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Abstract

The widespread use of casual language, includ-001
ing slang, poses significant difficulties for nat-002
ural language processing systems, particularly003
in automatically recognising varied word uses.004
Although previous research has addressed slang005
through the creation of dictionaries, sentiment006
analysis, word formation, and interpretation,007
there has been limited focus on the fundamen-008
tal issue of detecting slang. This paper focuses009
on the detection of slang within natural En-010
glish sentences. To comprehensively tackle011
this problem, we constructed a novel dataset012
that includes words commonly used in both013
slang and non-slang contexts. The dataset com-014
prises ten target words that display at least one015
slang sense as well as one non-slang sense;016
each sentence has been manually annotated as017
either slang or non-slang, achieving high inter-018
annotator agreement. Additionally, we sought019
to identify the most effective approach for ad-020
dressing this issue. To achieve this, we com-021
pared and evaluated different approaches, in-022
cluding (1) traditional machine learning-based023
models (ML), (2) deep learning-based models024
(DL) with both contextual and static embed-025
dings, (3) fine-tuning various language mod-026
els (LMs), and (4) fine-tuning different large027
language models (LLMs). The results show028
that fine-tuning language models, particularly029
BERT-large-uncased, achieved the highest per-030
formance, with an F1-score of 69% for slang031
and 92% for non-slang, a macro-averaged F1-032
score of 80%, a weighted-averaged F1-score of033
87%, and an overall accuracy of 87%.034

Keywords: Slang detection, Text classification, An-035

notated corpus.036

1 Introduction037

Disclaimer: This work includes offensive slang ex-038

amples, which do not reflect the researchers’ views.039

Slang is a form of informal language that in-040

cludes words and phrases used within particular041

groups (Dumas and Lighter, 1978; Adams, 2012; 042

Green, 2015). The adaptability of slang captivates 043

language users and learners, while also presenting 044

unique challenges and opportunities for natural lan- 045

guage processing (NLP) systems (Eisenstein, 2013; 046

Blodgett et al., 2016). 047

Computer scientists and linguists have developed 048

methods to understand semantics on multiple levels 049

for years. However, understanding slang remains a 050

significant roadblock to deciphering the true mean- 051

ing behind conversations. Slang is crucial for grasp- 052

ing the true meaning of a sentence because slang 053

words and phrases often carry specific cultural and 054

contextual connotations (Bucholtz, 2006; Green, 055

2015) that standard language does not. Slang can 056

convey nuanced emotions, attitudes, and social af- 057

filiations that are essential for fully comprehending 058

the speaker’s intent (Eisenstein et al., 2014; Par- 059

tridge, 2015). 060

Additionally, identifying slang is vital for track- 061

ing semantic changes and handling semantics- 062

based tasks (Adams, 2012; Sun et al., 2022). Slang 063

often evolves rapidly, and understanding these 064

changes can help in updating language models and 065

improving the accuracy of various NLP tasks. For 066

example, the word “cool” has undergone signifi- 067

cant semantic changes over time, and recognising 068

its current slang usage is crucial for accurate se- 069

mantic analysis (Coleman, 2012; Dhuliawala et al., 070

2016). 071

Detecting slang is particularly challenging due 072

to the complex semantics associated with slang 073

words, which can be interpreted in multiple ways. 074

The nuances and context often lead to varied in- 075

terpretations, making it difficult to accurately iden- 076

tify and understand whether a sentence contains 077

slang. This complexity is further heightened by the 078

presence of double entendres (Kiddon and Brun, 079

2011). For instance, the phrase “He’s a player on 080

Sundays” could refer to someone who plays sports 081

on Sundays or imply that he manipulates others 082
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romantically on Sundays.083

