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Abstract

The widespread use of casual language, includ-
ing slang, poses significant difficulties for nat-
ural language processing systems, particularly
in automatically recognising varied word uses.
Although previous research has addressed slang
through the creation of dictionaries, sentiment
analysis, word formation, and interpretation,
there has been limited focus on the fundamen-
tal issue of detecting slang. This paper focuses
on the detection of slang within natural En-
glish sentences. To comprehensively tackle
this problem, we constructed a novel dataset
that includes words commonly used in both
slang and non-slang contexts. The dataset com-
prises ten target words that display at least one
slang sense as well as one non-slang sense;
each sentence has been manually annotated as
either slang or non-slang, achieving high inter-
annotator agreement. Additionally, we sought
to identify the most effective approach for ad-
dressing this issue. To achieve this, we com-
pared and evaluated different approaches, in-
cluding (1) traditional machine learning-based
models (ML), (2) deep learning-based models
(DL) with both contextual and static embed-
dings, (3) fine-tuning various language mod-
els (LMs), and (4) fine-tuning different large
language models (LLMs). The results show
that fine-tuning language models, particularly
BERT-large-uncased, achieved the highest per-
formance, with an F1-score of 69% for slang
and 92% for non-slang, a macro-averaged F1-
score of 80%, a weighted-averaged F1-score of
87%, and an overall accuracy of 87%.

Keywords: Slang detection, Text classification, An-
notated corpus.

1 Introduction

Disclaimer: This work includes offensive slang ex-
amples, which do not reflect the researchers’ views.
Slang is a form of informal language that in-
cludes words and phrases used within particular

groups (Dumas and Lighter, 1978; Adams, 2012;
Green, 2015). The adaptability of slang captivates
language users and learners, while also presenting
unique challenges and opportunities for natural lan-
guage processing (NLP) systems (Eisenstein, 2013;
Blodgett et al., 2016).

Computer scientists and linguists have developed
methods to understand semantics on multiple levels
for years. However, understanding slang remains a
significant roadblock to deciphering the true mean-
ing behind conversations. Slang is crucial for grasp-
ing the true meaning of a sentence because slang
words and phrases often carry specific cultural and
contextual connotations (Bucholtz, 2006; Green,
2015) that standard language does not. Slang can
convey nuanced emotions, attitudes, and social af-
filiations that are essential for fully comprehending
the speaker’s intent (Eisenstein et al., 2014; Par-
tridge, 2015).

Additionally, identifying slang is vital for track-
ing semantic changes and handling semantics-
based tasks (Adams, 2012; Sun et al., 2022). Slang
often evolves rapidly, and understanding these
changes can help in updating language models and
improving the accuracy of various NLP tasks. For
example, the word “cool” has undergone signifi-
cant semantic changes over time, and recognising
its current slang usage is crucial for accurate se-
mantic analysis (Coleman, 2012; Dhuliawala et al.,
2016).

Detecting slang is particularly challenging due
to the complex semantics associated with slang
words, which can be interpreted in multiple ways.
The nuances and context often lead to varied in-
terpretations, making it difficult to accurately iden-
tify and understand whether a sentence contains
slang. This complexity is further heightened by the
presence of double entendres (Kiddon and Brun,
2011). For instance, the phrase “He’s a player on
Sundays” could refer to someone who plays sports
on Sundays or imply that he manipulates others



romantically on Sundays.

Despite its importance and prevalence, slang de-
tection has received limited attention in NLP. This
paper addresses this gap by proposing a compu-
tational approach to studying slang detection in
historical and social media data. Our wider goal is
to shed light on the role of slang in these data types
and provide a foundation for further research in this
area. By doing so, we aim to better understand how
slang impacts our interactions and develop more
effective ways to detect and interpret it.

This paper introduces a binary classification sys-
tem designed to identify sentences that either con-
tain slang or not. Our primary research question
is: Can an algorithm be trained to determine if a
sentence like “Maybe it is some personal thing that
eats me” contains slang usage, specifically at the
sentence level? We explore whether it is possible to
automatically detect slang within natural sentences
and identify the techniques that distinguish slang
from standard language usage. Our contributions
include the following:

* A new corpus annotated with slang and non-
slang labels, supporting the development of
binary classification methods to automatically
detect whether a given sentence contains at
least one instance of slang.

* A classification system developed to deter-
mine whether a given sentence contains slang
or not using (1) traditional machine learning
models (ML), (2) deep learning models (DL),
(3) fine-tuning of language models (LMs), and
(4) large language models (LLMs).

* A comparative study and error analysis explor-
ing the performance of various algorithms.

