
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

IS IN-CONTEXT LEARNING LEARNING?

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning (ICL) allows some autoregressive models to solve tasks via
next-token prediction and without needing further training. This has led to claims
about these model’s ability to solve (learn) unseen tasks with only a few shots
(exemplars) in the prompt. However, deduction does not always imply learning,
as ICL does not explicitly encode a given observation. Instead, the models rely
on their prior knowledge and the exemplars given, if any. We argue that, math-
ematically, ICL fits the definition of learning; however, its full characterisation
requires empirical work. We then carry out a large-scale analysis of ICL ablating
out or accounting for memorisation, pretraining, distributional shifts, and prompt-
ing style and phrasing. We find that, empirically, ICL is limited in its ability
to learn and generalise to unseen tasks. Namely, in the limit where exemplars
become more numerous, accuracy is insensitive to exemplar distribution, model,
prompt style, and the input’s linguistic features. Instead, it deduces patterns from
regularities in the prompt, which leads to distributional sensitivity, especially in
prompting styles such as chain-of-thought. Given the varied accuracies and on
formally similar tasks, we conclude that autoregression’s ad-hoc encoding is not a
robust mechanism for learning, and suggests limited all-purpose generalisability.

1 INTRODUCTION

In learning theory, learning is tantamount to generalisation. Learning how to solve a task means that,
after seeing examples of a task drawn with a distribution P , a learner will have a bounded probability
of error on classifying new inputs from some Q ̸= P (Valiant, 1984). In most traditional learning
paradigms, a learner observes inputs from P , and then encodes them within its own knowledge (e.g.,
updating weights). Then it uses this knowledge to generalise to new examples. Autoregressive large
language models (LLMs)1 do not explicitly do that. Instead, they perform in-context learning (ICL),
where they ‘solve’ (produce relevant outputs for) a task specified in natural language via next-token
prediction (Brown et al., 2020). An LLM observes, but does not encode, the full training set through
the prompt. Instead, it updates its beliefs ad hoc, where the beliefs are a combination of the input
(drawn from P) plus its own intrinsic knowledge (frozen weights). That is, it modifies its states
at run-time to–ideally–generalise to new observations for any Q. Reliance on intrinsic knowledge
implies that the LLM is also expected to generalise to any task (unseen P).

We argue, however, that knowing is not always the same as learning. Claims on an LLM’s in-task
generalisation (consistent performance w.r.t. any P within the task) and cross-task generalisation
(consistent performance w.r.t any task) have divided the field. Theoretical characterisations on their
learning power are usually limited, and hence Borenstein et al. (2024) argued that empirical explo-
rations could help understand what can transformer-based models learn versus what they actually
learn–a central motivation of our work. However, criticisms to empirical research on LLMs note that
prompt-and-model dependence makes it hard to reproduce (Li et al., 2025; De Wynter, 2025; Sclar
et al., 2024), and that the terminology, methods, and results themselves are unreliable and could lead
to misinterpretation (Huang & Chang 2023; De Wynter 2025; also Section 2).

In this paper we examine to what extent ICL is an effective learning paradigm. We begin by noting
that, mathematically, ICL constitutes learning–as opposed to solely repeating internal knowledge–
but remark that further work is required to fully characterise it. We then perform empirical studies

1We use ‘autoregressive model’ and ‘LLM’ interchangeably, with the assumption that the LLMs discussed
are autoregressive.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

accounting for some of the criticisms and shortcomings mentioned; namely, sensitivity to pretrain-
ing, memorisation, and dependence on natural language; prompting style and phrasing; and robust-
ness to distributional shifts in the observed training and test sets. Thus we focus on evaluating
generalisation from data in context (unseen P until runtime, and fully-unseen Q); as opposed to
generalisation from a model’s pretraining strategy.

Our experiments are on four LLMs, nine tasks, and ablations on prompting strategies, training distri-
butions, and exemplar setups. The main results–that is, test set results–comprise 1.89M predictions
per LLM. To our knowledge, our study is one of the largest of its kind.2

1.1 FINDINGS

We ablate dependence on natural language and prompt phrasing, and use artifical alphabets to force
the LLM to learn the task solely from the observations. Hence, our findings seek to characterise ICL
as a learning paradigm, and not as an evaluation of prompt-based problem-solving capabilities.

These are:

1. In the limit (as the number of exemplars grows), the average accuracy gap narrows be-
tween the LLMs tested, and all prompting strategies steadily improve accuracy. Likewise,
semantically nonsensical prompts near or match their non-randomised counterparts.

2. ICL under altered training (exemplar) distributions is robust to positionality and proportion
of labels in the limit. However, ICL is brittle to altered test distributions (i.e., out-of-
distribution; OOD) as the distance between train and test distributions grows, especially in
chain-of-thought (CoT; Wei et al. 2022b) and automated prompt optimisation (APO).

3. Closely-related tasks do not necessarily have closely-related performances, with average
accuracy differences as large as 31%. Moreover, traditional baselines (e.g., decision trees
and kNNs) outperform ICL average performance in half of the tasks evaluated.

Our findings contradict the notion that a few exemplars are required to solve a task: peak average
accuracy was at 50-100 exemplars–much higher than in reported negative (Lu et al., 2024; Sclar
et al., 2024; Dziri et al., 2023; Delétang et al., 2023) or positive (Brown et al., 2020) results from
LLM studies in natural-language and automata-based tasks, and independently confirms similar
results for natural-language tasks (Anil et al., 2022; Agarwal et al., 2024). They, however, counter
the view that LLMs are brittle to exemplar ordering or characterisation (Sclar et al., 2024; Errica
et al., 2025; Zhao et al., 2025; Agarwal et al., 2024), and align with the view that CoT and APO are
good at solving some tasks (Merrill & Sabharwal, 2024; De Wynter et al., 2023a; Li et al., 2024),
although we show that these are not robust to OOD. Finding 3 expands on the works that found
that LLM accuracy decays with task complexity (Dziri et al., 2023; Gupta et al., 2025; Merrill &
Sabharwal, 2024), but notes that analogous tasks have marked performance differences.

1.2 INTERPRETATION

Our findings are constrained to easily-verifiable tasks (e.g., parity checking or Hamiltonian-cycle
verification) in a single call. From within our theoretical framework, we find evidence that ICL
presents signs of learning capabilities; but that it is tied to the autoregressive paradigm, and not
to any particular LLM, training strategy, or prompting style. We argue that this is because ICL
leverages statistical features from the prompt, as opposed to feature relations within the data.
This ad hoc encoding mechanism implies that ICL’s cross-task generalisability is limited to the
representativeness of the data. Thus, we conclude that, from the perspective of our framework, ICL
is mathematically a form of learning, albeit not a robust one.

Remark that our work is constrained to non-natural language tasks, with our ablation on natural
language limited to the instructions, not the datapoints. This setup forces LLMs to not rely on
their intrinsic knowledge, and instead infer the full characterisation of the data from the prompt
itself. This suggests differences with some claims on their emergent capabilities, but also raises the
question to which semantic extent priors from the data impact (realistic) natural language tasks and
its relationship to learning. This opens avenues for further systematic evaluation of their capabilities.

2Code and data is in https://anonymous.4open.science/r/is-icl-learning-8661/

2

https://anonymous.4open.science/r/is-icl-learning-8661/

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2 RELATED WORK

Evaluation of LLMs is an active area of research, and our coverage of its works is non-exhaustive.
For broader surveys of this area we point the reader to Huang & Chang (2023), Li et al. (2025), and
Qiao et al. (2023). For ICL in particular, see Zhou et al. (2024). Early research focused on eval-
uating whether RNNs, transformers, and other non-generative models actually performed learning
(Borenstein et al., 2024; Zhang et al., 2023; Butoi et al., 2025). These works, like ours, investigated
the models’ ability to learn formal languages, or subsets of first-order logic, and also found brittle-
ness in OOD scenarios. A solution proposed by Dan et al. (2022) involved passing in the encoding
of the automaton generating the language–we explore its viability for ICL in our work.

2.1 THEORETICAL EVALUATIONS

Theoretical research on what transformer-based models can possibly learn often find negative re-
sults (Hahn & Rofin, 2024; Strobl et al., 2024a; Kleinberg & Mullainathan, 2024). Even when it
has been known for some time that the transformer (under certain assumptions) is Turing-complete
Pérez et al. (2021); Bhattamishra et al. (2020); Li & Wang (2025), Turing completeness by defini-
tion requires an unbounded resource or finding an appropriate machine; which is itself undecidable,
although approximable (Wei et al., 2022a). More constrained works with specific attention types
could recognise languages in the class of constant-depth, polynomial-size alternating circuits. Con-
cretely, those in AC0 (Hao et al., 2022); and partly TC0 ((Strobl, 2023); (Li et al., 2024) for CoT),
although as of yet it is unknown why (Strobl et al., 2024b). Nonetheless, Kleinberg & Mullainathan
(2024) showed that next-token prediction is a different problem than judging membership (labelling
data). Even their ability to model formal languages tends to find disparate results, depending on the
assumption made (Strobl et al., 2024b). It is perhaps because of these findings that Borenstein et al.
(2024) call for an empirical evaluation of effective capabilities of LLMs.

2.2 EMPIRICAL EVALUATIONS

Empirical LLM evaluation is complex and also marred with disparate accounts on their capabili-
ties. This is often due to the influence of various factors, ranging from choice of model, statistical
significance, or ablations with respect to natural language and memorisation (De Wynter, 2025).
For example, it is known that several LLMs suffer from data contamination (Carlini et al., 2023;
Lee et al., 2023; De Wynter et al., 2023b) which could render benchmark-based evaluation unreli-
able; and that different measurements show less impressive results (Schaeffer et al., 2023; Altmeyer
et al., 2024). Likewise, Gupta et al. (2025); Dziri et al. (2023); Merrill & Sabharwal (2024); Liu
et al. (2023) and Lu et al. (2024) evaluated (and found weaknesses) in LLMs when generalising
to unseen tasks, especially when using CoT and as the task complexity grew. On the other hand,
positive results such as that of Ontanon et al. (2022) and Borenstein et al. (2024) indicate that, for
certain tasks, these weaknesses may not necessarily hold. Indeed, some positive results, such as
that of Agarwal et al. (2024), showed that expanding shots improved performance in natural and
non-natural language problems, albeit the main results were constrained to a single model.

Research has also attempted to determine whether the models understand the task as described by
the prompt, usually with negative results (Webson & Pavlick, 2022; Jang et al., 2023; De Wynter &
Yuan, 2025; Mancoridis et al., 2025; Dziri et al., 2023; Strobl et al., 2024a) Proposed explanations
to this related model size to sensitivity to semantics (Shivagunde et al., 2024; Long et al., 2024)
and inductive/selection biases Zhao et al. (2025); Chang & Bisk (2025) although this sensitivity
disappeared when the exemplars included instructions.

However, there were some–reasonable, due to scope–gaps in the works above due to the limiting
factors mentioned. Thus, we attempt to account for these in our work. Other attempts to explain ICL
have been through benchmarks (Yauney & Mimno, 2024; Mirzadeh et al., 2025; Zhuo et al., 2024;
Sclar et al., 2024), mechanistic interpretations (e.g., subnetwork generalisation (Bhaskar et al., 2024;
Kumon & Yanaka, 2025; Hu et al., 2025); probing (Yin & Steinhardt, 2025; Azaria & Mitchell, 2023;
Todd et al., 2024; Ju et al., 2024)), Bayesian approaches (Xie et al., 2022; Edelman et al., 2024), or
more targeted evaluations, such as that of Chan et al. (2022). This latter work argues that ICL arises
from the distribution of the elements within the training data, along with the use of the transformer,
and it is a driving argument for our work.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3 BACKGROUND: THE NEED FOR EMPIRICAL EVALUATION OF ICL

We discuss formalisms for learning and task similarity in Sections 3.1 and 3.2, and tie ICL to these in
Section 3.3, noting that they partly overlook the mechanism behind ICL. Details are in Appendix B.

3.1 A FORMAL DEFINITION OF LEARNING

We capture robustness in learning with a variation of the probably approximately correct (PAC)
framework from Valiant (1984). We use PAC learning as it is the predominant model in compu-
tational learning theory–concretely, statistical learning theory–as well as in language acquisition
(Mitkov, 2022; Niyogi, 2006). It also allows for some leeway to a learner through error tolerance.
For a comparison with other frameworks, see Appendix C.

We reframe PAC learning to focus on the learner. This is a syntactical re-definition and does not alter
the original framework. Suppose we wish to model a binary classification task with features assumed
to be drawn from some nonempty set X ⊂ Rm. These examples are labelled with an unknown
function c : X → {0, 1}. In machine learning, a (data)set D is sampled with some distribution P
supported on X , D = {⟨xi, c(xi)⟩|xi ∼ P}. A learner (algorithm) f : X → {0, 1} observes D
until its empirical error error(·) is bounded by some ϵ ∈ (0, 1/2), where

error(f,D) =
1

|D|
∑

⟨x,c(x)⟩; x∈D

1[f(x) ̸= c(x)] ≤ ϵ. (1)

Equation 1 must holds for any other dataset E and distribution Q such that E = {⟨xi, c(xi)⟩|xi ∼
Q}, where Q is likewise supported on X; that is, if

Pr[error(f,E)] ≥ 1− δ, (2)

for δ ∈ (0, 1/2). Intuitively, a learner has learnt the task if it has a (lower) bound on its error for any
datapoint. Since P and Q are unspecified, f has learnt c if it is robust to changes in P .3 Standard
PAC learning has some limitations, especially around regular languages. Hence, our reframing is
only to ground our discussion on a strict definition of learning, as done by, e.g., Livni et al. (2014).

3.2 TASK SIMILARITY

In formal language theory, a collection of transition rules G (a grammar) generates instances (strings)
using symbols from an alphabet Σ to form a language L. We assume all instances of a task are gen-
erated by its own G and Σ, with transition probabilities given by a (chosen) P . This P is the same
from Section 3.1, and, to the learner L may be known (or deduced), but G is not. Formal languages
may be classified according to the (expressive) power of the automaton able to accept/reject (recog-
nise) an x based on the query x ∈ L?. Relevant to us are these recognisable by finite state automata
(FSA), and pushdown automata (PDA). FSA read the input unidirectionally, changing their inter-
nal state between accept and reject, and return either when finished. Tasks such as PARITY and
Hamiltonian-cycle verification, are recognisable with an FSA. Other tasks, like stack manipulation,
require the automaton to track a set of states. PDA are FSA equipped with memory, and can solve
these, more complex, tasks. They are considered more powerful than FSA. The autoregressive na-
ture of LLMs allows for some memory, and hence they could be considered a type of PDA. However,
in this work we treat LLMs as recognisers of unknown expressive power.

