considered the pretraining process. We include a small experiment with an untrained model in
1142 Appendix D.

1143 In the connectionist model of learning (Thorndike, 1913), learning is given by associations between
1144 experiences, and through trial and error. Experiments to measure this theory were carried across
1145 multiple months (e.g., participants had to close their eyes and draw a line of a specified length
1146 hundreds of times for several days). From our work’s perspective, measurement was done within
1147 the same \mathcal{P} .

1148 Another well-known model is that of operant conditioning Skinner (1938). This framework adapts
1149 closely to our work. Its full formulation includes the process by which learning occurs (e.g., conditioning,
1150 reinforcement, etc), and may be found in Schunk (2012). In this section we limit ourselves
1151 to describe the measurement itself. This is due through Skinner’s definition of generalisation, which
1152 involves the repeated response to an input; and discrimination, which is varying the specific response
1153 based on the input. The core problem with generalisation in this theory is that, since learning relies
1154 on reinforcement, responses cannot be given *without* having been given previously said reinforcement
1155 (i.e., there cannot be zero-shot learning). The explanation for humans is that they rely on the
1156 composition of previously-learnt behaviours, and thus zero-shot learning may occur. For LLMs, this
1157 could *also* be argued based on the ‘developmental status’ of these learners: namely, the pretraining
1158 itself. Discrimination is also measured through zero-shot learning; namely, providing an appropriate
1159 response to an instance *after* being given a general description of the task.

1160 Fitting LLMs into Skinner’s framework means that generalisation is measured through repeated
1161 presentation of exemplars (and their correct labelling). Zero-shot *in this case* means observing only
1162 the instance of the problem and not having any feedback. Concretely, this was zero-shot modus
1163 ponens; which, as we observed, had near zero-performance across the board—as expected since
1164 the **tasks ablated for memorisation** and the learner had no reinforcement. On the other hand,
1165 discrimination requires the task description itself. This is more akin to zero-shot learning in the
1166 Description, CoT, and DE scenarios; and, to a minor extent, word salad and SoT.

1167 What ties all these frameworks together to PAC learning is that theories have a certain tolerance to
1168 learner error, which in turn makes them closer to this framework than to Gold’s.

1169
1170

1171 C.3 COGNITIVE THEORIES 1172

1173 In behavioural theories, learner variation is studied by evaluating the impact of the environment and
1174 the previous reinforcement steps. In contrast, cognitive theories emphasise how the differences be-
1175 tween the prior knowledge of the learners, along with their own internal processes, impact learning.
1176 They also distinguish between learning and performance Schunk (2012). This means that, for ex-
1177 ample, in these frameworks, a learner could acquire latent knowledge by observing the environment
1178 although never actually obtaining reinforcement. From the perspective of our work, this is visible
1179 in all prompts minus modus ponens, *except* that only in the zero-shot setting. It is well-known that
1180 the way by which the learner is exposed to the task (e.g., demonstration, explanations, etc.), as well
1181 as the feedback (success) directly affects the effectiveness of the learning process (Schunk, 2012).
1182 Our work accounts for the first aspect (e.g., by the prompt style itself), but not the second. These,
1183 however, are more akin to how a reasoning model outputs text.

1184 Ultimately, cognitive theories measure learning through success after reinforcement (or without, in
1185 the case of latent knowledge), as well as retention. Our work partially measure these. Same as in
1186 the behavioural theories, the tolerance to error makes these frameworks closer to PAC learning than
1187 to the inductive inference framework.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200

1188 D RELATIONSHIP TO NATURAL LANGUAGE
1189

1190 D.1 IMPACT ON CONCLUSIONS
1191

1192 We noted throughout our work that the synthetic nature of our work could underestimate the perfor-
1193 mance of an LLM on realistic scenarios. The choice of synthetic data was to ablate out the LLMs'
1194 intrinsic knowledge, and instead focus on their ability to infer features from the observed \mathcal{P} . It
1195 also allowed us to control every aspect of the data—from contamination to ID/OOD—to ensure a fully
1196 ‘sanitised’ experiment suite. This practise is known to be useful to study generalisation (Power et al.,
1197 2022).

1198 However, learnings based on synthetic data do not necessarily fully translate to natural-language
1199 scenarios. This is because synthetic data setups overlook considerations ubiquitous to natural lan-
1200 guage, such as compositionality, feature distribution, and ambiguity. These are all encoded—in one
1201 way or another—in pretrained LLMs.

1202 Even when dealing with natural-language problems which are fully unseen by an LLM (for example,
1203 a language isolate), computational complexity comes into play. It is known that, under certain
1204 assumptions, natural language lies somewhere between context-free and context-sensitive grammars
1205 (Jäger & Rogers, 2012), which, in turn—as per our results and the theoretical work from Section 3—
1206 makes these problems difficult to solve without any prior knowledge. On the other hand, the vast
1207 literature and success stories of LLMs suggest that further empirical work is required to characterise
1208 what these models *do*, not what they *could do*.

1209 Thus, our results are limited to the ability of ICL to draw conclusions from the data’s features *alone*,
1210 eschewing any potential semantic priors induced by natural language. They must be interpreted with
1211 caution when considering their extension to natural language, particularly in tasks and evaluations
1212 which could rely on a model’s latent knowledge.

1213 D.2 IMPACT ON RESULTS
1214

1215 To follow the point on latent knowledge, we remark that a full evaluation of ICL should account
1216 for an inductive bias-free learning. This means that the models must not have seen *any* of the data
1217 before, including natural language.⁵ In line with the empirical spirit of this work, and in order to
1218 confirm this, we ran the same experiments for PARITY, Pattern Matching, both Vending Machines,
1219 and Hamiltonian in all shots and δ . The learner was a separate, *randomly-initialised* model (Qwen
1220 2 1.B Instruct; Yang et al. 2024). The model had accuracy zero in every task and setup, consistently
1221 showing responses such as ‘itian常常uzzle’ and ‘披露との披露’, and thus having 100% error
1222 rate regardless of shots. A brief examination of the finetuned model revealed consistent, albeit not
1223 necessarily accurate, responses (e.g., 61.6%, 73.5%, and 52.9% for modus ponens ID at 20 shots in
1224 PARITY, Pattern Matching, and Reversal, respectively).

1225 The above aligns with results from the literature and our work, but also opens further areas of
1226 research. Namely, it is known that priors are needed for ICL (Chang & Bisk, 2025; Hu et al., 2025).
1227 Also, within our setup, we found that an LLM’s linguistic capabilities do not impact ICL (ref. word
1228 salad and SoT), and that a sufficiently large number of exemplars suffices. A gradual comparison of
1229 the learning (pretraining) process of an LLM with respect to its ability to understand data features
1230 would provide much needed information as to which extent the natural-language data impact ICL as
1231 a learning mechanism.

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

⁵Recall from Appendix C that, from the perspective of some theories, full zero-shot is not possible.