2 Related work

2.1 Construction of Slang Dictionaries and
Sentiment Analysis

In the evolving landscape of computational linguis-
tics, developing resources to handle informal lan-
guage, especially slang, is crucial. This section ex-
plores significant contributions made by innovative
tools such as SlangNet, SlangSD, and SLANGZY,
which focus on developing and expanding slang
dictionaries and enhancing sentiment analysis for
slang-laden content.

SlangNet (Dhuliawala et al., 2016) provides a
WordNet-like structure specifically designed for

English slang, using Urban Dictionary as its pri-
mary data source. It augments traditional WordNet
by integrating slang word senses, thus supporting
NLP applications like web mining and information
retrieval. By distinguishing between conventional
and slang word senses, SlangNet enhances the inter-
pretation of internet-based language in NLP tools.

SlangSD (Wu et al., 2018) systematically builds
a sentiment dictionary focused on slang words com-
monly used on social media. It addresses the dy-
namic nature of slang by continuously updating
its database with new slang terms and their asso-
ciated sentiments, making it a robust resource for
sentiment analysis. The dictionary leverages web
resources and social media corpora to automatically
estimate sentiment polarity, thereby improving sen-
timent classification in user-generated content.

SLANGZY (Gupta et al., 2019) employs ma-
chine learning algorithms to interpret slang within
online communication. It adapts dynamically to
new slang forms, improving the performance of
language models in applications ranging from chat-
bots to social media analytics. By integrating these
capabilities, SLANGZY enhances the accuracy and
relevance of sentiment analysis tools when dealing
with informal, slang-heavy texts.

2.2 Slang word creation and interpretation

In the rapidly evolving field of NLP, the detec-
tion, interpretation, and analysis of slang have
garnered increasing interest, particularly due to
the prevalence of slang in digital communications.
Early studies, such as those by (Pal and Saha,
2015), primarily focused on building and expand-
ing dictionary-based resources for slang detection
and interpretation.

Advancements in deep learning have led to
more sophisticated automatic slang identification
techniques and frameworks that analyse cognitive
usage patterns, significantly enhancing detection
accuracy at both the sentence and token levels.
For instance, the study by (Pei et al., 2019) em-
ploys bidirectional recurrent neural networks (BiL-
STM) (Hochreiter and Schmidhuber, 1997), condi-
tional random fields (CRFs) (Lafferty et al., 2001),
and multilayer perceptrons (MLPs) (Rauber and
Berns, 2011), achieving an F1 score of 0.80 for
sentence-level detection and 0.50 for token-level
identification.

(Ni and Wang, 2017) introduced a neural
sequence-to-sequence model designed to generate
explanations for non-standard English phrases au-



tomatically. While this approach contributes to
explaining slang expressions, it does not address
the crucial task of detecting or identifying slang,
which remains a key challenge in the field.
Furthermore, the study by (Lynn et al., 2019)
applied deep learning methods, specifically BiL-
STM and Bi-GRU, to detect misogynistic slang
within a dataset derived from Urban Dictionary.
Their findings indicate that deep learning models
significantly outperform traditional machine learn-
ing approaches, such as logistic regression, Naive
Bayes, and Random Forest, highlighting the su-
perior performance of deep learning for detecting
specific slang usages within a given context.
Additionally, the incorporation of semantically
informed methodologies, as proposed by (Sun et al.,
2022), marks a significant step forward. By merg-
ing semantic insights with contextual data, their
approach refines slang interpretation, addressing
critical gaps in traditional processing techniques
that often overlook the nuanced meanings of slang.
Separate research efforts have been directed to-
wards understanding the mechanisms behind slang
word creation, a growing area of importance due
to the increasing use of informal expressions on-
line. For example, (Kulkarni and Wang, 2018)
developed generative models for slang that effec-
tively capture patterns such as blends, clippings,
and reduplicatives, achieving top-tier performance
on human-annotated datasets. These models offer
valuable insights into slang word formation, which
is becoming increasingly relevant in the digital age.

3 Dataset

In previous research, the only dataset available for
the binary classification of slang is the one pre-
sented by (Pei et al., 2019). However, this dataset
is not publicly accessible and comes with notable
limitations. It does not differentiate between words
that have both slang and non-slang meanings, nor
does it provide illustrative examples for each sense.
Instead, it compiles examples from sources such as
the Online Slang Dictionary! and Wall Street News
(2011-2016) in the Penn Treebank (Marcus et al.,
1993), where the keywords often differ between
classes, making generalisation easier.