3.3 DEFINING ICL IN CONTEXT

In ICL, an LLM takes in a natural-language string as a task specification (system prompt), and
uses the input tokens (in natural language) to ‘solve’ (learn) it by predicting the following tokens
recursively. Formally, Wang et al. (2023) formulate ICL classification as

argmax
f(xk)∈{0,1}

Pr[f(xk) = c(xk)|x1, c(x1), . . . , xk], (3)

3In the words of Niyogi (2006), any classifier ‘worth their salt’ should fulfil this condition.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

where xk is the datapoint to be labelled, and we have used the notation from Section 3.1. How-
ever, ICL is sensitive to the system prompt. Thus, practitioners have resorted to various prompting
techniques, which are not accounted for in Equation 3. Factoring in both we get

argmax
f(xk)∈{0,1}

Pr[f(xk) = c(xk)|p, π(x1), π(x2), . . . , π(xk−1), π̃(xk)], (4)

where p is a system prompt, xi are example datapoints (i < k), and xk is the instance to be classified.
We let π, π̃ be functions that take in inputs xi and return natural-language representations π(xi) =
⟨xi, c(xi)⟩ for i < k (r. π̃(xk) = xk). These could be, e.g., a concatenation of the datapoint and
the label (e.g., π(xi) = ‘xi : c(xi)’); and a datapoint conditioning for next-token (label) prediction,
π̃(xk) = ‘xk :’. It could also be more complex (e.g., ‘Let’s think and solve step-by-step...’). Both p
and π(xi) may be empty, but not at the same time. At inference time, when computing c(xk), the
LLM conditions recursively on its observations from p, . . . , π̃(xk), and its previous knowledge.

PAC learning does not limit how the learner learns. From Equation 4, it follows that ICL can be
viewed as a (formal) learning process. Namely, a learner f : {p} ×k X → {0, 1} is an LLM with
k − 1 exemplars x1, . . . , xk−1 ∼ P , an input instance to classify xk ∼ Q, representations π, π̃
and an optional system prompt p. We say that ICL learns c and X if Equation 2 holds for any
xk, x1, . . . , xk−1 ∈ X , π, π̃, P , and Q. This thus makes ICL strongly dependent on π, π̃ and p (the
prompt), but does not specify to what extent, since it depends on the autoregressive nature of the
LLM (namely, the ‘scratchpad’) and its own weights. Indeed, one consequence of Equation 4 is that
as k grows, since p is constant, its contribution vanishes when equiprobable to the exemplars:

Pr[Y |p, π1, . . . , πk−2, π̃k] ∝ Pr[p|Y]

(
k−1∏
i

Pr[πi|Y]

)
Pr[Y] Pr[π̃k], (5)

where we let Y := f(xk) = c(xk); π(xi) := πi; and π̃(xi) := π̃i, for readability. Conversely, the
encoded exemplars have a major contribution in the limit. Nonetheless, our reframings do not char-
acterise π (e.g., which natural-language strings, if any, work better?). This thus calls for empirical
evaluations as to how effective ICL is at learning, accounting for P , p, π, π̃, and c.

4 METHODS

Sample prompts are in Appendix H and full task definition and characterisations with respect to
ID/OOD are in Appendix E. Specifics on LLM calls are in Appendix F.

4.1 FRAMING

We seek to find out if a learner (LLM) f can correctly and robustly decide if a given x ∈ Σ, sampled
with some D for some Σ and G, belongs to a language L. We let G, Σ, and L be fixed for a task,
but not always known to f . We measure correctness with accuracy, 1− error(f, ·); and robustness
with accuracy under the distributional shift. That is, we consider both in-distribution (ID) entries
x ∼ P and OOD entries x ∼ Q, for select values of δ = ||P − Q||∞.

4.2 PROMPTING STRATEGIES AND SCOPE

We test prompts that perform a single call to the LLM. More complex strategies, such as Tree-of-
Thoughts (Yao et al., 2023) have good performance, but rely on multiple model calls per instance,
and hence are not in the scope of our work. We also consider only single next-token prediction, as
well as robustness to system prompts (i.e., CoT and APO). Reasoning models like o3-mini (OpenAI,
2025), which have a baked-in non-controllable CoT, are thus not in scope. The prompts tested are:

n-Shot Learning: Provide n exemplars of an input x and desired, formatted output π̃(x). When we
do not provide a system prompt, we refer to it as Modus Ponens.

Description: Add in the system prompt p. This is the usual way to prompt LLMs.

APO: A meta-prompting (‘prompting to prompt’) approach where the LLM adapts its own system
prompt p with a development set. It has been shown that this strategy yields better perceived results

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

than description (De Wynter et al., 2023a). We used the algorithm from Pryzant et al. (2023) to
generate p.

Direct Encoding (DE): Pass in the system prompt plus G and L. This is common in theoretical
computer science; in addition, LLMs have been claimed to be capable of understanding code. Note
that DE is known to increase robustness to OOD in LSTMs and RNNs (Dan et al., 2022).

Chain-of-Thought (CoT): Generate a series of steps leading to the desired output with a predefined
scheme in the system prompt.

Word Salad: Replace the natural strings from the description with random words. When we apply
word salad to the CoT prompt, we call it Salad-of-Thought (SoT).

These strategies may be mixed. For example, CoT with word salad and 5 exemplars is 5-shot SoT.
Word salad and SoT are considered only in Section 6.1. All prompts were ran with 0, 2, 5, 10, 20,
50, and 100 exemplars; except modus ponens (no zero-shot), and CoT/SoT (no 2-shot due to cost).
All prompts had output format specifications (implicit in modus ponens) to facilitate parsing.

4.3 TASKS OVERVIEW

All tasks have their own Σ, and were selected for being closely-related tasks often seen in LLM
evaluations, or well-known problems in computer science. All (except one) are decision problems
to fit the model from Section 3. We discuss this further in Appendix E.

PARITY: (FSA) decide if a given binary string has even zeros. Also known as the XOR function.

Pattern Matching (FSA): decide if abcabb is a substring of a given string x ⊂ {a, b, c}∗.

Reversal (PDA): given a string l#r ⊂ Σ, decide if l equals the reversed r, l = r−1.

Stack (PDA): given final and initial strings sf , s0 ⊂ Σ and a series of operations Op, decide if
sf = Op(s0). The operations simulate a stack (push/stop/pop) and may or may not be grammatical
(e.g., stack overflows).

Hamiltonian (FSA): given a graph in adjacency matrix form and a path, decide if it is Hamiltonian.

Maze (Complete) (FSA): given a maze, two segments of a path, and a sequence of moves, decide
if the moves connect both segments. Segment separation is never more than three moves.

Maze (Solve) (FSA): given a maze and a sequence of moves, decide if the moves form a valid path
from start to exit.

Vending Machine (Verification) (FSA): given a list of items and costs C, a sequence of operations
Op (add balance, purchase item), and initial and final balances b0, bf , verify if bf = Op(C) + b0.

Vending Machine (Sum): Same as the verification version, but the learner must compute bf =
Op(C) + b0 for an unknown bf . It has a constrained set of moves, but unbounded states (N). This
is the only task in our work that is not a decision problem.

4.4 MODELS AND MEASUREMENT

We tested four LLMs: GPT-4 Turbo (Open AI, 2023), GPT-4o (OpenAI, 2024), Mixtral 8x7B in-
struct v01 (Jiang et al., 2024), and Phi-3.5 MoE Instruct (Bilenko, 2024). We measure performance
with accuracy, and report standard deviation (σ) to indicate variation over an average. We use ordi-
nary least squares (OLS) to measure changes. We set all outputs non-compliant with the requested
format as zero, but revisit this in Section 6.4. When reporting aggregate numbers, however, we do
not factor in out-of-token errors. For baselines, we tested decision trees (DT), k-nearest neighbours
(kNN), and a multilayer perceptron (MLP) in succession, and reported the best. We did not baseline
path-based problems or arithmetic, since they are often solved with heuristics (e.g., A∗).

4.5 DATA GENERATION

We created datasets per-task with automata with state transition probabilities drawn from a chosen
D. They are synthetic to account for (a) the task’s G and Σ; and (b) ID and OOD. Every task has

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

different manifestations of OOD (e.g. the size of a maze). See Figure 1 for a sample automaton and
Appendix E for full description of the characterisation of OOD per task.

0 1δ

1−δ

9
10−δ

δ

1
10

Figure 1: Data generator for
PARITY. Each state has tran-
sition probabilities δ, and an
emission probability. There is
a symmetric automaton with
emissions at 0.

All entries relied on natural language as little as possible (e.g, binary
strings or arbitrary symbols in Σ, such as ¯\ (ツ) /¯). The training
dataset was 2000 entries drawn from a P , and we also generated
five balanced, deduplicated test sets, each from a Q such that ||P −
Q||∞ = δ, for δ ∈ {0, 0.2, 0.45, 0.65, 0.85}, where δ = 0 is ID,
and the rest OOD. This allowed to measure the separation between
distributions and the gradual change in performance.

Every test set is 2000 entries, but due to cost we only evaluated
1000. We also mislabelled entries w.p. η = 0.05 to account for any
potential memorisation. Hence, the maximum accuracy for any f
that actually learns the task is 95%. We only use the training set for
APO and the selected baselines. The full suite is 1.89M datapoints.

5 RESULTS

We provide results on our analysis: general accuracy (Section 5.1);
distributional shifts (Section 5.2); and fine-grained analysis (Sec-
tion 5.3). For detailed results, see Appendix G.

5.1 OVERALL PERFORMANCE

The best average accuracies, per LLM, were in Pattern Matching (94±1%; solved the task), Hamil-
tonian (85±4%), and Vending Machine (Verification; 83±9%). Best accuracies in the worst-
performing tasks were Vending Machine (Sum; 16±1%), Reversal (61±11%), and Maze Solve
(63±13). See Table 1 for best-of and averaged results per-model over tasks; and Table 2 for aver-
aged result data per-task over prompts. LLMs outperformed traditional baselines (e.g., kNN) in
best-of, but not average best, scenarios in all tasks except PARITY.

The best prompt per problem was CoT, in four tasks. The worst prompt was 2-shot modus
ponens, in five tasks. The tasks where CoT underperformed (Pattern Matching and Hamiltonian)
were not the same where it was the best-performer. In Maze Complete, however, modus ponens was
the worst (2-shot; 9±16) and the best (100-shot; 77±5). Without Vending Machine (Sum), the only
non-classification task in our work, the accuracies numbers increased by 5±1 on average.

Better performances were given by more shots, on average, when looking at the slope from OLS
fits between per-model averages over shots (Table 2). Larger slopes (trends in accuracy improve-
ments) were in modus ponens (8.3) and lowest in CoT (3.3). Mixtral improved the most with more
shots, with an average slope of 7.3 (versus 5.8, 3.5, and 4.0 for Turbo, GPT-4o and Phi-3.5).

Task Turbo GPT-4o Phi-3.5 Mixtral Average
(Best)

Average
(Worst)

ML

PARITY 76 90 83 83 80±3 100-APO 16±20 2-m.p. 95 MLP
P. Match. 96 95 95 95 94±1 50-DE 24±20 5-CoT 87 kNN
Reversal 71 77 54 55 61±11∗ 100-CoT 20±21 2-m.p. 72 kNN
Stack 86 92 66 76 73±14∗ 50-CoT 20±21 2-m.p. 72 kNN
V.M. (Ver.) 94 90 84 78 81±12 10-CoT 22±22 2-m.p. 84 DT
Maze (Comp.) 83 72 79 81 77±5 100-m.p. 9±16 2-m.p. – –
Maze (Solve) 70 61 66 60 63±5 50-desc. 17±20 0-APO – –
Hamiltonian 93 92 86 85 89±2∗ 100-desc 29±8 0-CoT – –
V.M. (Sum) 18 20 15 20 16±1 5-CoT 0† 0-DE – –

Table 1: Maximum accuracies per-model per-problem and peak averages (per shots, over models).
An ∗ is an average over fewer models due to out-of-token failures; a † means a tie. The best prompts
often included natural-language descriptions (CoT, APO, Description). The worst prompt was often
2-shot modus ponens: it lacks a description and led to parsing errors in few-shot. Closely-related
tasks had differences of up to 31% accuracy. All baselines degraded in OOD except in PARITY.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Prompt Turbo
Slope Acc.

GPT-4o Phi-3.5 Mixtral Avg. slope
for acc.

Shots Modus Ponens 12.8 28±23 11.4 43±20 5.2 50± 9 3.9 50±9 8.3±3.9
Description 3.4 57±6 1.4 56±3 4.4 50±9 8.2 48±19 4.4 ± 2.2
DE 3.0 54±5 1.4 58±3 5.5 50±10 8.1 48±20 4.5±2.4
Word Salad 9.8 32±18 12.1 43±22 11.5 39±21 9.8 44±20 11±4.6
APO 6.1 51±11 2.0 57±4 4.6 51±9 8.4 48±1 5.4± 2.6
CoT 3.4 47±6 1.3 55±4 0.5 45±1 8.0 38±15 3.3±2.4
SoT 1.8 20±4 3.5 25±7 0.3 26±4 1.8 22±5 1.6±2.2

OOD Modus Ponens -0.3 28±1 -0.6 43±1 -0.6 50±1 -0.2 50±1 -0.4 ± 0.4
Description -0.5 57±1 -0.8 56±1 -0.5 50±1 -0.5 48 -0.5 ± 0.4
DE -0.4 54±1 -0.9 58±1 -0.4 50±1 -0.1 48±3 -0.5±0.6
Word Salad -0.5 31±1 -0.1 43 -0.3 40 -0.2 44±1 -0.2±0.3
APO -0.4 51±1 -1.0 57±1 -0.6 51±1 -0.1 48 -0.5±0.7
CoT -0.6 47±1 -2.7 55±4 -1.3 45±2 -1.0 38±1 -1.4±1.9
SoT 0.1 20±1 -0.6 25±1 -0.1 26 0.5 22 ±1 0.0±0.6

Table 2: Slopes and accuracies averaged over tasks. The rightmost column has the average slope
for all LLMs. Word salad and SoT are not factored into our main results, but are discussed in
Section 6.1. The effectiveness of the prompts depended on the slope and σ: large σ and a positive
slope means an increasing trend in accuracy, with larger slopes implying a larger change. Shot slopes
are positive, and the δ slopes are slightly negative. This suggests that more shots improve accuracy
in all prompts; but in OOD this is ineffective, defaulting to the average and decreasing overall.

Figure 2: Per-model average accuracy results for (left to right) modus ponens, description, and CoT;
plotted over shots (thick vertical lines) and per-shot δ between them. On average, most prompts
showed analogous behaviour in the limit, and robustness to OOD. CoT also showed converging be-
haviour, although it was more brittle to OOD. Every datapoint is an average over 1,000 predictions.