1242 E FULL TASK DESCRIPTIONS 1243

1244 In this section we describe each task more precisely, and are summarised in Table 3. For concrete
1245 code examples, see the repository and Appendix H.
1246

1247 **PARITY** Decide if a given binary string $\{0, 1\}^k$ has an even number of zeros. Here, $\Sigma = \{0, 1\}$
1248 and the automaton decides whether to append $x \in \Sigma$ based on the transition probabilities. Emission
1249 is given by a fixed probability of $\frac{1}{10}$. Unlike most problems, PARITY’s average length per δ was
1250 relatively fixed, at 19 characters. The difference was the probability of each character occurring in
1251 sequence. PARITY is classified as a regular language and modellable with an FSA.
1252

1253 **Pattern Matching** Decide if a pattern $abcabb$ is a substring of a given string $x \subset \Sigma^*$, where
1254 $\Sigma = \{a, b, c\}$. The automaton is similar to PARITY’s, with transition probabilities fixed by state
1255 ($x \in \Sigma$) but dependent on δ . Strings with less than eight characters were rejected. In OOD
1256 scenarios, the sequence length grew to over five times the ID length. Pattern Matching is classified
1257 as a regular language and modellable with an FSA.
1258

1259 **Reversal** Given a string of the form $l\#r$, the goal is to decide if l equals the reversed r , $l = r^{-1}$.
1260 The start of r is given by the delimiter $\#$. Same as PARITY, the selection of every string depends
1261 on transition probabilities δ . In this case, the alphabet was picked to *not* be grammatical, $\Sigma = \{\text{gfx},$
1262 $\text{chtte}, \%, \text{ltintprk}, \text{``}\backslash\text{(``)}\text{``}\text{, start}\} \cup \{\#\}$ where $l, r \subset \Sigma^k \setminus \{\#\}$. In OOD scenarios, the sequence
1263 length grows to over seven times the ID length as δ increases. This variant of Reversal is a DCF
1264 language modellable with a PDA (Butoi et al., 2025).
1265

1266 **Stack** For a final string s_f , starting string s_0 , and series of operations Op on a string, decide if $s_f =$
1267 $Op(s_0)$. The operations simulate a stack (push/stop/pop) and may or may not be grammatical (e.g.,
1268 stack overflows). Same as PARITY, the selection of every string depends on transition probabilities
1269 δ . Here $\Sigma = \{0, 1\} \cup \{\text{push, pop, stop, empty}\}$, $s_f, s_0 \subset \{0, 1\}^k$, and $Op \subset \Sigma^k \setminus \{0, 1\}^k$. In OOD
1270 scenarios, the sequence length grew to almost three times the ID length as δ increased. Stack is a
1271 DCF language modellable with a PDA (Delétang et al., 2023).
1272

1273 **Hamiltonian** Given a directed graph in adjacency matrix form G , and a path p , decide if p is
1274 Hamiltonian. Under this setup, this problem is classified as a regular language and modellable with
1275 an FSA (Barrett et al., 2000). In OOD, the edges, and not the vertices, grew to up to 20% the original
1276 length. Consequently, the character description of the graph grew by up to 32%, from 695 characters
1277 to 851.
1278

1279 **Maze (Complete and Solve)** Given a maze, two segments of the solution path, and a sequence
1280 of moves, in Maze Complete the task is to determine if the moves connect both segments. The
1281 separation between segments—but not the move sequence—is never longer than three moves. Maze
1282 Solve is given the full path and a longer sequence of moves. The task is to determine whether these
1283 moves lead to the solved maze (a valid path from start to exit). Both problems are classified as
1284 regular languages and modellable with FSA (Barrett et al., 2000). In OOD scenarios, the maze size
1285 became larger, albeit the average path length remained somewhat stable.
1286

1287 **Vending Machine (Verification and Sum)** Given a list of items and costs C , a sequence of operations
1288 Op (add balance, purchase item), and initial and final balances b_0, b_f , verify if $b_f = Op(C) + b_0$
1289 (verification) or compute $b_f + Op(C) + b_0$ (sum). For the purposes of this problem, the items and
1290 costs were given in natural language: biscuits cost 20, soda costs 25, and coffee costs 15. Here
1291 $\Sigma = \{+20, +15, +25\} \cup \{\text{coffee, biscuit, soda}\}$, or, without resorting to strings, the abelian group
1292 $A_{vm} = (\{0, 20, 15, 25\}, +)$. The first three states denote additions, the named states are subtractions
1293 (item purchases), and the last state is the final balance b_f . Same as PARITY, the selection of
1294 every string $s \subset \Sigma^k$ depends on the transition probabilities δ . In Vending Machine (Verification),
1295 the learner must assert if the last part of the string, b_f , equals the sequence of operations. Hence, it
1296 is a regular language and modellable with an FSA. Since the strings are always up to length n , A_{vm}^n
1297 is a finitely-generated abelian group, and thus the decision version of Vending Machine (Sum) is a
1298 DCF language modellable with a PDA: it can be reduced to Stack with homomorphisms between the inputs
1299 and the operations (e.g., push and pop versus add and subtract, respectively), and between the inputs
1300

1296	Task	1297	Label Balance	1298	Average Lengths	1299	Class
1297	PARITY	1298	49, 50, 50, 50, 50	1299	18, 17, 17, 17, 17	1300	FSA
1298	Pattern Matching	1299	50, 50, 50, 49, 50	1300	40, 46, 62, 92, 179	1301	FSA
1299	Reversal	1300	49, 50, 50, 50, 50	1302	86, 186, 220, 312, 567	1303	PDA
1300	Stack	1301	50, 50, 50, 49, 50	1304	97, 169, 207, 235, 263	1305	PDA
1301	Hamiltonian	1302	50, 50, 50, 50, 50	1306	Graphs: 695, 862, 773, 770, 851	1307	FSA
1302		1303		1308	Vertices: 10, 12, 11, 11, 12	1309	
1303		1304		1309	Paths: 24, 27, 26, 26, 28	1310	
1304	Maze Complete	1305	50, 50, 50, 50, 50	1310	174, 173, 173, 175, 178	1311	FSA
1305	Maze Solve	1306	50, 50, 50, 50, 50	1311	429, 414, 423, 459, 498	1312	FSA
1306	Vending Machine (Verification)	1307	50, 49, 49, 49, 49	1312	105, 104, 111, 118, 128	1313	FSA
1307	Vending Machine (Sum)	1314	—	1314	—	1315	

Table 3: Label balances (as an average of positive entries) and description (string) lengths for values of $\delta \in \{0, 0.2, 0.45, 0.65, 0.85\}$. Every length depends strongly on the design of the automaton: some lengths grow much more slowly than others (e.g., PARITY versus Reversal). Other depend on the complexity of the task, as opposed to the input description length. For example, Hamiltonian maintains a relatively stable average number of vertices, but the connectedness of each graph increases with δ . Vending Machine (Sum) is not classed here because it is not a decision problem.

(A_{vm}^n ’s set and, say, $\{00, 01, 10, 11\}$). In practice, the number of possible outputs is finite (albeit very large), but it requires the learner to keep track of a state. In both OOD scenarios, the sequence length became longer, by up to 20%.

1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350 F DETAILED METHODOLOGY
1351

1352 F.1 LLM CALL PARAMETERS
1353

1354 We tested four LLMs: GPT-4 Turbo, GPT-4o, Mixtral 8x7B instruct v01, and Phi-3.5 MoE Instruct.
1355 Details for each model are in Table 4.

