IS IN-CONTEXT LEARNING LEARNING?

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning (ICL) allows some autoregressive models to solve tasks via
next-token prediction and without needing further training. This has led to claims
about these model’s ability to solve (learn) unseen tasks with only a few shots
(exemplars) in the prompt. However, deduction does not always imply learning,
as ICL does not explicitly encode a given observation. Instead, the models rely
on their prior knowledge and the exemplars given, if any. We argue that, math-
ematically, ICL fits the definition of learning; however, its full characterisation
requires empirical work. We then carry out a large-scale analysis of ICL ablating
out or accounting for memorisation, pretraining, distributional shifts, and prompt-
ing style and phrasing. We find that, empirically, ICL is limited in its ability
to learn and generalise to unseen tasks. Namely, in the limit where exemplars
become more numerous, accuracy is insensitive to exemplar distribution, model,
prompt style, and the input’s linguistic features. Instead, it deduces patterns from
regularities in the prompt, which leads to distributional sensitivity, especially in
prompting styles such as chain-of-thought. Given the varied accuracies and on
formally similar tasks, we conclude that autoregression’s ad-hoc encoding is not a
robust mechanism for learning, and suggests limited all-purpose generalisability.

1 INTRODUCTION

In learning theory, learning is tantamount to generalisation. Learning how to solve a task means that,
after seeing examples of a task drawn with a distribution P, a learner will have a bounded probability
of error on classifying new inputs from some Q # P (Valiant, [1984). In most traditional learning
paradigms, a learner observes inputs from P, and then encodes them within its own knowledge (e.g.,
updating weights). Then it uses this knowledge to generalise to new examples. Autoregressive large
language models (LLMs do not explicitly do that. Instead, they perform in-context learning (ICL),
where they ‘solve’ (produce relevant outputs for) a task specified in natural language via next-token
prediction (Brown et al.| [2020). An LLM observes, but does not encode, the full training set through
the prompt. Instead, it updates its beliefs ad hoc, where the beliefs are a combination of the input
(drawn from P) plus its own intrinsic knowledge (frozen weights). That is, it modifies its states
at run-time to—ideally—generalise to new observations for any Q. Reliance on intrinsic knowledge
implies that the LLM is also expected to generalise to any task (unseen P).

We argue, however, that knowing is not always the same as learning. Claims on an LLM’s in-task
generalisation (consistent performance w.r.t. any P within the task) and cross-task generalisation
(consistent performance w.r.t any task) have divided the field. Theoretical characterisations on their
learning power are usually limited, and hence Borenstein et al.| (2024)) argued that empirical explo-
rations could help understand what can transformer-based models learn versus what they actually
learn—a central motivation of our work. However, criticisms to empirical research on LLMs note that
prompt-and-model dependence makes it hard to reproduce (Li et al.,[2025; [De Wynter, 2025} [Sclar
et al.,|2024)), and that the terminology, methods, and results themselves are unreliable and could lead
to misinterpretation (Huang & Chang|2023} [De Wynter[2025} also Section [2).

In this paper we examine to what extent ICL is an effective learning paradigm. We begin by noting
that, mathematically, ICL constitutes learning—as opposed to solely repeating internal knowledge—
but remark that further work is required to fully characterise it. We then perform empirical studies

"We use ‘autoregressive model’ and ‘LLM’ interchangeably, with the assumption that the LLMs discussed
are autoregressive.

accounting for some of the criticisms and shortcomings mentioned; namely, sensitivity to pretrain-
ing, memorisation, and dependence on natural language; prompting style and phrasing; and robust-
ness to distributional shifts in the observed training and test sets. Thus we focus on evaluating
generalisation from data in context (unseen P until runtime, and fully-unseen Q); as opposed to
generalisation from a model’s pretraining strategy.

Our experiments are on four LLMs, nine tasks, and ablations on prompting strategies, training distri-
butions, and exemplar setups. The main results—that is, test set results—comprise 1.89M predictions
per LLM. To our knowledge, our study is one of the largest of its kindE]

1.1 FINDINGS

We ablate dependence on natural language and prompt phrasing, and use artifical alphabets to force
the LLM to learn the task solely from the observations. Hence, our findings seek to characterise ICL
as a learning paradigm, and not as an evaluation of prompt-based problem-solving capabilities.

These are:

1. In the limit (as the number of exemplars grows), the average accuracy gap narrows be-
tween the LLMs tested, and all prompting strategies steadily improve accuracy. Likewise,
semantically nonsensical prompts near or match their non-randomised counterparts.

2. ICL under altered training (exemplar) distributions is robust to positionality and proportion
of labels in the limit. However, ICL is brittle to altered test distributions (i.e., out-of-
distribution; OOD) as the distance between train and test distributions grows, especially in
chain-of-thought (CoT;|Wei et al.|2022b)) and automated prompt optimisation (APO).

3. Closely-related tasks do not necessarily have closely-related performances, with average
accuracy differences as large as 31%. Moreover, traditional baselines (e.g., decision trees
and kNNs) outperform ICL average performance in half of the tasks evaluated.

Our findings contradict the notion that a few exemplars are required to solve a task: peak average
accuracy was at 50-100 exemplars—much higher than in reported negative (Lu et al.| 2024} Sclar
et al., 2024} Dziri et al.| 2023} |Delétang et al.l [2023) or positive (Brown et al.l [2020) results from
LLM studies in natural-language and automata-based tasks, and independently confirms similar
results for natural-language tasks (Anil et al, [2022; |Agarwal et al., 2024). They, however, counter
the view that LLMs are brittle to exemplar ordering or characterisation (Sclar et al., [2024; [Errica
et al.,[2025; [Zhao et al.| 2025; |Agarwal et al.,|2024), and align with the view that CoT and APO are
good at solving some tasks (Merrill & Sabharwal, 2024; |De Wynter et al., 2023a; L1 et al., [2024),
although we show that these are not robust to OOD. Finding 3 expands on the works that found
that LLM accuracy decays with task complexity (Dziri et al., 2023; |Gupta et al., 2025; Merrill &
Sabharwall, 2024)), but notes that analogous tasks have marked performance differences.

1.2 INTERPRETATION

Our findings are constrained to easily-verifiable tasks (e.g., parity checking or Hamiltonian-cycle
verification) in a single call. From within our theoretical framework, we find evidence that ICL
presents signs of learning capabilities; but that it is tied to the autoregressive paradigm, and not
to any particular LLM, training strategy, or prompting style. We argue that this is because ICL
leverages statistical features from the prompt, as opposed to feature relations within the data.
This ad hoc encoding mechanism implies that ICL’s cross-task generalisability is limited to the
representativeness of the data. Thus, we conclude that, from the perspective of our framework, ICL
is mathematically a form of learning, albeit not a robust one.

Remark that our work is constrained to non-natural language tasks, with our ablation on natural
language limited to the instructions, not the datapoints. This setup forces LLMs to not rely on
their intrinsic knowledge, and instead infer the full characterisation of the data from the prompt
itself. This suggests differences with some claims on their emergent capabilities, but also raises the
question to which semantic extent priors from the data impact (realistic) natural language tasks and
its relationship to learning. This opens avenues for further systematic evaluation of their capabilities.

2Code and data is in https: //anonymous . 4open.science/r/is-icl-learning-8661/

https://anonymous.4open.science/r/is-icl-learning-8661/

2 RELATED WORK

Evaluation of LLMs is an active area of research, and our coverage of its works is non-exhaustive.
For broader surveys of this area we point the reader to|Huang & Chang| (2023), |L1 et al.| (2025), and
Qiao et al|(2023). For ICL in particular, see Zhou et al.| (2024). Early research focused on eval-
uating whether RNNs, transformers, and other non-generative models actually performed learning
(Borenstein et al., [2024} [Zhang et al.,[2023} |Butoi et al., 2025). These works, like ours, investigated
the models’ ability to learn formal languages, or subsets of first-order logic, and also found brittle-
ness in OOD scenarios. A solution proposed by Dan et al.|(2022)) involved passing in the encoding
of the automaton generating the language—we explore its viability for ICL in our work.

2.1 THEORETICAL EVALUATIONS

Theoretical research on what transformer-based models can possibly learn often find negative re-
sults (Hahn & Rofin| [2024; Strobl et al.| [2024a; Kleinberg & Mullainathan| [2024). Even when it
has been known for some time that the transformer (under certain assumptions) is Turing-complete
Pérez et al. (2021); Bhattamishra et al.| (2020); |Li & Wang| (2025)), Turing completeness by defini-
tion requires an unbounded resource or finding an appropriate machine; which is itself undecidable,
although approximable (Wei et al., [2022a). More constrained works with specific attention types
could recognise languages in the class of constant-depth, polynomial-size alternating circuits. Con-
cretely, those in AC? (Hao et al.,2022)); and partly TC? ((Strobl, 2023); (Li et al.l 2024) for CoT),
although as of yet it is unknown why (Strobl et al., 2024b). Nonetheless, Kleinberg & Mullainathan
(2024) showed that next-token prediction is a different problem than judging membership (labelling
data). Even their ability to model formal languages tends to find disparate results, depending on the
assumption made (Strobl et al.,[2024b)). It is perhaps because of these findings that Borenstein et al.
(2024) call for an empirical evaluation of effective capabilities of LLMs.

2.2 EMPIRICAL EVALUATIONS

Empirical LLM evaluation is complex and also marred with disparate accounts on their capabili-
ties. This is often due to the influence of various factors, ranging from choice of model, statistical
significance, or ablations with respect to natural language and memorisation (De Wynter, [2025).
For example, it is known that several LLMs suffer from data contamination (Carlini et al., 2023}
Lee et al., 2023; [De Wynter et al., [2023b) which could render benchmark-based evaluation unreli-
able; and that different measurements show less impressive results (Schaeffer et al.|[2023; |Altmeyer
et al., 2024). Likewise, Gupta et al.| (2025); Dziri et al.| (2023); [Merrill & Sabharwal| (2024)); Liu
et al.| (2023) and |[Lu et al.| (2024) evaluated (and found weaknesses) in LLMs when generalising
to unseen tasks, especially when using CoT and as the task complexity grew. On the other hand,
positive results such as that of |Ontanon et al.| (2022) and Borenstein et al.|(2024)) indicate that, for
certain tasks, these weaknesses may not necessarily hold. Indeed, some positive results, such as
that of |Agarwal et al.| (2024), showed that expanding shots improved performance in natural and
non-natural language problems, albeit the main results were constrained to a single model.

Research has also attempted to determine whether the models understand the task as described by
the prompt, usually with negative results (Webson & Pavlick, [2022; Jang et al., 2023} |De Wynter &
Yuan, 2025; Mancoridis et al., [2025} |Dzir1 et al., 2023 [Strobl et al., |2024a)) Proposed explanations
to this related model size to sensitivity to semantics (Shivagunde et al.| 2024; Long et al., [2024)
and inductive/selection biases [Zhao et al.| (2025); [Chang & Bisk| (2025) although this sensitivity
disappeared when the exemplars included instructions.

However, there were some-reasonable, due to scope—gaps in the works above due to the limiting
factors mentioned. Thus, we attempt to account for these in our work. Other attempts to explain ICL
have been through benchmarks (Yauney & Mimno, |2024; Mirzadeh et al., 2025} [Zhuo et al.| 2024;
Sclar et al., 2024}, mechanistic interpretations (e.g., subnetwork generalisation (Bhaskar et al.,[2024;
Kumon & Yanaka,[2025;Hu et al., 2025)); probing (Yin & Steinhardt, 2025 |Azaria & Mitchell,[2023;
Todd et al.| 2024; Ju et al.| 2024)), Bayesian approaches (Xie et al., 2022; |[Edelman et al., 2024), or
more targeted evaluations, such as that of |Chan et al.[(2022). This latter work argues that ICL arises
from the distribution of the elements within the training data, along with the use of the transformer,
and it is a driving argument for our work.

3 BACKGROUND: THE NEED FOR EMPIRICAL EVALUATION OF ICL

We discuss formalisms for learning and task similarity in Sections[3.I]and[3.2] and tie ICL to these in
Section[3.3] noting that they partly overlook the mechanism behind ICL. Details are in Appendix [B]

3.1 A FORMAL DEFINITION OF LEARNING

We capture robustness in learning with a variation of the probably approximately correct (PAC)
framework from [Valiant| (1984). We use PAC learning as it is the predominant model in compu-
tational learning theory—concretely, statistical learning theory—as well as in language acquisition
(Mitkov, 2022; [Niyogi, [2006). It also allows for some leeway to a learner through error tolerance.
For a comparison with other frameworks, see Appendix [C|

We reframe PAC learning to focus on the learner. This is a syntactical re-definition and does not alter
the original framework. Suppose we wish to model a binary classification task with features assumed
to be drawn from some nonempty set X C R™. These examples are labelled with an unknown
function ¢: X — {0,1}. In machine learning, a (data)set D is sampled with some distribution P
supported on X, D = {(x;, c(z;))|x; ~ P}. A learner (algorithm) f: X — {0,1} observes D
until its empirical error error(-) is bounded by some € € (0,1/2), where

error(f,D) = ﬁ Z 1[f(z) # c(z)] < e (1)
(z,c(w)); z€D

Equation [I| must holds for any other dataset E and distribution Q such that E = {(z;, c(x;))|z; ~
Q}, where Q is likewise supported on X; that is, if

Prlerror(f,E)] > 1 — 4, 2

for § € (0,1/2). Intuitively, a learner has learnt the task if it has a (lower) bound on its error for any
datapoint. Since P and Q are unspecified, f has learnt c if it is robust to changes in P Standard
PAC learning has some limitations, especially around regular languages. Hence, our reframing is
only to ground our discussion on a strict definition of learning, as done by, e.g., Livni et al.| (2014)).

3.2 TASK SIMILARITY

In formal language theory, a collection of transition rules G (a grammar) generates instances (strings)
using symbols from an alphabet X to form a language L. We assume all instances of a task are gen-
erated by its own G and X, with transition probabilities given by a (chosen) P. This P is the same
from Section[3.1] and, to the learner L may be known (or deduced), but G is not. Formal languages
may be classified according to the (expressive) power of the automaton able to accept/reject (recog-
nise) an x based on the query x € L?. Relevant to us are these recognisable by finite state automata
(FSA), and pushdown automata (PDA). FSA read the input unidirectionally, changing their inter-
nal state between accept and reject, and return either when finished. Tasks such as PARITY and
Hamiltonian-cycle verification, are recognisable with an FSA. Other tasks, like stack manipulation,
require the automaton to track a set of states. PDA are FSA equipped with memory, and can solve
these, more complex, tasks. They are considered more powerful than FSA. The autoregressive na-
ture of LLMs allows for some memory, and hence they could be considered a type of PDA. However,
in this work we treat LLMs as recognisers of unknown expressive power.