5.2 DISTRIBUTIONAL SHIFTS

Distributional shift decreased accuracy as δ → 0.85. We evaluated the slope on the per-LLM
accuracy averages between δ = 0.85 and δ = 0, per shot. All were negative. The largest (most
sensitive to OOD) was CoT at -1.4, followed by APO (-0.5). The smallest was modus ponens, at
-0.4 (Table 2). See Figure 2 for examples and Appendix G for a full breakdown. GPT-4o was most
sensitive to OOD inputs, with an average slope of -1.2 (versus -0.7, -0.4, and -0.3 for Phi-3.5, Turbo,
and Mixtral). The largest impacts of δ per task were in Reversal (-1.7±1.5), versus Vending Machine
(Sum) (lowest; 0.1 ± 0.2). The average slope was -0.6±0.3.

5.3 FINE-GRAINED BEHAVIOUR

In the breakdown per-prompt and per-task, LLMs had (1) similar behaviours over the tasks, but (2)
inconsistency over the task type. The first was given by the LLMs having low σ but similar accuracy
in a task-by-task and prompt-by-prompt basis: all prompts had a positive slope and low relative
difference among them (Figure 4, in the Appendix). The per-prompt shot slopes, averaged per
LLM, were 8.3±3.9 (modus ponens), 4.4±2.2 (description), 4.5±2.4 (DE), 5.3±2.6 (APO), and
3.3±2.4 (CoT) (Table 2). As per the averaged slope’s σ, there was low variation between the type
of LLM and the prompt over all tasks: 5.2±1.6 over shots. OLS fits over the per-shot σ indicated
that the model gap, as the shots increased, narrowed: -2.6±0.5; a similar pattern in the OLS fit

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

was noticeable in δ slopes. Inconsistency was when related tasks had gaps in peak performances:
31% (Maze (Solve) versus Pattern Matching), and 12% (Reversal and Stack; Table 1).

6 ABLATION STUDIES

We present summaries of our ablation studies. Refer to Appendix G for details and figures.

6.1 IMPACT OF LEXICAL FEATURES

We sought to understand to which extent lexicality (words) impacted ICL with respect to the data
features. We assumed that LLMs were pretrained mostly on natural and programming languages.
We compared word salad with modus ponens and DE; and CoT with SoT. While word salad ver-
sions of prompts started low–at some points with zero accuracy–they quickly reached relatively
high maximum accuracies. Averaged per-LLM, the word salad versions matched the baselines
to within σ or σ/2 of their average and had the largest slopes. Word salad only randomised the
system prompt, but SoT fully randomised the exemplars. It had a major impact on accuracy, with
the lowest average performance over shots (23±4%) in any prompt due to its high eror rate. Some
LLMs in SoT obtained above-average accuracies in certain tasks, such as GPT-4o in PARITY
(63% at 100 shots), and Turbo in Stack (76% at 50 shots).

6.2 POSITIONALITY OF EXEMPLARS

On every call, all exemplars so far were equiprobable and fixed throughout (‘unshuffled’). Here,
we randomised the position of the same exemplars within the prompt (‘shuffled’), and also fully
randomised the exemplars (drawn i.i.d. from the training set). There was a small variation in ac-
curacy when the same exemplars were shuffled versus unshuffled, with the latter having slightly
lower average accuracies and per-prompt slopes, albeit higher slopes per-LLM. The best-performing
prompts for average accuracies when shuffled versus unshuffled were always the same. When fully
randomising the exemplars, we only measured and compared GPT-4o. On average, fully randomis-
ing the exemplars yielded lower accuracies, and had lower shot and higher δ slopes.

6.3 IMPACT OF ALTERNATE DISTRIBUTIONS

We altered P in four setups: the fully randomised and shuffled exemplars from Section 6.2; an
imbalanced distribution with only negative labels; and a corpus with uniformly at random labels
(both test and train) as baseline. We only analysed and compared GPT-4o without Vending Machine
(Sum). The imbalanced scenario achieved higher average accuracies than all setups, matching
or outperforming the unshuffled baseline. However, in this case, the average σ increased on every
prompt and every setup. The random label baseline had better δ slopes than the unshuffled baseline.
Of note is also CoT, which had negative shot slopes in all setups.

6.4 COMPLIANCE VERSUS LEARNING

We separated parsing errors (‘compliance’) from mislabelled instances (‘learning’) and re-calculated
averages and slopes. Factoring out compliance increased perceived performance by understating or
overstating magnitudes. For example, average shot and δ slopes were smoothed out, thus making–
for example–CoT’s sensitivity to OOD hard to spot.

7 DISCUSSION

As the ‘training set’ (i.e., the number of exemplars) grew, (1) LLM accuracy increased, and (2) the
gap between LLMs and prompts narrowed. Both suggest that ICL as a learning paradigm depends
less on the LLM and prompt and more on the ability to perform autoregression. However, ac-
curacies were not consistent across similarly-related tasks: Pattern Matching (FSA) was effectively
solved, while Reversal (PDA) and Maze (Solve; FSA) had low accuracies. This suggests that au-
toregression is limited in its ability to solve tasks. This could be related to the choice of prompt.
However, we observed that while all prompts were sensitive to OOD, the best prompts (CoT and

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

APO) were both adaptive and more brittle. This suggests then that, although they are effective on
leveraging the power of a PDA, they bias the learner towards the observed distribution. This, in turn,
from the perspective of our framework, means that learning in ICL is not completely fulfilling the
requirements from Equation 2. Thus, autoregression’s ad hoc encoding via the prompt is not a
robust learning mechanism. As an extreme example, recall that Vending Machine (Sum) had non-
zero accuracy but near-zero slope regardless of number of shots, thus indicating complete inability
to learn the task.

Indeed, in the limit, accuracies were similar regardless of language and exemplar distributions, pro-
vided that they remained fixed. Hence ICL learns the observed P , rather than fully generalising
to the unseeen Q, since the fully randomised exemplars had lower accuracy than both the shuf-
fled and unshuffled settings. Remark that the observed P did not change, and this phenomenon
also could be explained as a manifestation of the bias-variance tradeoff. Given that the randomised
labels baseline had lower δ slopes, OOD brittleness is very dependent on ICL overfocusing on
spurious features. This is especially visible in CoT, which had consistently negative δ slopes across
all variations of P . While description-based prompts had the best peak accuracy, in the limit word
salad reached equivalence with them. In SoT, some LLMs were still able to reach above-random
scores in spite of the constant randomisation. This means that autoregression can distinguish data
features from lexical relations, but cannot fully identify feature relations within the data. It
also empirically confirms the remarks from Equation 4 that p’s contribution vanishes in the limit.

Alternate explanations could be (1) contamination, and (2) tokenisation. Contamination could
explain the accuracy in Pattern Matching, perhaps due to the (easy) Σ, {a, b, c}. Other tasks, like
Reversal, used more complex Σ and had lower scores, so it could be argued that the LLMs had
been pretrained in these tasks. However, good performances were also observable in Hamiltonian
and PARITY; thus suggesting the ability to (almost) fully simulate an FSA, and not contamination.
For (2), it could be said that an LLM trained on a task A will not necessarily solve a similar B if
ΣA ̸= ΣB (cf., graph and maze traversals). It could also explain the results from Vending Machine
(Sum): arithmetic skills are impacted by BPE (Singh & Strouse, 2024), the tokeniser which all LLMs
studied implement. The implementation is not always the same. In the limit, LLM performance gap
narrowed and thus tokenisation is not as relevant to ICL as the data features, although this only
applied to decision problems, not arithmetic. Finally, our theoretical framework could impact our
analysis of the conclusions. We argue that mathematically it is sufficient to define learning due to
its ablation on the nature of the data and its focus on learning as a process. However, we refine and
discuss this in Appendices C and D, including further explanations on the accuracy gap observed.

8 CONCLUSION

In this work we began by noting that, mathematically, ICL did constitute learning. However, we
also noted that further work was required to characterise it beyond the standard assumptions and
limitations of the literature. Our experiments thus accounted for prompting style and phrasing,
natural language, number of shots, input and output distributions, contamination, and pretraining
strategies. We found that, although formally ICL is a form of learning, empirically it is relatively
weak. This is due our findings on its limitations and nuanced behaviours, different than originally
reported. Concretely, in the limit, best-of average accuracies were given by 50-100 shots, and the
differences amongst both LLMs and prompts decreased. Exemplar positionality, characterisation,
labels, and wording were less relevant than the data features themselves–even in SoT, LLMs learned
the task in spite of its constant randomisation. Nonetheless, ICL also overfocused on spurious
features from the observed distribution. It also showed marked differences in supposedly-related
tasks, and brittleness to OOD, especially in APO and CoT.

Our findings indicate that, for example, brittleness to OOD means that LLM performance will not
be well-characterised by testing only a few prompts, as the performance observed may be spurious.
Hence, research on LLM capabilities must be done with caution and transparency, testing multiple
prompts, shots, and distributions. Future work should characterise reasoning models: we conjecture
that they will do better in our setup; but will also have difficulties in complex tasks (e.g., context-
sensitive languages), brittleness to OOD, and inconsistency over tasks. The latter also suggests that
an open question remains on how to empirically measure what ICL does over what it can do; and
then map it back to the theory while accounting for natural language factors not studied in this work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

9 ETHICS

Our work is a large-scale exploration of ICL over synthetic data. We are unaware of any potential
misuse of this research, albeit we could have overlooked something. The volume of data in our work
likely had a very high carbon footprint. While we argue that releasing the code publicly will have
more benefits to the community than potential harms, we have included disclaimers discouraging
running the full suite. We expect this work to be a one-off experimental work to determine ICL’s
feasibility as a learning paradigm, and thus our work focused on various open and closed models.
This should make the work comprehensive enough to also discourage re-running the full suite. We
discuss limitations of our work in Appendix A.

10 REPRODUCIBILITY STATEMENT

All code is included in the repository. It will be open-sourced under the MIT licence. Detailed
methodology, included model versioning, is in Appendix F. Prompts are in Appendix H, and also
in the repository. Work has been done in both closed-source and open-source models. We set the
temperature to zero throughout to ensure further reproducibility.

REFERENCES

Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd Bohnet, Luis Rosias, Stephanie C.Y. Chan,
Biao Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova, John D Co-Reyes, Eric Chu, Fer-
yal Behbahani, Aleksandra Faust, and Hugo Larochelle. Many-shot in-context learning. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=AB6XpMzvqH.

Patrick Altmeyer, Andrew M. Demetriou, Antony Bartlett, and Cynthia C. S. Liem. Position: Stop
making unscientific AGI performance claims. In Ruslan Salakhutdinov, Zico Kolter, Kather-
ine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Pro-
ceedings of the 41st International Conference on Machine Learning, volume 235 of Proceed-
ings of Machine Learning Research, pp. 1222–1242. PMLR, 21–27 Jul 2024. URL https:
//proceedings.mlr.press/v235/altmeyer24a.html.

Dana Angluin. Queries and concept learning. Mach. Learn., 2(4):319–342, April 1988. ISSN
0885-6125. doi: 10.1023/A:1022821128753. URL https://doi.org/10.1023/A:
1022821128753.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant Misra,
Vinay Venkatesh Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur.
Exploring length generalization in large language models. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Sys-
tems, 2022. URL https://openreview.net/forum?id=zSkYVeX7bC4.

Amos Azaria and Tom Mitchell. The internal state of an LLM knows when it’s lying. In Houda
Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pp. 967–976, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.68. URL https://aclanthology.
org/2023.findings-emnlp.68/.

Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-constrained path problems. SIAM
Journal on Computing, 30(3):809–837, 2000. doi: 10.1137/S0097539798337716. URL https:
//doi.org/10.1137/S0097539798337716.

Adithya Bhaskar, Dan Friedman, and Danqi Chen. The heuristic core: Understanding subnet-
work generalization in pretrained language models. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 14351–14368, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.774. URL
https://aclanthology.org/2024.acl-long.774/.

11

https://openreview.net/forum?id=AB6XpMzvqH
https://proceedings.mlr.press/v235/altmeyer24a.html
https://proceedings.mlr.press/v235/altmeyer24a.html
https://doi.org/10.1023/A:1022821128753
https://doi.org/10.1023/A:1022821128753
https://openreview.net/forum?id=zSkYVeX7bC4
https://aclanthology.org/2023.findings-emnlp.68/
https://aclanthology.org/2023.findings-emnlp.68/
https://doi.org/10.1137/S0097539798337716
https://doi.org/10.1137/S0097539798337716
https://aclanthology.org/2024.acl-long.774/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Satwik Bhattamishra, Arkil Patel, and Navin Goyal. On the computational power of transformers
and its implications in sequence modeling. In Raquel Fernández and Tal Linzen (eds.), Proceed-
ings of the 24th Conference on Computational Natural Language Learning, pp. 455–475, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.conll-1.37.
URL https://aclanthology.org/2020.conll-1.37/.

Misha Bilenko. New models added to the Phi-3 family, available on Microsoft
Azure, 2024. URL https://azure.microsoft.com/en-us/blog/
new-models-added-to-the-phi-3-family-available-on-microsoft-azure/.

Nadav Borenstein, Anej Svete, Robin Chan, Josef Valvoda, Franz Nowak, Isabelle Augenstein,
Eleanor Chodroff, and Ryan Cotterell. What languages are easy to language-model? a per-
spective from learning probabilistic regular languages. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 15115–15134, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.807. URL
https://aclanthology.org/2024.acl-long.807/.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings of
the 34th International Conference on Neural Information Processing Systems, NeurIPS’20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Alexandra Butoi, Ghazal Khalighinejad, Anej Svete, Josef Valvoda, Ryan Cotterell, and Brian
DuSell. Training neural networks as recognizers of formal languages. In The Thirteenth In-
ternational Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=aWLQTbfFgV.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
TatRHT_1cK.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre
Richemond, James McClelland, and Felix Hill. Data distributional properties drive
emergent in-context learning in transformers. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 18878–18891. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf.

Yingshan Chang and Yonatan Bisk. Language models need inductive biases to count inductively.
In The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=s3IBHTTDYl.

Soham Dan, Osbert Bastani, and Dan Roth. Understanding robust generalization in learning regular
languages. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 4630–4643. PMLR, 17–23 Jul
2022.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural networks and
the Chomsky Hierarchy. In 11th International Conference on Learning Representations, 2023.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal,

12

https://aclanthology.org/2020.conll-1.37/
https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/
https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/
https://aclanthology.org/2024.acl-long.807/
https://openreview.net/forum?id=aWLQTbfFgV
https://openreview.net/forum?id=aWLQTbfFgV
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/77c6ccacfd9962e2307fc64680fc5ace-Paper-Conference.pdf
https://openreview.net/forum?id=s3IBHTTDYl
https://openreview.net/forum?id=s3IBHTTDYl

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Xiang Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of trans-
formers on compositionality. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=Fkckkr3ya8.