Despite its importance and prevalence, slang de-084

tection has received limited attention in NLP. This085

paper addresses this gap by proposing a compu-086

tational approach to studying slang detection in087

historical and social media data. Our wider goal is088

to shed light on the role of slang in these data types089

and provide a foundation for further research in this090

area. By doing so, we aim to better understand how091

slang impacts our interactions and develop more092

effective ways to detect and interpret it.093

This paper introduces a binary classification sys-094

tem designed to identify sentences that either con-095

tain slang or not. Our primary research question096

is: Can an algorithm be trained to determine if a097

sentence like “Maybe it is some personal thing that098

eats me” contains slang usage, specifically at the099

sentence level? We explore whether it is possible to100

automatically detect slang within natural sentences101

and identify the techniques that distinguish slang102

from standard language usage. Our contributions103

include the following:104

• A new corpus annotated with slang and non-105

slang labels, supporting the development of106

binary classification methods to automatically107

detect whether a given sentence contains at108

least one instance of slang.109

• A classification system developed to deter-110

mine whether a given sentence contains slang111

or not using (1) traditional machine learning112

models (ML), (2) deep learning models (DL),113

(3) fine-tuning of language models (LMs), and114

(4) large language models (LLMs).115

• A comparative study and error analysis explor-116

ing the performance of various algorithms.117

2 Related work118

2.1 Construction of Slang Dictionaries and119

Sentiment Analysis120

In the evolving landscape of computational linguis-121

tics, developing resources to handle informal lan-122

guage, especially slang, is crucial. This section ex-123

plores significant contributions made by innovative124

tools such as SlangNet, SlangSD, and SLANGZY,125

which focus on developing and expanding slang126

dictionaries and enhancing sentiment analysis for127

slang-laden content.128

SlangNet (Dhuliawala et al., 2016) provides a129

WordNet-like structure specifically designed for130

English slang, using Urban Dictionary as its pri- 131

mary data source. It augments traditional WordNet 132

by integrating slang word senses, thus supporting 133

NLP applications like web mining and information 134

retrieval. By distinguishing between conventional 135

and slang word senses, SlangNet enhances the inter- 136

pretation of internet-based language in NLP tools. 137

SlangSD (Wu et al., 2018) systematically builds 138

a sentiment dictionary focused on slang words com- 139

monly used on social media. It addresses the dy- 140

namic nature of slang by continuously updating 141

its database with new slang terms and their asso- 142

ciated sentiments, making it a robust resource for 143

sentiment analysis. The dictionary leverages web 144

resources and social media corpora to automatically 145

estimate sentiment polarity, thereby improving sen- 146

timent classification in user-generated content. 147

SLANGZY (Gupta et al., 2019) employs ma- 148

chine learning algorithms to interpret slang within 149

online communication. It adapts dynamically to 150

new slang forms, improving the performance of 151

language models in applications ranging from chat- 152

bots to social media analytics. By integrating these 153

capabilities, SLANGZY enhances the accuracy and 154

relevance of sentiment analysis tools when dealing 155

with informal, slang-heavy texts. 156

2.2 Slang word creation and interpretation 157

In the rapidly evolving field of NLP, the detec- 158

tion, interpretation, and analysis of slang have 159

garnered increasing interest, particularly due to 160

the prevalence of slang in digital communications. 161

Early studies, such as those by (Pal and Saha, 162

2015), primarily focused on building and expand- 163

ing dictionary-based resources for slang detection 164

and interpretation. 165

Advancements in deep learning have led to 166

more sophisticated automatic slang identification 167

techniques and frameworks that analyse cognitive 168

usage patterns, significantly enhancing detection 169

accuracy at both the sentence and token levels. 170

For instance, the study by (Pei et al., 2019) em- 171

ploys bidirectional recurrent neural networks (BiL- 172

STM) (Hochreiter and Schmidhuber, 1997), condi- 173

tional random fields (CRFs) (Lafferty et al., 2001), 174

and multilayer perceptrons (MLPs) (Rauber and 175

Berns, 2011), achieving an F1 score of 0.80 for 176

sentence-level detection and 0.50 for token-level 177

identification. 178

(Ni and Wang, 2017) introduced a neural 179

sequence-to-sequence model designed to generate 180

explanations for non-standard English phrases au- 181

2



tomatically. While this approach contributes to182

explaining slang expressions, it does not address183

the crucial task of detecting or identifying slang,184

which remains a key challenge in the field.185

Furthermore, the study by (Lynn et al., 2019)186

applied deep learning methods, specifically BiL-187

STM and Bi-GRU, to detect misogynistic slang188

within a dataset derived from Urban Dictionary.189

Their findings indicate that deep learning models190

significantly outperform traditional machine learn-191

ing approaches, such as logistic regression, Naive192

Bayes, and Random Forest, highlighting the su-193

perior performance of deep learning for detecting194

specific slang usages within a given context.195

Additionally, the incorporation of semantically196

informed methodologies, as proposed by (Sun et al.,197

2022), marks a significant step forward. By merg-198

ing semantic insights with contextual data, their199

approach refines slang interpretation, addressing200

critical gaps in traditional processing techniques201

that often overlook the nuanced meanings of slang.202

Separate research efforts have been directed to-203

wards understanding the mechanisms behind slang204

word creation, a growing area of importance due205

to the increasing use of informal expressions on-206

line. For example, (Kulkarni and Wang, 2018)207

developed generative models for slang that effec-208

tively capture patterns such as blends, clippings,209

and reduplicatives, achieving top-tier performance210

on human-annotated datasets. These models offer211

valuable insights into slang word formation, which212

is becoming increasingly relevant in the digital age.213

3 Dataset214

In previous research, the only dataset available for215

the binary classification of slang is the one pre-216

sented by (Pei et al., 2019). However, this dataset217

is not publicly accessible and comes with notable218

limitations. It does not differentiate between words219

that have both slang and non-slang meanings, nor220

does it provide illustrative examples for each sense.221

Instead, it compiles examples from sources such as222

the Online Slang Dictionary1 and Wall Street News223

(2011-2016) in the Penn Treebank (Marcus et al.,224

1993), where the keywords often differ between225

classes, making generalisation easier.226

To address this gap, we have constructed a new227

dataset, SlangTrack (ST) Dataset2, specifically de-228

1https://http://onlineslangdictionary.
com

2The dataset utilised in this study will be made available
upon request. Interested researchers may contact the corre-