3.3 DEFINING ICL IN CONTEXT

In ICL, an LLM takes in a natural-language string as a task specification (system prompt), and
uses the input tokens (in natural language) to ‘solve’ (learn) it by predicting the following tokens
recursively. Formally, Wang et al.|(2023)) formulate ICL classification as

argmax Pr[f(zp) = c(zp)|x1, c(z1), ..., 2], 3)
f(zr)€{0,1}

3In the words of Niyogi| (2006), any classifier ‘worth their salt’ should fulfil this condition.

where zj, is the datapoint to be labelled, and we have used the notation from Section [3.1] How-
ever, ICL is sensitive to the system prompt. Thus, practitioners have resorted to various prompting
techniques, which are not accounted for in Equation[3] Factoring in both we get

argmax Pr[f(zr) = c(ap)|p, m(x1), 7(22), ..., 7(zr—1), T(2)], 4)
f(zr)e{0,1}

where p is a system prompt, x; are example datapoints (¢ < k), and zy, is the instance to be classified.
We let 7, 7 be functions that take in inputs z; and return natural-language representations m(z;) =
(@, c(z;)) for i < k (r. @(xk) =). These could be, e.g., a concatenation of the datapoint and
the label (e.g., 7(z;) = ‘x; : ¢(x;)’); and a datapoint conditioning for next-token (label) prediction,
w(xg) = ‘xy :". It could also be more complex (e.g., ‘Let’s think and solve step-by-step...”). Both p
and 7(x;) may be empty, but not at the same time. At inference time, when computing c¢(xy), the
LLM conditions recursively on its observations from p, . .., 7(xy), and its previous knowledge.

PAC learning does not limit sow the learner learns. From Equation [4] it follows that ICL can be
viewed as a (formal) learning process. Namely, a learner f: {p} xx X — {0,1} is an LLM with
k — 1 exemplars x1,...,T5—1 ~ P, an input instance to classify z; ~ Q, representations m, 7
and an optional system prompt p. We say that ICL learns ¢ and X if Equation [2 holds for any
Ty X1,y .-.,Tp—1 € X, m, 7, P, and Q. This thus makes ICL strongly dependent on 7, 7 and p (the
prompt), but does not specify to what extent, since it depends on the autoregressive nature of the
LLM (namely, the ‘scratchpad’) and its own weights. Indeed, one consequence of Equation[]is that
as k grows, since p is constant, its contribution vanishes when equiprobable to the exemplars:
k-1
Pr[Ylp, 71,. .., Tg—2, %] x Pr[p|Y] <H Pr[ﬂ'i|Y]> Pr[Y] Pr[7g], (5)
K3

where we let Y = f(zy) = c(zy); w(z;) = m;; and 7(x;) = 7;, for readability. Conversely, the
encoded exemplars have a major contribution in the limit. Nonetheless, our reframings do not char-
acterise 7 (e.g., which natural-language strings, if any, work better?). This thus calls for empirical
evaluations as to how effective ICL is at learning, accounting for P, p, 7, 7, and c.

4 METHODS

Sample prompts are in Appendix [H] and full task definition and characterisations with respect to
ID/OOD are in Appendix [E] Specifics on LLM calls are in Appendix [F}

4.1 FRAMING

We seek to find out if a learner (LLM) f can correctly and robustly decide if a given « € 3, sampled
with some D for some 3 and G, belongs to a language L. We let G, 3, and L be fixed for a task,
but not always known to f. We measure correctness with accuracy, 1 — error(f,-); and robustness
with accuracy under the distributional shift. That is, we consider both in-distribution (ID) entries
a ~ P and OOD entries x ~ Q, for select values of 6 = ||P — Q|-

4.2 PROMPTING STRATEGIES AND SCOPE

We test prompts that perform a single call to the LLM. More complex strategies, such as Tree-of-
Thoughts (Yao et al., [2023) have good performance, but rely on multiple model calls per instance,
and hence are not in the scope of our work. We also consider only single next-token prediction, as
well as robustness to system prompts (i.e., CoT and APO). Reasoning models like 03-mini (OpenAl,
2025])), which have a baked-in non-controllable CoT, are thus not in scope. The prompts tested are:

n-Shot Learning: Provide n exemplars of an input = and desired, formatted output 7(z). When we
do not provide a system prompt, we refer to it as Modus Ponens.

Description: Add in the system prompt p. This is the usual way to prompt LLMs.

APO: A meta-prompting (‘prompting to prompt’) approach where the LLM adapts its own system
prompt p with a development set. It has been shown that this strategy yields better perceived results

than description (De Wynter et al., [2023a). We used the algorithm from Pryzant et al.| (2023) to
generate p.

Direct Encoding (DE): Pass in the system prompt plus G and L. This is common in theoretical
computer science; in addition, LLMs have been claimed to be capable of understanding code. Note
that DE is known to increase robustness to OOD in LSTMs and RNNs (Dan et al., 2022)).

Chain-of-Thought (CoT): Generate a series of steps leading to the desired output with a predefined
scheme in the system prompt.

Word Salad: Replace the natural strings from the description with random words. When we apply
word salad to the CoT prompt, we call it Salad-of-Thought (SoT).

These strategies may be mixed. For example, CoT with word salad and 5 exemplars is 5-shot SoT.
Word salad and SoT are considered only in Section @ All prompts were ran with 0, 2, 5, 10, 20,
50, and 100 exemplars; except modus ponens (no zero-shot), and CoT/SoT (no 2-shot due to cost).
All prompts had output format specifications (implicit in modus ponens) to facilitate parsing.

4.3 TASKS OVERVIEW

All tasks have their own X, and were selected for being closely-related tasks often seen in LLM
evaluations, or well-known problems in computer science. All (except one) are decision problems
to fit the model from Section[3} We discuss this further in Appendix

PARITY: (FSA) decide if a given binary string has even zeros. Also known as the XOR function.
Pattern Matching (FSA): decide if abcabb is a substring of a given string © C {a, b, c}*.
Reversal (PDA): given a string [#r C ¥, decide if [equals the reversed 7, [= 7~ 1.

Stack (PDA): given final and initial strings s¢,so C X and a series of operations Op, decide if
sy = Op(so). The operations simulate a stack (push/stop/pop) and may or may not be grammatical
(e.g., stack overflows).

Hamiltonian (FSA): given a graph in adjacency matrix form and a path, decide if it is Hamiltonian.

Maze (Complete) (FSA): given a maze, two segments of a path, and a sequence of moves, decide
if the moves connect both segments. Segment separation is never more than three moves.

Maze (Solve) (FSA): given a maze and a sequence of moves, decide if the moves form a valid path
from start to exit.

Vending Machine (Verification) (FSA): given a list of items and costs C', a sequence of operations
Op (add balance, purchase item), and initial and final balances bg, b, verify if by = Op(C') + bo.

Vending Machine (Sum): Same as the verification version, but the learner must compute by =
Op(C') + by for an unknown by. It has a constrained set of moves, but unbounded states (N). This
is the only task in our work that is not a decision problem.

4.4 MODELS AND MEASUREMENT

We tested four LLMs: GPT-4 Turbo (Open Al 2023), GPT-40 (OpenAl, 2024), Mixtral 8x7B in-
struct vO1 (Jiang et al.,|2024), and Phi-3.5 MoE Instruct (Bilenko| [2024). We measure performance
with accuracy, and report standard deviation (o) to indicate variation over an average. We use ordi-
nary least squares (OLS) to measure changes. We set all outputs non-compliant with the requested
format as zero, but revisit this in Section [6.4] When reporting aggregate numbers, however, we do
not factor in out-of-token errors. For baselines, we tested decision trees (DT), k-nearest neighbours
(kNN), and a multilayer perceptron (MLP) in succession, and reported the best. We did not baseline
path-based problems or arithmetic, since they are often solved with heuristics (e.g., A™).

4.5 DATA GENERATION

We created datasets per-task with automata with state transition probabilities drawn from a chosen
D. They are synthetic to account for (a) the task’s G and ¥; and (b) ID and OOD. Every task has

different manifestations of OOD (e.g. the size of a maze). See Figure[I|for a sample automaton and
Appendix [E|for full description of the characterisation of OOD per task.

All entries relied on natural language as little as possible (e.g, binary
strings or arbitrary symbols in 3, such as ~ _(*/)_/"). The training

1 9 dataset was 2000 entries drawn from a P, and we also generated

N Q 1 five balanced, deduplicated test sets, each from a Q such that ||P —

s 0 11— OQlloo = 6, for 6 € {0,0.2,0.45,0.65,0.85}, where § = 0 is ID,
N~ and the rest OOD. This allowed to measure the separation between

distributions and the gradual change in performance.

Every test set is 2000 entries, but due to cost we only evaluated
Figure 1: Data generator for 1000. We also mislabelled entries w.p. 7 = 0.05 to account for any
PARITY. Each state has tran- potential memorisation. Hence, the maximum accuracy for any f
sition probabilities 0, and an that actually learns the task is 95%. We only use the training set for

emission probability. There is ~ APO and the selected baselines. The full suite is 1.89M datapoints.
a symmetric automaton with

emissions at 0.
5 RESULTS

We provide results on our analysis: general accuracy (Section[5.1);
distributional shifts (Section [5.2); and fine-grained analysis (Sec-
tion[5.3). For detailed results, see Appendix [G]

5.1 OVERALL PERFORMANCE

The best average accuracies, per LLM, were in Pattern Matching (944-1%; solved the task), Hamil-
tonian (85£4%), and Vending Machine (Verification; 834+9%). Best accuracies in the worst-
performing tasks were Vending Machine (Sum; 16+1%), Reversal (61+11%), and Maze Solve
(63£13). See Table|l|for best-of and averaged results per-model over tasks; and Table [2| for aver-
aged result data per-task over prompts. LLMs outperformed traditional baselines (e.g., kNN) in
best-of, but not average best, scenarios in all tasks except PARITY.

The best prompt per problem was CoT, in four tasks. The worst prompt was 2-shot modus
ponens, in five tasks. The tasks where CoT underperformed (Pattern Matching and Hamiltonian)
were not the same where it was the best-performer. In Maze Complete, however, modus ponens was
the worst (2-shot; 9£16) and the best (100-shot; 77+£5). Without Vending Machine (Sum), the only
non-classification task in our work, the accuracies numbers increased by 5+1 on average.

Better performances were given by more shots, on average, when looking at the slope from OLS
fits between per-model averages over shots (Table [2). Larger slopes (trends in accuracy improve-
ments) were in modus ponens (8.3) and lowest in CoT (3.3). Mixtral improved the most with more
shots, with an average slope of 7.3 (versus 5.8, 3.5, and 4.0 for Turbo, GPT-40 and Phi-3.5).

Task Turbo | GPT-40 | Phi-3.5 | Mixtral || Average Average ML
(Best) (Worst)
PARITY 76 90 83 83 80+3 100-APO | 16+20 2-m.p. |95 MLP
P. Match. 96 95 95 95 9441 50-DE |24420 5-CoT |87 kNN
Reversal 71 77 54 55 61+11" 100-CoT |204+21 2-m.p. |72 kNN
Stack 86 92 66 76 73+£14* 50-CoT |20+21 2-m.p. |72 kNN
V.M. (Ver.) 94 90 84 78 81£12 10-CoT |22+£22 2-m.p. |84 DT
Maze (Comp.) | 83 72 79 81 NE=) 100-m.p. [9£16 2-m.p. |- -
Maze (Solve) |70 61 66 60 6315 50-desc. | 17£20 0-APO |- -
Hamiltonian |93 92 86 85 89+2" 100-desc | 2948 0-CoT |- -
V.M. (Sum) 18 20 15 20 16+1 5-CoT |0f 0-DE |- -

Table 1: Maximum accuracies per-model per-problem and peak averages (per shots, over models).
An * is an average over fewer models due to out-of-token failures; a T means a tie. The best prompts
often included natural-language descriptions (CoT, APO, Description). The worst prompt was often
2-shot modus ponens: it lacks a description and led to parsing errors in few-shot. Closely-related
tasks had differences of up to 31% accuracy. All baselines degraded in OOD except in PARITY.

Prompt Turbo GPT-40 Phi-3.5 Mixtral Avg. slope
Slope Acc. for acc.
Shots Modus Ponens | 12.8 28423 | 11.4 434+20(5.2 50+913.9 50+£9 || 8.3£3.9
Description 34 57+6 1.4 56+3 (4.4 50+9 |8.2 48+19(|44 £2.2
DE 3.0 5445 1.4 5843 |5.5 50+108.1 484201 4.5+2.4
Word Salad |9.8 32418 12.1 43+£22|11.5 39+21(9.8 444201 11£4.6
APO 6.1 5111 2.0 5744 4.6 5149 |84 48+1 ||5.4£2.6
CoT 34 47+6 1.3 55+4 |0.5 45+1 |8.0 38+151(3.3+2.4
SoT 1.8 20+4 35 2547 |0.3 26+4 | 1.8 2245 || 1.6+£2.2
OOD Modus Ponens | -0.3 28+1 -0.6 43+1 |-0.6 50£1 |-0.2 50+1 ||-04 £ 0.4
Description -0.5 57+1 -0.8 56+1 |-0.5 50+1 |-0.5 48 -0.5+04
DE -04 54+1 -09 58+l |-04 50+1 |-0.1 48+3 ||-0.54+0.6
Word Salad | -0.5 31+£1 -0.1 43 1-0.3 40 |-0.2 44+1 |-0.2+0.3
APO -04 511 -1.0 57£1 |-0.6 51+1 |-0.1 48 -0.5+0.7
CoT -0.6 47+1 27 5544 |-1.3 4542 |-1.0 38+1 ||-1.4£1.9
SoT 0.1 20+1 -0.6 2541 |-0.1 26 |05 22 £1 || 0.0£0.6

Table 2: Slopes and accuracies averaged over tasks. The rightmost column has the average slope
for all LLMs. Word salad and SoT are not factored into our main results, but are discussed in
Section [6.1] The effectiveness of the prompts depended on the slope and o large o and a positive
slope means an increasing trend in accuracy, with larger slopes implying a larger change. Shot slopes
are positive, and the § slopes are slightly negative. This suggests that more shots improve accuracy
in all prompts; but in OOD this is ineffective, defaulting to the average and decreasing overall.

Average Accuracy (Modus Ponens) Average Accuracy (With Description) Average Accuracy (CoT)

e GPT-4 Turbo e GPT-40 Phi-3.5 MOE = Mixtral 7x88B Shots (8)

Figure 2: Per-model average accuracy results for (left to right) modus ponens, description, and CoT;
plotted over shots (thick vertical lines) and per-shot J between them. On average, most prompts
showed analogous behaviour in the limit, and robustness to OOD. CoT also showed converging be-
haviour, although it was more brittle to OOD. Every datapoint is an average over 1,000 predictions.