Ezra Edelman, Nikolaos Tsilivis, Benjamin L. Edelman, Eran Malach, and Surbhi Goel. The evolu-
tion of statistical induction heads: in-context learning markov chains. In Proceedings of the 38th
International Conference on Neural Information Processing Systems, NIPS ’24, Red Hook, NY,
USA, 2024. Curran Associates Inc. ISBN 9798331314385.

Federico Errica, Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. What did I do wrong?
quantifying LLMs’ sensitivity and consistency to prompt engineering. In Luis Chiruzzo, Alan
Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations of the Ameri-
cas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pp. 1543–1558, Albuquerque, New Mexico, April 2025. Association
for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.73.
URL https://aclanthology.org/2025.naacl-long.73/.

Edward Gibson and Kenneth Wexler. Linguistic Inquiry, 25(3), 1994.

E Mark Gold. Language identification in the limit. Information and Control, 10(5):447–474, 1967.
ISSN 0019-9958. doi: https://doi.org/10.1016/S0019-9958(67)91165-5. URL https://www.
sciencedirect.com/science/article/pii/S0019995867911655.

Kavi Gupta, Kate Sanders, and Armando Solar-Lezama. Randomly sampled language reasoning
problems reveal limits of LLMs, 2025. URL https://arxiv.org/abs/2501.02825.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), pp. 14973–15008, Bangkok, Thai-
land, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.
800. URL https://aclanthology.org/2024.acl-long.800/.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022. doi: 10.1162/tacl a 00490. URL https://aclanthology.
org/2022.tacl-1.46/.

Michael Y. Hu, Jackson Petty, Chuan Shi, William Merrill, and Tal Linzen. Between circuits and
Chomsky: Pre-pretraining on formal languages imparts linguistic biases. In Wanxiang Che, Joyce
Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
9691–9709, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-
89176-251-0. doi: 10.18653/v1/2025.acl-long.478. URL https://aclanthology.org/
2025.acl-long.478/.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A sur-
vey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2023, pp. 1049–1065, Toronto, Canada, July
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL
https://aclanthology.org/2023.findings-acl.67/.

Joel Jang, Seonghyeon Ye, and Minjoon Seo. Can large language models truly understand prompts?
a case study with negated prompts. In Alon Albalak, Chunting Zhou, Colin Raffel, Deepak Ra-
machandran, Sebastian Ruder, and Xuezhe Ma (eds.), Proceedings of The 1st Transfer Learning
for Natural Language Processing Workshop, volume 203 of Proceedings of Machine Learning
Research, pp. 52–62. PMLR, 03 Dec 2023. URL https://proceedings.mlr.press/
v203/jang23a.html.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le

13

https://openreview.net/forum?id=Fkckkr3ya8
https://aclanthology.org/2025.naacl-long.73/
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://arxiv.org/abs/2501.02825
https://aclanthology.org/2024.acl-long.800/
https://aclanthology.org/2022.tacl-1.46/
https://aclanthology.org/2022.tacl-1.46/
https://aclanthology.org/2025.acl-long.478/
https://aclanthology.org/2025.acl-long.478/
https://aclanthology.org/2023.findings-acl.67/
https://proceedings.mlr.press/v203/jang23a.html
https://proceedings.mlr.press/v203/jang23a.html

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Kent Johnson. Gold’s theorem and cognitive science. Philosophy of Science, 71(4):571–592, 2004.
doi: 10.1086/423752.

Tianjie Ju, Weiwei Sun, Wei Du, Xinwei Yuan, Zhaochun Ren, and Gongshen Liu. How large lan-
guage models encode context knowledge? a layer-wise probing study. In Nicoletta Calzolari,
Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Pro-
ceedings of the 2024 Joint International Conference on Computational Linguistics, Language Re-
sources and Evaluation (LREC-COLING 2024), pp. 8235–8246, Torino, Italia, May 2024. ELRA
and ICCL. URL https://aclanthology.org/2024.lrec-main.722/.

Gerhard Jäger and James Rogers. Formal language theory: refining the Chomsky hierarchy. Philo-
sophical Transactions of the Royal Society B, 2012. doi: https://doi.org/10.1098/rstb.2012.0077.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
In Mathematical Aspects of Deep Learning. Cambridge University Press, 2022. doi: 10.1017/
9781009025096.003.

Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae and
finite automata. J. ACM, 41(1):67–95, January 1994. ISSN 0004-5411. doi: 10.1145/174644.
174647. URL https://doi.org/10.1145/174644.174647.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning Theory. The
MIT Press, 1994.

Jon Kleinberg and Sendhil Mullainathan. Language generation in the limit. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=FGTDe6EA0B.

Ryoma Kumon and Hitomi Yanaka. Analyzing the inner workings of transformers in compositional
generalization. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Con-
ference of the Nations of the Americas Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), pp. 8529–8540, Albuquerque,
New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-
6. doi: 10.18653/v1/2025.naacl-long.432. URL https://aclanthology.org/2025.
naacl-long.432/.

Steffen Lange and Sandra Zilles. Relations between Gold-style learning and query learning. Infor-
mation and Computation, 203(2):211–237, 2005. ISSN 0890-5401. doi: https://doi.org/10.1016/j.
ic.2005.08.003. URL https://www.sciencedirect.com/science/article/pii/
S0890540105001379.

Jooyoung Lee, Thai Le, Jinghui Chen, and Dongwon Lee. Do language models plagiarize? In
Proceedings of the ACM Web Conference 2023, WWW ’23, pp. 3637–3647, New York, NY, USA,
2023. Association for Computing Machinery. ISBN 9781450394161. doi: 10.1145/3543507.
3583199. URL https://doi.org/10.1145/3543507.3583199.

Qian Li and Yuyi Wang. Constant bit-size transformers are Turing complete. In Advances in Neural
Information Processing Systems. Curran Associates, Inc., 2025. URL https://arxiv.org/
pdf/2506.12027.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

Zongqian Li, Yixuan Su, and Nigel Collier. A survey on prompt tuning. In ES-FoMo III: 3rd
Workshop on Efficient Systems for Foundation Models, 2025. URL https://openreview.
net/forum?id=JEMGDajQ1G.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=De4FYqjFueZ.

14

https://arxiv.org/abs/2401.04088
https://aclanthology.org/2024.lrec-main.722/
https://doi.org/10.1145/174644.174647
https://openreview.net/forum?id=FGTDe6EA0B
https://openreview.net/forum?id=FGTDe6EA0B
https://aclanthology.org/2025.naacl-long.432/
https://aclanthology.org/2025.naacl-long.432/
https://www.sciencedirect.com/science/article/pii/S0890540105001379
https://www.sciencedirect.com/science/article/pii/S0890540105001379
https://doi.org/10.1145/3543507.3583199
https://arxiv.org/pdf/2506.12027
https://arxiv.org/pdf/2506.12027
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=JEMGDajQ1G
https://openreview.net/forum?id=JEMGDajQ1G
https://openreview.net/forum?id=De4FYqjFueZ

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’14, pp. 855–863, Cambridge, MA, USA, 2014. MIT Press.

Quanyu Long, Yin Wu, Wenya Wang, and Sinno Jialin Pan. Does in-context learning really learn?
rethinking how large language models respond and solve tasks via in-context learning. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
i2oJjC0ESQ.

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych.
Are emergent abilities in large language models just in-context learning? In Lun-Wei Ku, Andre
Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 5098–5139, Bangkok, Thailand,
August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.279.
URL https://aclanthology.org/2024.acl-long.279/.

Marina Mancoridis, Bec Weeks, Keyon Vafa, and Sendhil Mullainathan. Potemkin understanding
in large language models, 2025. URL https://arxiv.org/abs/2506.21521.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=NjNGlPh8Wh.

Seyed Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and
Mehrdad Farajtabar. GSM-symbolic: Understanding the limitations of mathematical reasoning in
large language models. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=AjXkRZIvjB.

Ruslan Mitkov. The Oxford Handbook of Computational Linguistics. Oxford University Press, 06
2022. ISBN 9780199573691. doi: 10.1093/oxfordhb/9780199573691.001.0001. URL https:
//doi.org/10.1093/oxfordhb/9780199573691.001.0001.

Partha Niyogi. The Computational Nature of Language Learning and Evolution. The MIT Press,
2006.

Santiago Ontanon, Joshua Ainslie, Zachary Fisher, and Vaclav Cvicek. Making transformers solve
compositional tasks. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 3591–3607, Dublin, Ireland, May 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.acl-long.251. URL https://aclanthology.org/2022.
acl-long.251/.

Open AI. GPT-4 technical report. Technical report, Open AI, 2023. URL https://arxiv.
org/abs/2303.08774v2.

OpenAI. GPT-4o, 2024. URL https://platform.openai.com/docs/models/
gpt-4o.

OpenAI. OpenAI o3-mini, 2025. URL https://openai.com/index/
openai-o3-mini/.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. Journal of
Machine Learning Research, 22(75):1–35, 2021. URL http://jmlr.org/papers/v22/
20-302.html.

Leonard Pitt and Manfred K. Warmuth. The minimum consistent DFA problem cannot be approx-
imated within any polynomial. J. ACM, 40(1):95–142, January 1993. ISSN 0004-5411. doi:
10.1145/138027.138042. URL https://doi.org/10.1145/138027.138042.

15

https://openreview.net/forum?id=i2oJjC0ESQ
https://openreview.net/forum?id=i2oJjC0ESQ
https://aclanthology.org/2024.acl-long.279/
https://arxiv.org/abs/2506.21521
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=AjXkRZIvjB
https://doi.org/10.1093/oxfordhb/9780199573691.001.0001
https://doi.org/10.1093/oxfordhb/9780199573691.001.0001
https://aclanthology.org/2022.acl-long.251/
https://aclanthology.org/2022.acl-long.251/
https://arxiv.org/abs/2303.08774v2
https://arxiv.org/abs/2303.08774v2
https://platform.openai.com/docs/models/ gpt-4o
https://platform.openai.com/docs/models/ gpt-4o
https://openai.com/index/openai-o3-mini/
https://openai.com/index/openai-o3-mini/
http://jmlr.org/papers/v22/20-302.html
http://jmlr.org/papers/v22/20-302.html
https://doi.org/10.1145/138027.138042

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
alization beyond overfitting on small algorithmic datasets, 2022. URL https://arxiv.org/
abs/2201.02177.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Ka-
lika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 7957–7968, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023.
emnlp-main.494/.

Shuofei Qiao, Yixin Ou, Ningyu Zhang, Xiang Chen, Yunzhi Yao, Shumin Deng, Chuanqi Tan, Fei
Huang, and Huajun Chen. Reasoning with language model prompting: A survey. In Anna Rogers,
Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 5368–5393, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.
294. URL https://aclanthology.org/2023.acl-long.294/.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In International Conference on Learning Representations (ICLR), 2023.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=ITw9edRDlD.

Dale H. Schunk. Learning theories: An educational perspective. Macmillan Publishing Co, Inc.,
2012.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sen-
sitivity to spurious features in prompt design or: How i learned to start worrying about prompt
formatting. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=RIu5lyNXjT.

Namrata Shivagunde, Vladislav Lialin, Sherin Muckatira, and Anna Rumshisky. Deconstructing
in-context learning: Understanding prompts via corruption. In Nicoletta Calzolari, Min-Yen Kan,
Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of
the 2024 Joint International Conference on Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), pp. 4509–4529, Torino, Italia, May 2024. ELRA and ICCL.
URL https://aclanthology.org/2024.lrec-main.404/.

Thomas J. Shuell. Cognitive conceptions of learning. Review of Educational Research, 56, 1986.
doi: https://doi.org/10.3102/00346543056004411.

Aaditya K. Singh and DJ Strouse. Tokenization counts: the impact of tokenization on arithmetic in
frontier LLMs, 2024. URL https://arxiv.org/abs/2402.14903.

Burrhus Frederic Skinner. The behavior of organisms: an experimental analysis. Appleton-Century,
1938.

Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold circuits,
2023. URL https://arxiv.org/abs/2308.03212.

Lena Strobl, Dana Angluin, David Chiang, Jonathan Rawski, and Ashish Sabharwal. Transformers
as transducers. Transactions of the Association for Computational Linguistics, 13:200–219, 02
2024a. ISSN 2307-387X. doi: 10.1162/tacl a 00736. URL https://doi.org/10.1162/
tacl_a_00736.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What formal lan-
guages can transformers express? a survey. Transactions of the Association for Computa-
tional Linguistics, 12:543–561, 05 2024b. ISSN 2307-387X. doi: 10.1162/tacl a 00663. URL
https://doi.org/10.1162/tacl_a_00663.

Edward Lee Thorndike. Educational psychology, Vol. 1. The original nature of man. Teachers
College, 1913. doi: https://doi.org/10.1037/13763-000.

16

https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177
https://aclanthology.org/2023.emnlp-main.494/
https://aclanthology.org/2023.emnlp-main.494/
https://aclanthology.org/2023.acl-long.294/
https://openreview.net/forum?id=ITw9edRDlD
https://openreview.net/forum?id=RIu5lyNXjT
https://aclanthology.org/2024.lrec-main.404/
https://arxiv.org/abs/2402.14903
https://arxiv.org/abs/2308.03212
https://doi.org/10.1162/tacl_a_00736
https://doi.org/10.1162/tacl_a_00736
https://doi.org/10.1162/tacl_a_00663

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function vectors in large language models. In Proceedings of the 2024 International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
AwyxtyMwaG. arXiv:2310.15213.

Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, November 1984.
ISSN 0001-0782. doi: 10.1145/1968.1972. URL https://doi.org/10.1145/1968.
1972.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large lan-
guage models are latent variable models: explaining and finding good demonstrations for in-
context learning. In Proceedings of the 37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts? In Proceedings of the 2022 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pp. 2300–2344, Seattle,
United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
naacl-main.167. URL https://aclanthology.org/2022.naacl-main.167.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a
case study on approximating turing machines with transformers. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural In-
formation Processing Systems, volume 35, pp. 12071–12083. Curran Associates, Inc.,
2022a. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/4ebf1d74f53ece08512a23309d58df89-Paper-Conference.pdf.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc.,
2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

R.M. Wharton. Approximate language identification. Information and Control, 26(3):236–255,
1974. ISSN 0019-9958. doi: https://doi.org/10.1016/S0019-9958(74)91369-2. URL https:
//www.sciencedirect.com/science/article/pii/S0019995874913692.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=f3JNQd7CHM.

Adrian de Wynter. Awes, laws, and flaws from today’s LLM research. In Wanxiang Che,
Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2025, pp. 12834–12854, Vienna, Austria, July
2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. URL https:
//aclanthology.org/2025.findings-acl.664/.

Adrian de Wynter and Tangming Yuan. The thin line between comprehension and persuasion in
llms. 2025. URL https://arxiv.org/abs/2507.01936.