To address this gap, we have constructed a new
dataset, SlangTrack (ST) Dataset?, specifically de-

"https://http://onlineslangdictionary.
com

’The dataset utilised in this study will be made available
upon request. Interested researchers may contact the corre-

signed to include words that are commonly used in
both slang and non-slang contexts. Our focus is on
identifying and selecting target words that exhibit
both slang and non-slang senses, providing exam-
ples for each usage. This approach is novel in slang
research, aiming to create a binary classification
system that can effectively distinguish between the
dual meanings of words, thus improving the de-
tection and interpretation of slang within natural
language.

3.1 Data Collection (Target Words and
Examples )

In our study, we selected target words that coex-
isted in the slangSD? wordlist and COHA (Davies,
2012), based on the number of senses per word.
Each target word used in our experiment has at
least one slang sense and one dominant sense.
We collected the meanings of these target words
from Green’s Dictionary of Slang*, Urban Dictio-
nary>, and the Online Slang Dictionary®, and cross-
referenced them with the Oxford English Dictio-
nary’ to confirm their dominant non-slang sense.
We further verified that each target word appeared
in both the COHA dataset and TwitterS, ensuring
the collection of relevant senses for comprehensive
analysis. Ultimately, we selected ten target words
that met our criteria, excluding proper nouns.

We collected our examples for every target word
from multiple sources. This dataset includes com-
prehensive contextual information for each target
word. Among the sources used, we selected the
clean version of the Corpus of Historical American
English (CCOHA) because of its detailed documen-
tation, as noted by (Alatrash et al., 2020). To com-
plement this, we also utilised Twitter data, which
offers a rich, current source of contemporary slang
and informal language. Twitter’s dynamic and real-
time communication makes it a valuable tool for ob-
serving and analysing the rapid changes in modern
language, particularly slang. We extracted all avail-
able examples for each target word from COHA,
covering the years 1980-2010, and collected 1,000
examples per target word from Twitter, spanning

sponding author for access.
*https://www.rdocumentation.org/
packages/lexicon/versions/1.2.1
4https ://greensdictofslang.com
Shttps://www.urbandictionary.com
®https://http://onlineslangdictionary.
com
"https://www.oed.com
dhttps://twitter.com
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Example Sentences

Target Keyword Category

Today I heard, for the first time, a short scientific talk given by a man dressed as a rodent...!

An interesting experience.

Rodent Slang

On the other. Mr. Taylor took food requests and with a stern look in his eye told the
children to stay seated until he and his wife returned with the food. The children nodded

attentively. After the adults left, the children seemed to relax, talking more freely and playing Eat

Non-Slang

with one another. When the parents returned, the kids straightened up again, received their
food, and began to eat, displaying quiet and gracious manners all the while.

Greater than this one that washed between the shores of Florida and Mexico. He balanced
between the breakers and the turning tide. Small particles of sand churned in the waters

around him, and a small fish swam against his leg, a momentary dark streak that vanished in

Salty Non-Slang

the surf. He began to swim. Buoyant in the salty water, he swam a hundred meters to a jetty

that sent small whirlpools around its barnacle rough pilings.

Mom was totally hating on my dance moves. She’s so salty.

Salty Slang

Table 1: Sample texts from the dataset.

the period from 2010-2020.

3.2 Annotation Guidelines and Details

The selected target words, along with their corre-
sponding examples and all unique senses, were pro-
vided to the annotators. The annotators were tasked
with identifying and labelling each example based
on its relevant slang or non-slang sense. For this
experiment, different instances of both slang and
non-slang classes were grouped together to form
a binary classification setting. Table 1 presents ex-
amples of target words categorised into slang and
non-slang classes.

Our annotation team consisted of three individ-
uals, all with strong proficiency in English and at
least a bachelor’s degree. One of the team members,
who held a degree in Linguistics, was appointed as
the primary annotator. To ensure consistency in the
annotation process, two annotators independently
labelled a random sample of 1,000 sentences in
a pilot task. This pilot phase was instrumental in
refining the annotation guidelines. Any discrepan-
cies between the annotators were resolved by the
primary annotator, ensuring consensus on the final
annotations.

The inter-annotator agreement was measured us-
ing Cohen’s Kappa (Cohen, 1960), with the final
value of 88.7% indicating a high agreement be-
tween annotators.

3.3 Data Statistics

The complete dataset comprises a vocabulary of
48,508 unique words (vocabulary); those words
make a total of 310,170 (tokens) across all the in-
stances, with an average post length of 34.6 words
per post and an average sentence length of 3.74
sentences per post. The dataset has been divided

into three subsets: training, validation, and testing
using stratified sampling, with the proportions set
at 70%, 15%, and 15%, respectively.