Model	Description
GPT-4 Turbo [×]	OpenAI model with a context window of 128k tokens. Version: GPT-4-0125.
GPT-4o [×]	OpenAI model, higher-performing when compared to GPT-4 Turbo, and with a 128k context window. Version: GPT-4-0125
Phi-3.5-MoE-Instruct	Mixture-of-experts model with a 128k context window and 6.6B active parameters.
Mixtral-8x7B instruct v01	Mixture-of-experts model with a 32k context window and 12.9B active parameters.

1365 Table 4: Models evaluated. For the models marked with \times , details regarding architecture, parameter
1366 size, or pretraining strategies have not been disclosed. All models are instruction-pretrained.
1367

1368 All models were called with temperature set to zero and maximum return tokens of 3 for all prompting
1369 strategies, except CoT (1,024) and the system prompts generated by APO (512).

1370 The APO algorithm was called with a batch size of 1024, beam width 4, and a search depth of 6.

1371 All work was done on a Standard_ND40rs_v2 instance in Azure, which is equipped with eight
1372 NVIDIA Tesla V100 GPUs with 32 Gb of memory each. Calls were made using either the Azure
1373 Open AI API (OpenAI models only) or calling directly the models on the instances. Every model
1374 was called up to five times to account for any potential parsing errors or rate limitations from APIs.
1375 The data analysis was carried out on a consumer-grade laptop.
1376

1377 F.2 BASELINES
1378

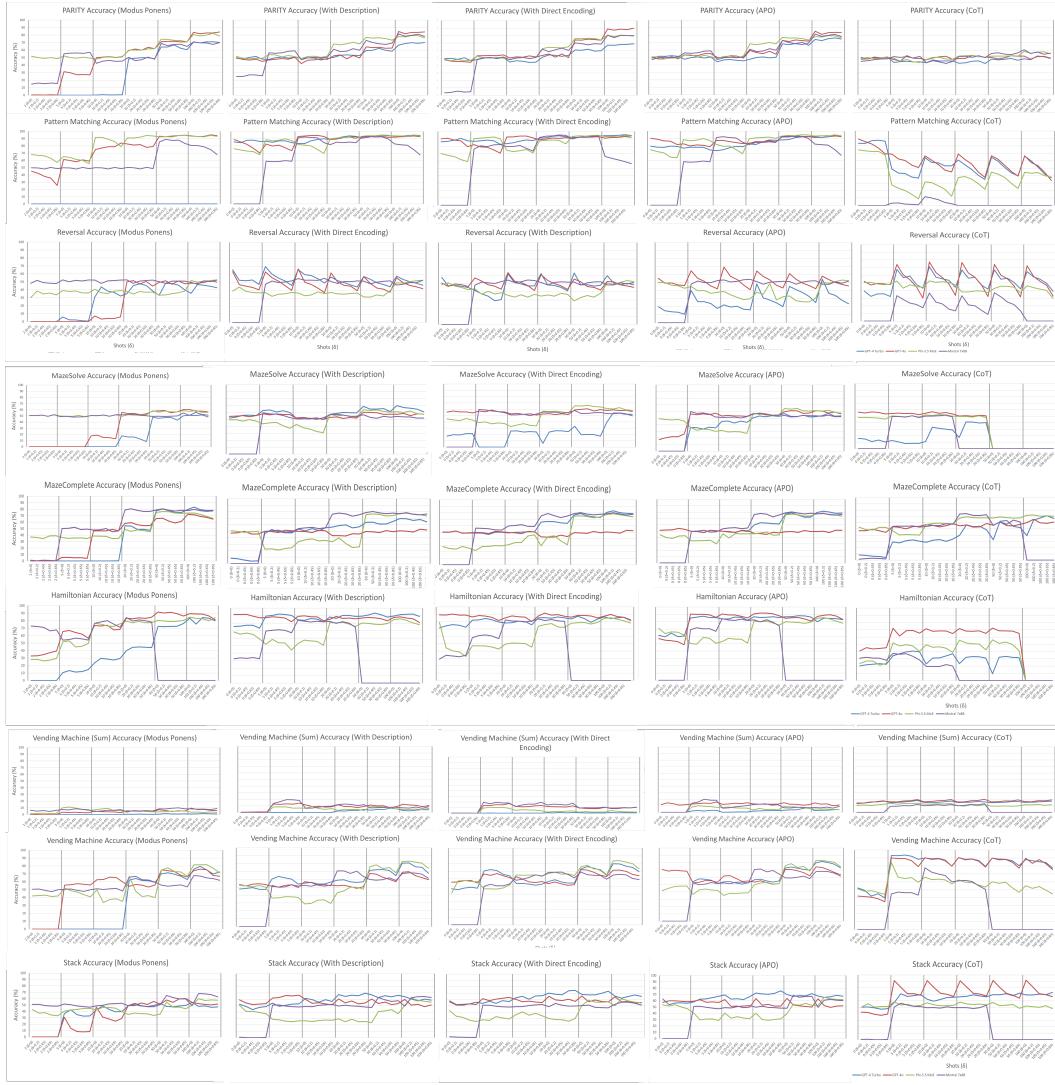
1379 The baselines were implemented in scikit learn (Pedregosa et al., 2011). For all tasks, the parameters
1380 were left as default and used as a random seed 13213. For every entry the string-based representation
1381 was mapped to integers character-by-character. That is, for, example, 'Itintprk' from Reversal was
1382 mapped to 4. Operators (e.g., '+' or 'pop') also mapped to integers. Since most models required
1383 tapes of the same length, empty cells were mapped to -100. No simulations of state (e.g., the state
1384 of the stack after a push) were included in the tape.
1385

1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

1404 **G DETAILED RESULTS**
1405

1406 **G.1 MAIN RESULTS**
1407

1408 The full results of our main results are in Figure 3. It can be observed from the prompts that LLMs
1409 generally present the same average per-task behaviour, with minor changes depending on the prompt.
1410 In Table 5 we present the results per LLM and task excluding Vending Machine (Sum).



1446 Figure 3: Complete set of performances per problem, including averages at the top. Observe how
1447 the averages do not necessarily correspond to the performance per-model per-prompt per-task.
1448 Consistent behaviours are that CoT is not robust to OOD, and that tasks on average present the same
1449 approximate behaviour regardless of prompt.
1450
1451
1452
1453
1454
1455
1456
1457

	Prompt	Turbo Slope	Acc.	GPT-4o		Phi-3.5		Mixtral		Avg. slope for acc.
Shots	Modus Ponens	14.6	31±25	12.7	47±22	5.9	56±10	5.7	53±10	9.1±2.9
	Description	3.3	61±5	1.5	63±3	6.2	55±11	9.8	51±21	5.0±1.9
	DE	11.6	34±21	13.5	47±24	12.9	43±23	11.7	47±22	5.2±1.9
	Word Salad	6.7	57±12	2.3	62±4	5.1	57±10	10.3	51±21	12.3±3.1
	APO	4.2	50±7	1.8	60±4	0.8	49±1	8.2	39±15	6.1±2.0
	CoT	2.1	21±4	3.6	26±7	-0.1	27±4	2.0	22±5	3.6±2.3
δ	Modus Ponens	-0.3	31	-0.6	47	-0.6	56	-0.3	53	-0.4±0.4
	Description	-0.5	61	-1.1	63±1	-0.4	55	-0.2	51	-0.6±0.4
	DE	-0.6	34	-0.1	47	-0.3	43	-0.3	47	-0.5±0.6
	Word Salad	-0.5	57	-1.1	62±1	-0.6	57±1	-0.1	51	-0.3±0.3
	APO	-0.8	50±1	-3.1	60±4	-1.5	49±2	-1.0	39±1	-0.6±0.7
	CoT	0.0	21±1	-0.7	26±1	-0.2	27	0.3	22	-1.5±1.9