Adrian de Wynter, Xun Wang, Qilong Gu, and Si-Qing Chen. On meta-prompting. abs/2312.06562,
2023a. doi: 10.48550/arXiv.2312.06562. URL https://arxiv.org/abs/2312.06562.

Adrian de Wynter, Xun Wang, Alex Sokolov, Qilong Gu, and Si-Qing Chen. An evaluation on large
language model outputs: Discourse and memorization. Natural Language Processing Journal, 4:
100024, 2023b. ISSN 2949-7191. doi: https://doi.org/10.1016/j.nlp.2023.100024. URL https:
//www.sciencedirect.com/science/article/pii/S2949719123000213.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations
(ICLR), 2022.

17

https://openreview.net/forum?id=AwyxtyMwaG
https://openreview.net/forum?id=AwyxtyMwaG
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://aclanthology.org/2022.naacl-main.167
https://proceedings.neurips.cc/paper_files/paper/2022/file/4ebf1d74f53ece08512a23309d58df89-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/4ebf1d74f53ece08512a23309d58df89-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://www.sciencedirect.com/science/article/pii/S0019995874913692
https://www.sciencedirect.com/science/article/pii/S0019995874913692
https://openreview.net/forum?id=f3JNQd7CHM
https://openreview.net/forum?id=f3JNQd7CHM
https://aclanthology.org/2025.findings-acl.664/
https://aclanthology.org/2025.findings-acl.664/
https://arxiv.org/abs/2507.01936
https://arxiv.org/abs/2312.06562
https://www.sciencedirect.com/science/article/pii/S2949719123000213
https://www.sciencedirect.com/science/article/pii/S2949719123000213

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jin-
gren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wen-
bin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. 2024. URL
https://arxiv.org/abs/2407.10671.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: deliberate problem solving with large language models. In Pro-
ceedings of the 37th International Conference on Neural Information Processing Systems, NIPS
’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Gregory Yauney and David Mimno. Stronger random baselines for in-context learning. In First
Conference on Language Modeling, 2024. URL https://openreview.net/forum?id=
TRxQMpLUfD.

Kayo Yin and Jacob Steinhardt. Which attention heads matter for in-context learning? In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=C7XmEByCFv.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck. On
the paradox of learning to reason from data. In Proceedings of the 32nd International Joint
Conference on Artificial Intelligence (IJCAI), aug 2023. URL http://starai.cs.ucla.
edu/papers/ZhangArxiv22.pdf.

Hao Zhao, Maksym Andriushchenko, Francesco Croce, and Nicolas Flammarion. Is in-context
learning sufficient for instruction following in LLMs? In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
STEEDDv3zI.

Yuxiang Zhou, Jiazheng Li, Yanzheng Xiang, Hanqi Yan, Lin Gui, and Yulan He. The mystery of in-
context learning: A comprehensive survey on interpretation and analysis. In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pp. 14365–14378, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.795. URL
https://aclanthology.org/2024.emnlp-main.795/.

Jingming Zhuo, Songyang Zhang, Xinyu Fang, Haodong Duan, Dahua Lin, and Kai Chen. ProSA:
Assessing and understanding the prompt sensitivity of LLMs. In Yaser Al-Onaizan, Mohit Bansal,
and Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics: EMNLP
2024, pp. 1950–1976, Miami, Florida, USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.108. URL https://aclanthology.
org/2024.findings-emnlp.108/.

18

https://arxiv.org/abs/2407.10671
https://openreview.net/forum?id=TRxQMpLUfD
https://openreview.net/forum?id=TRxQMpLUfD
https://openreview.net/forum?id=C7XmEByCFv
https://openreview.net/forum?id=C7XmEByCFv
http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf
http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf
https://openreview.net/forum?id=STEEDDv3zI
https://openreview.net/forum?id=STEEDDv3zI
https://aclanthology.org/2024.emnlp-main.795/
https://aclanthology.org/2024.findings-emnlp.108/
https://aclanthology.org/2024.findings-emnlp.108/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A LIMITATIONS

One core limitation of our work is that LLMs are continuously updated, and this could make repro-
ducibility difficult. To mitigate it, we have worked with open and closed-source LLMs, and provided
detailed call parameters. Our evaluation is not cheap either: running synchronously a single task per
LLM could and has taken months, depending on hardware, and the aggregate cost for all calls could
render further exploration prohibitive. Lower-volume testing or fewer tasks could provide simi-
lar results, at the expense of statistical significance or ambiguity. Other testing, such as alternate
paradigms (e.g., reasoning models) and prompting (multi-step, multi-call) were not evaluated in our
work and could show more nuanced results.

Finally, interpreting the results from the ML baselines is nuanced. These are fast to train and iterate
over, although they require larger amounts of data, and are also sensitive to OOD. We attribute this
brittleness to the input representation length, which is characteristic of all tasks except PARITY. No
neural networks beyond an MLP were tested. It is known that LSTMs and RNNs excel at these tasks
(Butoi et al., 2025), albeit also require significant data volumes.

B DETAILED BACKGROUND

B.1 PAC LEARNING

The original framework from Valiant (1984) centres itself on the learnability of the concept class,
rather than the learner. We reproduce it here and compare it to our rephrasing to describe generalisa-
tion. For more thorough discussions on this framework, see Kearns & Vazirani (1994). For a formal,
full description of in-context learning within the context of PAC learning, see Wies et al. (2023).

Suppose we wish to model a binary classification phenomenon with features assumed to be drawn
from some nonempty set X ⊂ {0, 1}m (the instance space). This phenomenon is labelled with a
function (the concept) c : X → {0, 1}.4 A set of concepts C = {c1, . . . , ck} is called a concept
class. A learning algorithm is then tasked with classifying samples x ∼ P , where P is supported on
X . It selects a hypothesis (another concept) h such that

error(h) = Pr
x∼P

[c(x) ̸= h(x)]. (6)

To learn, the algorithm is given access to a function O : C×X → {0, 1} that provides i.i.d. samples
with some distribution D. Then, a concept class C over X is PAC-learnable if an algorithm outputs
an h ∈ C such that

Pr [error(h) ≤ ϵ] ≥ 1− δ (7)

for all c ∈ C, any P , and ϵ ∈ (0, 1/2) and δ ∈ (0, 1/2), with an observed subset D built with O.
The algorithm is required to run in poly(m, |c|, 1/ϵ, 1/δ), Where the size |c| is the smallest way to
represent c under a chosen map R : Σ∗ → C. Stochasticity is accounted in both calls to O and the
learner’s internal state.

Our framework has five core differences:

1. The learning algorithm is a machine learning model.

2. The selected hypothesis is the learner’s weights as a function of the input, f(xk). Namely,
accounting for autoregression, f(z) for z = f(xk−1).

3. The ‘access’ to O is replaced by a preconstructed dataset observed during the prompt call.

4. We reframe Equation 6 to work on the average empirical error of a dataset, to align it with
contemporary evaluation methods.

5. We replace the concept class C and the selection of said concepts with a single function c.
This can be shown to be equivalent by composition by noting that c can act as the selector
for the concept class C.

4X can also be an Euclidean space, X ⊂ Rm. Concepts may also be equivalently seen as subsets of X .

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

The last difference renders our framework imprecise, but not weaker, when compared to standard
PAC learning. PAC learning is known to have certain limitations. For example, deterministic finite
automata and context-free grammars cannot be learnt in the standard PAC setting (Pitt & Warmuth,
1993; Kearns & Valiant, 1994; Niyogi, 2006); and contemporary neural networks has been shown to
be able to learn beyond seen concept classes (see, e.g., Kawaguchi et al. 2022). Our reframing avoids
these limitations by removing the dependence on a specific task (concept class) and instead assumes
that a subset of X is labelled with some c, in line with the expectations on current LLMs. More
importantly, neither of the points above detract from the definition of learning as generalisation.

B.2 AUTOMATA THEORY AND FORMAL LANGUAGE THEORY

A formal grammar G is a collection of strings from an alphabet Σ = S ∪N ∪ {ϵ}, and production
rules (maps) between them. S and N are sets of non-terminal and terminal symbols, and ϵ the empty
symbol, respectively. These rules form a set (language) L. Grammars may be categorised based on
their complexity–namely, the production rules–using the Chomsky hierarchy. Each class is a proper
subset of the other.

The classes of automata (functions) needed to answer whether x ∈ L for a string x have an isomor-
phism between them and the classes of formal grammars in the Chomsky hierarchy. More complex
languages require more complex automata, whose classes are also supersets of the others. This is
because every automaton, with the exception of the Turing machine, is limited in a certain way. For
example, FSA read the input (tape) symbol-by-symbol in one direction and a single pass; change
their internal state between accept and reject; and return either when the read is complete. They thus
can recognise precisely the set of regular languages. Pushdown automata, or PDA, are equivalent to
FSA but with a memory stack added, and can recognise context-free languages. See Appendix E for
classifications of our tasks within the context of both automata and formal language theory. Remark
that LLMs can perform recursion and feed their own ‘pseudo-state’ (namely, the token outputs) back
into itself. This allows it to maintain a memory stack, albeit not fully controllable–hence why CoT
is effective to a point: it templatises the memory stack.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

C ALTERNATE MODELS OF LEARNING

In Section 3.1 we noted that PAC learning is the predominant model for learning in computational
learning theory, and, specifically, learning theory. It is also frequently used when modelling language
learning (see, e.g., Niyogi 2006). However, it is not the only model of learning, or the only accepted
definition of learning. For example, Gold’s inductive inference framework (Gold, 1967) is also
sometimes used to model other language acquisition and learning (Johnson, 2004), and forms the
basis of algorithmic learning theory.

Frameworks outside of computer science, such as those used in psychology and education, are also
designed to formally define and measure learning. While the definition of learning has broad agree-
ment (the ability to behave in a given way based on experience; Schunk 2012), measurement proto-
cols differ amongst theories.

In this section we discuss alternate models of learning, from inside and outside of computer science.
Specific algorithms and approaches, such as the Triggering Learning Algorithm (Gibson & Wexler,
1994) or back-propagation, are not covered here as they may be framed in a model of learning
(e.g.,in terms of PAC learning Niyogi 2006). For non-computer science models, we focus on the
two major theories with well-defined measurement protocols: behavioural and cognitive. We do not
cover other frameworks, such as information theories of learning (Shuell, 1986), since they explicitly
require the learner to encode and retrieve knowledge for arbitrary periods of time, and this is not the
case for ICL.

C.1 GOLD’S INDUCTIVE INFERENCE

In the inductive inference framework, the learner observes an infinite sequence of examples x1, · · · ∈
Σ from some language L generated by some grammar G. The sequence may contain duplicate
elements. Let G(xk) be said sequence up to the kth element. It is said that a learner f : Σ → Σ
learns L (and thus G) in the limit if, based on a chosen metric d : Σ× Σ → [0, 1],

lim
k→∞

d
(
⟨f(x1), . . . , f(xk)⟩,G(xk)

)
= 0. (8)

Namely, it is said that f has learnt G (in the limit; in the Gold sense), if after k instances, the learner
will correctly identify all observations from L. Remark that the choice of distance directly affects
the definition, and that this learner only observes positive examples. In this framework, it follows
thus that learning a language (r. concept in PAC learning) is equivalent to–eventually–perfectly
reproducing the grammar. In contrast, in PAC learning, learning is probabilistic and can only be
done w.p.1 in the limit.

It follows then that the main criticism to this framework is that it is too rigid, as it does not allow the
learner to make mistakes. Reframings to allow for a looser distance or a threshold number of errors
are effective at allowing more pragmatic learnability (Wharton, 1974). Other variants, such as query
learning (Angluin, 1988) have also been shown to be equivalent to this framework (Lange & Zilles,
2005). Nonetheless, they are weaker than the original statement (Niyogi, 2006).

From a theoretical perspective, Gold (1967) showed that the languages represented by deterministic
finite automata and context-free grammars are not learnable in the limit. As noted in Appendix B,
PAC learning is also limited in its ability to learn certain formal problems. However, it is possible
to create variants of one framework to learn languages that cannot be identified in the other (Niyogi,
2006). Thus, Gold’s and Valiant’s frameworks are distinct and non-equivalent.

In the context of our work, we are more concerned about measuring learning. Since Equation 6 is a
distance metric, we may use our reframing equivalently in the Gold sense, and setting a (probabilis-
tic) threshold ϵ as before,

lim
k→∞

Pr

[
d
(
⟨f(x1) . . . f(xk)⟩,G(xk)

)
> ϵ

]
= 0. (9)

However, the statement around the probability of this threshold holding (Equation 7) would be
missing, and hence the conclusions that we could draw are weaker.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

C.2 BEHAVIOURAL THEORIES

Behavioural models of learning focus on how much feedback (reinforcement of correct guesses) as
well as the developmental status of the learner. While the autoregressive mechanism could account
for feedback, the developmental status is more difficult to approximate. We argue that this could
be considered the pretraining process. We include a small experiment with an untrained model in
Appendix D.

In the connectionist model of learning (Thorndike, 1913), learning is given by associations between
experiences, and through trial and error. Experiments to measure this theory were carried across
multiple months (e.g., participants had to close their eyes and draw a line of a specified length
hundreds of times for several days). From our work’s perspective, measurement was done within
the same P .

Another well-known model is that of operant conditioning Skinner (1938). This framework adapts
closely to our work. Its full formulation includes the process by which learning occurs (e.g., condi-
tioning, reinforcement, etc), and may be found in Schunk (2012). In this section we limit ourselves
to describe the measurement itself. This is due through Skinner’s definition of generalisation, which
involves the repeated response to an input; and discrimination, which is varying the specific response
based on the input. The core problem with generalisation in this theory is that, since learning relies
on reinforcement, responses cannot be given without having been given previously said reinforce-
ment (i.e., there cannot be zero-shot learning). The explanation for humans is that they rely on the
composition of previously-learnt behaviours, and thus zero-shot learning may occur. For LLMs, this
could also be argued based on the ‘developmental status’ of these learners: namely, the pretraining
itself. Discrimination is also measured through zero-shot learning; namely, providing an appropriate
response to an instance after being given a general description of the task.

Fitting LLMs into Skinner’s framework means that generalisation is measured through repeated
presentation of exemplars (and their correct labelling). Zero-shot in this case means observing only
the instance of the problem and not having any feedback. Concretely, this was zero-shot modus
ponens; which, as we observed, had near zero-performance across the board–as expected since
the tasks ablated for memorisation and the learner had no reinforcement. On the other hand,
discrimination requires the task description itself. This is more akin to zero-shot learning in the
Description, CoT, and DE scenarios; and, to a minor extent, word salad and SoT.

What ties all these frameworks together to PAC learning is that theories have a certain tolerance to
learner error, which in turn makes them closer to this framework than to Gold’s.