signed to include words that are commonly used in 229

both slang and non-slang contexts. Our focus is on 230

identifying and selecting target words that exhibit 231

both slang and non-slang senses, providing exam- 232

ples for each usage. This approach is novel in slang 233

research, aiming to create a binary classification 234

system that can effectively distinguish between the 235

dual meanings of words, thus improving the de- 236

tection and interpretation of slang within natural 237

language. 238

3.1 Data Collection (Target Words and 239

Examples ) 240

In our study, we selected target words that coex- 241

isted in the slangSD3 wordlist and COHA (Davies, 242

2012), based on the number of senses per word. 243

Each target word used in our experiment has at 244

least one slang sense and one dominant sense. 245

We collected the meanings of these target words 246

from Green’s Dictionary of Slang4, Urban Dictio- 247

nary5, and the Online Slang Dictionary6, and cross- 248

referenced them with the Oxford English Dictio- 249

nary7 to confirm their dominant non-slang sense. 250

We further verified that each target word appeared 251

in both the COHA dataset and Twitter8, ensuring 252

the collection of relevant senses for comprehensive 253

analysis. Ultimately, we selected ten target words 254

that met our criteria, excluding proper nouns. 255

We collected our examples for every target word 256

from multiple sources. This dataset includes com- 257

prehensive contextual information for each target 258

word. Among the sources used, we selected the 259

clean version of the Corpus of Historical American 260

English (CCOHA) because of its detailed documen- 261

tation, as noted by (Alatrash et al., 2020). To com- 262

plement this, we also utilised Twitter data, which 263

offers a rich, current source of contemporary slang 264

and informal language. Twitter’s dynamic and real- 265

time communication makes it a valuable tool for ob- 266

serving and analysing the rapid changes in modern 267

language, particularly slang. We extracted all avail- 268

able examples for each target word from COHA, 269

covering the years 1980–2010, and collected 1,000 270

examples per target word from Twitter, spanning 271

sponding author for access.
3https://www.rdocumentation.org/

packages/lexicon/versions/1.2.1
4https://greensdictofslang.com
5https://www.urbandictionary.com
6https://http://onlineslangdictionary.

com
7https://www.oed.com
8https://twitter.com
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Example Sentences Target Keyword Category
Today I heard, for the first time, a short scientific talk given by a man dressed as a rodent...!

An interesting experience.
Rodent Slang

On the other. Mr. Taylor took food requests and with a stern look in his eye told the
children to stay seated until he and his wife returned with the food. The children nodded
attentively. After the adults left, the children seemed to relax, talking more freely and playing
with one another. When the parents returned, the kids straightened up again, received their
food, and began to eat, displaying quiet and gracious manners all the while.

Eat Non-Slang

Greater than this one that washed between the shores of Florida and Mexico. He balanced
between the breakers and the turning tide. Small particles of sand churned in the waters
around him, and a small fish swam against his leg, a momentary dark streak that vanished in
the surf. He began to swim. Buoyant in the salty water, he swam a hundred meters to a jetty
that sent small whirlpools around its barnacle rough pilings.

Salty Non-Slang

Mom was totally hating on my dance moves. She’s so salty. Salty Slang

Table 1: Sample texts from the dataset.

the period from 2010–2020.272

3.2 Annotation Guidelines and Details273

The selected target words, along with their corre-274

sponding examples and all unique senses, were pro-275

vided to the annotators. The annotators were tasked276

with identifying and labelling each example based277

on its relevant slang or non-slang sense. For this278

experiment, different instances of both slang and279

non-slang classes were grouped together to form280

a binary classification setting. Table 1 presents ex-281

amples of target words categorised into slang and282

non-slang classes.283

Our annotation team consisted of three individ-284

uals, all with strong proficiency in English and at285

least a bachelor’s degree. One of the team members,286

who held a degree in Linguistics, was appointed as287

the primary annotator. To ensure consistency in the288

annotation process, two annotators independently289

labelled a random sample of 1,000 sentences in290

a pilot task. This pilot phase was instrumental in291

refining the annotation guidelines. Any discrepan-292

cies between the annotators were resolved by the293

primary annotator, ensuring consensus on the final294

annotations.295

The inter-annotator agreement was measured us-296

ing Cohen’s Kappa (Cohen, 1960), with the final297

value of 88.7% indicating a high agreement be-298

tween annotators.299

3.3 Data Statistics300

The complete dataset comprises a vocabulary of301

48,508 unique words (vocabulary); those words302

make a total of 310,170 (tokens) across all the in-303

stances, with an average post length of 34.6 words304

per post and an average sentence length of 3.74305

sentences per post. The dataset has been divided306

into three subsets: training, validation, and testing 307

using stratified sampling, with the proportions set 308

at 70%, 15%, and 15%, respectively. 309

Keyword Non-slang Slang Total
Bmw 1083 14 1097

Brownie 582 382 964
Chronic 1415 270 1685
Climber 520 122 642

Cucumber 972 79 1051
Eat 2462 561 3023

Germ 566 249 815
Mammy 894 154 1048
Rodent 718 349 1067
Salty 543 727 1270
Total 9755 2907 12662

Table 2: Data statistics: Total number of instances
(examples) categorized as slang or non-slang per
keyword.