5.2 DISTRIBUTIONAL SHIFTS

Distributional shift decreased accuracy as § — 0.85. We evaluated the slope on the per-LLM
accuracy averages between § = 0.85 and § = 0, per shot. All were negative. The largest (most
sensitive to OOD) was CoT at -1.4, followed by APO (-0.5). The smallest was modus ponens, at
-0.4 (Table[2). See Figure 2] for examples and Appendix [G]for a full breakdown. GPT-40 was most
sensitive to OOD inputs, with an average slope of -1.2 (versus -0.7, -0.4, and -0.3 for Phi-3.5, Turbo,
and Mixtral). The largest impacts of § per task were in Reversal (-1.7£1.5), versus Vending Machine
(Sum) (lowest; 0.1 £ 0.2). The average slope was -0.6+0.3.

5.3 FINE-GRAINED BEHAVIOUR

In the breakdown per-prompt and per-task, LLMs had (1) similar behaviours over the tasks, but (2)
inconsistency over the task type. The first was given by the LLMs having low ¢ but similar accuracy
in a task-by-task and prompt-by-prompt basis: all prompts had a positive slope and low relative
difference among them (Figure 4| in the Appendix). The per-prompt shot slopes, averaged per
LLM, were 8.3£3.9 (modus ponens), 4.44+2.2 (description), 4.5+2.4 (DE), 5.3+2.6 (APO), and
3.3+£2.4 (CoT) (Table). As per the averaged slope’s o, there was low variation between the type
of LLM and the prompt over all tasks: 5.241.6 over shots. OLS fits over the per-shot ¢ indicated
that the model gap, as the shots increased, narrowed: -2.6+0.5; a similar pattern in the OLS fit

was noticeable in § slopes. Inconsistency was when related tasks had gaps in peak performances:
31% (Maze (Solve) versus Pattern Matching), and 12% (Reversal and Stack; Table|[T).

6 ABLATION STUDIES

We present summaries of our ablation studies. Refer to Appendix [G] for details and figures.

6.1 IMPACT OF LEXICAL FEATURES

We sought to understand to which extent lexicality (words) impacted ICL with respect to the data
features. We assumed that LLMs were pretrained mostly on natural and programming languages.
We compared word salad with modus ponens and DE; and CoT with SoT. While word salad ver-
sions of prompts started low—at some points with zero accuracy—they quickly reached relatively
high maximum accuracies. Averaged per-LLM, the word salad versions matched the baselines
to within o or o/2 of their average and had the largest slopes. Word salad only randomised the
system prompt, but SoT fully randomised the exemplars. It had a major impact on accuracy, with
the lowest average performance over shots (23+4%) in any prompt due to its high eror rate. Some
LLMs in SoT obtained above-average accuracies in certain tasks, such as GPT-40 in PARITY
(63% at 100 shots), and Turbo in Stack (76% at 50 shots).

6.2 POSITIONALITY OF EXEMPLARS

On every call, all exemplars so far were equiprobable and fixed throughout (‘unshuffled’). Here,
we randomised the position of the same exemplars within the prompt (‘shuffled’), and also fully
randomised the exemplars (drawn i.i.d. from the training set). There was a small variation in ac-
curacy when the same exemplars were shuffled versus unshuffled, with the latter having slightly
lower average accuracies and per-prompt slopes, albeit higher slopes per-LLM. The best-performing
prompts for average accuracies when shuffled versus unshuffled were always the same. When fully
randomising the exemplars, we only measured and compared GPT-40. On average, fully randomis-
ing the exemplars yielded lower accuracies, and had lower shot and higher § slopes.

6.3 IMPACT OF ALTERNATE DISTRIBUTIONS

We altered P in four setups: the fully randomised and shuffled exemplars from Section an
imbalanced distribution with only negative labels; and a corpus with uniformly at random labels
(both test and train) as baseline. We only analysed and compared GPT-40 without Vending Machine
(Sum). The imbalanced scenario achieved higher average accuracies than all setups, matching
or outperforming the unshuffled baseline. However, in this case, the average o increased on every
prompt and every setup. The random label baseline had better § slopes than the unshuffled baseline.
Of note is also CoT, which had negative shot slopes in all setups.

6.4 COMPLIANCE VERSUS LEARNING

We separated parsing errors (‘compliance’) from mislabelled instances (‘learning’) and re-calculated
averages and slopes. Factoring out compliance increased perceived performance by understating or
overstating magnitudes. For example, average shot and ¢ slopes were smoothed out, thus making—
for example—CoT’s sensitivity to OOD hard to spot.

7 DISCUSSION

As the ‘training set’ (i.e., the number of exemplars) grew, (1) LLM accuracy increased, and (2) the
gap between LLMs and prompts narrowed. Both suggest that ICL as a learning paradigm depends
less on the LLM and prompt and more on the ability to perform autoregression. However, ac-
curacies were not consistent across similarly-related tasks: Pattern Matching (FSA) was effectively
solved, while Reversal (PDA) and Maze (Solve; FSA) had low accuracies. This suggests that au-
toregression is limited in its ability to solve tasks. This could be related to the choice of prompt.
However, we observed that while all prompts were sensitive to OOD, the best prompts (CoT and

APO) were both adaptive and more brittle. This suggests then that, although they are effective on
leveraging the power of a PDA, they bias the learner towards the observed distribution. This, in turn,
from the perspective of our framework, means that learning in ICL is not completely fulfilling the
requirements from Equation [2| Thus, autoregression’s ad hoc encoding via the prompt is not a
robust learning mechanism. As an extreme example, recall that Vending Machine (Sum) had non-
zero accuracy but near-zero slope regardless of number of shots, thus indicating complete inability
to learn the task.

Indeed, in the limit, accuracies were similar regardless of language and exemplar distributions, pro-
vided that they remained fixed. Hence ICL learns the observed P, rather than fully generalising
to the unseeen Q, since the fully randomised exemplars had lower accuracy than both the shuf-
fled and unshuffled settings. Remark that the observed P did not change, and this phenomenon
also could be explained as a manifestation of the bias-variance tradeoff. Given that the randomised
labels baseline had lower § slopes, OOD brittleness is very dependent on ICL overfocusing on
spurious features. This is especially visible in CoT, which had consistently negative J slopes across
all variations of P. While description-based prompts had the best peak accuracy, in the limit word
salad reached equivalence with them. In SoT, some LLMs were still able to reach above-random
scores in spite of the constant randomisation. This means that autoregression can distinguish data
features from lexical relations, but cannot fully identify feature relations within the data. It
also empirically confirms the remarks from Equation 4] that p’s contribution vanishes in the limit.

Alternate explanations could be (1) contamination, and (2) tokenisation. Contamination could
explain the accuracy in Pattern Matching, perhaps due to the (easy) X, {a, b, c}. Other tasks, like
Reversal, used more complex Y and had lower scores, so it could be argued that the LLMs had
been pretrained in these tasks. However, good performances were also observable in Hamiltonian
and PARITY; thus suggesting the ability to (almost) fully simulate an FSA, and not contamination.
For (2), it could be said that an LLM trained on a task A will not necessarily solve a similar B if
Y4 # Xp (cf., graph and maze traversals). It could also explain the results from Vending Machine
(Sum): arithmetic skills are impacted by BPE (Singh & Strouse, 2024), the tokeniser which all LLMs
studied implement. The implementation is not always the same. In the limit, LLM performance gap
narrowed and thus tokenisation is not as relevant to ICL as the data features, although this only
applied to decision problems, not arithmetic. Finally, our theoretical framework could impact our
analysis of the conclusions. We argue that mathematically it is sufficient to define learning due to
its ablation on the nature of the data and its focus on learning as a process. However, we refine and
discuss this in Appendices[C|and[D] including further explanations on the accuracy gap observed.

8 CONCLUSION

In this work we began by noting that, mathematically, ICL did constitute learning. However, we
also noted that further work was required to characterise it beyond the standard assumptions and
limitations of the literature. Our experiments thus accounted for prompting style and phrasing,
natural language, number of shots, input and output distributions, contamination, and pretraining
strategies. We found that, although formally ICL is a form of learning, empirically it is relatively
weak. This is due our findings on its limitations and nuanced behaviours, different than originally
reported. Concretely, in the limit, best-of average accuracies were given by 50-100 shots, and the
differences amongst both LLMs and prompts decreased. Exemplar positionality, characterisation,
labels, and wording were less relevant than the data features themselves—even in SoT, LLMs learned
the task in spite of its constant randomisation. Nonetheless, ICL also overfocused on spurious
features from the observed distribution. It also showed marked differences in supposedly-related
tasks, and brittleness to OOD, especially in APO and CoT.

Our findings indicate that, for example, brittleness to OOD means that LLM performance will not
be well-characterised by testing only a few prompts, as the performance observed may be spurious.
Hence, research on LLM capabilities must be done with caution and transparency, testing multiple
prompts, shots, and distributions. Future work should characterise reasoning models: we conjecture
that they will do better in our setup; but will also have difficulties in complex tasks (e.g., context-
sensitive languages), brittleness to OOD, and inconsistency over tasks. The latter also suggests that
an open question remains on how to empirically measure what ICL does over what it can do; and
then map it back to the theory while accounting for natural language factors not studied in this work.

10

9 ETHICS

Our work is a large-scale exploration of ICL over synthetic data. We are unaware of any potential
misuse of this research, albeit we could have overlooked something. The volume of data in our work
likely had a very high carbon footprint. While we argue that releasing the code publicly will have
more benefits to the community than potential harms, we have included disclaimers discouraging
running the full suite. We expect this work to be a one-off experimental work to determine ICL’s
feasibility as a learning paradigm, and thus our work focused on various open and closed models.
This should make the work comprehensive enough to also discourage re-running the full suite. We
discuss limitations of our work in Appendix [A]

10 REPRODUCIBILITY STATEMENT

All code is included in the repository. It will be open-sourced under the MIT licence. Detailed
methodology, included model versioning, is in Appendix |[F} Prompts are in Appendix [H] and also
in the repository. Work has been done in both closed-source and open-source models. We set the
temperature to zero throughout to ensure further reproducibility.

REFERENCES

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Luis Rosias, Stephanie C.Y. Chan,
Biao Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, John D Co-Reyes, Eric Chu, Fer-
yal Behbahani, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=AB6XpMzvgH.

Patrick Altmeyer, Andrew M. Demetriou, Antony Bartlett, and Cynthia C. S. Liem. Position: Stop
making unscientific AGI performance claims. In Ruslan Salakhutdinov, Zico Kolter, Kather-
ine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Pro-
ceedings of the 41st International Conference on Machine Learning, volume 235 of Proceed-
ings of Machine Learning Research, pp. 1222-1242. PMLR, 21-27 Jul 2024. URL |https:
//proceedings.mlr.press/v235/altmeyer24a.html.

Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319-342, April 1988. ISSN
0885-6125. doi: 10.1023/A:1022821128753. URL |https://doi.org/10.1023/A:
1022821128753

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant Misra,
Vinay Venkatesh Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur.
Exploring length generalization in large language models. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Sys-
tems, 2022. URL https://openreview.net/forum?id=zSkYVeX7bC4.

Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it’s lying. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pp. 967-976, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.68. URL https://aclanthology.
org/2023.findings—emnlp.68/.

Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-constrained path problems. SIAM
Journal on Computing, 30(3):809-837, 2000. doi: 10.1137/S0097539798337716. URL https:
//doi.orqg/10.1137/50097539798337716.

Adithya Bhaskar, Dan Friedman, and Danqi Chen. The heuristic core: Understanding subnet-
work generalization in pretrained language models. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 14351-14368, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.774. URL
https://aclanthology.org/2024.acl-1long.774/.

11

https://openreview.net/forum?id=AB6XpMzvqH
https://proceedings.mlr.press/v235/altmeyer24a.html
https://proceedings.mlr.press/v235/altmeyer24a.html
https://doi.org/10.1023/A:1022821128753
https://doi.org/10.1023/A:1022821128753
https://openreview.net/forum?id=zSkYVeX7bC4
https://aclanthology.org/2023.findings-emnlp.68/
https://aclanthology.org/2023.findings-emnlp.68/
https://doi.org/10.1137/S0097539798337716
https://doi.org/10.1137/S0097539798337716
https://aclanthology.org/2024.acl-long.774/

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers
and its implications in sequence modeling. In Raquel Ferndndez and Tal Linzen (eds.), Proceed-
ings of the 24th Conference on Computational Natural Language Learning, pp. 455-475, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.conll-1.37.
URL https://aclanthology.org/2020.conll-1.37/l

Misha Bilenko. New models added to the Phi-3 family, available on Microsoft
Azure, 2024. URL |https://azure.microsoft.com/en-us/blog/
new—-models—added-to-the-phi-3-family—-available—-on-microsoft—azure/.

Nadav Borenstein, Anej Svete, Robin Chan, Josef Valvoda, Franz Nowak, Isabelle Augenstein,
Eleanor Chodroff, and Ryan Cotterell. What languages are easy to language-model? a per-
spective from learning probabilistic regular languages. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 15115-15134, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.807. URL
https://aclanthology.org/2024.acl-1ong.807/.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of
the 34th International Conference on Neural Information Processing Systems, NeurIPS’20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Alexandra Butoi, Ghazal Khalighinejad, Anej Svete, Josef Valvoda, Ryan Cotterell, and Brian
DuSell. Training neural networks as recognizers of formal languages. In The Thirteenth In-
ternational Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=aWLQTbfFgV.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
TatRHT_1cK.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre
Richemond, James McClelland, and Felix Hill. Data distributional properties drive
emergent in-context learning in transformers. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 18878-18891. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
77coccacfd9962e2307fc64680fcbace-Paper-Conference.pdf.

Yingshan Chang and Yonatan Bisk. Language models need inductive biases to count inductively.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=s3IBHTTDY].

Soham Dan, Osbert Bastani, and Dan Roth. Understanding robust generalization in learning regular
languages. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 4630-4643. PMLR, 17-23 Jul
2022.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural networks and
the Chomsky Hierarchy. In 11th International Conference on Learning Representations, 2023.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal,

12

https://aclanthology.org/2020.conll-1.37/
https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/
https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/
https://aclanthology.org/2024.acl-long.807/
https://openreview.net/forum?id=aWLQTbfFgV
https://openreview.net/forum?id=aWLQTbfFgV
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://openreview.net/forum?id=s3IBHTTDYl
https://openreview.net/forum?id=s3IBHTTDYl

Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of trans-
formers on compositionality. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=Fkckkr3ya8s.

Ezra Edelman, Nikolaos Tsilivis, Benjamin L. Edelman, Eran Malach, and Surbhi Goel. The evolu-
tion of statistical induction heads: in-context learning markov chains. In Proceedings of the 38th
International Conference on Neural Information Processing Systems, NIPS ’24, Red Hook, NY,
USA, 2024. Curran Associates Inc. ISBN 9798331314385.