C.3 COGNITIVE THEORIES

In behavioural theories, learner variation is studied by evaluating the impact of the environment and
the previous reinforcement steps. In contrast, cognitive theories emphasise how the differences be-
tween the prior knowledge of the learners, along with their own internal processes, impact learning.
They also distinguish between learning and performance Schunk (2012). This means that, for ex-
ample, in these frameworks, a learner could acquire latent knowledge by observing the environment
although never actually obtaining reinforcement. From the perspective of our work, this is visible
in all prompts minus modus ponens, except that only in the zero-shot setting. It is well-known that
the way by which the learner is exposed to the task (e.g., demonstration, explanations, etc.), as well
as the feedback (success) directly affects the effectiveness of the learning process (Schunk, 2012).
Our work accounts for the first aspect (e.g., by the prompt style itself), but not the second. These,
however, are more akin to how a reasoning model outputs text.

Ultimately, cognitive theories measure learning through success after reinforcement (or without, in
the case of latent knowledge), as well as retention. Our work partially measure these. Same as in
the behavioural theories, the tolerance to error makes these frameworks closer to PAC learning than
to the inductive inference framework.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

D RELATIONSHIP TO NATURAL LANGUAGE

D.1 IMPACT ON CONCLUSIONS

We noted throughout our work that the synthetic nature of our work could underestimate the perfor-
mance of an LLM on realistic scenarios. The choice of synthetic data was to ablate out the LLMs’
intrinsic knowledge, and instead focus on their ability to infer features from the observed P . It
also allowed us to control every aspect of the data–from contamination to ID/OOD–to ensure a fully
‘sanitised’ experiment suite. This practise is known to be useful to study generalisation (Power et al.,
2022).

However, learnings based on synthetic data do not necessarily fully translate to natural-language
scenarios. This is because synthetic data setups overlook considerations ubiquitous to natural lan-
guage, such as compositionality, feature distribution, and ambiguity. These are all encoded–in one
way or another–in pretrained LLMs.

Even when dealing with natural-language problems which are fully unseen by an LLM (for example,
a language isolate), computational complexity comes into play. It is known that, under certain
assumptions, natural language lies somewhere between context-free and context-sensitive grammars
(Jäger & Rogers, 2012), which, in turn–as per our results and the theoretical work from Section 3–
makes these problems difficult to solve without any prior knowledge. On the other hand, the vast
literature and success stories of LLMs suggest that further empirical work is required to characterise
what these models do, not what they could do.

Thus, our results are limited to the ability of ICL to draw conclusions from the data’s features alone,
eschewing any potential semantic priors induced by natural language. They must be interpreted with
caution when considering their extension to natural language, particularly in tasks and evaluations
which could rely on a model’s latent knowledge.

D.2 IMPACT ON RESULTS

To follow the point on latent knowledge, we remark that a full evaluation of ICL should account
for an inductive bias-free learning. This means that the models must not have seen any of the data
before, including natural language.5 In line with the empirical spirit of this work, and in order to
confirm this, we ran the same experiments for PARITY, Pattern Matching, both Vending Machines,
and Hamiltonian in all shots and δ. The learner was a separate, randomly-initialised model (Qwen
2 1.B Instruct; Yang et al. 2024). The model had accuracy zero in every task and setup, consistently
showing responses such as ‘itian常常uzzle’ and ‘披露どの披露’, and thus having 100% error
rate regardless of shots. A brief examination of the finetuned model revealed consistent, albeit not
necessarily accurate, responses (e.g., 61.6%, 73.5%, and 52.9% for modus ponens ID at 20 shots in
PARITY, Pattern Matching, and Reversal, respectively).

The above aligns with results from the literature and our work, but also opens further areas of
research. Namely, it is known that priors are needed for ICL (Chang & Bisk, 2025; Hu et al., 2025).
Also, within our setup, we found that an LLM’s linguistic capabilities do not impact ICL (ref. word
salad and SoT), and that a sufficiently large number of exemplars suffices. A gradual comparison of
the learning (pretraining) process of an LLM with respect to its ability to understand data features
would provide much needed information as to which extent the natural-language data impact ICL as
a learning mechanism.

5Recall from Appendix C that, from the perspective of some theories, full zero-shot is not possible.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

E FULL TASK DESCRIPTIONS

In this section we describe each task more precisely, and are summarised in Table 3. For concrete
code examples, see the repository and Appendix H.

PARITY Decide if a given binary string {0, 1}k has an even number of zeros. Here, Σ = {0, 1}
and the automaton decides whether to append x ∈ Σ based on the transition probabilities. Emission
is given by a fixed probability of 1

10 . Unlike most problems, PARITY’s average length per δ was
relatively fixed, at 19 characters. The difference was the probability of each character occuring in
sequence. PARITY is classified as a regular language and modellable with an FSA.

Pattern Matching Decide if a pattern abcabb is a substring of a given string x ⊂ Σ∗, where
Σ = {a, b, c}. The automaton is similar to PARITY’s, with transition probabilities fixed by state
(x ∈ Σ) but dependent on δ. Strings with less than eight characters where rejected. In OOD
scenarios, the sequence length grew to over five times the ID length. Pattern Matching is classified
as a regular language and modellable with an FSA.

Reversal Given a string of the form l#r, the goal is to decide if l equals the reversed r, l = r−1.
The start of r is given by the delimiter #. Same as PARITY, the selection of every string depends
on transition probabilities δ. In this case, the alphabet was picked to not be grammatical, Σ = {gfx,
chtte, %, ltintprk, ¯\ (ツ) /¯, start} ∪ {#} where l, r ⊂ Σk\{#}. In OOD scenarios, the sequence
length grows to over seven times the ID length as δ increases. This variant of Reversal is a DCF
language modellable with a PDA (Butoi et al., 2025).

Stack For a final string sf , starting string s0, and series of operations Op on a string, decide if sf =
Op(s0). The operations simulate a stack (push/stop/pop) and may or may not be grammatical (e.g.,
stack overflows). Same as PARITY, the selection of every string depends on transition probabilities
δ. Here Σ = {0, 1} ∪ {push, pop, stop, empty}, sf , s0 ⊂ {0, 1}k, and Op ⊂ Σk\{0, 1}k. In OOD
scenarios, the sequence length grew to almost three times the ID length as δ increased. Stack is a
DCF language modellable with a PDA (Delétang et al., 2023).

Hamiltonian Given a directed graph in adjacency matrix form G, and a path p, decide if p is
Hamiltonian. Under this setup, this problem is classified as a regular language and modellable with
an FSA (Barrett et al., 2000). In OOD, the edges, and not the vertices, grew to up to 20% the original
length. Consequently, the character description of the graph grew by up to 32%, from 695 characters
to 851.

Maze (Complete and Solve) Given a maze, two segments of the solution path, and a sequence
of moves, in Maze Complete the task is to determine if the moves connect both segments. The
separation between segments–but not the move sequence–is never longer than three moves. Maze
Solve is given the full path and a longer sequence of moves. The task is to determine whether these
moves lead to the solved maze (a valid path from start to exit). Both problems are classified as
regular languages and modellable with FSA (Barrett et al., 2000). In OOD scenarios, the maze size
became larger, albeit the average path length remained somewhat stable.

Vending Machine (Verification and Sum) Given a list of items and costs C, a sequence of opera-
tions Op (add balance, purchase item), and initial and final balances b0, bf , verify if bf = Op(C)+b0
(verification) or compute bf + Op(C) + b0 (sum). For the purposes of this problem, the items and
costs were given in natural language: biscuits cost 20, soda costs 25, and coffee costs 15. Here
Σ = {+20,+15,+25} ∪ {coffee, biscuit, soda}, or, without resorting to strings, the abelian group
Avm = ({0, 20, 15, 25},+). The first three states denote additions, the named states are subtrac-
tions (item purchases), and the last state is the final balance bf . Same as PARITY, the selection of
every string s ⊂ Σk depends on the transition probabilities δ. In Vending Machine (Verification),
the learner must assert if the last part of the string, bf , equals the sequence of operations. Hence, it
is a regular language and modellable with an FSA. Since the strings are always up to length n, An

vm
is a finitely-generated abelian group, and thus the decision version of Vending Machine (Sum) is a
DCF language modellable with a PDA: it can be reduced to Stack with homomorphisms between
the operations (e.g., push and pop versus add and subtract, respectively), and between the inputs

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Task Label Balance Average Lengths Class
PARITY 49, 50, 50, 50, 50 18, 17, 17, 17, 17 FSA
Pattern Matching 50, 50, 50, 49, 50 40, 46, 62, 92, 179 FSA
Reversal 49, 50, 50, 50, 50 86, 186, 220, 312, 567 PDA
Stack 50, 50, 50, 49, 50 97, 169, 207, 235, 263 PDA
Hamiltonian 50, 50, 50, 50, 50 Graphs: 695, 862, 773, 770, 851 FSA

Vertices: 10, 12, 11, 11, 12
Paths: 24, 27, 26, 26, 28

Maze Complete 50, 50, 50, 50, 50 174, 173, 173, 175, 178 FSA
Maze Solve 50, 50, 50, 50, 50 429, 414, 423, 459, 498 FSA
Vending Machine (Verification) 50, 49, 49, 49, 49 105, 104, 111, 118, 128 FSA
Vending Machine (Sum) – – –

Table 3: Label balances (as an average of positive entries) and description (string) lengths for values
of δ ∈ {0, 0.2, 0.45, 0.65, 0.85}. Every length depends strongly on the design of the automaton:
some lengths grow much more slowly than others (e.g., PARITY versus Reversal). Other depend
on the complexity of the task, as opposed to the input description length. For example, Hamilto-
nian maintains a relatively stable average number of vertices, but the connectedness of each graph
increases with δ. Vending Machine (Sum) is not classed here because it is not a decision problem.

(An
vm’s set and, say, {00, 01, 10, 11}). In practice, the number of possible outputs is finite (albeit

very large), but it requires the learner to keep track of a state. In both OOD scenarios, the sequence
length became longer, by up to 20%.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

F DETAILED METHODOLOGY

F.1 LLM CALL PARAMETERS

We tested four LLMs: GPT-4 Turbo, GPT-4o, Mixtral 8x7B instruct v01, and Phi-3.5 MoE Instruct.
Details for each model are in Table 4.

Model Description

GPT-4 Turbo× OpenAI model with a context window of 128k tokens. Version:
GPT-4-0125.

GPT-4o× OpenAI model, higher-performing when compared to GPT-4
Turbo, and with a 128k context window. Version: GPT-4-0125

Phi-3.5-MoE-Instruct Mixture-of-experts model with a 128k context window and 6.6B
active parameters.

Mixtral-8x7B instruct v01 Mixture-of-experts model with a 32k context window and 12.9B
active parameters.

Table 4: Models evaluated. For the models marked with ×, details regarding architecture, parameter
size, or pretraining strategies have not been disclosed. All models are instruction-pretrained.

All models were called with temperature set to zero and maximum return tokens of 3 for all prompt-
ing strategies, except CoT (1,024) and the system prompts generated by APO (512).

The APO algorithm was called with a batch size of 1024, beam width 4, and a search depth of 6.

All work was done on a Standard ND40rs v2 instance in Azure, which is equipped with eight
NVIDIA Tesla V100 GPUs with 32 Gb of memory each. Calls were made using either the Azure
Open AI API (OpenAI models only) or calling directly the models on the instances. Every model
was called up to five times to account for any potential parsing errors or rate limitations from APIs.
The data analysis was carried out on a consumer-grade laptop.

F.2 BASELINES

The baselines were implemented in scikit learn (Pedregosa et al., 2011). For all tasks, the parameters
were left as default and used as a random seed 13213. For every entry the string-based representation
was mapped to integers character-by-character. That is, for, example, ’ltintprk’ from Reversal was
mapped to 4. Operators (e.g., ’+’ or ’pop’) also mapped to integers. Since most models required
tapes of the same length, empty cells were mapped to −100. No simulations of state (e.g., the state
of the stack after a push) were included in the tape.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

G DETAILED RESULTS

G.1 MAIN RESULTS

The full results of our main results are in Figure 3. It can be observed from the prompts that LLMs
generally present the same average per-task behaviour, with minor changes depending on the prompt.
In Table 5 we present the results per LLM and task excluding Vending Machine (Sum).

Figure 3: Complete set of performances per problem, including averages at the top. Observe how
the averages do not necessarily correspond to the performance per-model per-prompt per-task. Con-
sistent behaviours are that CoT is not robust to OOD, and that tasks on average present the same
approximate behaviour regardless of prompt.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Prompt Turbo
Slope Acc.

GPT-4o Phi-3.5 Mixtral Avg. slope
for acc.

Shots Modus Ponens 14.6 31±25 12.7 47±22 5.9 56±10 5.7 53±10 9.1±2.9
Description 3.3 61±5 1.5 63±3 6.2 55±11 9.8 51±21 5.0±1.9
DE 11.6 34±21 13.5 47±24 12.9 43±23 11.7 47±22 5.2±1.9
Word Salad 6.7 57±12 2.3 62±4 5.1 57±10 10.3 51±21 12.3±3.1
APO 4.2 50±7 1.8 60±4 0.8 49±1 8.2 39±15 6.1±2.0
CoT 2.1 21±4 3.6 26±7 -0.1 27±4 2.0 22±5 3.6±2.3

δ Modus Ponens -0.3 31 -0.6 47 -0.6 56 -0.3 53 -0.4±0.4
Description -0.5 61 -1.1 63±1 -0.4 55 -0.2 51 -0.6±0.4
DE -0.6 34 -0.1 47 -0.3 43 -0.3 47 -0.5±0.6
Word Salad -0.5 57 -1.1 62±1 -0.6 57±1 -0.1 51 -0.3±0.3
APO -0.8 50±1 -3.1 60±4 -1.5 49±2 -1.0 39±1 -0.6±0.7
CoT 0.0 21±1 -0.7 26±1 -0.2 27 0.3 22 -1.5±1.9

Table 5: Slopes and accuracies for every LLM, averaged over prompts and tasks, excluding Vending
Machine (Sum). On the rightmost column is the average slope for all LLMs. Rows in bold (word
salad and SoT) are not factored in our main results, but discussed in Section 6.1. The numbers
changed when compared to Table 2, but not substantially, thus leaving our results unchanged.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

G.2 FINE-GRAINED BEHAVIOUR

As mentioned in the main section, when breaking down the results per-prompt and per-task, the
LLMs had (1) similar behaviours over the tasks, but (2) inconsistency over the task type.

Figure 4: Averaged over all tasks and models,
all prompts have a positive slope (5.2±1.6) over
shots, and a narrowing gap in their σ (-2.6±0.5).