4 Methodology 310

4.1 Pre-processing 311

Our approach followed the standard pre-processing 312

procedures, such as eliminating duplicate instances 313

(i.e., repeated text entries with identical content), 314

punctuations, URLs, and usernames, and trans- 315

forming all text to lowercase. We removed all cases 316

when the target word was a part of the URL or the 317

username during the early filtering of the text dur- 318

ing extraction. 319

4.2 Evaluation 320

In this study, the evaluation of model performance 321

focused on handling the imbalanced nature of slang 322

detection by using a variety of metrics: weighted 323

and macro-averaged scores alongside the F1 score. 324
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Precision assessed the model’s ability to correctly325

identify slang or non-slang instances without false326

positives, while recall measured its capacity to cap-327

ture true examples, minimising false negatives. The328

F1 score provided a balanced view, combining pre-329

cision and recall, which is particularly crucial given330

the class imbalance between slang and non-slang.331

Macro-averaged scores treated all classes equally,332

highlighting performance in minority classes like333

slang, whereas weighted scores reflected real-world334

class distributions by accounting for their rela-335

tive frequency. Additionally, accuracy offered a336

straightforward measure of overall correct classifi-337

cations.338

4.3 Model Architecture339

4.3.1 Traditional Machine Learning-based340

Approach341

We investigate several Machine Learning mod-342

els, including Random forest (RF) (Breiman,343

2001), logistic regression (LR) (Menard, 2002),344

Support Vector Machines (SVM) (Hearst et al.,345

1998), Adaptive Boosting (AdaBoost) (Freund346

and Schapire, 1996) and Category Boosting (Cat-347

boost) (Prokhorenkova et al., 2018). The classifiers348

are trained using the default parameters provided in349

Table 7. In our experiments, the following features350

were used:351

• TF-IDF: We employed Term Frequency-352

Inverse Document Frequency (TF-353

IDF) (Sparck Jones, 1972) for feature354

extraction in traditional models, focusing on355

the importance of word frequency to capture356

the most relevant terms within the documents.357

• TF-IDF and N-gram: Additionally, we uti-358

lized n-gram (Sidorov et al., 2014) in combi-359

nation with TF-IDF. This approach provides360

valuable contextual insights, enhancing the361

model’s ability to manage negations and am-362

biguity.363

4.3.2 Deep learning Approach fed with364

Contextual and Static embeddings365

Convolutional Neural Networks (CNN) (LeCun366

et al., 1995) and Bidirectional Long Short-Term367

Memory (BiLSTM) are frequently used in natural368

language processing, especially for text classifica-369

tion tasks. CNNs excel at feature extraction from370

structured data like text, enabling efficient classi-371

fication (Lai et al., 2015). BiLSTMs, on the other372

hand, process sequences in both directions, captur- 373

ing contextual information more effectively (Liu 374

and Guo, 2019; Pei et al., 2019), which makes them 375

particularly suitable for tasks requiring deep con- 376

textual understanding, such as slang detection. 377

• FastText embeddings (wiki-news-300d- 378

1M.vec): These embeddings consist of 1 379

million word vectors trained on the Wikipedia 380

2017, UMBC webbase corpus, and statmt.org 381

news dataset (16B tokens) (Grave et al., 382

2018). 383

• BERT embeddings (bert-base-uncased) (De- 384

vlin et al., 2018). 385

• GloVe embeddings: GloVe is a pre-trained 386

word embedding model developed from a 387

vast text corpus, utilising an algorithm known 388

as“co-occurrence matrix factorisation” for its 389

training (Pennington et al., 2014). 390

The embeddings were employed sequentially 391

to train the CNN and BiLSTM models. Texts 392

were converted to sequences using the Keras Tok- 393

enizer, with all sequences padded to the maximum 394

sequence length in the dataset. The resulting se- 395

quences, along with the embedding matrix derived 396

from the word embeddings, were used to train the 397

deep learning models. To achieve optimal perfor- 398

mance, hyperparameter tuning was conducted on 399

both the CNN and BiLSTM models using Keras 400

Tuner’s Random Search with 50 trials. This tech- 401

nique systematically explored a range of hyperpa- 402

rameter configurations, such as the number of units 403

in the layers, dropout rates, and types of optimisers, 404

to identify the best parameters for each model. The 405

best parameters used for the deep learning models 406

are detailed in Table 6. 407

4.3.3 Transformer methods for slang 408

detection 409

Our transformer-based models, BERT (Devlin 410

et al., 2018), ALBERT (Lan, 2019), RoBERTa (Liu, 411

2019), and XLNet (Yang, 2019) were trained 412

using five-fold cross-validation over 30 epochs. 413

Each model differs in architecture, with BERT us- 414

ing bidirectional context learning, ALBERT fo- 415

cusing on efficiency through parameter sharing, 416

9Keras refers to embeddings created using
https://www.tensorflow.org/api_docs/
python/tf/keras/layers/Embedding, which are
randomly initialised and trained during the model’s learning
process on task-specific data.
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Non-slang Slang Avg. Macro Scores Avg. Weighted ScoresModels Features
Pr Rec F1 Pr Rec F1 Pr_M Rec_M F1_M Pr_W Rec_W F1_W