Federico Errica, Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. What did I do wrong?
quantifying LLMs’ sensitivity and consistency to prompt engineering. In Luis Chiruzzo, Alan
Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Ameri-
cas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pp. 1543-1558, Albuquerque, New Mexico, April 2025. Association
for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.73.
URLhttps://aclanthology.org/2025.naacl-long.73/.

Edward Gibson and Kenneth Wexler. Linguistic Inquiry, 25(3), 1994.

E Mark Gold. Language identification in the limit. Information and Control, 10(5):447-474, 1967.
ISSN 0019-9958. doi: https://doi.org/10.1016/S0019-9958(67)91165-5. URL https://www.
sciencedirect.com/science/article/pi11i/S0019995867911655.

Kavi Gupta, Kate Sanders, and Armando Solar-Lezama. Randomly sampled language reasoning
problems reveal limits of LLMs, 2025. URL https://arxiv.org/abs/2501.02825.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 14973-15008, Bangkok, Thai-
land, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
800. URL https://aclanthology.org/2024.acl-1long.800/.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800-810, 2022. doi: 10.1162/tacl_a_00490. URL https://aclanthology.
org/2022.tacl-1.46/.

Michael Y. Hu, Jackson Petty, Chuan Shi, William Merrill, and Tal Linzen. Between circuits and
Chomsky: Pre-pretraining on formal languages imparts linguistic biases. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
9691-9709, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-
89176-251-0. doi: 10.18653/v1/2025.acl-long.478. URL https://aclanthology.org/
2025.acl-1long.478/.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A sur-
vey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2023, pp. 1049-1065, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL
https://aclanthology.org/2023.findings—acl.67/.

Joel Jang, Seonghyeon Ye, and Minjoon Seo. Can large language models truly understand prompts?
a case study with negated prompts. In Alon Albalak, Chunting Zhou, Colin Raffel, Deepak Ra-
machandran, Sebastian Ruder, and Xuezhe Ma (eds.), Proceedings of The Ist Transfer Learning
for Natural Language Processing Workshop, volume 203 of Proceedings of Machine Learning
Research, pp. 52-62. PMLR, 03 Dec 2023. URL https://proceedings.mlr.press/
v203/Jjang23a.htmll

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le

13

https://openreview.net/forum?id=Fkckkr3ya8
https://aclanthology.org/2025.naacl-long.73/
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://arxiv.org/abs/2501.02825
https://aclanthology.org/2024.acl-long.800/
https://aclanthology.org/2022.tacl-1.46/
https://aclanthology.org/2022.tacl-1.46/
https://aclanthology.org/2025.acl-long.478/
https://aclanthology.org/2025.acl-long.478/
https://aclanthology.org/2023.findings-acl.67/
https://proceedings.mlr.press/v203/jang23a.html
https://proceedings.mlr.press/v203/jang23a.html

Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William EI Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Kent Johnson. Gold’s theorem and cognitive science. Philosophy of Science, 71(4):571-592, 2004.
doi: 10.1086/423752.

Tianjie Ju, Weiwei Sun, Wei Du, Xinwei Yuan, Zhaochun Ren, and Gongshen Liu. How large lan-
guage models encode context knowledge? a layer-wise probing study. In Nicoletta Calzolari,
Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Pro-
ceedings of the 2024 Joint International Conference on Computational Linguistics, Language Re-
sources and Evaluation (LREC-COLING 2024), pp. 8235-8246, Torino, Italia, May 2024. ELRA
and ICCL. URL https://aclanthology.org/2024.1lrec—main.722/.

Gerhard Jiger and James Rogers. Formal language theory: refining the Chomsky hierarchy. Philo-
sophical Transactions of the Royal Society B, 2012. doi: https://doi.org/10.1098/rstb.2012.0077.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
In Mathematical Aspects of Deep Learning. Cambridge University Press, 2022. doi: 10.1017/
9781009025096.003.

Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae and
finite automata. J. ACM, 41(1):67-95, January 1994. ISSN 0004-5411. doi: 10.1145/174644.
174647. URL https://doi.org/10.1145/174644.174647.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory. The
MIT Press, 1994.

Jon Kleinberg and Sendhil Mullainathan. Language generation in the limit. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=FGTDe6EAOB.

Ryoma Kumon and Hitomi Yanaka. Analyzing the inner workings of transformers in compositional
generalization. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Con-
ference of the Nations of the Americas Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), pp. 8529-8540, Albuquerque,
New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-
6. doi: 10.18653/v1/2025.naacl-long.432. URL https://aclanthology.org/2025.
naacl-long.432/.

Steffen Lange and Sandra Zilles. Relations between Gold-style learning and query learning. Infor-
mation and Computation, 203(2):211-237, 2005. ISSN 0890-5401. doi: https://doi.org/10.1016/j.
ic.2005.08.003. URL https://www.sciencedirect.com/science/article/pii/
S0890540105001379.

Jooyoung Lee, Thai Le, Jinghui Chen, and Dongwon Lee. Do language models plagiarize? In
Proceedings of the ACM Web Conference 2023, WWW 23, pp. 3637-3647, New York, NY, USA,
2023. Association for Computing Machinery. ISBN 9781450394161. doi: 10.1145/3543507.
3583199. URLhttps://doi.orqg/10.1145/3543507.3583199l

Qian Li and Yuyi Wang. Constant bit-size transformers are Turing complete. In Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2025. URL https://arxiv.org/
pdf/2506.12027.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

Zonggqian Li, Yixuan Su, and Nigel Collier. A survey on prompt tuning. In ES-FoMo III: 3rd
Workshop on Efficient Systems for Foundation Models, 2025. URL https://openreview.
net/forum?id=JEMGDajQ1G.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=DedFYqgjFueZl

14

https://arxiv.org/abs/2401.04088
https://aclanthology.org/2024.lrec-main.722/
https://doi.org/10.1145/174644.174647
https://openreview.net/forum?id=FGTDe6EA0B
https://openreview.net/forum?id=FGTDe6EA0B
https://aclanthology.org/2025.naacl-long.432/
https://aclanthology.org/2025.naacl-long.432/
https://www.sciencedirect.com/science/article/pii/S0890540105001379
https://www.sciencedirect.com/science/article/pii/S0890540105001379
https://doi.org/10.1145/3543507.3583199
https://arxiv.org/pdf/2506.12027
https://arxiv.org/pdf/2506.12027
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=JEMGDajQ1G
https://openreview.net/forum?id=JEMGDajQ1G
https://openreview.net/forum?id=De4FYqjFueZ

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’ 14, pp. 855-863, Cambridge, MA, USA, 2014. MIT Press.

Quanyu Long, Yin Wu, Wenya Wang, and Sinno Jialin Pan. Does in-context learning really learn?
rethinking how large language models respond and solve tasks via in-context learning. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
120J35CO0ESQ.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
Are emergent abilities in large language models just in-context learning? In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 5098-5139, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.279.
URL https://aclanthology.org/2024.acl-1long.279/.

Marina Mancoridis, Bec Weeks, Keyon Vafa, and Sendhil Mullainathan. Potemkin understanding
in large language models, 2025. URL https://arxiv.org/abs/2506.21521,

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?1d=NING1Ph8Wh!.

Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
large language models. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=AjXkRZIvB.

Ruslan Mitkov. The Oxford Handbook of Computational Linguistics. Oxford University Press, 06
2022. ISBN 9780199573691. doi: 10.1093/0xfordhb/9780199573691.001.0001. URL https:
//doi.org/10.1093/0xfordhb/9780199573691.001.0001.

Partha Niyogi. The Computational Nature of Language Learning and Evolution. The MIT Press,
2006.

Santiago Ontanon, Joshua Ainslie, Zachary Fisher, and Vaclav Cvicek. Making transformers solve
compositional tasks. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 3591-3607, Dublin, Ireland, May 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.acl-long.251. URL https://aclanthology.org/2022.
acl-long.251/.

Open AL. GPT-4 technical report. Technical report, Open Al, 2023. URL https://arxiv.
org/abs/2303.08774v2.

OpenAl. GPT-40, 2024. URL https://platform.openai.com/docs/models/
gpt—4ol

OpenAl OpenAl 03-mini, 2025. URL https://openai.com/index/
openal—-o3-mini/.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Jorge Pérez, Pablo Barceld, and Javier Marinkovic. Attention is turing-complete. Journal of
Machine Learning Research, 22(75):1-35, 2021. URL http://jmlr.org/papers/v22/
20-302.htmll

Leonard Pitt and Manfred K. Warmuth. The minimum consistent DFA problem cannot be approx-
imated within any polynomial. J. ACM, 40(1):95-142, January 1993. ISSN 0004-5411. doi:
10.1145/138027.138042. URL https://doi.org/10.1145/138027.138042.

15

https://openreview.net/forum?id=i2oJjC0ESQ
https://openreview.net/forum?id=i2oJjC0ESQ
https://aclanthology.org/2024.acl-long.279/
https://arxiv.org/abs/2506.21521
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=AjXkRZIvjB
https://doi.org/10.1093/oxfordhb/9780199573691.001.0001
https://doi.org/10.1093/oxfordhb/9780199573691.001.0001
https://aclanthology.org/2022.acl-long.251/
https://aclanthology.org/2022.acl-long.251/
https://arxiv.org/abs/2303.08774v2
https://arxiv.org/abs/2303.08774v2
https://platform.openai.com/docs/models/ gpt-4o
https://platform.openai.com/docs/models/ gpt-4o
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
http://jmlr.org/papers/v22/20-302.html
http://jmlr.org/papers/v22/20-302.html
https://doi.org/10.1145/138027.138042

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
alization beyond overfitting on small algorithmic datasets, 2022. URL https://arxiv.org/
abs/2201.02177.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 7957-7968, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023.
emnlp-main.494/.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
Huang, and Huajun Chen. Reasoning with language model prompting: A survey. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 53685393, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
294. URL https://aclanthology.org/2023.acl-1long.294/.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In International Conference on Learning Representations (ICLR), 2023.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=ITw9edRD1D.

Dale H. Schunk. Learning theories: An educational perspective. Macmillan Publishing Co, Inc.,
2012.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sen-
sitivity to spurious features in prompt design or: How i learned to start worrying about prompt
formatting. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=RIu51yNX]T.

Namrata Shivagunde, Vladislav Lialin, Sherin Muckatira, and Anna Rumshisky. Deconstructing
in-context learning: Understanding prompts via corruption. In Nicoletta Calzolari, Min-Yen Kan,
Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of
the 2024 Joint International Conference on Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), pp. 4509-4529, Torino, Italia, May 2024. ELRA and ICCL.
URLhttps://aclanthology.org/2024.1lrec-main.404/.

Thomas J. Shuell. Cognitive conceptions of learning. Review of Educational Research, 56, 1986.
doi: https://doi.org/10.3102/00346543056004411.

Aaditya K. Singh and DJ Strouse. Tokenization counts: the impact of tokenization on arithmetic in
frontier LLMs, 2024. URL https://arxiv.org/abs/2402.14903|

Burrhus Frederic Skinner. The behavior of organisms: an experimental analysis. Appleton-Century,
1938.

Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold circuits,
2023. URLhttps://arxiv.org/abs/2308.03212.

Lena Strobl, Dana Angluin, David Chiang, Jonathan Rawski, and Ashish Sabharwal. Transformers
as transducers. Transactions of the Association for Computational Linguistics, 13:200-219, 02
2024a. ISSN 2307-387X. doi: 10.1162/tacl_.a_00736. URL https://doi.org/10.1162/
tacl_a_00736.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal lan-
guages can transformers express? a survey. Transactions of the Association for Computa-
tional Linguistics, 12:543-561, 05 2024b. ISSN 2307-387X. doi: 10.1162/tacl_a_00663. URL
https://doi.org/10.1162/tacl_a_00663!.

Edward Lee Thorndike. Educational psychology, Vol. 1. The original nature of man. Teachers
College, 1913. doi: https://doi.org/10.1037/13763-000.

16

https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://aclanthology.org/2023.emnlp-main.494/
https://aclanthology.org/2023.emnlp-main.494/
https://aclanthology.org/2023.acl-long.294/
https://openreview.net/forum?id=ITw9edRDlD
https://openreview.net/forum?id=RIu5lyNXjT
https://aclanthology.org/2024.lrec-main.404/
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2308.03212
https://doi.org/10.1162/tacl_a_00736
https://doi.org/10.1162/tacl_a_00736
https://doi.org/10.1162/tacl_a_00663

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function vectors in large language models. In Proceedings of the 2024 International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
AwyxtyMwaG. arXiv:2310.15213.

Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-1142, November 1984.
ISSN 0001-0782. doi: 10.1145/1968.1972. URL https://doi.org/10.1145/1968.
1972.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large lan-
guage models are latent variable models: explaining and finding good demonstrations for in-
context learning. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS °23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pp. 2300-2344, Seattle,
United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
naacl-main.167. URL https://aclanthology.org/2022.naacl-main.167.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a
case study on approximating turing machines with transformers. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 12071-12083. Curran Associates, Inc.,
2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/4ebf1d74f53ece08512a23309d58df89-Paper—Conference.pdf.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824-24837. Curran Associates, Inc.,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4fl5af0f7b3labcad—-Paper—-Conference.pdfl

R.M. Wharton. Approximate language identification. Information and Control, 26(3):236-255,
1974. ISSN 0019-9958. doi: https://doi.org/10.1016/S0019-9958(74)91369-2. URL https:
//www.sciencedirect.com/science/article/pii/S0019995874913692.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=£f3JINQd7CHM.

Adrian de Wynter. Awes, laws, and flaws from today’s LLM research. In Wanxiang Che,
Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2025, pp. 12834—12854, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. URL https:
//aclanthology.org/2025.findings—acl.664/.

Adrian de Wynter and Tangming Yuan. The thin line between comprehension and persuasion in
Ilms. 2025. URL https://arxiv.org/abs/2507.01936.

Adrian de Wynter, Xun Wang, Qilong Gu, and Si-Qing Chen. On meta-prompting. abs/2312.06562,
2023a. doi: 10.48550/arXiv.2312.06562. URL https://arxiv.org/abs/2312.06562/

Adrian de Wynter, Xun Wang, Alex Sokolov, Qilong Gu, and Si-Qing Chen. An evaluation on large
language model outputs: Discourse and memorization. Natural Language Processing Journal, 4:
100024, 2023b. ISSN 2949-7191. doi: https://doi.org/10.1016/j.nlp.2023.100024. URL https:
//www.sciencedirect.com/science/article/pii1/S2949719123000213.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations
(ICLR), 2022.