Behavioural similarity was given by the LLMs
having low σ but similar accuracy in a task-by-
task and prompt-by-prompt basis: all prompts
had a positive slope and low relative differ-
ence among them (Figure 4, left). Indeed,
the per-prompt shot slopes, averaged per LLM,
were 8.3±3.9 (modus ponens), 4.4±2.2 (de-
scription), 4.5±2.4 (DE), 5.3±2.6 (APO), and
3.3±2.4 (CoT) (Table 2). The average of the
slopes over shots is 5.2±1.6. We can hence ob-
serve that there was low variation (σ) between
the type of LLM and the prompt over all tasks,
and that the overall trend for all models, tasks,
and shots is positive. An OLS fit over the per-
shot σ indicated that the model gap, as the
shots increased, narrowed: -2.6±0.5. This is
visible in the image to the left, where the mod-

els start with a large gap on every task (namely, word salad and modus ponens), which narrows as
shots increase. It is worth noting how CoT has a slight improvement, as noted earlier in its slope, but
it remains relatively even when compared to higher-performing prompts (e.g., APO, DE). Indeed,
the dotted lines in the image to the left, denoting the σ over the slopes, indicates that most prompts
progressively narrowed their differences in performance, although, again, CoT remained relatively
steady. At a minor extent, this gap on average also narrowed in aggregates over δ: -0.2±0.2.

Inconsistency over the task was visible after observing that related tasks had gaps in peak perfor-
mances: 31% (Pattern Matching versus Maze (Solve)), and 12% (Reversal and Stack; Table 1). This
is particularly important given that an all-purpose solver (e.g., a universal FSA) should be able to,
theoretically, have perfect performance on all tasks of the same class (r. regular languages). While it
is a stretch to expect that from an LLM, it is worth pointing out that their general-purpose general-
isability is hence (naturally) limited. It then follows that ICL as a learning process depends strongly
on the features observed in-distribution. We cover this further in Section 7. The remaining ablation
studies focused on evaluating this hypothesis.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

G.3 ABLATION: IMPACT OF LEXICAL FEATURES

Word salad prompts started with low, and sometimes zero, accuracies. In the limit, however, all
prompts matched the average best-of non-salad performances to up a σ, with the exception of Re-
versal and Vending Machine (Sum). In the case of PARITY, Pattern Matching, Maze (Complete),
and Vending Machine (Verification), the match was within σ/2 (Table 6). This improvement was
fast, with slopes of 9.8, 12.1, 11.6, and 9.8 (Turbo, GPT-4o, Phi-3.5, and Mixtral, respectively),
for an average of 11±4.6. Compare with the slopes for description (4.4±2.2), DE (4.5±2.4), and
modus ponens (8.3±3.9). On average, word salad prompts were the most robust to δ, with val-
ues of -0.2±0.3 (versus -0.5±0.4, -0.5±0.6, and -0.4±0.4, respectively), albeit all were within the
baseline σ. See Figure 5 for a side-by-side depiction of the prompts with respect to their non-salad
equivalents (description and CoT).

Problem Highest Lowest Highest (Word Salad) Shots

PARITY 80±3 100-APO 16±20 2-m.p. 80± 5 100
Pattern Matching 94±1 50-DE 24±20 5-CoT 92±3 50
Reversal 61±11∗ 100-CoT 20±21 2-m.p. 51±1 100
Stack 73±14∗ 50-CoT 20±21 2-m.p. 56±13 100
Vending Machine (Ver.) 81±12 10-CoT 22±22 2-m.p. 78 ± 6 100
Maze (Complete) 77±5 100-m.p. 9±16 2-m.p. 74±6 100
Maze (Solve) 63±5 50-desc. 17±20 0-APO 54± 6 50
Hamiltonian 89±2∗ 100-desc 29±8 0-CoT 68 ± 20 20
Vending Machine (Sum) 16±1 5-CoT 0 0-DE† 8 ± 2 100

Table 6: Highest and lowest accuracies, averaged by model. An asterisk denotes an average over
fewer models (always excluding Mixtral); and † means that there were multiple ties. Highlighted
in grey are the prompts where word salad match within a σ the average best-of accuracy from the
non-word salad prompts, and in blue these within σ/2. In most cases, the match occurred at 100 and
50-shot, except in Hamiltonian, where the highest best-of was attained at 20 shot.

Unlike word salad, SoT had a major impact on accuracy, and had the lowest average performance
over shots (23±4) in any prompt. This was due to SoT’s high parse error rate over almost all
shots. In contrast, description had near-zero error rates, and modus ponens and word salad quickly
converged to zero. Overall average shot and δ slopes in SoT hovered around zero (1.6±2.2 and
0.0±0.6, respectively). This does not imply the LLMs were unable to solve all problems under SoT.
Some LLMs in SoT obtained above-average peak accuracies in certain tasks: GPT-4o in PARITY
(63% at 100 shots), and Turbo in Stack (76% at 50 shots). However, high-performing problems like
Hamiltonian and Pattern Matching had 14±12% and 2±3% average accuracies, respectively.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Figure 5: Average over all LLMs and tasks for the non-salad (left) and salad (right) prompts.
Description-based prompts rarely performed poorly at zero-shot for all LLMs but Mixtral, while
word salad versions required five shots (Mixtral), ten (GPT-4o), or more. However, word salad
prompts eventually reached equivalence with their baselines (Table 6). In high-accuracy tasks
(Hamiltonian, Maze (Complete) and PARITY) the prompts matched DE and modus ponens at be-
tween 10 and 100 exemplars. On the other hand, CoT and SoT had different behaviours: CoT had
an (average) modestly increasing trend which was not reproduced in SoT. However, this is an aggre-
gate: tasks such as Reversal had the same brittleness to OOD than their CoT counterparts; and tasks
such as PARITY even showed above-random best-of accuracies in some tasks (Table 2).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

G.4 ABLATION: POSITIONALITY OF EXEMPLARS

In all our experiments, all exemplars were equiprobable and fixed throughout the experiment (un-
shuffled). In this experiment we randomised the position of the same exemplars within the prompt
(all prompts and LLMs; shuffled), and fully randomised the exemplars per call by drawing them
i.i.d. from the training set.

We observed a small variation on accuracy when the same exemplars were shuffled versus unshuffled
(Table 7). The latter had lower performances, and larger slopes per-LLM, these were 5.6 versus 5.8
(Turbo), 5.2 versus 7.3 (Mixtral), 4.2 versus 4.2 (Phi-3.5), and 3.1 versus 3.5 (GPT-4o) (shuffled and
unshuffled slopes). However, per-prompt, these slopes were higher. The best average accuracies in
the shuffled setting were always with the same best-performing prompt from the unshuffled case, and
within the reported σ (e.g., 64±12% shuffled versus 61±11% unshuffled for Reversal at 100-CoT).

When fully randomising the examples, we only measured and compared GPT-4o (Table 8). Similar
to the previous experiment, we observed variations on average and highest accuracies (e.g., 94%,
92%, and 93% highest for fully random, shuffled, and unshuffled, respectively, in Hamiltonian with
description) although inconsistent (91%, 92%, and 71% in Stack CoT; 77%, 90%, and 90% in
PARITY APO and DE). On average, however, fully randomising the labels yielded lower average
accuracy (43%) versus shuffled and unshuffled (48% for both), and lower per-prompt accuracy.

Prompt Turbo GPT-4o Phi-3.5 Mixtral Avg. slope

Shots Modus Ponens 12.8 34±22 10.2 44±18 5.6 50±10 3.9 50±7 8.9±4.0
Description 3.6 57±6 1.4 56±3 4.6 49±10 6.3 51±14 4.7 ± 2.1
DE 3.6 55±6 1.0 59±2 5.8 49±10 5.8 50±17 4.9±2.5
Word Salad 8.8 28±16 12.1 43±22 11.4 41±21 9.1 45±19 11±5.0
APO 4.3 54±8 2.0 57±4 4.5 50±9 2.1 56±4 5.4± 2.6
CoT 3.7 49±7 1.3 56±4 0.6 45±1 7.0 39±13 3.6±2.6
SoT 1.5 20±4 2.9 25±6 0.3 26±4 0.0 26±5 0.5±2.2

OOD Modus Ponens -0.9 34±1 -0.5 44±1 -0.4 50±1 -0.2 50±1 -0.4 ± 0.3
Description -0.3 57±1 -0.8 56±1 -0.6 49±1 -0.1 51 -0.5 ± 0.6
DE -0.4 55±1 -1.0 59±2 -0.4 49±1 -0.1 50 -0.5±0.7
Word Salad -0.5 28±1 -0.2 43 0.0 41 -0.3 45±1 -0.3±0.3
APO -0.2 54 -1.0 57±1 -0.6 50±1 0.0 56 -0.6±0.6
CoT -1.1 49±2 -2.7 56±4 -1.1 45±2 -1.0 39±1 -1.4±1.8
SoT -0.2 20±1 -0.6 25±1 0.0 26 0.0 26 ±1 -0.2±0.6

Table 7: Slopes and average accuracies for shots and δ, per prompt, with shuffled exemplars. Greyed
out are the accuracies where the slope or accuracy was higher than the non-shuffled version from
Table 2, but the σ was higher. In blue are the setups with higher accuracy and lower σ. Top to bottom:
average accuracies per-prompt were 44±14%, 53±7%, 53±8%, 39±19%, 54±6%, 47±6%, and
24±3%.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

G.5 ABLATION: ALTERNATE DISTRIBUTIONS

Due to cost, this section is limited to GPT-4o. In this experiment we altered P to show different
distributions to the model. These alterations were:

1. Randomised exemplars on every call. This is the same setup from Appendix G.4.
2. Fully random exemplars drawn i.i.d. from the training set on every call. This is also the

setup from Appendix G.4.
3. An imbalanced distribution of labels, showing only positive labels as exemplars.
4. A corpus with uniformly at random labels (both test and train) acting as a baseline.

The results are in Table 8. With the exception of the random baseline, all setups showed the
ability to learn the underlying distributions: shuffled exemplars and the imbalanced scenario
often matched or outperformed the baseline average accuracy over most tasks and prompts, with
the latter attaining higher average accuracies and larger δ and shot slopes. However, the σ in the
per-prompt accuracies were higher. The baseline had an average accuracy of 41±9%: most prompts
stayed within the random-choice 50±5% accuracy, with the exception of SoT (24%). Remark that
this is expected, since every datapoint has the same probability of having any labels, and this is
uncorrelated to the features themselves–i.e., it is unlearnable.

Figure 6: Average accuracies for alternate P .
Most prompts had positive slopes, with the excep-
tion of CoT, which peaked fast and then started
decreasing.

As in all previous experiments, in the limit we
observed increasing trends in the shot-slopes
and δ-slopes across setups and prompts, with
average slopes of 4.3±4.2 and -0.8±0.6 (Fig-
ure 6, left). These were more noticeable in the
shuffled setting, where all prompts but DE had
improvements. However, in this case, the av-
erage σ increased for both slopes: 1.0±0.7 and
-0.3±0.2, respectively. This was observed on
every prompt and every setup, as most setups
learnt the problem. Of note is also CoT, which
showed decreasing shot slopes across all se-
tups: -1.1 for imbalanced labels, -1.1 for shuf-
fled, and -2.5 for both fully random exemplars
and random labels.

Prompt Imb. labels Fully
exemp.

rand. Rand. labels Shuffled Avg. slope

Shots Modus Ponens 12.6 48±22 8.6 29±14 7.7 38±14 12.7 47±22 8.3±3.9
Description 1.9 63±3 1.1 59±3 0.1 49 1.4 62±2 4.4±2.2
DE 2.1 64±3 0.9 60±2 0.2 49 1.5 63±3 4.5±2.4
Word Salad 13.4 49±25 9.1 30±16 8.9 37±17 13.5 47±24 11±4.6
APO 2.3 62±4 3.3 58±6 0.8 49±2 2.3 62±4 5.4±2.6
CoT -1.1 56±6 -2.5 54±7 -2.5 41±4 -1.1 56±6 3.3±2.4
SoT 2.9 26±6 2.2 25±5 2.2 24±5 5.1 24±7 1.6±2.2

δ Modus Ponens -0.5 48 -0.6 29 -0.4 38 -0.6 47 -0.4±0.4
Description -1.0 63±1 -0.7 59 -0.2 49 -0.9 62±1 -0.5±0.5
DE -1.1 64±1 -0.7 60±1 -0.2 49 -1.1 63±1 -0.5±0.6
Word Salad -0.0 49 -0.3 30 -0.0 37 -0.1 47 -0.2±0.3
APO -1.2 62±1 -0.7 58±1 -0.2 49 -1.1 62±1 -0.5±0.7
CoT -3.0 56±4 -2.6 54±3 -1.3 41±1 -2.9 56±4 -1.4±1.9
SoT -0.7 26±1 -0.7 25 -0.7 24±1 -0.4 24 0.0±0.6

Table 8: Slopes and average accuracies for shots and δ, per prompt, on our evaluation of alterations
of P . Greyed out are the accuracies where the slope or accuracy was higher than or equal to the
non-shuffled version of GPT-4o’s predictions; and in blue these where the σ was also strictly larger
than GPT-4o’s equivalent (Table 2; but excluding Vending Machine (Sum)). Top to bottom: average
accuracies per-prompt were 37±17%, 53±2%, 54±2%, 37±19%, 53±4%, 52±3%, and 25±6%.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

G.6 ABLATION: COMPLIANCE VERSUS LEARNING

Prompt MP Desc DE APO CoT

Compliance 43±10 53±7 53±6 52±6 46±8
Learning 53±6 56±3 58±4 57±3 56±6

Table 9: Average accuracy across all tasks and
LLMs aggregated by prompt: it is slightly above
average when not accounting for parsing errors.
Large drops occur otherwise, with increases (up
to double) in σ. This suggests that LLM compar-
isons depend strongly on measurement.

The distinction between compliance with the
prompt (returning a parseable output) versus
learning the task (returning a correct label) re-
quires further scrutiny.

This is because, in the extreme case, a dataset
could be, for example, 99.9% parsing errors and
one lucky guess, thus leading to inaccurate as-
sessments of performance. Hence, we separated
parsing errors from mislabelled instances, and
re-calculated the averages and slopes. Factor-
ing out parsing errors increased the perceived
performance of an LLM, usually understating
or overstating magnitudes. This is because it be-

comes harder for an LLM to have accuracies below 45% (Table 9, left), and average shot and δ
slopes are smoothed out (4.7±3.1 and -0.4±0.2 average, respectively) when compared to compli-
ance and learning (r. 5.4±3.1, -0.5±0.3), thus making–for example–CoT’s sensitivity to OOD hard
to spot (Figure 7). In turn, this suggests that works should disclose the parsing strategies to avoid
misleading results.