Keyword Non-slang  Slang Total
Bmw 1083 14 1097
Brownie 582 382 964
Chronic 1415 270 1685
Climber 520 122 642
Cucumber 972 79 1051
Eat 2462 561 3023
Germ 566 249 815
Mammy 894 154 1048
Rodent 718 349 1067
Salty 543 727 1270
Total 9755 2907 12662

Table 2: Data statistics: Total number of instances
(examples) categorized as slang or non-slang per
keyword.

4 Methodology

4.1 Pre-processing

Our approach followed the standard pre-processing
procedures, such as eliminating duplicate instances
(i.e., repeated text entries with identical content),
punctuations, URLs, and usernames, and trans-
forming all text to lowercase. We removed all cases
when the target word was a part of the URL or the
username during the early filtering of the text dur-
ing extraction.

4.2 Evaluation

In this study, the evaluation of model performance
focused on handling the imbalanced nature of slang
detection by using a variety of metrics: weighted
and macro-averaged scores alongside the F1 score.



Precision assessed the model’s ability to correctly
identify slang or non-slang instances without false
positives, while recall measured its capacity to cap-
ture true examples, minimising false negatives. The
F1 score provided a balanced view, combining pre-
cision and recall, which is particularly crucial given
the class imbalance between slang and non-slang.
Macro-averaged scores treated all classes equally,
highlighting performance in minority classes like
slang, whereas weighted scores reflected real-world
class distributions by accounting for their rela-
tive frequency. Additionally, accuracy offered a
straightforward measure of overall correct classifi-
cations.

4.3 Model Architecture

4.3.1 Traditional Machine Learning-based
Approach

We investigate several Machine Learning mod-
els, including Random forest (RF) (Breiman,
2001), logistic regression (LR) (Menard, 2002),
Support Vector Machines (SVM) (Hearst et al.,
1998), Adaptive Boosting (AdaBoost) (Freund
and Schapire, 1996) and Category Boosting (Cat-
boost) (Prokhorenkova et al., 2018). The classifiers
are trained using the default parameters provided in
Table 7. In our experiments, the following features
were used:

* TF-IDF: We employed Term Frequency-
Inverse = Document  Frequency  (TF-
IDF) (Sparck Jones, 1972) for feature
extraction in traditional models, focusing on
the importance of word frequency to capture
the most relevant terms within the documents.

e TF-IDF and N-gram: Additionally, we uti-
lized n-gram (Sidorov et al., 2014) in combi-
nation with TF-IDF. This approach provides
valuable contextual insights, enhancing the
model’s ability to manage negations and am-
biguity.

4.3.2 Deep learning Approach fed with
Contextual and Static embeddings

Convolutional Neural Networks (CNN) (LeCun
et al., 1995) and Bidirectional Long Short-Term
Memory (BiLSTM) are frequently used in natural
language processing, especially for text classifica-
tion tasks. CNNs excel at feature extraction from
structured data like text, enabling efficient classi-
fication (Lai et al., 2015). BILSTMs, on the other

hand, process sequences in both directions, captur-
ing contextual information more effectively (Liu
and Guo, 2019; Pei et al., 2019), which makes them
particularly suitable for tasks requiring deep con-
textual understanding, such as slang detection.

* FastText embeddings (wiki-news-300d-
1M.vec): These embeddings consist of 1
million word vectors trained on the Wikipedia
2017, UMBC webbase corpus, and statmt.org
news dataset (16B tokens) (Grave et al.,
2018).

* BERT embeddings (bert-base-uncased) (De-
vlin et al., 2018).

* GloVe embeddings: GloVe is a pre-trained
word embedding model developed from a
vast text corpus, utilising an algorithm known
as‘“‘co-occurrence matrix factorisation” for its
training (Pennington et al., 2014).

The embeddings were employed sequentially
to train the CNN and BiLSTM models. Texts
were converted to sequences using the Keras Tok-
enizer, with all sequences padded to the maximum
sequence length in the dataset. The resulting se-
quences, along with the embedding matrix derived
from the word embeddings, were used to train the
deep learning models. To achieve optimal perfor-
mance, hyperparameter tuning was conducted on
both the CNN and BiLSTM models using Keras
Tuner’s Random Search with 50 trials. This tech-
nique systematically explored a range of hyperpa-
rameter configurations, such as the number of units
in the layers, dropout rates, and types of optimisers,
to identify the best parameters for each model. The
best parameters used for the deep learning models
are detailed in Table 6.