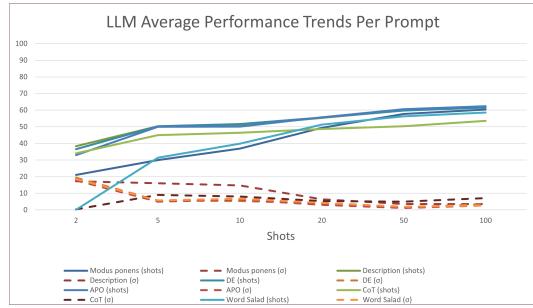
Table 5: Slopes and accuracies for every LLM, averaged over prompts and tasks, excluding Vending Machine (Sum). On the rightmost column is the average slope for all LLMs. Rows in bold (word salad and SoT) are not factored in our main results, but discussed in Section 6.1. The numbers changed when compared to Table 2, but not substantially, thus leaving our results unchanged.

1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512
1513

1514 G.2 FINE-GRAINED BEHAVIOUR 1515

1516 As mentioned in the main section, when breaking down the results per-prompt and per-task, the
1517 LLMs had (1) similar behaviours over the tasks, but (2) inconsistency over the task type.
1518



1519 Figure 4: Averaged over all tasks and models,
1520 all prompts have a positive slope (5.2 ± 1.6) over
1521 shots, and a narrowing gap in their σ (-2.6 ± 0.5).
1522

1523 models start with a large gap on every task (namely, word salad and modus ponens), which narrows as
1524 shots increase. It is worth noting how CoT has a slight improvement, as noted earlier in its slope, but
1525 it remains relatively even when compared to higher-performing prompts (e.g., APO, DE). Indeed,
1526 the dotted lines in the image to the left, denoting the σ over the slopes, indicates that most prompts
1527 progressively narrowed their differences in performance, although, again, CoT remained relatively
1528 steady. At a minor extent, this gap on average also narrowed in aggregates over δ : -0.2 ± 0.2 .
1529

1530 Inconsistency over the task was visible after observing that **related tasks had gaps in peak performances**: 31% (Pattern Matching versus Maze (Solve)), and 12% (Reversal and Stack; Table 1). This
1531 is particularly important given that an all-purpose solver (e.g., a universal FSA) should be able to,
1532 theoretically, have perfect performance on all tasks of the same class (r. regular languages). While it
1533 is a stretch to expect that from an LLM, it is worth pointing out that their general-purpose general-
1534 isability is hence (naturally) limited. It then follows that ICL as a learning process depends strongly
1535 on the features observed in-distribution. We cover this further in Section 7. The remaining ablation
1536 studies focused on evaluating this hypothesis.
1537

1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1516 Behavioural similarity was given by the LLMs
1517 having low σ but similar accuracy in a task-by-
1518 task and prompt-by-prompt basis: **all prompts
1519 had a positive slope and low relative difference among them** (Figure 4, left). Indeed,
1520 the per-prompt shot slopes, averaged per LLM,
1521 were 8.3 ± 3.9 (modus ponens), 4.4 ± 2.2 (de-
1522 scription), 4.5 ± 2.4 (DE), 5.3 ± 2.6 (APO), and
1523 3.3 ± 2.4 (CoT) (Table 2). The average of the
1524 slopes over shots is 5.2 ± 1.6 . We can hence ob-
1525 serve that there was low variation (σ) between the
1526 type of LLM and the prompt over all tasks,
1527 and that the overall trend for all models, tasks,
1528 and shots is positive. An OLS fit over the per-
1529 shot σ indicated that **the model gap, as the
1530 shots increased, narrowed**: -2.6 ± 0.5 . This is
1531 visible in the image to the left, where the mod-
1532 els start with a large gap on every task (namely, word salad and modus ponens), which narrows as
1533 shots increase. It is worth noting how CoT has a slight improvement, as noted earlier in its slope, but
1534 it remains relatively even when compared to higher-performing prompts (e.g., APO, DE). Indeed,
1535 the dotted lines in the image to the left, denoting the σ over the slopes, indicates that most prompts
1536 progressively narrowed their differences in performance, although, again, CoT remained relatively
1537 steady. At a minor extent, this gap on average also narrowed in aggregates over δ : -0.2 ± 0.2 .
1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566 **G.3 ABLATION: IMPACT OF LEXICAL FEATURES**

1567
1568 Word salad prompts started with low, and sometimes zero, accuracies. In the limit, however, all
1569 prompts matched the average best-of non-salad performances to up to a σ , with the exception of Re-
1570 versal and Vending Machine (Sum). In the case of PARITY, Pattern Matching, Maze (Complete),
1571 and Vending Machine (Verification), the match was within $\sigma/2$ (Table 6). This improvement was
1572 fast, with slopes of 9.8, 12.1, 11.6, and 9.8 (Turbo, GPT-4o, Phi-3.5, and Mixtral, respectively),
1573 for an average of 11 ± 4.6 . Compare with the slopes for description (4.4 ± 2.2), DE (4.5 ± 2.4), and
1574 modus ponens (8.3 ± 3.9). On average, word salad prompts were the most robust to δ , with val-
1575 ues of -0.2 ± 0.3 (versus -0.5 ± 0.4 , -0.5 ± 0.6 , and -0.4 ± 0.4 , respectively), albeit all were within the
1576 baseline σ . See Figure 5 for a side-by-side depiction of the prompts with respect to their non-salad
1577 equivalents (description and CoT).

Problem	Highest	Lowest	Highest (Word Salad)		Shots
PARITY	80 ± 3	100-APO	16 ± 20	2-m.p.	80 ± 5
Pattern Matching	94 ± 1	50-DE	24 ± 20	5-CoT	92 ± 3
Reversal	$61 \pm 11^*$	100-CoT	20 ± 21	2-m.p.	51 ± 1
Stack	$73 \pm 14^*$	50-CoT	20 ± 21	2-m.p.	56 ± 13
Vending Machine (Ver.)	81 ± 12	10-CoT	22 ± 22	2-m.p.	78 ± 6
Maze (Complete)	77 ± 5	100-m.p.	9 ± 16	2-m.p.	74 ± 6
Maze (Solve)	63 ± 5	50-desc.	17 ± 20	0-APO	54 ± 6
Hamiltonian	$89 \pm 2^*$	100-desc	29 ± 8	0-CoT	68 ± 20
Vending Machine (Sum)	16 ± 1	5-CoT	0	0-DE [†]	8 ± 2

1587
1588 Table 6: Highest and lowest accuracies, averaged by model. An asterisk denotes an average over
1589 fewer models (always excluding Mixtral); and [†] means that there were multiple ties. Highlighted
1590 in grey are the prompts where word salad match within a σ the average best-of accuracy from the
1591 non-word salad prompts, and in blue these within $\sigma/2$. In most cases, the match occurred at 100 and
1592 50-shot, except in Hamiltonian, where the highest best-of was attained at 20 shot.