Acc

LR

TF-IDF

0.84 0.97 0.90 0.79 0.36 0.49 0.81 0.67 0.70 0.83 0.83 0.81 0.83
SVM-RBF 0.83 0.98 0.90 0.84 0.35 0.49 0.83 0.66 0.70 0.83 0.83 0.81 0.83
SVM-Lin 0.85 0.96 0.90 0.76 0.41 0.53 0.80 0.69 0.72 0.82 0.83 0.81 0.83

RF 0.84 0.97 0.90 0.82 0.37 0.51 0.83 0.67 0.71 0.83 0.84 0.81 0.84
AB 0.83 0.96 0.89 0.72 0.36 0.48 0.78 0.66 0.68 0.81 0.82 0.80 0.82
CB 0.84 0.97 0.90 0.77 0.36 0.49 0.80 0.67 0.70 0.82 0.83 0.80 0.83
LR

TF-IDF + n-grams

0.84 0.97 0.90 0.81 0.37 0.51 0.82 0.67 0.70 0.83 0.84 0.81 0.84
SVM-RBF 0.84 0.98 0.90 0.85 0.37 0.51 0.85 0.67 0.71 0.84 0.84 0.81 0.84
SVM-Lin 0.85 0.96 0.90 0.76 0.42 0.54 0.81 0.69 0.72 0.83 0.84 0.82 0.84

RF 0.84 0.98 0.90 0.85 0.37 0.52 0.84 0.68 0.71 0.84 0.84 0.82 0.84
AB 0.84 0.96 0.89 0.72 0.37 0.49 0.78 0.66 0.69 0.81 0.82 0.80 0.82
CB 0.84 0.97 0.90 0.80 0.37 0.50 0.82 0.67 0.70 0.83 0.83 0.81 0.83

GloVe 0.88 0.92 0.90 0.69 0.56 0.62 0.78 0.74 0.76 0.83 0.84 0.83 0.84
BERT 0.86 0.96 0.91 0.78 0.47 0.58 0.82 0.72 0.75 0.84 0.85 0.83 0.85BiLSTM

FastText 0.88 0.91 0.90 0.66 0.58 0.62 0.77 0.75 0.76 0.83 0.84 0.83 0.84
BiLSTM-CRF

(full features) (Pei et al., 2019)
Keras 9 0.84 0.88 0.86 0.52 0.45 0.48 0.68 0.66 0.67 0.77 0.78 0.77 0.78

GloVe 0.87 0.87 0.87 0.61 0.61 0.61 0.74 0.74 0.74 0.81 0.81 0.81 0.81
BERT 0.87 0.93 0.90 0.70 0.52 0.60 0.78 0.73 0.75 0.83 0.84 0.83 0.84CNN

FastText 0.88 0.91 0.90 0.66 0.58 0.62 0.77 0.75 0.76 0.83 0.84 0.83 0.84
CNN-CRF

(full features) (Pei et al., 2019)
Keras 0.87 0.90 0.89 0.63 0.56 0.59 0.75 0.73 0.74 0.82 0.82 0.82 0.82

Table 3: Machine learning and deep learning results on test data.

Non-slang Slang Avg. macro scores Avg. weighted scores AccModel Pr Rec F1 Pr Rec F1 Pr_M Rec_M F1_M Pr_W Rec_W F1_W
BERT-large-uncased 0.90 0.94 0.92 0.76 0.63 0.69 0.83 0.79 0.80 0.86 0.87 0.87 0.87

RoBERTa-large 0.88 0.91 0.90 0.66 0.58 0.62 0.77 0.75 0.76 0.84 0.84 0.83 0.84
XLNET-large-cased 0.87 0.95 0.90 0.60 0.49 0.54 0.73 0.72 0.72 0.83 0.82 0.82 0.82
ALBERT-xxlarge-v2 0.89 0.94 0.92 0.76 0.61 0.68 0.82 0.82 0.80 0.86 0.86 0.85 0.86

gpt-4o-mini 0.91 0.92 0.91 0.72 0.66 0.69 0.81 0.79 0.80 0.86 0.86 0.86 0.86
gpt-4o 0.85 0.90 0.89 0.76 0.63 0.69 0.78 0.78 0.80 0.85 0.85 0.85 0.85

Table 4: Transformer and large language models (LLMs) results on test data.