17

https://openreview.net/forum?id=AwyxtyMwaG
https://openreview.net/forum?id=AwyxtyMwaG
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://aclanthology.org/2022.naacl-main.167
https://proceedings.neurips.cc/paper_files/paper/2022/file/4ebf1d74f53ece08512a23309d58df89-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4ebf1d74f53ece08512a23309d58df89-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S0019995874913692
https://www.sciencedirect.com/science/article/pii/S0019995874913692
https://openreview.net/forum?id=f3JNQd7CHM
https://openreview.net/forum?id=f3JNQd7CHM
https://aclanthology.org/2025.findings-acl.664/
https://aclanthology.org/2025.findings-acl.664/
https://arxiv.org/abs/2507.01936
https://arxiv.org/abs/2312.06562
https://www.sciencedirect.com/science/article/pii/S2949719123000213
https://www.sciencedirect.com/science/article/pii/S2949719123000213

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. 2024. URL
https://arxiv.org/abs/2407.10671.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: deliberate problem solving with large language models. In Pro-
ceedings of the 37th International Conference on Neural Information Processing Systems, NIPS
’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Gregory Yauney and David Mimno. Stronger random baselines for in-context learning. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
TRxQMpLULD.

Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning? In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=C7XmEByCFvV.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On
the paradox of learning to reason from data. In Proceedings of the 32nd International Joint
Conference on Artificial Intelligence (IJCAI), aug 2023. URL http://starai.cs.ucla.
edu/papers/ZhangArxiv22.pdfl

Hao Zhao, Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Is in-context
learning sufficient for instruction following in LLMs? In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
STEEDDv3zIl

Yuxiang Zhou, Jiazheng Li, Yanzheng Xiang, Hanqi Yan, Lin Gui, and Yulan He. The mystery of in-
context learning: A comprehensive survey on interpretation and analysis. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 14365—-14378, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.795. URL
https://aclanthology.org/2024.emnlp—main.795/.

Jingming Zhuo, Songyang Zhang, Xinyu Fang, Haodong Duan, Dahua Lin, and Kai Chen. ProSA:
Assessing and understanding the prompt sensitivity of LLMs. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP
2024, pp. 1950-1976, Miami, Florida, USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.108. URL https://aclanthology.
org/2024.findings—emnlp.108/l

18

https://arxiv.org/abs/2407.10671
https://openreview.net/forum?id=TRxQMpLUfD
https://openreview.net/forum?id=TRxQMpLUfD
https://openreview.net/forum?id=C7XmEByCFv
https://openreview.net/forum?id=C7XmEByCFv
http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf
http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf
https://openreview.net/forum?id=STEEDDv3zI
https://openreview.net/forum?id=STEEDDv3zI
https://aclanthology.org/2024.emnlp-main.795/
https://aclanthology.org/2024.findings-emnlp.108/
https://aclanthology.org/2024.findings-emnlp.108/

A LIMITATIONS

One core limitation of our work is that LLMs are continuously updated, and this could make repro-
ducibility difficult. To mitigate it, we have worked with open and closed-source LL.Ms, and provided
detailed call parameters. Our evaluation is not cheap either: running synchronously a single task per
LLM could and has taken months, depending on hardware, and the aggregate cost for all calls could
render further exploration prohibitive. Lower-volume testing or fewer tasks could provide simi-
lar results, at the expense of statistical significance or ambiguity. Other testing, such as alternate
paradigms (e.g., reasoning models) and prompting (multi-step, multi-call) were not evaluated in our
work and could show more nuanced results.

Finally, interpreting the results from the ML baselines is nuanced. These are fast to train and iterate
over, although they require larger amounts of data, and are also sensitive to OOD. We attribute this
brittleness to the input representation length, which is characteristic of all tasks except PARITY. No
neural networks beyond an MLP were tested. It is known that LSTMs and RNNs excel at these tasks
(Butoi et al.,|2025), albeit also require significant data volumes.

B DETAILED BACKGROUND

B.1 PAC LEARNING

The original framework from [Valiant| (1984) centres itself on the learnability of the concept class,
rather than the learner. We reproduce it here and compare it to our rephrasing to describe generalisa-
tion. For more thorough discussions on this framework, see Kearns & Vazirani|(1994). For a formal,
full description of in-context learning within the context of PAC learning, see Wies et al.[(2023).

Suppose we wish to model a binary classification phenomenon with features assumed to be drawn
from some nonempty set X C {0,1}™ (the instance space). This phenomenon is labelled with a
function (the concept) ¢: X — {0, I}E] A set of concepts C' = {cq,...,cx} is called a concept
class. A learning algorithm is then tasked with classifying samples ~ P, where P is supported on
X. It selects a hypothesis (another concept) h such that

error(h) = EPNED[C((b) # h(x)]. (6)

To learn, the algorithm is given access to a function O: C' x X — {0, 1} that provides i.i.d. samples
with some distribution D. Then, a concept class C over X is PAC-learnable if an algorithm outputs
an h € C such that

Prlerror(h) <e >1-46 7

forallc € C,any P, and € € (0,1/2) and § € (0,1/2), with an observed subset D built with O.
The algorithm is required to run in poly(m, |c|, 1/e,1/5), Where the size |c| is the smallest way to
represent ¢ under a chosen map R: ¥* — C. Stochasticity is accounted in both calls to O and the
learner’s internal state.

Our framework has five core differences:

1. The learning algorithm is a machine learning model.

2. The selected hypothesis is the learner’s weights as a function of the input, f(xy). Namely,
accounting for autoregression, f(z) for z = f(zp_1).

3. The ‘access’ to O is replaced by a preconstructed dataset observed during the prompt call.

4. We reframe Equation [6]to work on the average empirical error of a dataset, to align it with
contemporary evaluation methods.

5. We replace the concept class C and the selection of said concepts with a single function c.
This can be shown to be equivalent by composition by noting that ¢ can act as the selector
for the concept class C.

*X can also be an Euclidean space, X C R™. Concepts may also be equivalently seen as subsets of X.

19

The last difference renders our framework imprecise, but not weaker, when compared to standard
PAC learning. PAC learning is known to have certain limitations. For example, deterministic finite
automata and context-free grammars cannot be learnt in the standard PAC setting (Pitt & Warmuth,
1993} |[Kearns & Valiant, [1994} Niyogi, 2006); and contemporary neural networks has been shown to
be able to learn beyond seen concept classes (see, e.g., Kawaguchi et al.[2022). Our reframing avoids
these limitations by removing the dependence on a specific task (concept class) and instead assumes
that a subset of X is labelled with some c, in line with the expectations on current LLMs. More
importantly, neither of the points above detract from the definition of learning as generalisation.

B.2 AUTOMATA THEORY AND FORMAL LANGUAGE THEORY

A formal grammar G is a collection of strings from an alphabet ¥ = S U N U {¢}, and production
rules (maps) between them. S and IV are sets of non-terminal and terminal symbols, and e the empty
symbol, respectively. These rules form a set (language) L. Grammars may be categorised based on
their complexity—namely, the production rules—using the Chomsky hierarchy. Each class is a proper
subset of the other.

The classes of automata (functions) needed to answer whether « € L for a string have an isomor-
phism between them and the classes of formal grammars in the Chomsky hierarchy. More complex
languages require more complex automata, whose classes are also supersets of the others. This is
because every automaton, with the exception of the Turing machine, is limited in a certain way. For
example, FSA read the input (tape) symbol-by-symbol in one direction and a single pass; change
their internal state between accept and reject; and return either when the read is complete. They thus
can recognise precisely the set of regular languages. Pushdown automata, or PDA, are equivalent to
FSA but with a memory stack added, and can recognise context-free languages. See Appendix [E]for
classifications of our tasks within the context of both automata and formal language theory. Remark
that LLMs can perform recursion and feed their own ‘pseudo-state’ (namely, the token outputs) back
into itself. This allows it to maintain a memory stack, albeit not fully controllable—hence why CoT
is effective to a point: it templatises the memory stack.

20

C ALTERNATE MODELS OF LEARNING

In Section [3.1| we noted that PAC learning is the predominant model for learning in computational
learning theory, and, specifically, learning theory. It is also frequently used when modelling language
learning (see, e.g., Niyogi[2006). However, it is not the only model of learning, or the only accepted
definition of learning. For example, Gold’s inductive inference framework (Gold, [1967) is also
sometimes used to model other language acquisition and learning (Johnson, [2004)), and forms the
basis of algorithmic learning theory.

Frameworks outside of computer science, such as those used in psychology and education, are also
designed to formally define and measure learning. While the definition of learning has broad agree-
ment (the ability to behave in a given way based on experience; Schunk|2012), measurement proto-
cols differ amongst theories.

In this section we discuss alternate models of learning, from inside and outside of computer science.
Specific algorithms and approaches, such as the Triggering Learning Algorithm (Gibson & Wexler,
1994) or back-propagation, are not covered here as they may be framed in a model of learning
(e.g.,in terms of PAC learning [Niyogi [2006). For non-computer science models, we focus on the
two major theories with well-defined measurement protocols: behavioural and cognitive. We do not
cover other frameworks, such as information theories of learning (Shuell,|1986)), since they explicitly
require the learner to encode and retrieve knowledge for arbitrary periods of time, and this is not the
case for ICL.

C.1 GOLD’S INDUCTIVE INFERENCE

In the inductive inference framework, the learner observes an infinite sequence of examples x1, - - - €
3 from some language L generated by some grammar G. The sequence may contain duplicate
elements. Let G(zy) be said sequence up to the k™ element. It is said that a learner f: ¥ — %
learns L (and thus G) in the limit if, based on a chosen metric d: ¥ x X — [0, 1],

lim d((f(z1),..., f(zr)),G(zx)) = 0. (8)

k—o0

Namely, it is said that f has learnt G (in the limit; in the Gold sense), if after & instances, the learner
will correctly identify all observations from L. Remark that the choice of distance directly affects
the definition, and that this learner only observes positive examples. In this framework, it follows
thus that learning a language (r. concept in PAC learning) is equivalent to—eventually—perfectly
reproducing the grammar. In contrast, in PAC learning, learning is probabilistic and can only be
done w.p.1 in the limit.

It follows then that the main criticism to this framework is that it is too rigid, as it does not allow the
learner to make mistakes. Reframings to allow for a looser distance or a threshold number of errors
are effective at allowing more pragmatic learnability (Wharton, |1974). Other variants, such as query
learning (Angluinl |1988)) have also been shown to be equivalent to this framework (Lange & Zilles,
20035). Nonetheless, they are weaker than the original statement (Niyogil 2006).

From a theoretical perspective, |Gold| (1967) showed that the languages represented by deterministic
finite automata and context-free grammars are not learnable in the limit. As noted in Appendix
PAC learning is also limited in its ability to learn certain formal problems. However, it is possible
to create variants of one framework to learn languages that cannot be identified in the other (Niyogi,
2006)). Thus, Gold’s and Valiant’s frameworks are distinct and non-equivalent.

In the context of our work, we are more concerned about measuring learning. Since Equation[6]is a
distance metric, we may use our reframing equivalently in the Gold sense, and setting a (probabilis-
tic) threshold ¢ as before,

lim Pr|d((f(z1)...f(zr)),G(zx)) > €| = 0. ©)

k—o0

However, the statement around the probability of this threshold holding (Equation [7) would be
missing, and hence the conclusions that we could draw are weaker.

21

C.2 BEHAVIOURAL THEORIES

Behavioural models of learning focus on how much feedback (reinforcement of correct guesses) as
well as the developmental status of the learner. While the autoregressive mechanism could account
for feedback, the developmental status is more difficult to approximate. We argue that this could
be considered the pretraining process. We include a small experiment with an untrained model in

Appendix

In the connectionist model of learning (Thorndike, |1913)), learning is given by associations between
experiences, and through trial and error. Experiments to measure this theory were carried across
multiple months (e.g., participants had to close their eyes and draw a line of a specified length
hundreds of times for several days). From our work’s perspective, measurement was done within
the same P.

Another well-known model is that of operant conditioning [Skinner| (1938). This framework adapts
closely to our work. Its full formulation includes the process by which learning occurs (e.g., condi-
tioning, reinforcement, etc), and may be found in |Schunk! (2012)). In this section we limit ourselves
to describe the measurement itself. This is due through Skinner’s definition of generalisation, which
involves the repeated response to an input; and discrimination, which is varying the specific response
based on the input. The core problem with generalisation in this theory is that, since learning relies
on reinforcement, responses cannot be given without having been given previously said reinforce-
ment (i.e., there cannot be zero-shot learning). The explanation for humans is that they rely on the
composition of previously-learnt behaviours, and thus zero-shot learning may occur. For LLMs, this
could also be argued based on the ‘developmental status’ of these learners: namely, the pretraining
itself. Discrimination is also measured through zero-shot learning; namely, providing an appropriate
response to an instance affer being given a general description of the task.

Fitting LLMs into Skinner’s framework means that generalisation is measured through repeated
presentation of exemplars (and their correct labelling). Zero-shot in this case means observing only
the instance of the problem and not having any feedback. Concretely, this was zero-shot modus
ponens; which, as we observed, had near zero-performance across the board—as expected since
the tasks ablated for memorisation and the learner had no reinforcement. On the other hand,
discrimination requires the task description itself. This is more akin to zero-shot learning in the
Description, CoT, and DE scenarios; and, to a minor extent, word salad and SoT.

What ties all these frameworks together to PAC learning is that theories have a certain tolerance to
learner error, which in turn makes them closer to this framework than to Gold’s.

C.3 COGNITIVE THEORIES

In behavioural theories, learner variation is studied by evaluating the impact of the environment and
the previous reinforcement steps. In contrast, cognitive theories emphasise how the differences be-
tween the prior knowledge of the learners, along with their own internal processes, impact learning.
They also distinguish between learning and performance [Schunk| (2012)). This means that, for ex-
ample, in these frameworks, a learner could acquire latent knowledge by observing the environment
although never actually obtaining reinforcement. From the perspective of our work, this is visible
in all prompts minus modus ponens, except that only in the zero-shot setting. It is well-known that
the way by which the learner is exposed to the task (e.g., demonstration, explanations, etc.), as well
as the feedback (success) directly affects the effectiveness of the learning process (Schunk, [2012).
Our work accounts for the first aspect (e.g., by the prompt style itself), but not the second. These,
however, are more akin to how a reasoning model outputs text.

Ultimately, cognitive theories measure learning through success after reinforcement (or without, in
the case of latent knowledge), as well as retention. Our work partially measure these. Same as in
the behavioural theories, the tolerance to error makes these frameworks closer to PAC learning than
to the inductive inference framework.

22

D RELATIONSHIP TO NATURAL LANGUAGE

D.1 IMPACT ON CONCLUSIONS

We noted throughout our work that the synthetic nature of our work could underestimate the perfor-
mance of an LLM on realistic scenarios. The choice of synthetic data was to ablate out the LLMs’
intrinsic knowledge, and instead focus on their ability to infer features from the observed P. It
also allowed us to control every aspect of the data—from contamination to ID/OOD-to ensure a fully
‘sanitised’” experiment suite. This practise is known to be useful to study generalisation (Power et al.}
2022).