1593 Unlike word salad, SoT had a major impact on accuracy, and had the lowest average performance
1594 over shots (23 ± 4) in any prompt. This was due to SoT’s high parse error rate over almost all
1595 shots. In contrast, description had near-zero error rates, and modus ponens and word salad quickly
1596 converged to zero. Overall average shot and δ slopes in SoT hovered around zero (1.6 ± 2.2 and
1597 0.0 ± 0.6 , respectively). This does not imply the LLMs were unable to solve all problems under SoT.
1598 Some LLMs in SoT obtained above-average peak accuracies in certain tasks: GPT-4o in PARITY
1599 (63% at 100 shots), and Turbo in Stack (76% at 50 shots). However, high-performing problems like
1600 Hamiltonian and Pattern Matching had $14 \pm 12\%$ and $2 \pm 3\%$ average accuracies, respectively.

1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633

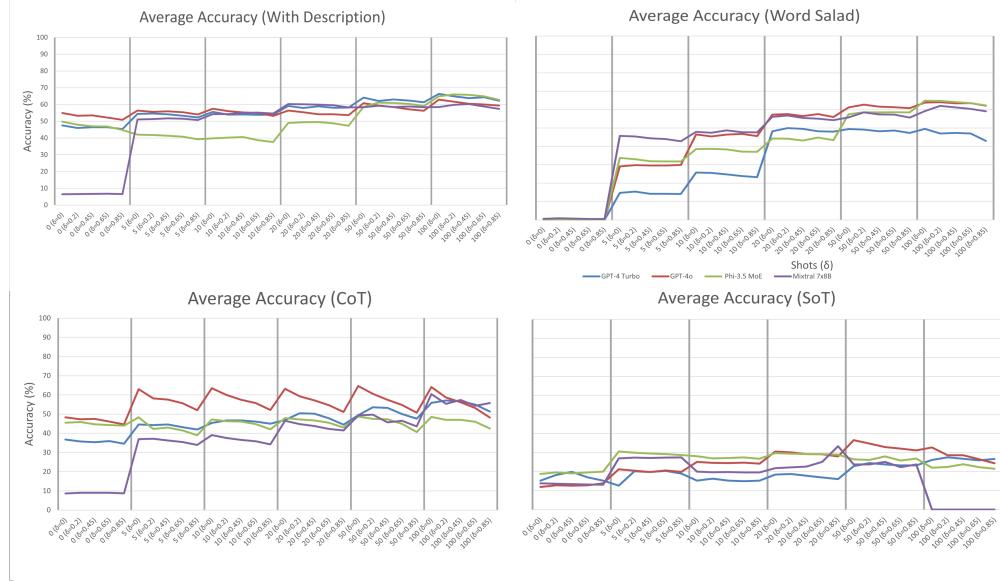


Figure 5: Average over all LLMs and tasks for the non-salad (left) and salad (right) prompts. Description-based prompts rarely performed poorly at zero-shot for all LLMs but Mixtral, while word salad versions required five shots (Mixtral), ten (GPT-4o), or more. However, word salad prompts eventually reached equivalence with their baselines (Table 6). In high-accuracy tasks (Hamiltonian, Maze (Complete) and PARITY) the prompts matched DE and modus ponens at between 10 and 100 exemplars. On the other hand, CoT and SoT had different behaviours: CoT had an (average) modestly increasing trend which was not reproduced in SoT. However, this is an aggregate: tasks such as Reversal had the same brittleness to OOD than their CoT counterparts; and tasks such as PARITY even showed above-random best-of accuracies in some tasks (Table 2).

1674 **G.4 ABLATION: POSITIONALITY OF EXEMPLARS**
1675

1676 In all our experiments, all exemplars were equiprobable and fixed throughout the experiment (*un-*
1677 *shuffled*). In this experiment we randomised the position of the same exemplars within the prompt
1678 (all prompts and LLMs; *shuffled*), and *fully randomised* the exemplars per call by drawing them
1679 i.i.d. from the training set.

1680 We observed a small variation on accuracy when the same exemplars were shuffled versus unshuffled
1681 (Table 7). The latter had lower performances, and larger slopes per-LLM, these were 5.6 versus 5.8
1682 (Turbo), 5.2 versus 7.3 (Mixtral), 4.2 versus 4.2 (Phi-3.5), and 3.1 versus 3.5 (GPT-4o) (shuffled and
1683 unshuffled slopes). However, *per-prompt*, these slopes were higher. The best average accuracies in
1684 the shuffled setting were always with the same best-performing prompt from the unshuffled case, and
1685 within the reported σ (e.g., 64±12% shuffled versus 61±11% unshuffled for Reversal at 100-CoT).

1686 When fully randomising the examples, we only measured and compared GPT-4o (Table 8). Similar
1687 to the previous experiment, we observed variations on average and highest accuracies (e.g., 94%,
1688 92%, and 93% highest for fully random, shuffled, and unshuffled, respectively, in Hamiltonian with
1689 description) although inconsistent (91%, 92%, and 71% in Stack CoT; 77%, 90%, and 90% in
1690 PARITY APO and DE). On average, however, fully randomising the labels yielded lower average
1691 accuracy (43%) versus shuffled and unshuffled (48% for both), and lower per-prompt accuracy.

	Prompt	Turbo	GPT-4o	Phi-3.5	Mixtral	Avg. slope
Shots	Modus Ponens	12.8	34±22	10.2	44±18	5.6
	Description	3.6	57±6	1.4	56±3	4.6
	DE	3.6	55±6	1.0	59±2	5.8
	Word Salad	8.8	28±16	12.1	43±22	11.4
	APO	4.3	54±8	2.0	57±4	4.5
	CoT	3.7	49±7	1.3	56±4	0.6
	SoT	1.5	20±4	2.9	25±6	0.3
OOD	Modus Ponens	-0.9	34±1	-0.5	44±1	-0.4
	Description	-0.3	57±1	-0.8	56±1	-0.6
	DE	-0.4	55±1	-1.0	59±2	-0.4
	Word Salad	-0.5	28±1	-0.2	43	0.0
	APO	-0.2	54	-1.0	57±1	-0.6
	CoT	-1.1	49±2	-2.7	56±4	-1.1
	SoT	-0.2	20±1	-0.6	25±1	0.0

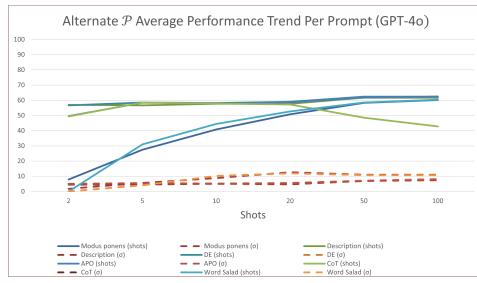
1700 Table 7: Slopes and average accuracies for shots and δ , per prompt, with shuffled exemplars. Greyed
1701 out are the accuracies where the slope or accuracy was higher than the non-shuffled version from
1702 Table 2, but the σ was higher. In blue are the setups with higher accuracy *and* lower σ . *Top to bottom*:
1703 average accuracies per-prompt were 44±14%, 53±7%, 53±8%, 39±19%, 54±6%, 47±6%, and
1704 24±3%.