RoBERTa improving on BERT by training on417

larger datasets, and XLNet utilising a permutation-418

based method for enhanced context understanding.419

Though trained similarly, each model has unique420

strengths in language processing. The transform-421

ers are trained using the parameters provided in422

table 6.423

4.3.4 Large Language Models424

We fine-tuned two Large Language Models (LLMs)425

for our experiments:426

• gpt-4o (version gpt-4o-2024-08-06)10: A427

larger model with advanced capabilities.428

• GPT-4o-mini (version gpt-4o-mini-2024-07-429

18)11: A smaller and more cost-effective ver-430

sion of gpt-4o, designed for similar tasks at431

reduced computational expense.432

Both models were fine-tuned using 3 epochs, with433

the generation temperature set to zero to minimise434

randomness.435
10https://platform.openai.com/docs/

models/gpt-4o
11https://platform.openai.com/docs/

models/gpt-4o-mini

5 Results 436

437

Table 3 presents an evaluation of machine learn- 438

ing models for slang detection using two sets of fea- 439

tures: TF-IDF alone and TF-IDF combined with n- 440

grams. The results demonstrate that incorporating 441

n-grams into TF-IDF generally enhances model per- 442

formance across various metrics. Specifically, mod- 443

els using TF-IDF with n-grams achieved higher 444

precision, recall, and F1 scores for the “Slang” cat- 445

egory compared to using TF-IDF alone, indicat- 446

ing an improved balance between sensitivity and 447

specificity. Overall, models utilising the combined 448

features maintained or improved accuracy, with sev- 449

eral models reaching an accuracy of 0.84. The RF 450

model with TF-IDF + n-grams can be considered 451

the most effective overall. 452

The Table also details the performance outcomes 453

of deep learning models for detecting slang using 454

different word embeddings across various evalua- 455

tion metrics. The results show that the BiLSTM 456

model with BERT embeddings achieves the best 457

overall performance, with an accuracy of 0.85. This 458

configuration demonstrates particularly strong re- 459
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Figure 1: The chart offers a detailed breakdown of the BERT-large-uncased model’s accuracy for each target word,
categorising sentences that contain either slang or non-slang elements. Each bar represents the number of predictions
categorised as correct or incorrect for both slang and non-slang, with percentage labels for enhanced clarity.

sults in the slang category, achieving a precision of460

0.75 and a weighted F1 score of 0.83, highlighting461

its efficacy in accurately identifying and classifying462

slang. Additionally, this model excels in macro and463

weighted average scores, reflecting its robustness464

across diverse linguistic contexts.465

Our analysis indicates that incorporating addi-466

tional linguistic features, such as Part-of-Speech467

(POS) tagging and Pointwise Mutual Information468

(PMI), following the approach by (Pei et al., 2019),469

does not improve the performance of deep learning470

models for slang detection. Specifically, models471

like BiLSTM-CRF and CNN-CRF, which integrate472

these features, exhibit reduced accuracy and lower473

F1 scores, particularly in detecting slang, compared474

to simpler models without these features.475

The results presented in Table 4 detail the per-476

formance of various transformer-based models in477

detecting slang within textual data. The BERT-478

large-uncased model emerges as the most effective,479

achieving the highest accuracy of 0.87, with ro-480

bust precision of 0.90, recall of 0.94 for non-slang,481

and notable F1 scores of 0.69 for slang detection.482

The improvement offered by BERT-large-uncased483

is particularly significant when compared to ear-484

lier results from machine learning models such as485

SVMs or RF, which typically show lower adaptabil-486

ity to the semantic complexities of slang. Similarly,487

when compared to basic deep learning models like488

CNNs or standard BiLSTM, which leverage bidi-489

rectional context, the fine-tuned language under-490

standing of BERT-large-uncased provides a more 491

refined analysis of text, resulting in higher accu- 492

racy and better generalisation across varied slang 493

expressions. Figure 1 shows a detailed breakdown 494

of the BERT-large-uncased model’s performance, 495

and Figure 2 presents its confusion matrix, illustrat- 496

ing classification accuracy for slang and non-slang 497

detection. 498

The performance of LLMs is summarised in Ta- 499

ble 4, where GPT-4o-mini slightly outperforms 500

GPT-4o in slang detection. GPT-4o-mini achieves 501

a higher overall accuracy, 0.86, and delivers better 502

performance across all evaluation metrics, particu- 503

larly in the slang category. 504

6 Error Analyses 505

We performed an in-depth error analysis of our 506

top-performing model for slang detection. This 507

analysis involved sampling 100 misclassified in- 508

stances to investigate the underlying causes of er- 509

rors. These errors were then categorised into sev- 510

eral categories, as illustrated with examples in Ta- 511

ble 5: 512

• Bad neighbours (23%): During error anal- 513

ysis, we observed that many instances were 514

misclassified due to the influence of problem- 515

atic neighbouring words. These words, such 516

as abusive language, drug references, or harsh 517

tones, skew the model’s classification. The 518

meaning of slang often depends heavily on 519

the surrounding context. 520
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Error
Category Examples Reason for Misclassification Gold Label →

Predicted Label
Bad

Neighbors I think y’all understand the intense hate
and fear for that rodent-looking moth-
erfucker.

The strong slang word “motherfucker” triggers mis-
classification, while “rodent” adds a negative tone
but isn’t slang.

Non-Slang →
Slang

Proper
Nouns Wow, believe still remember brownie

smile song girl scout memories. Good
burger, man. I wish you could come to
the sweet brownie party.