However, learnings based on synthetic data do not necessarily fully translate to natural-language
scenarios. This is because synthetic data setups overlook considerations ubiquitous to natural lan-
guage, such as compositionality, feature distribution, and ambiguity. These are all encoded—in one
way or another—in pretrained LLMs.

Even when dealing with natural-language problems which are fully unseen by an LLM (for example,
a language isolate), computational complexity comes into play. It is known that, under certain
assumptions, natural language lies somewhere between context-free and context-sensitive grammars
(Jager & Rogers, 2012), which, in turn—as per our results and the theoretical work from Section
makes these problems difficult to solve without any prior knowledge. On the other hand, the vast
literature and success stories of LLMs suggest that further empirical work is required to characterise
what these models do, not what they could do.

Thus, our results are limited to the ability of ICL to draw conclusions from the data’s features alone,
eschewing any potential semantic priors induced by natural language. They must be interpreted with
caution when considering their extension to natural language, particularly in tasks and evaluations
which could rely on a model’s latent knowledge.

D.2 IMPACT ON RESULTS

To follow the point on latent knowledge, we remark that a full evaluation of ICL should account
for an inductive bias-free learning. This means that the models must not have seen any of the data
before, including natural languageE] In line with the empirical spirit of this work, and in order to
confirm this, we ran the same experiments for PARITY, Pattern Matching, both Vending Machines,
and Hamiltonian in all shots and 6. The learner was a separate, randomly-initialised model (Qwen
2 1.B Instruct; | Yang et al.|2024)). The model had accuracy zero in every task and setup, consistently
showing responses such as ‘itian# Huzzle’ and ‘J5& & DI F&’, and thus having 100% error
rate regardless of shots. A brief examination of the finetuned model revealed consistent, albeit not
necessarily accurate, responses (e.g., 61.6%, 73.5%, and 52.9% for modus ponens ID at 20 shots in
PARITY, Pattern Matching, and Reversal, respectively).

The above aligns with results from the literature and our work, but also opens further areas of
research. Namely, it is known that priors are needed for ICL (Chang & Bisk, 2025} |Hu et al.| [2025).
Also, within our setup, we found that an LLM’s linguistic capabilities do not impact ICL (ref. word
salad and SoT), and that a sufficiently large number of exemplars suffices. A gradual comparison of
the learning (pretraining) process of an LLM with respect to its ability to understand data features
would provide much needed information as to which extent the natural-language data impact ICL as
a learning mechanism.

>Recall from Appendixthat, from the perspective of some theories, full zero-shot is not possible.

23

E FULL TASK DESCRIPTIONS

In this section we describe each task more precisely, and are summarised in Table 3] For concrete
code examples, see the repository and Appendix [H

PARITY Decide if a given binary string {0, 1}* has an even number of zeros. Here, ¥ = {0, 1}
and the automaton decides whether to append = € X based on the transition probabilities. Emission
is given by a fixed probability of %. Unlike most problems, PARITY’s average length per § was
relatively fixed, at 19 characters. The difference was the probability of each character occuring in
sequence. PARITY is classified as a regular language and modellable with an FSA.

Pattern Matching Decide if a pattern abcabb is a substring of a given string x C 3%, where
% = {a, b, c}. The automaton is similar to PARITY’s, with transition probabilities fixed by state
(z € X) but dependent on . Strings with less than eight characters where rejected. In OOD
scenarios, the sequence length grew to over five times the ID length. Pattern Matching is classified
as a regular language and modellable with an FSA.

Reversal Given a string of the form [#r, the goal is to decide if [equals the reversed 7, [= r~ 1.
The start of r is given by the delimiter #. Same as PARITY, the selection of every string depends
on transition probabilities d. In this case, the alphabet was picked to not be grammatical, ¥ = {gfx,
chtte, %, ltintprk, ~_(*/)/~, start} U {#} where [, C ¥\ {#}. In OOD scenarios, the sequence
length grows to over seven times the ID length as § increases. This variant of Reversal is a DCF
language modellable with a PDA (Butoi et al., 2025)).

Stack For afinal string s, starting string so, and series of operations Op on a string, decide if sy =
Op(sp). The operations simulate a stack (push/stop/pop) and may or may not be grammatical (e.g.,
stack overflows). Same as PARITY, the selection of every string depends on transition probabilities
§. Here ¥ = {0, 1} U {push, pop, stop, empty}, s¢, so C {0,1}*, and Op C £¥\{0,1}*. In OOD
scenarios, the sequence length grew to almost three times the ID length as § increased. Stack is a
DCF language modellable with a PDA (Delétang et al., 2023).

Hamiltonian Given a directed graph in adjacency matrix form G, and a path p, decide if p is
Hamiltonian. Under this setup, this problem is classified as a regular language and modellable with
an FSA (Barrett et al.,[2000). In OOD, the edges, and not the vertices, grew to up to 20% the original
length. Consequently, the character description of the graph grew by up to 32%, from 695 characters
to 851.

Maze (Complete and Solve) Given a maze, two segments of the solution path, and a sequence
of moves, in Maze Complete the task is to determine if the moves connect both segments. The
separation between segments—but not the move sequence—is never longer than three moves. Maze
Solve is given the full path and a longer sequence of moves. The task is to determine whether these
moves lead to the solved maze (a valid path from start to exit). Both problems are classified as
regular languages and modellable with FSA (Barrett et al., 2000). In OOD scenarios, the maze size
became larger, albeit the average path length remained somewhat stable.

Vending Machine (Verification and Sum) Given a list of items and costs C, a sequence of opera-
tions Op (add balance, purchase item), and initial and final balances by, by, verify if by = Op(C)+bg
(verification) or compute by + Op(C) + by (sum). For the purposes of this problem, the items and
costs were given in natural language: biscuits cost 20, soda costs 25, and coffee costs 15. Here
¥ = {420,415, 425} U {coffee, biscuit, soda}, or, without resorting to strings, the abelian group
Aym = ({0,20,15,25},4). The first three states denote additions, the named states are subtrac-
tions (item purchases), and the last state is the final balance by. Same as PARITY, the selection of
every string s C ¥ depends on the transition probabilities J. In Vending Machine (Verification),
the learner must assert if the last part of the string, by, equals the sequence of operations. Hence, it
is a regular language and modellable with an FSA. Since the strings are always up to length n, A7,
is a finitely-generated abelian group, and thus the decision version of Vending Machine (Sum) is a
DCF language modellable with a PDA: it can be reduced to Stack with homomorphisms between
the operations (e.g., push and pop versus add and subtract, respectively), and between the inputs

24

Task | Label Balance | Average Lengths | Class
PARITY 49, 50, 50, 50,50 | 18,17,17,17,17 FSA
Pattern Matching 50, 50, 50, 49, 50 | 40, 46, 62,92, 179 FSA
Reversal 49, 50, 50, 50, 50 | 86, 186, 220, 312, 567 PDA
Stack 50, 50, 50, 49, 50 | 97, 169, 207, 235, 263 PDA
Hamiltonian 50, 50, 50, 50, 50 | Graphs: 695, 862, 773,770, 851 | FSA
Vertices: 10, 12, 11, 11, 12
Paths: 24, 27, 26, 26, 28
Maze Complete 50, 50, 50, 50, 50 | 174,173,173, 175, 178 FSA
Maze Solve 50, 50, 50, 50, 50 | 429, 414, 423, 459, 498 FSA
Vending Machine (Verification) | 50, 49, 49, 49, 49 | 105, 104, 111, 118, 128 FSA
Vending Machine (Sum) - - -

Table 3: Label balances (as an average of positive entries) and description (string) lengths for values
of 6 € {0,0.2,0.45,0.65,0.85}. Every length depends strongly on the design of the automaton:
some lengths grow much more slowly than others (e.g., PARITY versus Reversal). Other depend
on the complexity of the task, as opposed to the input description length. For example, Hamilto-
nian maintains a relatively stable average number of vertices, but the connectedness of each graph
increases with 6. Vending Machine (Sum) is not classed here because it is not a decision problem.

(AZ,.’s set and, say, {00,01,10,11}). In practice, the number of possible outputs is finite (albeit

very large), but it requires the learner to keep track of a state. In both OOD scenarios, the sequence
length became longer, by up to 20%.

25

F DETAILED METHODOLOGY

F.1 LLM CALL PARAMETERS

We tested four LLMs: GPT-4 Turbo, GPT-40, Mixtral 8x7B instruct vO1, and Phi-3.5 MoE Instruct.
Details for each model are in Table 4]

Model Description

GPT-4 Turbo™ OpenAl model with a context window of 128k tokens. Version:
GPT-4-0125.

GPT-40* OpenAl model, higher-performing when compared to GPT-4
Turbo, and with a 128k context window. Version: GPT-4-0125

Phi-3.5-MoE-Instruct Mixture-of-experts model with a 128k context window and 6.6B
active parameters.

Mixtral-8x7B instruct vO1 Mixture-of-experts model with a 32k context window and 12.9B

active parameters.

Table 4: Models evaluated. For the models marked with x, details regarding architecture, parameter
size, or pretraining strategies have not been disclosed. All models are instruction-pretrained.

All models were called with temperature set to zero and maximum return tokens of 3 for all prompt-
ing strategies, except CoT (1,024) and the system prompts generated by APO (512).

The APO algorithm was called with a batch size of 1024, beam width 4, and a search depth of 6.

All work was done on a Standard_ND40rs_v2 instance in Azure, which is equipped with eight
NVIDIA Tesla V100 GPUs with 32 Gb of memory each. Calls were made using either the Azure
Open Al API (OpenAl models only) or calling directly the models on the instances. Every model
was called up to five times to account for any potential parsing errors or rate limitations from APIs.
The data analysis was carried out on a consumer-grade laptop.

F.2 BASELINES

The baselines were implemented in scikit learn (Pedregosa et al.,[2011). For all tasks, the parameters
were left as default and used as a random seed 13213. For every entry the string-based representation
was mapped to integers character-by-character. That is, for, example, ’ltintprk’ from Reversal was
mapped to 4. Operators (e.g., "+’ or "pop’) also mapped to integers. Since most models required
tapes of the same length, empty cells were mapped to —100. No simulations of state (e.g., the state
of the stack after a push) were included in the tape.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

G DETAILED RESULTS

G.1 MAIN RESULTS

The full results of our main results are in Figure[3] It can be observed from the prompts that LLMs
generally present the same average per-task behaviour, with minor changes depending on the prompt.
In Table[5| we present the results per LLM and task excluding Vending Machine (Sum).

PARITY Accuracy (Modus Pon PARITY Accuracy (With Description) PARITY Accuracy (With Direct Encodin PARITY Accuracy (APO) PARITY Accuracy (CoT)

Pattern Matching Accuracy (APO)

Reversal Accuracy (APO)

MazeSolve Accuracy (Modus Ponens) MazeSolve Accuracy (With Description) MazeSolve Accuracy (With Direct Encoding) MazeSolve Accuracy (AP0) MazeSolve Accuracy (CoT)

MazeComplete Accuracy (Modus Ponens) MazeComplete Accuracy (With Description) MazeComplete Accuracy (With Direct Encoding) MazeComplete Accuracy (APO) MazeComplete Accuracy (CoT)

Hamiltonian Accur

Vending erdng Machine Sum) Acuracy (WihDict Vending Machine (sum) Accuracy (APO) Vending Machine (Sum) Accuracy (CoT)
o

Stack Accuracy (Modus Ponens)

Figure 3: Complete set of performances per problem, including averages at the top. Observe how
the averages do not necessarily correspond to the performance per-model per-prompt per-task. Con-
sistent behaviours are that CoT is not robust to OOD, and that tasks on average present the same
approximate behaviour regardless of prompt.

sccurcy ()

27

Prompt Turbo GPT-40 Phi-3.5 Mixtral Avg. slope
Slope Acc. for acc.
Shots Modus Ponens | 14.6 ~ 31+25| 12.7 47+22|59 56£1015.7 53£10(/9.1+2.9
Description 33 6145 1.5 63+3 | 6.2 55£111(9.8 514£21(5.0+1.9
DE 11.6 34£21| 135 47424|129 43423 11.7 47422 115.2+1.9
Word Salad | 6.7 5712 23 62+4 |5.1 574+10(10.3 51421 || 12.34£3.1
APO 4.2 50+7 1.8 60+4 | 0.8 49+1 |8.2 39+15(]6.1+£2.0
CoT 2.1 2144 3.6 2647 |-0.1 2744 2.0 2245 |13.64+2.3
é Modus Ponens | -0.3 31 -0.6 47 1-0.6 56 |-0.3 53 -0.4£0.4
Description -0.5 61 -1.1 63+1 |-04 55 |-0.2 51 -0.6+0.4
DE -0.6 34 -0.1 47 1-0.3 43 1-0.3 47 -0.5£0.6
Word Salad | -0.5 57 -1.1 62+1 |-0.6 57£1 |-0.1 51 -0.3+0.3
APO -0.8 50+1 -3.1 60+4 |-1.5 49+2 |-1.0 39+1 || -0.6+0.7
CoT 0.0 2141 -0.7 2641 |-0.2 27 0.3 22 -1.5+1.9

Table 5: Slopes and accuracies for every LLM, averaged over prompts and tasks, excluding Vending
Machine (Sum). On the rightmost column is the average slope for all LLMs. Rows in bold (word
salad and SoT) are not factored in our main results, but discussed in Section The numbers
changed when compared to Table E], but not substantially, thus leaving our results unchanged.

28

G.2 FINE-GRAINED BEHAVIOUR

As mentioned in the main section, when breaking down the results per-prompt and per-task, the
LLMs had (1) similar behaviours over the tasks, but (2) inconsistency over the task type.

Behavioural similarity was given by the LLMs
having low o but similar accuracy in a task-by-
task and prompt-by-prompt basis: all prompts
had a positive slope and low relative differ-
ence among them (Figure [left). Indeed,
the per-prompt shot slopes, averaged per LLM,
were 8.3£3.9 (modus ponens), 4.4+2.2 (de-
scription), 4.54+2.4 (DE), 5.3+2.6 (APO), and
3.3+£2.4 (CoT) (Table [2). The average of the
slopes over shots is 5.2+1.6. We can hence ob-
serve that there was low variation (o) between
the type of LLM and the prompt over all tasks,
and that the overall trend for all models, tasks,
and shots is positive. An OLS fit over the per-
shot ¢ indicated that the model gap, as the
shots increased, narrowed: -2.6+0.5. This is
visible in the image to the left, where the mod-
els start with a large gap on every task (namely, word salad and modus ponens), which narrows as
shots increase. It is worth noting how CoT has a slight improvement, as noted earlier in its slope, but
it remains relatively even when compared to higher-performing prompts (e.g., APO, DE). Indeed,
the dotted lines in the image to the left, denoting the o over the slopes, indicates that most prompts
progressively narrowed their differences in performance, although, again, CoT remained relatively
steady. At a minor extent, this gap on average also narrowed in aggregates over ¢: -0.2£0.2.