1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

1728 **G.5 ABLATION: ALTERNATE DISTRIBUTIONS**
1729

1730 Due to cost, this section is limited to GPT-4o. In this experiment we altered \mathcal{P} to show different
1731 distributions to the model. These alterations were:

1732
1733 1. Randomised exemplars on every call. This is the same setup from Appendix G.4.
1734 2. Fully random exemplars drawn i.i.d. from the training set on every call. This is also the
1735 setup from Appendix G.4.
1736 3. An imbalanced distribution of labels, showing *only* positive labels as exemplars.
1737 4. A corpus with uniformly at random labels (both test and train) acting as a baseline.
1738

1739 The results are in Table 8. With the exception of the random baseline, **all setups showed the**
1740 **ability to learn the underlying distributions**: shuffled exemplars and the imbalanced scenario
1741 often matched or outperformed the baseline average accuracy over most tasks and prompts, with
1742 the latter attaining higher average accuracies and larger δ and shot slopes. However, the σ in the
1743 per-prompt accuracies were higher. The baseline had an average accuracy of $41\pm 9\%$: most prompts
1744 stayed within the random-choice $50\pm 5\%$ accuracy, with the exception of SoT (24%). Remark that
1745 this is expected, since every datapoint has the same probability of having any labels, and this is
1746 uncorrelated to the features themselves—i.e., it is unlearnable.
1747

1757 Figure 6: Average accuracies for alternate \mathcal{P} .
1758 Most prompts had positive slopes, with the exception
1759 of CoT, which peaked fast and then started
1760 decreasing.

1761 As in all previous experiments, in the limit we
1762 observed increasing trends in the shot-slopes
1763 and δ -slopes across setups and prompts, with
1764 average slopes of 4.3 ± 4.2 and -0.8 ± 0.6 (Figure
1765 6, left). These were more noticeable in the
1766 shuffled setting, where all prompts but DE had
1767 improvements. However, in this case, the
1768 average σ increased for both slopes: 1.0 ± 0.7 and
1769 -0.3 ± 0.2 , respectively. This was observed on
1770 every prompt and every setup, as most setups
1771 learnt the problem. Of note is also CoT, which
1772 showed decreasing shot slopes across all
1773 setups: -1.1 for imbalanced labels, -1.1 for shuf-
1774 fled, and -2.5 for both fully random exemplars
1775 and random labels.

	Prompt	Imb. labels	Fully exempl.	rand.	Rand. labels	Shuffled		Avg. slope		
Shots	Modus Ponens	12.6	48 \pm 22	8.6	29 \pm 14	7.7	38 \pm 14	12.7	47 \pm 22	8.3 \pm 3.9
	Description	1.9	63 \pm 3	1.1	59 \pm 3	0.1	49	1.4	62 \pm 2	4.4 \pm 2.2
	DE	2.1	64 \pm 3	0.9	60 \pm 2	0.2	49	1.5	63 \pm 3	4.5 \pm 2.4
	Word Salad	13.4	49 \pm 25	9.1	30 \pm 16	8.9	37 \pm 17	13.5	47 \pm 24	11 \pm 4.6
	APO	2.3	62 \pm 4	3.3	58 \pm 6	0.8	49 \pm 2	2.3	62 \pm 4	5.4 \pm 2.6
	CoT	-1.1	56 \pm 6	-2.5	54 \pm 7	-2.5	41 \pm 4	-1.1	56 \pm 6	3.3 \pm 2.4
	SoT	2.9	26 \pm 6	2.2	25 \pm 5	2.2	24 \pm 5	5.1	24 \pm 7	1.6 \pm 2.2
δ	Modus Ponens	-0.5	48	-0.6	29	-0.4	38	-0.6	47	-0.4 \pm 0.4
	Description	-1.0	63 \pm 1	-0.7	59	-0.2	49	-0.9	62 \pm 1	-0.5 \pm 0.5
	DE	-1.1	64 \pm 1	-0.7	60 \pm 1	-0.2	49	-1.1	63 \pm 1	-0.5 \pm 0.6
	Word Salad	-0.0	49	-0.3	30	-0.0	37	-0.1	47	-0.2 \pm 0.3
	APO	-1.2	62 \pm 1	-0.7	58 \pm 1	-0.2	49	-1.1	62 \pm 1	-0.5 \pm 0.7
	CoT	-3.0	56 \pm 4	-2.6	54 \pm 3	-1.3	41 \pm 1	-2.9	56 \pm 4	-1.4 \pm 1.9
	SoT	-0.7	26 \pm 1	-0.7	25	-0.7	24 \pm 1	-0.4	24	0.0 \pm 0.6

1776 Table 8: Slopes and average accuracies for shots and δ , per prompt, on our evaluation of alterations
1777 of \mathcal{P} . Greyed out are the accuracies where the slope or accuracy was higher than *or equal to* the
1778 non-shuffled version of GPT-4o’s predictions; and in blue these where the σ was also strictly larger
1779 than GPT-4o’s equivalent (Table 2; but excluding Vending Machine (Sum)). *Top to bottom*: average
1780 accuracies per-prompt were $37\pm 17\%$, $53\pm 2\%$, $54\pm 2\%$, $37\pm 19\%$, $53\pm 4\%$, $52\pm 3\%$, and $25\pm 6\%$.
1781

1782 G.6 ABLATION: COMPLIANCE VERSUS LEARNING

1783

1784

1785 **Prompt** | MP Desc DE APO CoT

1786 Compliance | 43 ± 10 53 ± 7 53 ± 6 52 ± 6 46 ± 8

1787 Learning | 53 ± 6 56 ± 3 58 ± 4 57 ± 3 56 ± 6

1788

1789 Table 9: Average accuracy across all tasks and

1790 LLMs aggregated by prompt: it is slightly above

1791 average when not accounting for parsing errors.

1792 Large drops occur otherwise, with increases (up

1793 to double) in σ . This suggests that LLM compa-

1794 risons depend strongly on measurement.

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

comes harder for an LLM to have accuracies below 45% (Table 9, left), and average shot and δ slopes are smoothed out (4.7 ± 3.1 and -0.4 ± 0.2 average, respectively) when compared to compliance and learning ($r. 5.4 \pm 3.1, -0.5 \pm 0.3$), thus making—for example—CoT’s sensitivity to OOD hard to spot (Figure 7). In turn, this suggests that works should disclose the parsing strategies to avoid misleading results.



Figure 7: Comparison of select prompts when measuring reasoning as compliance and learning (left, labelled as C&L and counting parsing errors as mislabels), and only learning (right; not factoring in parsing errors) for CoT (top) and modus ponens (bottom). In learning, CoT’s sensitivity to OOD is hard to spot as the performance curves are smoothed out. In comparison, when evaluating compliance and learning, the evaluation has a smoother performance floor and accounts for the full dataset. Model convergence was still noticeable, as evidenced by the modus ponens plots.

The distinction between compliance with the prompt (returning a parseable output) versus learning the task (returning a correct label) requires further scrutiny.