4.3.3 Transformer methods for slang
detection

Our transformer-based models, BERT (Devlin
etal., 2018), ALBERT (Lan, 2019), RoBERTa (Liu,
2019), and XLNet (Yang, 2019) were trained
using five-fold cross-validation over 30 epochs.
Each model differs in architecture, with BERT us-
ing bidirectional context learning, ALBERT fo-
cusing on efficiency through parameter sharing,

Keras refers to embeddings  created
https://www.tensorflow.org/api_docs/
python/tf/keras/layers/Embedding, which are
randomly initialised and trained during the model’s learning
process on task-specific data.

using
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Non-slang Slang Avg. Macro Scores Avg. Weighted Scores
Models Features Pr  Rec FI  Pr  Rec FI PLM RecM FILM PrW RecW FLW A
LR 084 097 090 079 036 049 081 067 070 083 083 081 083
SVM-RBF 0.83 098 090 084 035 049 083 066 070 083 083 081 083
SVM-Lin TEIDF 085 096 090 076 041 053 080 069 072 082 08 081 083
RF 0.84 097 090 082 037 051 08 067 071 083 084 081 084
AB 083 096 089 072 036 048 078 066 068 081 08 080 082
CB 0.84 097 090 077 036 049 080 067 070 082 083 080 083
LR 0.84 097 090 081 037 051 08 067 070 083 084 081 084
SVM-RBF 0.84 098 090 085 037 051 085 067 071 084 084 081 084
SVM-Lin TEIDF + noorams 085 096 090 076 042 054 081 069 072 083 084 082 084
RF EAMS 084 098 090 085 037 052 084 068 071 084 084 082 084
AB 084 096 08 072 037 049 078 066 069 081 08 080 082
CB 0.84 097 090 080 037 050 08 067 070 083 083 081 083
GloVe 088 092 090 069 056 062 078 074 076 083 084 083 084
BiLSTM BERT 086 096 091 078 047 058 08 072 075 084 085 083 085
FastText 0.88 091 090 066 058 062 077 075 076 083 084 083 084

BiLSTM-CRF o
(full features) (Pei et al., 2019) Keras 0.84 088 086 052 045 048 068 066 067 077 078 077 078
GloVe 087 087 087 061 061 061 074 074 074 081 081 081 08I
CNN BERT 087 093 090 070 052 060 078 073 075 083 084 083 084
FastText 088 091 090 066 058 062 077 075 076 083 084 083 084
CNN-CRF
(full features) (Pei et al., 2019) Keras 087 090 089 063 056 059 075 073 074 082 08 082 082
Table 3: Machine learning and deep learning results on test data.

Non-slang Slang Avg. macro scores Avg. weighted scores Ace

Model Pr Rec F1 Pr Rec F1 PrM RecM FI.M Pr W RecW F1.W
BERT-large-uncased 0.90 094 092 0.76 0.63 0.69 0.83 0.79 0.80 0.86 0.87 0.87 0.87
RoBERTa-large 0.88 091 090 0.66 058 0.62 0.77 0.75 0.76 0.84 0.84 0.83 0.84
XLNET-large-cased 0.87 0.95 090 0.60 049 054 0.73 0.72 0.72 0.83 0.82 0.82 0.82
ALBERT-xxlarge-v2 0.89 094 092 0.76 0.61 0.68 0.82 0.82 0.80 0.86 0.86 0.85 0.86
gpt-4o-mini 091 092 091 0.72 0.66 0.69 0.81 0.79 0.80 0.86 0.86 0.86 0.86
gpt-4o 0.85 090 0.89 076 0.63 0.69 0.78 0.78 0.80 0.85 0.85 0.85 0.85

Table 4: Transformer and large language models (LLMs) results on test data.

RoBERTa improving on BERT by training on
larger datasets, and XLNet utilising a permutation-
based method for enhanced context understanding.
Though trained similarly, each model has unique
strengths in language processing. The transform-
ers are trained using the parameters provided in
table 6.

4.3.4 Large Language Models
We fine-tuned two Large Language Models (LLMs)

for our experiments:

* gpt-40 (version gpt-40-2024-08-06)!°:
larger model with advanced capabilities.

A

* GPT-40-mini (version gpt-40-mini-2024-07-
18)!": A smaller and more cost-effective ver-
sion of gpt-4o0, designed for similar tasks at
reduced computational expense.

Both models were fine-tuned using 3 epochs, with
the generation temperature set to zero to minimise
randomness.