Figure 7: Comparison of select prompts when measuring reasoning as compliance and learning (left,
labelled as C&L and counting parsing errors as mislabels), and only learning (right; not factoring in
parsing errors) for CoT (top) and modus ponens (bottom). In learning, CoT’s sensitivity to OOD is
hard to spot as the performance curves are smoothed out. In comparison, when evaluating compli-
ance and learning, the evaluation has a smoother performance floor and accounts for the full dataset.
Model convergence was still noticeable, as evidenced by the modus ponens plots.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

H PROMPTS

We show sample prompts for various problems and prompting strategies. For the full prompts, refer
to the repository. In Prompt 1 we show the modus ponens and description prompts for PARITY; and
in Prompt 2 a sample CoT for Pattern Matching. We also show in Prompts 3 and 4 the CoT and SoT
versions of Maze Complete, and in Prompt 5 the word salad version of Vending Machine (Solve).

This task is called PARITY. The strings in PARITY are generated from a probabilistic automaton.
Your job is to learn what is the likelihood of a string to be labeled 0 or 1, and output the correct
label.
In the limit where the automaton is deterministic, if the number of zeros in the input string is even,
the label is always 1. Else, it is 0.
Given the data below, determine what is the most likely label for the given string and output ONLY
the label. Data:
Every zumpus is a shumpus. Polly is a lorpus. Everything that is amenable, kind, aggressive, and a
grimpus is a brimpus. Each impus is a wumpus and a tumpus. Wumpuses are impuses. Everything
that is floral and a shumpus is a tumpus. Yumpuses are impuses, lorpuses, and sterpuses. Max is
dull. Wren is a tumpus. Everything that is transparent or a rompus is a lempus. Alex is an impus or
a vumpus. Sally is temperate. Each yumpus is a zumpus. Everything that is fruity and a numpus is a
grimpus. Every zumpus is not discordant. Everything that is windy or a gorpus is a vumpus. Every
yumpus is a gorpus. Everything that is opaque, transparent, or a jompus is a lempus. Each rompus
is a lempus. Stella is large and small and a grimpus and a gorpus. Max is a sterpus or a jompus
or a gorpus. Sam is a wumpus or a dumpus or a tumpus. Everything that is bitter and a tumpus
is a rompus. Everything that is angry and a lempus is a sterpus. Sally is a gorpus, a shumpus,
a dumpus, or a tumpus. Everything that is snowy, sunny, and a yumpus is a lorpus. Everything
that is transparent and a vumpus is a brimpus. Everything that is small and a vumpus is a rompus.
Everything that is a brimpus, a shumpus, or a wumpus is a tumpus.

0000110010010010000000:
0
00100100001001110010:
0
000010010000110010:
0
0000110010010010000000:

Prompt 1: Prompts for description (red), word salad (blue), and modus ponens (grey) for PARITY. In
the implementation these are the standard ChatML-formatted prompts, so the coloured lines are part
of the system prompt, while the grey are exemplars alternating between the user input (the binary
string) and the assistant’s response (the single bit). In zero-shot, the prompt includes a specification
of the output format (‘Give your answer as a single integer, and your reasoning in a new line. For
example:’). The reasoning is cut off and does not affect the experiments. The list of words from
word salad comes from the ontology by Saparov & He (2023).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

This is a pattern matching task. The strings in this task are generated from a probabilistic automaton.
Each string is labelled 0 or 1 depending on whether the pattern “abcabb” is (1) or is not (0) in the
string.
Your job is to learn what is the likelihood of a string to be labelled 0 or 1, and output the correct
label.
In the limit where the automaton is deterministic, if the pattern is present in the string, the label is
always 1. Else, it is 0.
Given the data below, determine what is the most likely label for the given string and output ONLY
the label.
Data:

abaababbbbbbbaaaaaaaaaacabaaabcaaaaaaccbbbaaababbbbbbbbbbbbbbbbbbbbbbbbaaaacaccbaccc
cccbcbbbaaaacccccccaacabaaaacabaaaaccbbbbcccccccaaaacabbbbaaaaaaaaaaaaaaaaaaccbbbaaaaaa
aabbbaabbccccccaaaccaacabbbbaabcbbccccccaaacabbbbbcccccccaaaaaccbbbcccccccccabcbbacaab
aaaaaacabbaaaaaaaaaaaac:
Let’s think and solve this step-by-step. We read the string character-by-character and keep a tally:
We read “a”. It is a match. Our tally is: a. Now we move to the next character.
We read “b”. It is a match. Our tally is: ab. Now we move to the next character.
We read “a”. It is not a match. We clear our tally. Now we move to the next character.
We read “a”. It is a match. Our tally is: a. Now we move to the next character.
We read “b”. It is a match. Our tally is: ab. Now we move to the next character.
We read “a”. It is not a match. We clear our tally. Now we move to the next character.
We read “b”. It is not a match. Now we move to the next character.
...
We read “a”. It is a match. Our tally is: a. Now we move to the next character.
We read “a”. It is not a match. We clear our tally. Now we move to the next character.
We read “a”. It is a match. Our tally is: a. Now we move to the next character.
We read “a”. It is not a match. We clear our tally. Now we move to the next character.
We read “a”. It is a match. Our tally is: a. Now we move to the next character.
We read “a”. It is not a match. We clear our tally. Now we move to the next character.
We read “a”. It is a match. Our tally is: a. Now we move to the next character.
We read “a”. It is not a match. We clear our tally. Now we move to the next character.
We read “c”. It is not a match. Now we move to the next character.
We have reached the end of the string. The pattern “abcabb” is is not in the string.
So the answer is 0

abaababbbbbbbaaaaaaaaaacabaaabcaaaaaaccbbbaaababbbbbbbbbbbbbbbbbbbbbbbbaaaacaccbaccc
cccbcbbbaaaacccccccaacabaaaacabaaaaccbbbbcccccccaaaacabbbbaaaaaaaaaaaaaaaaaaccbbbaaaaaa
aabbbaabbccccccaaaccaacabbbbaabcbbccccccaaacabbbbbcccccccaaaaaccbbbcccccccccabcbbacaab
aaaaaacabbaaaaaaaaaaaac:

Prompt 2: Prompt for one-shot Pattern Matching CoT. As before, the exemplar (grey) contains both
the sample pattern and a procedurally-generated CoT response keeping a tally (stack). During SoT,
both the words in the system prompt (red) and the exemplars are replaced by random words. The
only things left are the pattern, labels, and the final output format.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

You are helping me complete a maze. You will be given a maze almost solved, and sequence
of moves to finish solving it.
Your job is to determine whether the moves are correct and will lead to solving the maze solved.
You must always output 0 (incorrect) or 1 (correct).
The path you must complete is denoted by uninterrupted “+”, and your completion starts at “?”.
Walls are denoted by “#”, and the start and end are “S” and “E”, respectively.
The first move you must verify is the one connecting the path to “?”.
Given the data below, determine what is the most likely label for the given maze and moves;
and output ONLY the label.
Data:

Solved maze:
#S#######
#+++# #
#+#
#+++#
###+#
#?++#
#
++++E
#########
Missing moves:
down,down,right:

Let’s think and solve this step-by-step.
We begin at line 0.This line does not contain “?”.
We move on then to line 1.
This line does not contain “?”.
We move on then to line 2.
This line does not contain “?”.
We move on then to line 3.
This line does not contain “?”.
We move on then to line 4.
This line does not contain “?”.
We move on then to line 5.
This line contains “?”.
The “?” character is at position 3 in the line. We will now perform a search on the neighbours
to find the path.
This has neighbours: [‘down’] at [(6, 3)].
We select the neighbour at (6, 3) (“down”) and add it to our buffer. Our buffer is: [‘down’].
This has neighbours: [‘down’] at [(7, 3)].

We select the neighbour at (7, 3) (“down”) and add it to our buffer. Our buffer is: [‘down’,
‘down’].

This one has the following available neighbours connecting to the path: [‘right’] at [(7, 4)].
This has a “+” neighbour at (7, 4) (“right”), so it connects to the path.
We add it to our buffer. Our buffer is now [‘down’, ‘down’, ‘right’].

We are done!
Our final set of positions is down,down,right and the solution says down,down,right.
So the answer is 1

Prompt 3: Prompt for the CoT version (one-shot, user input omitted) of Maze Complete. In red, the
system prompt. In grey, a single exemplar.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

This is a string detection task. The strings in this task are generated from a probabilistic au-
tomaton, described in the code below.
Each input is of the form LEFT#RIGHT. Each string is labelled 0 or 1 depending on whether
the RIGHT pattern is (1) or is not (0) a reversal of LEFT.
Your job is to learn what is the likelihood of a string to be labelled 0 or 1, and output the correct
label.
Here’s the code:
ALPHABET = [“gfx”, “chtte”, “%”, “ltintprk”, “¯\ (ツ) /¯”]
MIN LEN = 5

def reversal tape(P):
n + 1 states: ALPHABET + “final”
tape = []
end state = “stop”
current state = “start”
states = [a for a in ALPHABET] + [end state]
while True:

next state = random.choices(states, weights=P[current state])[0]
if next state == end state:

break
else:

tape.append(next state)
current state = next state

return tape

Given the data below, determine what is the most likely label for the given string and output
ONLY the label.
Data:

chttechttegfxltintprk%%%%%%¯\ (ツ) /¯chtteltintprkltintprk%%#%%ltintprkltintprkchtte
¯\ (ツ) /¯%%%%%%ltintprkgfxchttechtte:

Prompt 4: System prompt (red) for the DE version (one-shot) of Stack along with a user input (grey).
Remark that in this setup the alphabet is explicitly defined, as well as the code used to generate the
output minus the weights for P .

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

You are a vending machine. You are given a sequence of additions of balance (+10, +5, etc) or
a selection (soda, biscuit, or coffee).
Your job is to output the remaining balance given the sequence.
Each soda is worth 25. Each biscuit is 20. Each coffee is 15. When someone selects a soda,
biscuit, or coffee, the value of the item is subtracted from the balance.
Given the data below, determine what is the most likely balance for the given string and output
ONLY the balance.
Data:
loud orange shy, rompuses amenable rompuses lorpuses Max Vumpuses or Grimpuses feisty
muffled, opaque, Yumpuses rompus, gorpus angry, jompuses bitter sterpus vumpuses, shumpus
luminous temperate luminous, Fae windy bitter, brown sweet, dumpuses, grimpus angry hot
moderate grimpus, Rompuses lempus

+10,+10,biscuit,+10,+5,coffee,+10,+10,biscuit,+10,+10,biscuit,+5,+10,+10,soda,+10:
Let’s think and solve this step-by-step. We start with a balance of 0.
impus, gorpuses “+10”, Rompuses brimpus, aggressive 10 impuses Lempuses impus rainy
grimpuses, sunny zumpus, shumpus 10.
spicy, bitter “+10”, lorpuses floral, gorpus 10 is tumpus wumpuses numpuses slow overcast,
Sterpuses vumpuses 20.
aggressive impuses “biscuit”, Each Sterpuses vumpus biscuit liquid mean 20 lempus fast dum-
pus, fruity aggressive red, 0.
sterpus, metallic “+10”, numpus, wumpuses, brimpuses, 10 windy cold zumpuses sterpus zum-
puses vumpuses, happy earthy, 10.
fruity tumpuses, “+5”, sterpuses, lorpuses, jompuses, 5 brown, or hot, grimpuses Gorpuses
wumpus Wumpuses happy 15.
yumpuses, an “coffee”, Sam windy vumpuses, coffee tumpuses dull 15 dumpuses sweet feisty
Polly brown, shumpuses, 0.
...
sweet, luminous “biscuit”, large moderate brimpus, biscuit dumpuses, bitter, 20 brown zum-
puses snowy gorpus Everything numpuses, 0.
brimpuses discordant, “+5”, rompus, melodic, jompuses, 5 wumpus sweet, Zumpuses zumpus,
jompus, opaque lorpus Fae 5.
bitter brown, “+10”, bright, tumpus sour, 10 yumpus, gorpus Lorpuses discordant impuses
lempuses wumpus slow, 15.
gorpuses shy, “+10”, opaque fruity mean 10 Stella Rompuses windy wumpus rainy, happy,
jompuses dumpus, 25.
spicy Lempuses “soda”, Brimpuses bitter metallic, soda brown, tumpus, 25 snowy, lorpus kind,
temperate small moderate 0.
nervous, vumpuses “+10”, liquid moderate impus, 10 angry snowy bright gorpuses impuses,
brown, Lorpuses brown 10.
We read “+10”, so we add 10 to our current balance and we now have 10.
We read “+10”, so we add 10 to our current balance and we now have 20.
We read “biscuit”, so we return a biscuit and substract 20 from our balance and now we have 0.
We read “+10”, so we add 10 to our current balance and we now have 10.
We read “+5”, so we add 5 to our current balance and we now have 15.
We read “coffee”, so we return a coffee and substract 15 from our balance and now we have 0.
...
We read “biscuit”, so we return a biscuit and substract 20 from our balance and now we have 0.
We read “+5”, so we add 5 to our current balance and we now have 5.
We read “+10”, so we add 10 to our current balance and we now have 15.
We read “+10”, so we add 10 to our current balance and we now have 25.
We read “+10”, so we add 10 to our current balance and we now have 10.
Our final balance is 10. The answer is then 10

Prompt 5: Prompt with one exemplar for Vending Machine (Sum). In blue, the SoT version of this
prompt; and in red, the CoT version. For brevity, we omit lines for both CoT/SoT outputs. In grey
are the lines shared by both prompts: the first line is the user input, and the other two are shared
boilerplate for the CoT/SoT prompts for parsing. Observe how the relevant quantities do not change.

39

	Introduction
	Findings
	Interpretation

	Related Work
	Theoretical Evaluations
	Empirical Evaluations

	Background: The Need for Empirical Evaluation of ICL
	A Formal Definition of Learning
	Task Similarity
	Defining ICL In Context

	Methods
	Framing
	Prompting strategies and scope
	Tasks Overview
	Models and Measurement
	Data Generation

	Results
	Overall Performance
	Distributional Shifts
	Fine-Grained Behaviour

	Ablation Studies
	Impact of Lexical Features
	Positionality of Exemplars
	Impact of Alternate Distributions
	Compliance versus Learning

	Discussion
	Conclusion
	Ethics
	Reproducibility Statement
	Limitations
	Detailed Background
	PAC Learning
	Automata Theory and Formal Language Theory

	Alternate Models of Learning
	Gold's Inductive Inference
	Behavioural Theories
	Cognitive Theories

	Relationship to Natural Language
	Impact on Conclusions
	Impact on Results

	Full Task Descriptions
	Detailed Methodology
	LLM Call Parameters
	Baselines

	Detailed Results
	Main Results
	Fine-Grained Behaviour
	Ablation: Impact of Lexical Features
	Ablation: Positionality of Exemplars
	Ablation: Alternate Distributions
	Ablation: Compliance Versus Learning

	Prompts