This is because, in the extreme case, a dataset could be, for example, 99.9% parsing errors and one lucky guess, thus leading to inaccurate assessments of performance. Hence, we separated parsing errors from mislabelled instances, and re-calculated the averages and slopes. **Factoring out parsing errors increased the perceived performance of an LLM**, usually understating or overstating magnitudes. This is because it be-

1836

H PROMPTS

1837

1838

We show sample prompts for various problems and prompting strategies. For the full prompts, refer to the repository. In Prompt 1 we show the modus ponens and description prompts for PARITY; and in Prompt 2 a sample CoT for Pattern Matching. We also show in Prompts 3 and 4 the CoT and SoT versions of Maze Complete, and in Prompt 5 the word salad version of Vending Machine (Solve).

1842

1843

1844

This task is called PARITY. The strings in PARITY are generated from a probabilistic automaton. Your job is to learn what is the likelihood of a string to be labeled 0 or 1, and output the correct label.

1845

In the limit where the automaton is deterministic, if the number of zeros in the input string is even, the label is always 1. Else, it is 0.

1846

Given the data below, determine what is the most likely label for the given string and output ONLY the label. Data:

1847

Every zumpus is a shumpus. Polly is a lorpus. Everything that is amenable, kind, aggressive, and a grimpus is a brimpus. Each impus is a wumpus and a tumpus. Wumpuses are impuses. Everything that is floral and a shumpus is a tumpus. Yumpuses are impuses, lorpuces, and sterpuces. Max is dull. Wren is a tumpus. Everything that is transparent or a rompus is a lempus. Alex is an impus or a vumpus. Sally is temperate. Each yumpus is a zumpus. Everything that is fruity and a numpus is a grimpus. Every zumpus is not discordant. Everything that is windy or a gorpus is a vumpus. Every yumpus is a gorpus. Everything that is opaque, transparent, or a jompus is a lempus. Each rompus is a lempus. Stella is large and small and a grimpus and a gorpus. Max is a sterpus or a jompus or a gorpus. Sam is a wumpus or a dumpus or a tumpus. Everything that is bitter and a tumpus is a rompus. Everything that is angry and a lempus is a sterpus. Sally is a gorpus, a shumpus, a dumpus, or a tumpus. Everything that is snowy, sunny, and a yumpus is a lorpus. Everything that is transparent and a vumpus is a brimpus. Everything that is small and a vumpus is a rompus. Everything that is a brimpus, a shumpus, or a wumpus is a tumpus.

1848

0000110010010010000000:

1849

0

1850

00100100001001110010:

1851

0

1852

000010010000110010:

1853

0

1854

0000110010010010000000:

1855

1856

Prompt 1: Prompts for description (red), word salad (blue), and modus ponens (grey) for PARITY. In the implementation these are the standard ChatML-formatted prompts, so the coloured lines are part of the system prompt, while the grey are exemplars alternating between the user input (the binary string) and the assistant's response (the single bit). In zero-shot, the prompt includes a specification of the output format ('Give your answer as a single integer, and your reasoning in a new line. For example:'). The reasoning is cut off and does not affect the experiments. The list of words from word salad comes from the ontology by Saparov & He (2023).

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890
1891
1892
1893
1894
1895
1896
1897 This is a pattern matching task. The strings in this task are generated from a probabilistic automaton.
1898 Each string is labelled 0 or 1 depending on whether the pattern “abcabb” is (1) or is not (0) in the
1899 string.
1900 Your job is to learn what is the likelihood of a string to be labelled 0 or 1, and output the correct
1901 label.
1902 In the limit where the automaton is deterministic, if the pattern is present in the string, the label is
1903 always 1. Else, it is 0.
1904 Given the data below, determine what is the most likely label for the given string and output ONLY
1905 the label.
1906 Data:
1907 abaababbbbbbbaaaaaaaaaacabaaabcaaaaacccbbbaababbbbbbcccccccccbaaaacccbaccc
1908 ccccbccbaaaaccccccacabaaaacabaaaacccbbcccccacabbbbaaaaaaaaaaaaaacccbbbaaaaaaa
1909 aabbbaabbcccccaaccaacabbbbaabcbcccccaacabbbcccccacaaaacccbbcccccacbbacaab
1910 aaaaaacabbaaaaaaaaaaac
1911 Let's think and solve this step-by-step. We read the string character-by-character and keep a tally:
1912 We read “a”. It is a match. Our tally is: a. Now we move to the next character.
1913 We read “b”. It is a match. Our tally is: ab. Now we move to the next character.
1914 We read “a”. It is not a match. We clear our tally. Now we move to the next character.
1915 We read “a”. It is a match. Our tally is: a. Now we move to the next character.
1916 We read “b”. It is a match. Our tally is: ab. Now we move to the next character.
1917 We read “a”. It is not a match. We clear our tally. Now we move to the next character.
1918 We read “b”. It is not a match. Now we move to the next character.
1919 ...
1920 We read “a”. It is a match. Our tally is: a. Now we move to the next character.
1921 We read “a”. It is not a match. We clear our tally. Now we move to the next character.
1922 We read “a”. It is a match. Our tally is: a. Now we move to the next character.
1923 We read “a”. It is not a match. We clear our tally. Now we move to the next character.
1924 We read “a”. It is a match. Our tally is: a. Now we move to the next character.
1925 We read “a”. It is not a match. We clear our tally. Now we move to the next character.
1926 We read “c”. It is not a match. Now we move to the next character.
1927 We have reached the end of the string. The pattern “abcabb” is not in the string.
1928 So the answer is 0
1929
1930 abaababbbbbbbaaaaaaaaaacabaaabcaaaaacccbbbaababbbbbbcccccccccbaaaacccbaccc
1931 ccccbccbaaaaccccccacabaaaacabaaaacccbbcccccacabbbbaaaaaaaaaaaaaacccbbbaaaaaaa
1932 aabbbaabbcccccaaccaacabbbbaabcbcccccaacabbbcccccacaaaacccbbcccccacbbacaab
1933 aaaaaacabbaaaaaaaaaaac
1934
1935 Prompt 2: Prompt for one-shot Pattern Matching CoT. As before, the exemplar (grey) contains both
1936 the sample pattern and a procedurally-generated CoT response keeping a tally (stack). During SoT,
1937 both the words in the system prompt (red) and the exemplars are replaced by random words. The
1938 only things left are the pattern, labels, and the final output format.
1939
1940
1941
1942
1943

```
1944
1945
1946
1947
1948 You are helping me complete a maze. You will be given a maze almost solved, and sequence
1949 of moves to finish solving it.
1950 Your job is to determine whether the moves are correct and will lead to solving the maze solved.
1951 You must always output 0 (incorrect) or 1 (correct).
1952 The path you must complete is denoted by uninterrupted "+", and your completion starts at "?".
1953 Walls are denoted by "#", and the start and end are "S" and "E", respectively.
1954 The first move you must verify is the one connecting the path to "?".
1955 Given the data below, determine what is the most likely label for the given maze and moves;
1956 and output ONLY the label.
1957 Data:
1958 Solved maze:
1959 #S#####
1960 #+++# #
1961 # #++ ###
1962 # #++++# #
1963 # #?++# #
1964 # # ### #
1965 # # ++++E
1966 #####
1967 Missing moves:
1968 down,down,right:
1969 Let's think and solve this step-by-step.
1970 We begin at line 0. This line does not contain "?".
1971 We move on then to line 1.
1972 This line does not contain "?".
1973 We move on then to line 2.
1974 This line does not contain "?".
1975 We move on then to line 3.
1976 This line does not contain "?".
1977 We move on then to line 4.
1978 This line does not contain "?".
1979 We move on then to line 5.
1980 This line contains "?".
1981 The "?" character is at position 3 in the line. We will now perform a search on the neighbours
1982 to find the path.
1983 This has neighbours: ['down'] at [(6, 3)].
1984 We select the neighbour at (6, 3) ("down") and add it to our buffer. Our buffer is: ['down'].
1985 This has neighbours: ['down'] at [(7, 3)].
1986 We select the neighbour at (7, 3) ("down") and add it to our buffer. Our buffer is: ['down',
1987 'down'].
1988 This one has the following available neighbours connecting to the path: ['right'] at [(7, 4)].
1989 This has a "+" neighbour at (7, 4) ("right"), so it connects to the path.
1990 We add it to our buffer. Our buffer is now ['down', 'down', 'right'].
1991 We are done!
1992 Our final set of positions is down,down,right and the solution says down,down,right.
1993 So the answer is 1
1994
1995 Prompt 3: Prompt for the CoT version (one-shot, user input omitted) of Maze Complete. In red, the
1996 system prompt. In grey, a single exemplar.
1997
```

```

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009 This is a string detection task. The strings in this task are generated from a probabilistic au-
2010 tomaton, described in the code below.
2011 Each input is of the form LEFT#RIGHT. Each string is labelled 0 or 1 depending on whether
2012 the RIGHT pattern is (1) or is not (0) a reversal of LEFT.
2013 Your job is to learn what is the likelihood of a string to be labelled 0 or 1, and output the correct
2014 label.
2015 Here's the code:
2016 ALPHABET = ["gfx", "chtte", "%", "ltintprk", "\_(\')\/-"]
2017 MIN_LEN = 5
2018
2019 def reversal_tape(P):
2020     # n + 1 states: ALPHABET + "final"
2021     tape = []
2022     end_state = "stop"
2023     current_state = "start"
2024     states = [a for a in ALPHABET] + [end_state]
2025     while True:
2026         next_state = random.choices(states, weights=P[current_state])[0]
2027         if next_state == end_state:
2028             break
2029         else:
2030             tape.append(next_state)
2031             current_state = next_state
2032
2033     return tape
2034
2035 Given the data below, determine what is the most likely label for the given string and output
2036 ONLY the label.
2037 Data:
2038
2039
2040 chttechttegfxltintprk%%%%%%\_(\')\/-chtteltintprkltintprk%%%#%%ltintprkltintprkchtte
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