LLM Average Performance Trends Per Prompt

Figure 4: Averaged over all tasks and models,
all prompts have a positive slope (5.2+1.6) over
shots, and a narrowing gap in their o (-2.6£0.5).

Inconsistency over the task was visible after observing that related tasks had gaps in peak perfor-
mances: 31% (Pattern Matching versus Maze (Solve)), and 12% (Reversal and Stack; Table . This
is particularly important given that an all-purpose solver (e.g., a universal FSA) should be able to,
theoretically, have perfect performance on all tasks of the same class (r. regular languages). While it
is a stretch to expect that from an LLM, it is worth pointing out that their general-purpose general-
isability is hence (naturally) limited. It then follows that ICL as a learning process depends strongly
on the features observed in-distribution. We cover this further in Section[7} The remaining ablation
studies focused on evaluating this hypothesis.

29

G.3 ABLATION: IMPACT OF LEXICAL FEATURES

Word salad prompts started with low, and sometimes zero, accuracies. In the limit, however, all
prompts matched the average best-of non-salad performances to up a o, with the exception of Re-
versal and Vending Machine (Sum). In the case of PARITY, Pattern Matching, Maze (Complete),
and Vending Machine (Verification), the match was within ¢ /2 (Table @) This improvement was
fast, with slopes of 9.8, 12.1, 11.6, and 9.8 (Turbo, GPT-40, Phi-3.5, and Mixtral, respectively),
for an average of 11£4.6. Compare with the slopes for description (4.4+2.2), DE (4.5+2.4), and
modus ponens (8.3£3.9). On average, word salad prompts were the most robust to §, with val-
ues of -0.240.3 (versus -0.5+0.4, -0.5+£0.6, and -0.41-0.4, respectively), albeit all were within the
baseline 0. See Figure 5] for a side-by-side depiction of the prompts with respect to their non-salad
equivalents (description and CoT).

Problem | Highest | Lowest | Highest (Word Salad) Shots
PARITY 80+3 100-APO|16+20 2-m.p. |80+ 5 100
Pattern Matching 94+1 50-DE 24£20 5-CoT |924£3 50
Reversal 61+11" 100-CoT |20421 2-m.p. |51+1 100
Stack 73+14* 50-CoT |20421 2-m.p. |56+£13 100
Vending Machine (Ver.) |81£12 10-CoT |[22+22 2-m.p. |78 £ 6 100
Maze (Complete) 77£5 100-m.p. |[9£16 2-m.p. | 74£6 100
Maze (Solve) 63+5 50-desc. |17+20 0-APO |54+ 6 50
Hamiltonian 89+2* 100-desc |294+8 0-CoT |68 =+ 20 20
Vending Machine (Sum) | 16+1 5-CoT 0 0-DE' |8 £2 100

Table 6: Highest and lowest accuracies, averaged by model. An asterisk denotes an average over
fewer models (always excluding Mixtral); and T means that there were multiple ties. Highlighted
in grey are the prompts where word salad match within a o the average best-of accuracy from the
non-word salad prompts, and in blue these within o /2. In most cases, the match occurred at 100 and
50-shot, except in Hamiltonian, where the highest best-of was attained at 20 shot.

Unlike word salad, SoT had a major impact on accuracy, and had the lowest average performance
over shots (23+4) in any prompt. This was due to SoT’s high parse error rate over almost all
shots. In contrast, description had near-zero error rates, and modus ponens and word salad quickly
converged to zero. Overall average shot and § slopes in SoT hovered around zero (1.6+2.2 and
0.0=£0.6, respectively). This does not imply the LLMs were unable to solve all problems under SoT.
Some LLMs in SoT obtained above-average peak accuracies in certain tasks: GPT-4o0 in PARITY
(63% at 100 shots), and Turbo in Stack (76% at 50 shots). However, high-performing problems like
Hamiltonian and Pattern Matching had 144+12% and 24+-3% average accuracies, respectively.

30

Average Accuracy (With Description) Average Accuracy (Word Salad)

. = —
: fW\ ﬁ\

shots ()

Accuracy (%)

—cprar — 4 oh —_ oy

Average Accuracy (CoT) Average Accuracy (SoT)

%

W B

Figure 5: Average over all LLMs and tasks for the non-salad (left) and salad (right) prompts.
Description-based prompts rarely performed poorly at zero-shot for all LLMs but Mixtral, while
word salad versions required five shots (Mixtral), ten (GPT-40), or more. However, word salad
prompts eventually reached equivalence with their baselines (Table [6). In high-accuracy tasks
(Hamiltonian, Maze (Complete) and PARITY) the prompts matched DE and modus ponens at be-
tween 10 and 100 exemplars. On the other hand, CoT and SoT had different behaviours: CoT had
an (average) modestly increasing trend which was not reproduced in SoT. However, this is an aggre-
gate: tasks such as Reversal had the same brittleness to OOD than their CoT counterparts; and tasks
such as PARITY even showed above-random best-of accuracies in some tasks (Table El)

Accuracy (%)

31

G.4 ABLATION: POSITIONALITY OF EXEMPLARS

In all our experiments, all exemplars were equiprobable and fixed throughout the experiment (un-
shuffled). In this experiment we randomised the position of the same exemplars within the prompt
(all prompts and LLMs; shuffled), and fully randomised the exemplars per call by drawing them
i.i.d. from the training set.

We observed a small variation on accuracy when the same exemplars were shuffled versus unshuffled
(Table[7). The latter had lower performances, and larger slopes per-LLM, these were 5.6 versus 5.8
(Turbo), 5.2 versus 7.3 (Mixtral), 4.2 versus 4.2 (Phi-3.5), and 3.1 versus 3.5 (GPT-40) (shuffled and
unshuffled slopes). However, per-prompt, these slopes were higher. The best average accuracies in
the shuffled setting were always with the same best-performing prompt from the unshuffled case, and
within the reported o (e.g., 64+12% shuffled versus 61£11% unshuffled for Reversal at 100-CoT).

When fully randomising the examples, we only measured and compared GPT-40 (Table[§). Similar
to the previous experiment, we observed variations on average and highest accuracies (e.g., 94%,
92%, and 93% highest for fully random, shuffled, and unshuffled, respectively, in Hamiltonian with
description) although inconsistent (91%, 92%, and 71% in Stack CoT; 77%, 90%, and 90% in
PARITY APO and DE). On average, however, fully randomising the labels yielded lower average
accuracy (43%) versus shuffled and unshuffled (48% for both), and lower per-prompt accuracy.

Prompt | Turbo | GPT-40 | Phi-3.5 | Mixtral || Avg. slope
Shots Modus Ponens | 12.8 34+£22|10.2 44+18 5.6 50+101 3.9 50+7 8.9+4.0
Description 3.6 57+6 | 1.4 56+3 (4.6 49+10(6.3 S51t14 | 4.7 £2.1
DE 3.6 55+6 [1.0 59+2 (5.8 49+10(5.8 50£17 | 4.942.5
Word Salad | 8.8 28+16(12.1 43422 (114 41+£21 (9.1 45+19 11+£5.0
APO 4.3 54+8 |2.0 5744 |4.5 5049 |2.1 56+4 || 54+2.6
CoT 3.7 49+7 | 1.3 56+4 0.6 45+1 |7.0 39+13 || 3.6£2.6
SoT 1.5 20+4 (2.9 2546 0.3 26+4 (0.0 26+5 0.54+2.2
OOD Modus Ponens | -0.9 34+1 |-0.5 44+1 |-0.4 50+1 [-0.2 50+1 || -04£0.3
Description -0.3 57+1 |-0.8 56+1 |-0.6 4941 |-0.1 51 -0.5+0.6
DE -0.4 55+1 |-1.0 59+2 |-0.4 49+1 |-0.1 50 -0.5+0.7
Word Salad | -0.5 28+1 |-0.2 43 0.0 41 -0.3 4541 || -0.3£0.3
APO -0.2 54 |-1.0 57+1 |-0.6 50+1 0.0 56 -0.6+0.6
CoT -1.1 4942 |-2.7 56t4 |-1.1 4542 |-1.0 30+1 -1.44+1.8
SoT -0.2 20+1 [-0.6 25+1 0.0 26 (0.0 26 +1 || -0.2+0.6

Table 7: Slopes and average accuracies for shots and 9, per prompt, with shuffled exemplars. Greyed
out are the accuracies where the slope or accuracy was higher than the non-shuffled version from
Table[2] but the o was higher. In blue are the setups with higher accuracy and lower o. Top to bottom:
average accuracies per-prompt were 44+14%, 53+7%, 53+8%, 39+£19%, 54+6%, 47+6%, and
24+3%.

32

G.5 ABLATION: ALTERNATE DISTRIBUTIONS

Due to cost, this section is limited to GPT-40. In this experiment we altered P to show different
distributions to the model. These alterations were:

1. Randomised exemplars on every call. This is the same setup from Appendix [G.4]

2. Fully random exemplars drawn i.i.d. from the training set on every call. This is also the
setup from Appendix [G.4]

3. An imbalanced distribution of labels, showing only positive labels as exemplars.
4. A corpus with uniformly at random labels (both test and train) acting as a baseline.

The results are in Table B} With the exception of the random baseline, all setups showed the
ability to learn the underlying distributions: shuffled exemplars and the imbalanced scenario
often matched or outperformed the baseline average accuracy over most tasks and prompts, with
the latter attaining higher average accuracies and larger ¢ and shot slopes. However, the ¢ in the
per-prompt accuracies were higher. The baseline had an average accuracy of 41£+9%: most prompts
stayed within the random-choice 50+£5% accuracy, with the exception of SoT (24%). Remark that
this is expected, since every datapoint has the same probability of having any labels, and this is
uncorrelated to the features themselves—i.e., it is unlearnable.

As in all previous experiments, in the limit we
observed increasing trends in the shot-slopes
and J-slopes across setups and prompts, with
average slopes of 4.3£4.2 and -0.840.6 (Fig-
ure [6] left). These were more noticeable in the
shuffled setting, where all prompts but DE had
improvements. However, in this case, the av-
erage o increased for both slopes: 1.0£0.7 and
-0.3£0.2, respectively. This was observed on
every prompt and every setup, as most setups
learnt the problem. Of note is also CoT, which
showed decreasing shot slopes across all se-
tups: -1.1 for imbalanced labels, -1.1 for shuf-
fled, and -2.5 for both fully random exemplars
and random labels.

Alternate P Average Performance Trend Per Prompt (GPT-40)

Figure 6: Average accuracies for alternate P.
Most prompts had positive slopes, with the excep-
tion of CoT, which peaked fast and then started

decreasing.
Prompt Imb. labels |Fully rand. | Rand. labels | Shuffled Avg. slope
exemp.

Shots Modus Ponens | 12.6 48+22 8.6 29+141(7.7 38+1412.7 47£22 || 8.3+£3.9
Description 1.9 63+£3 | 1.1 59+3 | 0.1 49 |14 6242 || 4.4+£2.2
DE 21 64+£3 (09 60+2 (0.2 49 115 6313 || 4.5+£2.4
Word Salad | 13.4 49+259.1 30+168.9 37+£17|13.5 47£24 || 11+4.6
APO 23 62+4 |33 58+6 |0.8 49+2 |23 6244 || 5.4+£2.6
CoT -1.1 56+6 [-2.5 54+7 |-2.5 4144 |-1.1 56+6 || 3.3£2.4
SoT 29 266 (2.2 25+5 (2.2 24+5 |5.1 2447 || 1.6£2.2

0 Modus Ponens | -0.5 48 |-0.6 29 |-04 38 |-0.6 47 -0.4+04
Description -1.0 63+£1 [-0.7 59 |-0.2 49 |-09 62+1 || -0.5£0.5
DE -1.1 64+£1 [-0.7 60+1 |-0.2 49 |-1.1 63+1 || -0.5+0.6
Word Salad | -0.0 49 |-0.3 30 [-0.0 37 |-0.1 47 -0.2+0.3
APO -1.2 6241 (-0.7 58+1 |-0.2 49 |-1.1 62+1 || -0.5+0.7
CoT -3.0 56+4 |-2.6 5443 |-1.3 41+£1 |-2.9 56+4 || -1.4+1.9
SoT -0.7 | 26£1 [-0.7 25 |-0.7 24+1 |-04 24 0.04+0.6

Table 8: Slopes and average accuracies for shots and d, per prompt, on our evaluation of alterations
of P. Greyed out are the accuracies where the slope or accuracy was higher than or equal to the
non-shuffled version of GPT-40’s predictions; and in blue these where the o was also strictly larger
than GPT-40’s equivalent (Table 2} but excluding Vending Machine (Sum)). Top to bottom: average
accuracies per-prompt were 37+£17%, 53+2%, 544+2%, 37+19%, 53+4%, 52+3%, and 25+6%.

33

G.6 ABLATION: COMPLIANCE VERSUS LEARNING

Prompt ‘ MP Desc DE APO CoT

Compliance | 43+10 53+7 53+6 5246 46+8
Learning 53+£6 56+3 58+4 57+£3 5616

Table 9: Average accuracy across all tasks and
LLMs aggregated by prompt: it is slightly above
average when not accounting for parsing errors.
Large drops occur otherwise, with increases (up
to double) in o. This suggests that LLM compar-
isons depend strongly on measurement.

The distinction between compliance with the
prompt (returning a parseable output) versus
learning the task (returning a correct label) re-
quires further scrutiny.

This is because, in the extreme case, a dataset
could be, for example, 99.9% parsing errors and
one lucky guess, thus leading to inaccurate as-
sessments of performance. Hence, we separated
parsing errors from mislabelled instances, and
re-calculated the averages and slopes. Factor-
ing out parsing errors increased the perceived
performance of an LLM, usually understating
or overstating magnitudes. This is because it be-

comes harder for an LLM to have accuracies below 45% (Table @ left), and average shot and &
slopes are smoothed out (4.7£3.1 and -0.4+£0.2 average, respectively) when compared to compli-
ance and learning (r. 5.443.1, -0.5£0.3), thus making—for example—CoT’s sensitivity to OOD hard
to spot (Figure [7). In turn, this suggests that works should disclose the parsing strategies to avoid

misleading results.

Average Accuracy (CoT; C&L)

Accuracy (%)

Accuracy (%)

Average Accuracy (CoT; L)

Shots (8)

——GPT-4Tutbo =—mGPT-d0 Phi-3.5 MOE = Mixtral 7x88

Average Accuracy (Modus Ponens; L)

Shots (8)
—— Mixtral 7x88

Phi-3.5 MoE

Figure 7: Comparison of select prompts when measuring reasoning as compliance and learning (left,
labelled as C&L and counting parsing errors as mislabels), and only learning (right; not factoring in
parsing errors) for CoT (top) and modus ponens (bottom). In learning, CoT’s sensitivity to OOD is
hard to spot as the performance curves are smoothed out. In comparison, when evaluating compli-
ance and learning, the evaluation has a smoother performance floor and accounts for the full dataset.
Model convergence was still noticeable, as evidenced by the modus ponens plots.