Yhttps://platform.openai.com/docs/
models/gpt-4o0

Uhttps://platform.openai.com/docs/
models/gpt—-4o-mini

5 Results

Table 3 presents an evaluation of machine learn-
ing models for slang detection using two sets of fea-
tures: TF-IDF alone and TF-IDF combined with n-
grams. The results demonstrate that incorporating
n-grams into TF-IDF generally enhances model per-
formance across various metrics. Specifically, mod-
els using TF-IDF with n-grams achieved higher
precision, recall, and F1 scores for the “Slang” cat-
egory compared to using TF-IDF alone, indicat-
ing an improved balance between sensitivity and
specificity. Overall, models utilising the combined
features maintained or improved accuracy, with sev-
eral models reaching an accuracy of 0.84. The RF
model with TF-IDF + n-grams can be considered
the most effective overall.

The Table also details the performance outcomes
of deep learning models for detecting slang using
different word embeddings across various evalua-
tion metrics. The results show that the BILSTM
model with BERT embeddings achieves the best
overall performance, with an accuracy of 0.85. This
configuration demonstrates particularly strong re-
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Figure 1: The chart offers a detailed breakdown of the BERT-large-uncased model’s accuracy for each target word,
categorising sentences that contain either slang or non-slang elements. Each bar represents the number of predictions
categorised as correct or incorrect for both slang and non-slang, with percentage labels for enhanced clarity.

sults in the slang category, achieving a precision of
0.75 and a weighted F1 score of 0.83, highlighting
its efficacy in accurately identifying and classifying
slang. Additionally, this model excels in macro and
weighted average scores, reflecting its robustness
across diverse linguistic contexts.

Our analysis indicates that incorporating addi-
tional linguistic features, such as Part-of-Speech
(POS) tagging and Pointwise Mutual Information
(PMI), following the approach by (Pei et al., 2019),
does not improve the performance of deep learning
models for slang detection. Specifically, models
like BILSTM-CRF and CNN-CREF, which integrate
these features, exhibit reduced accuracy and lower
F1 scores, particularly in detecting slang, compared
to simpler models without these features.

The results presented in Table 4 detail the per-
formance of various transformer-based models in
detecting slang within textual data. The BERT-
large-uncased model emerges as the most effective,
achieving the highest accuracy of 0.87, with ro-
bust precision of 0.90, recall of 0.94 for non-slang,
and notable F1 scores of 0.69 for slang detection.
The improvement offered by BERT-large-uncased
is particularly significant when compared to ear-
lier results from machine learning models such as
SVMs or RF, which typically show lower adaptabil-
ity to the semantic complexities of slang. Similarly,
when compared to basic deep learning models like
CNN s or standard BiLSTM, which leverage bidi-
rectional context, the fine-tuned language under-

standing of BERT-large-uncased provides a more
refined analysis of text, resulting in higher accu-
racy and better generalisation across varied slang
expressions. Figure 1 shows a detailed breakdown
of the BERT-large-uncased model’s performance,
and Figure 2 presents its confusion matrix, illustrat-
ing classification accuracy for slang and non-slang
detection.

The performance of LLMs is summarised in Ta-
ble 4, where GPT-40-mini slightly outperforms
GPT-4o in slang detection. GPT-40-mini achieves
a higher overall accuracy, 0.86, and delivers better
performance across all evaluation metrics, particu-
larly in the slang category.

6 Error Analyses

We performed an in-depth error analysis of our
top-performing model for slang detection. This
analysis involved sampling 100 misclassified in-
stances to investigate the underlying causes of er-
rors. These errors were then categorised into sev-
eral categories, as illustrated with examples in Ta-
ble 5:

* Bad neighbours (23%): During error anal-
ysis, we observed that many instances were
misclassified due to the influence of problem-
atic neighbouring words. These words, such
as abusive language, drug references, or harsh
tones, skew the model’s classification. The
meaning of slang often depends heavily on
the surrounding context.



Cftl;:rg(:)l;'y Examples Reason for Misclassification P(::cll(ilc::(‘lbzla;;l
‘Bad I think y’all understand the intense hate  The strong slang word “motherfucker” triggers mis- Non-Slang —

Neighbors R . ; e » "
and fear for that rodent-looking moth- classification, while “rodent” adds a negative tone Slang
erfucker. but isn’t slang.

Proper . . . S . . » «

Nouns Wow, believe still remember brownie Phrases like “Brownie Smile Song” and “sweet Non-Slang —
smile song girl scout memories. Good brownie party” are proper nouns. Informal phras- Slang
burger, man. I wish you could come to  ing misleads the model into treating them as slang.
the sweet brownie party.

i‘g;tgiﬁ Post-1960s growth small, expensive Long, complex sentences make identifying context Non-Slang —
underclass resulted in structural prob- difficult, and pre-processing can reduce clarity. Slang
lems... chronic joblessness and welfare
dependency.