Phrases like “Brownie Smile Song” and “sweet
brownie party” are proper nouns. Informal phras-
ing misleads the model into treating them as slang.

Non-Slang →
Slang

Lost in
Length Post-1960s growth small, expensive

underclass resulted in structural prob-
lems... chronic joblessness and welfare
dependency.

Long, complex sentences make identifying context
difficult, and pre-processing can reduce clarity.

Non-Slang →
Slang

Polysemy @Officer_Grayson Once a germ, al-
ways a germ. He’s as unclean as pork.

The word “germ” has multiple meanings, either as
a microorganism or an insult. Lack of clear context
causes errors.

Non-Slang →
Slang

Polysemy As a tiny rodent... I see things from a
unique angle. Like that guy over there...
he’s not wearing underpants.

The metaphor “tiny rodent” was interpreted literally
instead of as slang, leading to misclassification.

Slang →
Non-Slang

Ambiguity The book’s protagonist is a mammy
figure who is both nurturing and deeply
flawed, becomes a symbol of resistance
against systemic oppression.

The context links “mammy” to literary analysis, sug-
gesting non-slang usage, but informal or stereotypical
connotations mislead the model.

Non-Slang →
Slang

Ambiguity My mom is really starting to get on my
fucken nerves being the germ freak she
is.

The word “germ” can be literal (bacteria) or slang
(obsession with cleanliness). Ambiguous context
caused misclassification.

Slang →
Non-Slang

Unknown Ugh, can’t wait to eat something after
this workout! Abs are killing me, lol
hoebag move, though.

Informal abbreviations like “lol” and rare slang terms
like “hoebag” confuse the model. Structure does not
match patterns.

Non-Slang →
Slang

Table 5: Examples of misclassified samples for each error category.

• Proper nouns (10%): Proper nouns, es-521

pecially those appearing as bi-grams or tri-522

grams, can confuse the model due to their523

compact and informal structure. These struc-524

tures may be misinterpreted as slang or collo-525

quial expressions, particularly when they lack526

clear distinguishing features.527

• Lost in length (13%): Long sentences with528

multiple clauses or overly concise phrases due529

to pre-processing can challenge the model.530

Pre-processing often involves removing stop531

words or punctuation, which can reduce the532

context available for accurate classification.533

• Polysemy (17%): Words with multiple mean-534

ings can lead to misclassification when the535

context is unclear or insufficient. Polysemous536

terms often require a broader or more detailed537

context for the model to interpret them cor-538

rectly.539

• Ambiguity (7%): Ambiguity arises when540

words or phrases can have multiple interpre-541

tations, and the context does not sufficiently542

clarify their meaning. For example, the word543

“salty” might mean “bitter” in a slang sense544

or “overly seasoned” in a literal sense. Simi- 545

larly, terms like “germ” or “chronic” can have 546

both literal and figurative meanings, leading 547

to misclassification if the context is vague. 548

• Unknown (30%): Texts containing uncon- 549

ventional abbreviations, rare slang, or novel 550

constructions are particularly challenging for 551

the model. These terms often deviate from 552

standard language patterns, making them dif- 553

ficult for the model to classify accurately. 554

7 Conclusion 555

We present SlangTrack (ST) Dataset, a corpus 556

designed to enhance fine-grained slang detection. 557

It overcomes the limitations of previous corpora, 558

which do not distinguish between words with both 559

slang and non-slang meanings. To evaluate its ef- 560

fectiveness, we explored approaches across ML, 561

DL, fine-tuned LMs, and LLMs. Our experiments 562

show that fine-tuning models, particularly BERT- 563

large-uncased, delivers strong performance in de- 564

tecting both slang and non-slang uses. 565
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8 Limitations566