34

H PROMPTS

We show sample prompts for various problems and prompting strategies. For the full prompts, refer
to the repository. In Prompt[I]we show the modus ponens and description prompts for PARITY; and
in Prompt[2)a sample CoT for Pattern Matching. We also show in Prompts[3|and[4]the CoT and SoT
versions of Maze Complete, and in PromptE]the word salad version of Vending Machine (Solve).

This task is called PARITY. The strings in PARITY are generated from a probabilistic automaton.
Your job is to learn what is the likelihood of a string to be labeled O or 1, and output the correct
label.

In the limit where the automaton is deterministic, if the number of zeros in the input string is even,
the label is always 1. Else, it is 0.

Given the data below, determine what is the most likely label for the given string and output ONLY
the label. Data:

Every zumpus is a shumpus. Polly is a lorpus. Everything that is amenable, kind, aggressive, and a
grimpus is a brimpus. Each impus is a wumpus and a tumpus. Wumpuses are impuses. Everything
that is floral and a shumpus is a tumpus. Yumpuses are impuses, lorpuses, and sterpuses. Max is
dull. Wren is a tumpus. Everything that is transparent or a rompus is a lempus. Alex is an impus or
a vumpus. Sally is temperate. Each yumpus is a zumpus. Everything that is fruity and a numpus is a
grimpus. Every zumpus is not discordant. Everything that is windy or a gorpus is a vumpus. Every
yumpus is a gorpus. Everything that is opaque, transparent, or a jompus is a lempus. Each rompus
is a lempus. Stella is large and small and a grimpus and a gorpus. Max is a sterpus or a jompus
or a gorpus. Sam is a wumpus or a dumpus or a tumpus. Everything that is bitter and a tumpus
is a rompus. Everything that is angry and a lempus is a sterpus. Sally is a gorpus, a shumpus,
a dumpus, or a tumpus. Everything that is snowy, sunny, and a yumpus is a lorpus. Everything
that is transparent and a vumpus is a brimpus. Everything that is small and a vumpus is a rompus.
Everything that is a brimpus, a shumpus, or a wumpus is a tumpus.

0000110010010010000000:
80100100001001110010:
8000100100001 10010:
80001 10010010010000000:

Prompt 1: Prompts for description (red), word salad (blue), and modus ponens (grey) for PARITY. In
the implementation these are the standard ChatML-formatted prompts, so the coloured lines are part
of the system prompt, while the grey are exemplars alternating between the user input (the binary
string) and the assistant’s response (the single bit). In zero-shot, the prompt includes a specification
of the output format (‘Give your answer as a single integer, and your reasoning in a new line. For
example:’). The reasoning is cut off and does not affect the experiments. The list of words from
word salad comes from the ontology by [Saparov & Hel(2023).

35

This is a pattern matching task. The strings in this task are generated from a probabilistic automaton.
Each string is labelled 0 or 1 depending on whether the pattern “abcabb” is (1) or is not (0) in the
string.

Your job is to learn what is the likelihood of a string to be labelled O or 1, and output the correct
label.

In the limit where the automaton is deterministic, if the pattern is present in the string, the label is
always 1. Else, it is 0.

Given the data below, determine what is the most likely label for the given string and output ONLY
the label.

Data:

abaababbbbbbbaaaaaaaaaacabaaabcaaaaaaccbbbaaababbbbbbbbbbbbbbbbbbbbbbbbaaaacaccbaccc
cccbebbbaaaacccccccaacabaaaacabaaaaccbbbbecccecccaaaacabbbbaaaaaaaaaaaaaaaaaaccbbbaaaaaa
aabbbaabbccccccaaaccaacabbbbaabebbecccccaaacabbbbbeccccccaaaaaccbbbeccececccabebbacaab
aaaaaacabbaaaaaaaaaaaac:

Let’s think and solve this step-by-step. We read the string character-by-character and keep a tally:
We read “a”. It is a match. Our tally is: a. Now we move to the next character.

We read “b”. It is a match. Our tally is: ab. Now we move to the next character.

We read “a”. It is not a match. We clear our tally. Now we move to the next character.

We read “a”. It is a match. Our tally is: a. Now we move to the next character.

We read “b”. It is a match. Our tally is: ab. Now we move to the next character.

We read “a”. It is not a match. We clear our tally. Now we move to the next character.

We read “b”. It is not a match. Now we move to the next character.

We read “a”. It is a match. Our tally is: a. Now we move to the next character.

We read “a”. It is not a match. We clear our tally. Now we move to the next character.
We read “a”. It is a match. Our tally is: a. Now we move to the next character.

We read “a”. It is not a match. We clear our tally. Now we move to the next character.
We read “a”. It is a match. Our tally is: a. Now we move to the next character.

We read “a”. It is not a match. We clear our tally. Now we move to the next character.
We read “a”. It is a match. Our tally is: a. Now we move to the next character.

We read “a”. It is not a match. We clear our tally. Now we move to the next character.
We read “c”. It is not a match. Now we move to the next character.

We have reached the end of the string. The pattern “abcabb” is is not in the string.

So the answer is 0

abaababbbbbbbaaaaaaaaaacabaaabcaaaaaaccbbbaaababbbbbbbbbbbbbbbbbbbbbbbbaaaacaccbaccce
cccbebbbaaaacccecccaacabaaaacabaaaaccbbbbeccccccaaaacabbbbaaaaaaaaaaaaaaaaaaccbbbaaaaaa
aabbbaabbccccccaaaccaacabbbbaabebbecccccaaacabbbbbeccceccaaaaaccbbbeccccceccabebbacaab
aaaaaacabbaaaaaaaaaaaac:

Prompt 2: Prompt for one-shot Pattern Matching CoT. As before, the exemplar (grey) contains both
the sample pattern and a procedurally-generated CoT response keeping a tally (stack). During SoT,
both the words in the system prompt (red) and the exemplars are replaced by random words. The
only things left are the pattern, labels, and the final output format.

36

You are helping me complete a maze. You will be given a maze almost solved, and sequence
of moves to finish solving it.

Your job is to determine whether the moves are correct and will lead to solving the maze solved.
You must always output O (incorrect) or 1 (correct).

The path you must complete is denoted by uninterrupted “+”, and your completion starts at “?”’.
Walls are denoted by “#”, and the start and end are “S” and “E”, respectively.

The first move you must verify is the one connecting the path to “?”.

Given the data below, determine what is the most likely label for the given maze and moves;
and output ONLY the label.

Data:

Solved maze:
HSHIHHHHHE
#+++# #

#4+-3 #HHH
#H#+++H# #

H#H+H#
H#H++HH#

#HH

++++E
HEHHEHHE
Missing moves:
down,down,right:

Let’s think and solve this step-by-step.
We begin at line 0.This line does not contain “?”.
We move on then to line 1.
This line does not contain “?”.
We move on then to line 2.
This line does not contain “?”.
We move on then to line 3.
This line does not contain “?”.
We move on then to line 4.
This line does not contain “?”.
We move on then to line 5.
This line contains “?7”.
The “?” character is at position 3 in the line. We will now perform a search on the neighbours
to find the path.
This has neighbours: [‘down’] at [(6, 3)].
We select the neighbour at (6, 3) (“down”) and add it to our buffer. Our buffer is: [‘down’].
This has neighbours: [‘down’] at [(7, 3)].

We select the neighbour at (7, 3) (“down”) and add it to our buffer. Our buffer is: [‘down’,
‘down’].

This one has the following available neighbours connecting to the path: [‘right’] at [(7, 4)].

This has a “+” neighbour at (7, 4) (“right”), so it connects to the path.
We add it to our buffer. Our buffer is now [‘down’, ‘down’, ‘right’].

We are done!
Our final set of positions is down,down,right and the solution says down,down,right.
So the answer is 1

Prompt 3: Prompt for the CoT version (one-shot, user input omitted) of Maze Complete. In red, the
system prompt. In grey, a single exemplar.

37

This is a string detection task. The strings in this task are generated from a probabilistic au-
tomaton, described in the code below.

Each input is of the form LEFT#RIGHT. Each string is labelled O or 1 depending on whether
the RIGHT pattern is (1) or is not (0) a reversal of LEFT.

Your job is to learn what is the likelihood of a string to be labelled 0 or 1, and output the correct
label.

Here’s the code:

ALPHABET = [“gfx”, “chtte”, “%”, “Itintprk™, “~_(*V)/~ 7]

MIN_LEN =5

def reversal_tape(P):
#n + 1 states: ALPHABET + “final”
tape = []
end_state = “stop”
current_state = “start”
states = [a for a in ALPHABET] + [end_state]
while True:
next_state = random.choices(states, weights=P[current_state])[0]
if next_state == end_state:
break
else:
tape.append(next_state)
current_state = next_state

return tape
Given the data below, determine what is the most likely label for the given string and output
ONLY the label.
Data:

chttechttegfxltintprk% % %% %% \-(*/)/~ chtteltintprkltintprk % %#% %ltintprkltintprkchtte
OIS %% % %% %oltintprkgfxchttechtte:

Prompt 4: System prompt (red) for the DE version (one-shot) of Stack along with a user input (grey).
Remark that in this setup the alphabet is explicitly defined, as well as the code used to generate the
output minus the weights for P.

38

You are a vending machine. You are given a sequence of additions of balance (+10, +5, etc) or
a selection (soda, biscuit, or coffee).

Your job is to output the remaining balance given the sequence.

Each soda is worth 25. Each biscuit is 20. Each coffee is 15. When someone selects a soda,
biscuit, or coffee, the value of the item is subtracted from the balance.

Given the data below, determine what is the most likely balance for the given string and output
ONLY the balance.

Data:

loud orange shy, rompuses amenable rompuses lorpuses Max Vumpuses or Grimpuses feisty
muffled, opaque, Yumpuses rompus, gorpus angry, jompuses bitter sterpus vumpuses, shumpus
luminous temperate luminous, Fae windy bitter, brown sweet, dumpuses, grimpus angry hot
moderate grimpus, Rompuses lempus

+10,+10,biscuit,+10,+5,coffee,+10,+10,biscuit,+10,+10,biscuit,+5,+10,+10,soda,+10:

Let’s think and solve this step-by-step. We start with a balance of 0.

impus, gorpuses “+10”, Rompuses brimpus, aggressive 10 impuses Lempuses impus rainy
grimpuses, sunny zumpus, shumpus 10.

spicy, bitter “+10”, lorpuses floral, gorpus 10 is tumpus wumpuses numpuses slow overcast,
Sterpuses vumpuses 20.

aggressive impuses “biscuit”, Each Sterpuses vumpus biscuit liquid mean 20 lempus fast dum-
pus, fruity aggressive red, 0.

sterpus, metallic “+10”, numpus, wumpuses, brimpuses, 10 windy cold zumpuses sterpus zum-
puses vumpuses, happy earthy, 10.

fruity tumpuses, “+5”, sterpuses, lorpuses, jompuses, 5 brown, or hot, grimpuses Gorpuses
wumpus Wumpuses happy 15.

yumpuses, an “coffee”’, Sam windy vumpuses, coffee tumpuses dull 15 dumpuses sweet feisty
Polly brown, shumpuses, 0.

sweet, luminous “biscuit”, large moderate brimpus, biscuit dumpuses, bitter, 20 brown zum-
puses snowy gorpus Everything numpuses, 0.

brimpuses discordant, “+5”, rompus, melodic, jompuses, 5 wumpus sweet, Zumpuses zumpus,
jompus, opaque lorpus Fae 5.

bitter brown, “+10”, bright, tumpus sour, 10 yumpus, gorpus Lorpuses discordant impuses
lempuses wumpus slow, 15.

gorpuses shy, “+10”, opaque fruity mean 10 Stella Rompuses windy wumpus rainy, happy,
jompuses dumpus, 25.

spicy Lempuses “soda”, Brimpuses bitter metallic, soda brown, tumpus, 25 snowy, lorpus kind,
temperate small moderate 0.

nervous, vumpuses “+10”, liquid moderate impus, 10 angry snowy bright gorpuses impuses,
brown, Lorpuses brown 10.

We read “+10”, so we add 10 to our current balance and we now have 10.

We read “+10”, so we add 10 to our current balance and we now have 20.

We read “biscuit”, so we return a biscuit and substract 20 from our balance and now we have 0.
We read “+10”, so we add 10 to our current balance and we now have 10.

We read “+5”, so we add 5 to our current balance and we now have 15.

We read “coffee”, so we return a coffee and substract 15 from our balance and now we have 0.

We read “biscuit”, so we return a biscuit and substract 20 from our balance and now we have 0.
We read “+5”, so we add 5 to our current balance and we now have 5.

We read “+10”, so we add 10 to our current balance and we now have 15.

We read “+10”, so we add 10 to our current balance and we now have 25.

We read “+10”, so we add 10 to our current balance and we now have 10.

Our final balance is 10. The answer is then 10

Prompt 5: Prompt with one exemplar for Vending Machine (Sum). In blue, the SoT version of this
prompt; and in red, the CoT version. For brevity, we omit lines for both CoT/SoT outputs. In grey
are the lines shared by both prompts: the first line is the user input, and the other two are shared
boilerplate for the CoT/SoT prompts for parsing. Observe how the relevant quantities do not change.

39

	Introduction
	Findings
	Interpretation

	Related Work
	Theoretical Evaluations
	Empirical Evaluations

	Background: The Need for Empirical Evaluation of ICL
	A Formal Definition of Learning
	Task Similarity
	Defining ICL In Context

	Methods
	Framing
	Prompting strategies and scope
	Tasks Overview
	Models and Measurement
	Data Generation

	Results
	Overall Performance
	Distributional Shifts
	Fine-Grained Behaviour

	Ablation Studies
	Impact of Lexical Features
	Positionality of Exemplars
	Impact of Alternate Distributions
	Compliance versus Learning

	Discussion
	Conclusion
	Ethics
	Reproducibility Statement
	Limitations
	Detailed Background
	PAC Learning
	Automata Theory and Formal Language Theory

	Alternate Models of Learning
	Gold's Inductive Inference
	Behavioural Theories
	Cognitive Theories

	Relationship to Natural Language
	Impact on Conclusions
	Impact on Results

	Full Task Descriptions
	Detailed Methodology
	LLM Call Parameters
	Baselines

	Detailed Results
	Main Results
	Fine-Grained Behaviour
	Ablation: Impact of Lexical Features
	Ablation: Positionality of Exemplars
	Ablation: Alternate Distributions
	Ablation: Compliance Versus Learning

	Prompts