Polysemy @Officer_Grayson Once a germ, al- The word “germ” has multiple meanings, either as Non-Slang —
ways a germ. He’s as unclean as pork. a microorganism or an insult. Lack of clear context Slang

causes errors.

Polysemy As atiny rodent... I see things from a The metaphor “tiny rodent” was interpreted literally Slang —
unique angle. Like that guy over there... instead of as slang, leading to misclassification. Non-Slang
he’s not wearing underpants.

Ambiguity The book’s protagonist is a mammy The context links “mammy” to literary analysis, sug- Non-Slang —
figure who is both nurturing and deeply ~ gesting non-slang usage, but informal or stereotypical Slang
flawed, becomes a symbol of resistance connotations mislead the model.
against systemic oppression.

Ambiguity My mom is really starting to get on my The word “germ” can be literal (bacteria) or slang Slang —
fucken nerves being the germ freak she (obsession with cleanliness). Ambiguous context Non-Slang
is. caused misclassification.

Unknown Ugh, can’t wait to eat something after Informal abbreviations like “lol” and rare slang terms Non-Slang —

this workout! Abs are killing me, lol
hoebag move, though.

like “hoebag” confuse the model. Structure does not
match patterns.

Slang

Table 5: Examples of misclassified samples for each error category.

Proper nouns (10%): Proper nouns, es-
pecially those appearing as bi-grams or tri-
grams, can confuse the model due to their
compact and informal structure. These struc-
tures may be misinterpreted as slang or collo-
quial expressions, particularly when they lack
clear distinguishing features.

Lost in length (13%): Long sentences with
multiple clauses or overly concise phrases due
to pre-processing can challenge the model.
Pre-processing often involves removing stop
words or punctuation, which can reduce the
context available for accurate classification.

Polysemy (17%): Words with multiple mean-
ings can lead to misclassification when the
context is unclear or insufficient. Polysemous
terms often require a broader or more detailed
context for the model to interpret them cor-
rectly.

Ambiguity (7%): Ambiguity arises when
words or phrases can have multiple interpre-
tations, and the context does not sufficiently
clarify their meaning. For example, the word
“salty” might mean “bitter” in a slang sense

or “overly seasoned” in a literal sense. Simi-
larly, terms like “germ” or “chronic” can have
both literal and figurative meanings, leading
to misclassification if the context is vague.

e Unknown (30%): Texts containing uncon-
ventional abbreviations, rare slang, or novel
constructions are particularly challenging for
the model. These terms often deviate from
standard language patterns, making them dif-
ficult for the model to classify accurately.

7 Conclusion

We present SlangTrack (ST) Dataset, a corpus
designed to enhance fine-grained slang detection.
It overcomes the limitations of previous corpora,
which do not distinguish between words with both
slang and non-slang meanings. To evaluate its ef-
fectiveness, we explored approaches across ML,
DL, fine-tuned LMs, and LLMs. Our experiments
show that fine-tuning models, particularly BERT-
large-uncased, delivers strong performance in de-
tecting both slang and non-slang uses.



8 Limitations

Despite the promising results of this study, there
are several limitations that leave room for further
research. First, the corpus used in this work could
benefit from a broader representation of slang, es-
pecially rare and evolving expressions. This lim-
itation impacts the generalizability of the model
across a wider variety of slang terms. To address
this, future work could explore data augmentation
techniques to generate synthetic examples, enhanc-
ing the diversity of the slang corpus.

Additionally, the current approach does not fully
exploit the potential of large language models
(LLMs) in distinguishing between subtle nuances
in slang and non-slang expressions. Incorporat-
ing LLMs to assess their reasoning and contextual
understanding in this domain could lead to more
sophisticated slang detection mechanisms.

Lastly, while the models employed in this study
show reasonable efficacy, they may struggle with
edge cases or ambiguous slang terms. Future re-
search could benefit from ensemble methods, com-
bining multiple models to create a more robust and
accurate system for slang detection. This would
likely improve overall performance, especially in
handling less common or context-dependent slang
terms.
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9 Appendices

9.1 Implementation Details

* Hardware Configuration:

Machine Learning and Deep Learn-
ing Models: All experiments, including
both machine learning and deep learn-
ing models, were conducted on a sin-
gle Tesla V100 GPU equipped with 32
GB of RAM. These experiments were
performed using the Google Colab Pro+
platform '%, which provides enhanced
computational capabilities and extended
runtime for intensive tasks.

Fine-Tuning Experiments (LM and
LLMs): Fine-tuning of language models
was executed on a single NVIDIA A100
GPU, which features 80 GB of RAM.
This setup was specifically chosen to han-
dle the increased computational demands
of optimising large-scale models for high
accuracy in NLP tasks.