Despite the promising results of this study, there567

are several limitations that leave room for further568

research. First, the corpus used in this work could569

benefit from a broader representation of slang, es-570

pecially rare and evolving expressions. This lim-571

itation impacts the generalizability of the model572

across a wider variety of slang terms. To address573

this, future work could explore data augmentation574

techniques to generate synthetic examples, enhanc-575

ing the diversity of the slang corpus.576

Additionally, the current approach does not fully577

exploit the potential of large language models578

(LLMs) in distinguishing between subtle nuances579

in slang and non-slang expressions. Incorporat-580

ing LLMs to assess their reasoning and contextual581

understanding in this domain could lead to more582

sophisticated slang detection mechanisms.583

Lastly, while the models employed in this study584

show reasonable efficacy, they may struggle with585

edge cases or ambiguous slang terms. Future re-586

search could benefit from ensemble methods, com-587

bining multiple models to create a more robust and588

accurate system for slang detection. This would589

likely improve overall performance, especially in590

handling less common or context-dependent slang591

terms.592
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9 Appendices754

9.1 Implementation Details755

• Hardware Configuration:756

– Machine Learning and Deep Learn-757

ing Models: All experiments, including758

both machine learning and deep learn-759

ing models, were conducted on a sin-760

gle Tesla V100 GPU equipped with 32761

GB of RAM. These experiments were762

performed using the Google Colab Pro+763

platform 12, which provides enhanced764

computational capabilities and extended765

runtime for intensive tasks.766

– Fine-Tuning Experiments (LM and767

LLMs): Fine-tuning of language models768

was executed on a single NVIDIA A100769

GPU, which features 80 GB of RAM.770

This setup was specifically chosen to han-771

dle the increased computational demands772

of optimising large-scale models for high773

accuracy in NLP tasks.774

• Software Frameworks : All experiments and775

model implementations were carried out us-776

ing Python 3.10.12. For evaluation, we used777

the metrics implemented in the scikit-learn778

toolkit 13. For reproducibility, we set the seed779

parameter to 42 in all experiments.780

– Machine Learning models: Differ-781

ent machine learning frameworks were782

utilised. Specifically, the scikit-learn783

toolkitwas employed to develop the Lo-784

gistic Regression (LR), Support Vector785

Machine (SVM), Random Forest (RF),786

and AdaBoost (AB) models. Addition-787

ally, Additionally, the CatBoost library 14788

was utilised to develop our CatBoost789

models, leveraging its advanced capa-790

bilities for processing categorical data791

efficiently.792

– Deep Learning Models: TensorFlow 15793

and Keras 16 were the primary frame-794

works employed for deep learning tasks.795

These frameworks facilitated the devel-796

opment of complex neural network archi-797

12https://https://colab.research.google.
com/

13https://scikit-learn.org/stable/
14https://catboost.ai
15https://www.tensorflow.org/
16https://keras.io/

tectures, including Convolutional Neu- 798

ral Networks (CNNs) and BiLSTM for 799

text classification. Utilising Tensor- 800

Flow’s powerful computational capabil- 801

ities, models were optimised with tech- 802

niques such as extensive hyperparame- 803

ter optimisation using Keras Tuner 17. 804

Moreover, scikit-learn utilities were inte- 805

grated for performance evaluation, pro- 806

viding metrics such as precision, recall, 807

and F1-score, which were crucial for as- 808

sessing model effectiveness across vari- 809

ous classes. 810

– Transformer Models: For our 811

transformer-based models, we utilized 812

the SimpleTransformers 18 and Hug- 813

gingFace Transformers 19 libraries. 814

These tools streamlined the loading 815

and fine-tuning of pre-trained models 816

such as BERT, ALBERT, RoBERTa, 817

and XLNet, enhancing our capacity to 818

efficiently conduct NLP tasks with high 819

accuracy. also Scikit-learn is employed 820

for stratified K-fold cross-validation. 821

17https://keras-team.github.io/
keras-tuner/

18https://simpletransformers.ai
19https://huggingface.co/transformers/
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Figure 2: Confusion matrices for the BERT-large-uncased model, illustrating its classification performance for both
slang and non-slang categories.
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Models Parameters
Finetuned Models

(BERT, RoBERTa, ALBERT, XLNET)
num_train_epochs= 30, learning_rate= 4e-5, train_batch_size= 64, eval_batch_size= 64

Bilstm + GloVe embeddings Embedding Dimension= 300, BiLSTM Units= 32, Dense Units= 64, Dropout Rate= 0.2, Optimiser=
’Adam’, Learning Rate= 2.93e-03, epochs= 30

Bilstm + FastText embeddings Embedding Dimension= 300, BiLSTM Units= 256, Dense Units= 64, Dropout Rate= 0.3, Opti-
miser= ’Adam’, Learning Rate= 7.02e-04, epochs= 30

Bilstm + BERT embeddings Embedding Dimension= 768, BiLSTM Units= 128, Dense Units= 128, Dropout Rate= 0.3, Opti-
miser= ’rmsprop’, Learning Rate= 7.44e-03, epochs=30

CNN + GloVe Embeddings Embedding Dimension= 300, conv_units= 128, Dense Units= 32, Dropout Rate= 0.4, Optimiser=
’Adam’, Learning Rate= 1.00e-03, epochs= 30

CNN + FastText embeddings Embedding Dimension= 300, Conv Units= 224, Dense Units= 128, Dropout Rate= 0.2, Optimizer=
’rmsprop’, Learning Rate= 1e-03, epochs= 30

CNN + BERT embeddings Embedding Dimension= 768, Conv Units= 64, Dense Units= 32, Dropout Rate= 0.3, Optimiser=
’rmsprop’, Learning Rate= 1e-03, epochs= 30

Table 6: Important parameters of deep models.

Estimator Hyperparameters
LR penalty= ’l2’, C= 1.0, solver= ’lbfgs’, max_iter= 100, verbose= 0

SVM C= 1.0, gamma= 1.0, cache_size= 200, verbose= False, max_iter= -1, random_state= None,
class_weight= None

RF n_estimators= 100, max_depth= 10, min_samples_split=2
AdaBoost n_estimators= 50, learning_rate= 1.0, base_estimator= DecisionTreeClassifier, algorithm =

’SAMME.R’
CatBoost iterations= 1000, learning_rate= 0.03, depth= 6, verbose=True

Table 7: Important parameters for Machine Learning models.
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