```

2052

2053 You are a vending machine. You are given a sequence of additions of balance (+10, +5, etc) or
2054 a selection (soda, biscuit, or coffee).

2055 Your job is to output the remaining balance given the sequence.

2056 Each soda is worth 25. Each biscuit is 20. Each coffee is 15. When someone selects a soda,
2057 biscuit, or coffee, the value of the item is subtracted from the balance.

2058 Given the data below, determine what is the most likely balance for the given string and output
2059 ONLY the balance.

2060 Data:
2061 loud orange shy, rompuses amenable rompuses lorpushes Max Vumpuses or Grimpuses feisty
2062 muffled, opaque, Yumpuses rompus, gorpus angry, jompuses bitter sterpus vumpuses, shumpus
2063 luminous temperate luminous, Fae windy bitter, brown sweet, dumpuses, grimpus angry hot
2064 moderate grimpus, Rompushes lempus

2065 +10,+10,biscuit,+10,+5,coffee,+10,+10,biscuit,+10,+10,biscuit,+5,+10,+10,soda,+10:
2066 Let's think and solve this step-by-step. We start with a balance of 0.
2067 impus, gorpuses “+10”, Rompushes brimpus, aggressive 10 impuses Lempuses impus rainy
2068 grimpuses, sunny zumpus, shumpus 10.
2069 spicy, bitter “+10”, lorpushes floral, gorpus 10 is tumpus wumpuses numpuses slow overcast,
2070 Sterpushes vumpuses 20.
2071 aggressive impuses “biscuit”, Each Sterpushes vumpus biscuit liquid mean 20 lempus fast dum-
2072 pus, fruity aggressive red, 0.
2073 sterpus, metallic “+10”, numpus, wumpuses, brimpuses, 10 windy cold zumpuses sterpus zum-
2074 puses vumpuses, happy earthy, 10.
2075 fruity tumpuses, “+5”, sterpushes, lorpushes, jompuses, 5 brown, or hot, grimpuses Gorpuses
2076 wumpus Wumpuses happy 15.
2077 yumpuses, an “coffee”, Sam windy vumpuses, coffee tumpuses dull 15 dumpuses sweet feisty
2078 Polly brown, shumpuses, 0.
2079 ...
2080 sweet, luminous “biscuit”, large moderate brimpus, biscuit dumpuses, bitter, 20 brown zum-
2081 puses snowy gorpus Everything numpuses, 0.
2082 brimpuses discordant, “+5”, rompus, melodic, jompuses, 5 wumpus sweet, Zumpuses zumpus,
2083 jompus, opaque lorpus Fae 5.
2084 bitter brown, “+10”, bright, tumpus sour, 10 yumpus, gorpus Lorpuses discordant impuses
2085 lempuses wumpus slow, 15.
2086 gorpuses shy, “+10”, opaque fruity mean 10 Stella Rompushes windy wumpus rainy, happy,
2087 jompuses dumpus, 25.
2088 spicy Lempuses “soda”, Brimpuses bitter metallic, soda brown, tumpus, 25 snowy, lorpus kind,
2089 temperate small moderate 0.
2090 nervous, vumpuses “+10”, liquid moderate impus, 10 angry snowy bright gorpuses impuses,
2091 brown, Lorpuses brown 10.
2092 We read “+10”, so we add 10 to our current balance and we now have 10.
2093 We read “+10”, so we add 10 to our current balance and we now have 20.
2094 We read “biscuit”, so we return a biscuit and subtract 20 from our balance and now we have 0.
2095 We read “+10”, so we add 10 to our current balance and we now have 10.
2096 We read “+5”, so we add 5 to our current balance and we now have 15.
2097 We read “coffee”, so we return a coffee and subtract 15 from our balance and now we have 0.
2098 ...
2099 We read “biscuit”, so we return a biscuit and subtract 20 from our balance and now we have 0.
2100 We read “+5”, so we add 5 to our current balance and we now have 5.
2101 We read “+10”, so we add 10 to our current balance and we now have 15.
2102 We read “+10”, so we add 10 to our current balance and we now have 25.
2103 We read “+10”, so we add 10 to our current balance and we now have 10.
2104 Our final balance is 10. The answer is then 10

2105

Prompt 5: Prompt with one exemplar for Vending Machine (Sum). In blue, the SoT version of this
2103 prompt; and in red, the CoT version. For brevity, we omit lines for both CoT/SoT outputs. In grey
2104 are the lines shared by both prompts: the first line is the user input, and the other two are shared
2105 boilerplate for the CoT/SoT prompts for parsing. Observe how the relevant quantities do not change.