* Software Frameworks : All experiments and
model implementations were carried out us-
ing Python 3.10.12. For evaluation, we used
the metrics implemented in the scikit-learn
toolkit '3. For reproducibility, we set the seed
parameter to 42 in all experiments.

12https:

com/

13https:
14https:
15https:
Yhttps:

Machine Learning models: Differ-
ent machine learning frameworks were
utilised. Specifically, the scikit-learn
toolkitwas employed to develop the Lo-
gistic Regression (LR), Support Vector
Machine (SVM), Random Forest (RF),
and AdaBoost (AB) models. Addition-
ally, Additionally, the CatBoost library !4
was utilised to develop our CatBoost
models, leveraging its advanced capa-
bilities for processing categorical data
efficiently.

Deep Learning Models: TensorFlow '
and Keras ' were the primary frame-
works employed for deep learning tasks.
These frameworks facilitated the devel-
opment of complex neural network archi-

//https://colab.research.google.

//scikit-learn.org/stable/
//catboost.ai
//www.tensorflow.org/
//keras.io/
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tectures, including Convolutional Neu-
ral Networks (CNNs) and BiLSTM for
text classification.  Utilising Tensor-
Flow’s powerful computational capabil-
ities, models were optimised with tech-
niques such as extensive hyperparame-
ter optimisation using Keras Tuner !7.
Moreover, scikit-learn utilities were inte-
grated for performance evaluation, pro-
viding metrics such as precision, recall,
and F1-score, which were crucial for as-
sessing model effectiveness across vari-
ous classes.

Transformer Models: For our
transformer-based models, we utilized
the SimpleTransformers '® and Hug-
gingFace Transformers '° libraries.
These tools streamlined the loading
and fine-tuning of pre-trained models
such as BERT, ALBERT, RoBERTa,
and XLNet, enhancing our capacity to
efficiently conduct NLP tasks with high
accuracy. also Scikit-learn is employed
for stratified K-fold cross-validation.

"https://keras—team.github.io/
keras-tuner/

Bhttps://simpletransformers.ai

Yhttps://huggingface.co/transformers/
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Figure 2: Confusion matrices for the BERT-large-uncased model, illustrating its classification performance for both
slang and non-slang categories.
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Models

Parameters

Finetuned Models
(BERT, RoBERTa, ALBERT, XLNET)
Bilstm + GloVe embeddings
Bilstm + FastText embeddings
Bilstm + BERT embeddings
CNN + GloVe Embeddings

CNN + FastText embeddings

CNN + BERT embeddings

num_train_epochs= 30, learning_rate= 4e-5, train_batch_size= 64, eval_batch_size= 64

Embedding Dimension= 300, BiLSTM Units= 32, Dense Units= 64, Dropout Rate= 0.2, Optimiser=
’Adam’, Learning Rate= 2.93e-03, epochs= 30

Embedding Dimension= 300, BiLSTM Units= 256, Dense Units= 64, Dropout Rate= 0.3, Opti-
miser="Adam’, Learning Rate= 7.02e-04, epochs= 30

Embedding Dimension= 768, BILSTM Units= 128, Dense Units= 128, Dropout Rate= 0.3, Opti-
miser= "rmsprop’, Learning Rate= 7.44e-03, epochs=30

Embedding Dimension= 300, conv_units= 128, Dense Units= 32, Dropout Rate= 0.4, Optimiser=
’Adam’, Learning Rate= 1.00e-03, epochs= 30

Embedding Dimension= 300, Conv Units= 224, Dense Units= 128, Dropout Rate= 0.2, Optimizer=
‘rmsprop’, Learning Rate= 1e-03, epochs= 30

Embedding Dimension= 768, Conv Units= 64, Dense Units= 32, Dropout Rate= 0.3, Optimiser=
rmsprop’, Learning Rate= 1e-03, epochs= 30

Table 6: Important parameters of deep models.

Estimator Hyperparameters

LR penalty="12°, C= 1.0, solver="lbfgs’, max_iter= 100, verbose= 0

SVM C= 1.0, gamma= 1.0, cache_size= 200, verbose= False, max_iter= -1, random_state= None,
class_weight= None
RF n_estimators= 100, max_depth= 10, min_samples_split=2

AdaBoost n_estimators= 50, learning_rate= 1.0, base_estimator= DecisionTreeClassifier, algorithm =

"SAMME.R’

CatBoost iterations= 1000, learning_rate= 0.03, depth= 6, verbose=True

Table 7: Important parameters for Machine Learning models.
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